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Abstract:  12 

The recent focus on the role of epigenetic mechanisms in mental health has led to several studies 13 
examining the association of epigenetic processes with psychiatric conditions and 14 
neurodevelopmental traits. Some studies suggest that epigenetic changes might be causal in the 15 
development of the psychiatric condition under investigation. However, other scenarios are 16 
possible, e.g. statistical confounding or reverse causation, making it particularly challenging to 17 
derive conclusions on causality. In the present review, we examine the evidence from human 18 
population studies for a possible role of epigenetic mechanisms in neurodevelopment and mental 19 
health and discuss methodological approaches on how to strengthen causal inference including the 20 
need for replication, (quasi-)experimental approaches and Mendelian randomization. We signpost 21 
openly accessible resources (e.g. MR-Base, EWAS catalog, tissue-specific methylation and gene 22 
expression databases) to aid the application of these approaches. 23 

Keywords: DNA methylation, epigenetics, mental health, neurodevelopment, causal inference, 24 
Mendelian randomization. 25 

 26 

1. Epidemiological evidence linking epigenetics and mental health 27 

Mental health and neurodevelopmental disorders are under the influence of both genetic and 28 
environmental factors. Epigenetic mechanisms regulate gene expression and are potential mediators 29 
of both these genetic and environmental effects on mental traits and disorders. Of the known 30 
epigenetic processes involved in gene regulation, DNA methylation, which consists of the covalent 31 
addition of a methyl group to a cytosine base at CpG dinucleotides, is the most widely studied. The 32 
main reason for its popularity is the availability of cost-effective, high throughput laboratory assays 33 
that utilise DNA extracted using standard protocols. To date, most epigenetic studies of mental health 34 
have measured DNA methylation at the genome-wide level using Illumina Infinium 450K or EPIC 35 
arrays in peripheral blood or saliva samples, since these tissues are most commonly available in large 36 
studies. 37 

Epidemiological studies that have investigated the association of DNA methylation with mental 38 
health traits and conditions in peripheral blood or saliva using the Illumina 450K arrays were 39 
identified in a semi-systemic manner by searching within PubMed. The characteristics of the studies 40 
are summarised in Table 1. While this search is not meant as a systematic review, it provides examples 41 
of studies that investigated the link between DNA methylation and brain-related processes in 42 
peripheral tissues.  Associations of DNA methylation variation measured in peripheral blood, in 43 
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relation to schizophrenia are among the most widespread published so far. In the largest study to 44 
date, a comparison of 689 men affected by the disease and 645 controls reported over 900 methylation 45 
variable sites across the genome. Although the authors applied a more relaxed threshold (FDR p < 46 
0.2) in the discovery sample, many methylation sites replicated in an independent sample with effects 47 
consistent in size and direction [1]. Other associations have been reported linking methylation 48 
variable loci with suicidal behaviour within individuals with bipolar disorder [2], for depressive 49 
symptoms within the elderly [3], self-reported wellbeing [4] and panic disorder in adulthood [5]. 50 
However, in some instances conflicting evidence can be found [6] or only very weak evidence is 51 
provided, as seen in a study on post-traumatic stress and major depressive disorder [7]. With respect 52 
to neurodevelopment, DNA methylation differences were reported in relation to educational 53 
attainment and cognitive abilities measured in adulthood [8], attention-deficit hyperactivity disorder 54 
[9], oppositional defiant disorder [10], multiple risk behaviours [11], substance abuse [12], early onset 55 
conduct disorder [13] and childhood physical aggression [14], with weaker evidence for an 56 
association with violent aggression and diagnosed autism spectrum disorders [15-17]. Neurological 57 
conditions that showed differences in blood-based DNA methylation when compared to controls 58 
include mesial temporal lobe epilepsy [18], narcolepsy [19] and Parkinson’s disease [20]. 59 

Table 1. Epigenome-wide association studies of mental health traits and diseases conducted in 60 
peripheral blood. A semi-systematic PubMed search was undertaken 61 
(https://www.ncbi.nlm.nih.gov/pubmed/, access date 21/11/2018) using the terms “DNA 62 
methylation”, “methylome-wide”, “epigenome-wide”, “psychiatry”, “psychiatric”, “behaviour” and 63 
“human”. See text for references. 64 

Trait/disease   
Study 

design 
Tissue Sample size 

DNA 

methylation 

differences 

Significance 

threshold 
Authors, year 

Wellbeing 
Population 

study 
Blood N=2456 2 CpGs Bonferroni p < 0.05 

Baselmans et al., 

2015 

Schizophrenia Case-control Blood 

N=1339 

(discovery); 

N=497 

(replication) 

923 CpGs FDR p < 0.2 
Montano et al., 

2016 

Substance abuse 
Population 

study 

Cord 

blood 
N=244 65 CpGs FDR q < 0.05 Cecil et al., 2016 

Suicidal 

behaviour 
Case-control 

White 

blood 

cells 

N=123 
None below 

threshold 
Not specified 

Bani-Fatemi et al., 

2017 

Post-traumatic 

stress disorder 

Clinical 

study 

(trauma 

patients) 

Blood N=473 
None below 

threshold 
FDR p < 0.05 Kuan et al., 2017 

Major 

depressive 

disorder 

Case-control Blood N=473 
None below 

threshold 
FDR p < 0.05 Kuan et al., 2017 

Panic disorder Case-control Blood N=96 40 CpGs FDR p < 0.05 
Shimada-Sugimoto 

et al., 2017 

Educational 

attainment 

Population 

study 
Blood N=10767 9 CpGs p < 1x10-7 

Karlsson Linner et 

al., 2017 

Mesial temporal 

lobe epilepsy 
Case-control Blood N=60 216 CpGs p < 1.03x10-7 Long et al., 2017 

Parkinson’s 

disease 
Case-control 

Peripher

al blood 

mononu

clear 

cells 

N=38 

2 CpGs 

(identified via 

multiple 

methods) 

methylation 

difference > 15% 

and validation 

with other 

methods 

Kaut et al., 2017 

Attention-deficit 

hyperactivity 

disorder 

Population 

study 

Cord 

blood 
N=828 13 CpGs FDR q < 0.05 Walton et al., 2017 

Oppositional 

defiant disorder 

Population 

study 

Cord 

blood 
N=671 30 CpGs FDR q < 0.05 Barker et al., 2018 

https://www.ncbi.nlm.nih.gov/pubmed/
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Depression Case-control Blood N=200 6 DMRs 
Sidak corrected p 

< 0.05 

Crawford et al., 

2018 

Cognitive 

abilities 

Population 

study 
Blood N=2557-6809 2 CpGs 

p < 0.05/(420000 

CpG x 7 traits) 
Marioni et al., 2018 

Depressive 

symptoms 
Case-control Blood N=47 

None below 

threshold 
  

Shimada  et al., 

2018 

Depressive 

symptoms 

Population 

study 
Blood 

N=7948 

(discovery); 

N=3308 

(replication) 

3 CpGs p < 1.03x10-7 
Story  Jovanova et 

al., 2018 

Narcolepsy Case-control Blood N=46 14 CpGs FDR p < 0.05 
Shimada et al., 

2018 

Violent 

aggression 

Clinical 

study 

(schizophren

ia patients) 

Peripher

al blood 

mononu

clear 

cells 

N=134 

(discovery) 

Weak 

differences 
p < 1x10-6 Mitjans et al., 2018 

Physical 

aggression 

Population 

study 

Buccal 

(discove

ry); 

Peripher

al T cells 

(replicati

on) 

N=119 

(discovery); 

N=38 

(replication) 

4 CpGs; 2 

DMRs 
FDR q < 0.05 Cecil et al., 2018 

Early-onset 

conduct 

disorder 

Case-control 
Cord 

blood 
N=260 7 CpGs FDR q < 0.05 Cecil et al., 2018 

Multiple risk 

behaviours 

Population 

study 
Blood N=227-575 2 CpGs FDR q < 0.10 

de Vocht et al., 

2018 

Autism 

spectrum 

disorder 

Case-control Blood N=1311 
None below 

threshold 
p < 1.12x10-7 

Andrews et al., 

2018 

Autism 

spectrum 

disorder 

Case-control 
Cord 

blood 
N=1263 

None below 

threshold 
p < 1x10-7 Hannon et al., 2018 

2. Challenges to assess causality 65 

Although there are indications that peripheral DNA methylation could be a plausible 66 
mechanism that leads to certain brain-related conditions, causality is often difficult to establish in 67 
epigenetic epidemiology. Many studies based on epigenome-wide associations are observational and 68 
do not allow for a direct assessment of whether the observed DNA methylation differences are a 69 
cause, consequence or confounder for the disease of interest.  70 

Firstly, evidence is often based on studies with small sample sizes without replication. Even if 71 
the effects are replicated across studies, they might arise due to similar confounding structures in the 72 
data sets, such as the distribution of tobacco smoking behaviours. Even after adjusting for self-73 
reported smoking, residual confounding could still be present due to reporting bias. For example, the 74 
association study of DNA methylation on educational attainment has revealed that all sites linked 75 
with education have previously been associated with smoking behaviour. Since smoking is often 76 
negatively correlated with years of education, this suggests that the observed association between 77 
DNA methylation and education is largely due to confounding, rather than describing a causal 78 
relationship [21].  79 

Another possible scenario where DNA methylation changes are not causal for a disease arises 80 
when the disease manifestation itself causes changes in DNA methylation, also referred to as reverse 81 
causation. This could arise in cross-sectional studies where the samples for DNA methylation 82 
analysis are obtained at the same time point as the administration of a questionnaire to assess the 83 
outcome of interest or where the methylation measurement was taken after the diagnosis of a disease 84 
was made. For instance, in the large EWAS on major depressive disorder DNA methylation was 85 
measured after the diagnosis was made. Hence, based on the association study alone it is impossible 86 
to disentangle whether epigenetic changes are cause or consequence of the disease [3]. 87 
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Most human epigenetic studies of mental health are based on peripheral samples. Although in 88 
some cases methylation changes occur in CpG sites linked to genes that have relevant brain functions, 89 
it is often challenging to relate changes in peripheral methylation to the development of a condition 90 
that affects the central nervous system (CNS). This problem is of relevance mainly because DNA 91 
methylation in the brain of living individuals cannot be quantified. Post-mortem samples, while rare, 92 
only allow the assessment of DNA methylation changes after the disease has manifested [22], as for 93 
instance in an EWAS of autism spectrum disorder conducted across several brain regions [23]. In this 94 
case, epigenetic changes could be confounded by treatment effects, as DNA methylation changes 95 
have been reported for instance in relation to antipsychotic treatment [24].  96 

The ‘gold standard’ experimental approach used to seek causal evidence is the randomised 97 
controlled trial (RCT). However, this is not a feasible option for DNA methylation research, as it is 98 
not yet possible or ethical to undertake an RCT with DNA methylation as the primary controlled 99 
exposure. Some studies have taken advantage of RCTs set up with other primary exposures and 100 
subsequently measured DNA methylation as a surrogate or intermediate but these have tended to be 101 
serendipitous, relying on RCTs that have collected DNA samples for other purposes (see below for 102 
further discussion of this issue). 103 

Animal studies, particularly in the laboratory, have the advantage of allowing for controlled 104 
experimental conditions and access to specific tissues other than peripheral blood, therefore avoiding 105 
the issue of confounding and the otherwise limited inferences that can be made with respect to tissue 106 
specificity. In mouse studies, DNA methylation can for example be manipulated by deleting the 107 
genes coding for DNA methyltransferases (Dnmt1/Dnmt3a/Dnmt3b), the enzymes that catalyse the 108 
transfer of a methyl group to a cytosine nucleotide. A study by Hutnick et al. [25] showed that the 109 
deletion of Dnmt1, even when restricted to the forebrain, caused widespread hypomethylation, 110 
neuronal degeneration and behavioural impairment in learning and memory. This is in line with 111 
other mouse studies, where Dnmt1 deletion seemed to cause increases in anxiety-like behaviour and 112 
deleting both Dnmt1 and Dnmt3 led to synaptic abnormalities with functional consequences for 113 
hippocampal plasticity [26,27]. These studies indicate a causal link between overall DNA methylation 114 
and brain-related traits, however they do not allow for the identification of specific methylation loci 115 
within the genome at which the changes in DNA methylation might be exerting their influence. 116 
Recently, with the technology of the CRISPR-Cas9 system applied in vivo to laboratory mice it has 117 
become possible to demonstrate that DNA methylation at the FMR1 gene causes the molecular and 118 
physiological phenotype of fragile-X syndrome [28]. While fragile-X syndrome has a specific and 119 
detectable molecular phenotype (lack of FMR1 protein), the limitation of most animal studies is that 120 
many human psychiatric diseases are defined by behavioural traits that can only partially observed 121 
in other species. Most animal models are based on resemblance of the behavioural symptoms and 122 
therefore mostly correspond to a sub-set of symptoms and traits of the modelled human psychiatric 123 
diseases rather than the full disease. Similarly, the pathological mechanisms leading to the human 124 
psychiatric conditions might not necessarily correspond to the changes observed in the animal 125 
models that only partially mimic the human condition. 126 

3. Epidemiological approaches to investigate causality 127 

3.1. Strength and robustness of the associations 128 

True epigenetic associations often tend to replicate in population samples with similar 129 
characteristics and confounding structures, thus the associations observed could be due to real effects 130 
or to other non-causal explanations. To assess the strength and robustness of the associations it is 131 
recommended, where feasible, to work collaboratively across multiple studies, as true causal 132 
associations ought to be reproduced across studies with different confounding structures. Such 133 
collaborations can be achieved within consortia where several studies with available epigenomic data 134 
can contribute to addressing the same research questions according to agreed and standardized 135 
analysis plans. Selected examples of such consortia that have been used in the field of epigenetic 136 
epidemiology are listed in Table 2 below. 137 
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Table 2. Selection of consortia in the field of epigenetic epidemiology. 138 

Resource Description Link 

Pregnancy and Childhood 

Epigenetics (PACE) consortium 

[29]  

focus on the effect of early life exposures on 

DNA methylation in childhood 

https://www.niehs.nih.gov/research

/atniehs/labs/epi/pi/genetics/pace/ 

Cohorts for Heart and Aging 

Research in Genomic 

Epidemiology (CHARGE) [30]   

focus on facilitating genetic and epigenetics 

meta-analyses and replication opportunities 

among cohort studies 

http://www.chargeconsortium.com/ 

Genetics of DNA Methylation 

(GoDMC) consortium [31] 

focus on the genetic basis of DNA methylation 

variation in participants of different ages and 

ethnicities 

http://www.godmc.org.uk/informat

ion.html 

For these cross-cohort analyses, it is however essential to standardize pre-processing steps, 139 
including normalisation, quality checks, and epigenome-wide association study (EWAS) analyses 140 
procedures. Data sharing is often a limiting factor in analyses of this type and harmonizing data 141 
across studies can sometimes be resource intensive. Software packages have been developed to 142 
facilitate such analyses. For example,  the meffil R package, which was created to enable cross-cohort 143 
harmonization without data sharing, is available for download at https://github.com/perishky/meffil 144 
[32].  145 

Where there is no opportunity for collaboration or the phenotypes of interest are not available 146 
in consortia, it is sometimes possible to access DNA methylation data and their association with the 147 
phenotype from openly available online repositories, such as Gene Expression Omnibus (GEO)  148 
(https://www.ncbi.nlm.nih.gov/geo/). In the GEO repository, data can be downloaded or analysed 149 
online with the interactive GEO2R tool [33].  150 

Replicating associations across different datasets also provides an opportunity to verify that 151 
results are not due to technical artefacts. Although replication does not necessarily increase the 152 
likelihood of associations being causal, it can be a further step in supporting the veracity of the 153 
observed association. For instance, investigating the same CpG sites-trait associations across the 154 
Illumina 450K or the more recent EPIC array or using different techniques, including 155 
pyrosequencing, bisulphite sequencing and qPCR will strengthen the inferences that can be made 156 
with respect to the confidence in true associations. 157 

3.2. Experimental and quasi-experimental approaches 158 

The conventional epidemiological design to investigate causality, an RCT requires the 159 
participants to be randomly assigned to groups that are similar except for the exposure of interest 160 
(here DNA methylation). Although theoretically it is possible to conduct an RCT of a demethylating 161 
agent and assess its impact on a mental health outcome, a targeted manipulation of specific 162 
methylation sites is currently not achievable with the available tools.  163 

RCTs are however more tractable where methylation is considered as a secondary outcome to 164 
investigate the effects of an intervention. For example, an RCT design has been exploited to assess 165 
the effects of pollution [34] and folate intake [35] on DNA methylation. Linking changes in 166 
methylation, which have been identified to be a causal consequence of environmental exposures, to 167 
psychiatric disorders could be an interesting and worthwhile extension of such findings. 168 

Natural experiments, where populations are exposed to an unplanned disaster or event, provide 169 
valuable data to reveal changes in DNA methylation that are causal for psychiatric conditions. For 170 
example, methylation changes due to prenatal exposure to the Dutch famine [36] have been shown 171 
to cause changes in mental health in adulthood [37] and suggest that DNA methylation could be a 172 
potential mediating mechanism. Similarly, prenatal maternal stress due to a significant ice storm in 173 
Quebec in 1998 affected DNA methylation [38] and autism-related traits [39]. 174 

3.3. Mendelian randomization (MR) 175 

One widely adopted approach to strengthen causal inference is the method of Mendelian 176 
randomization (MR), a form of instrumental variable analysis. In MR, the instrument is comprised of 177 
one or more genetic variants that are robustly associated with the exposure of interest. As individuals 178 

https://www.niehs.nih.gov/research/atniehs/labs/epi/pi/genetics/pace/
https://www.niehs.nih.gov/research/atniehs/labs/epi/pi/genetics/pace/
http://www.chargeconsortium.com/
http://www.godmc.org.uk/information.html
http://www.godmc.org.uk/information.html
https://github.com/perishky/meffil
https://www.ncbi.nlm.nih.gov/geo/
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inherit alleles at random, these individuals are assigned to experience a higher-than-average dosage 179 
of the exposure.  180 

MR relies on the availability of genetic variants to use as instrumental variables (for a discussion 181 
on additional assumptions, see [40,41]). Where genetic variants can be identified that correlate 182 
strongly with DNA methylation levels, MR can be applied to study causal effects of DNA methylation 183 
on mental health. Depending on the research question, the sample characteristics and data 184 
availability, different MR methodologies can be applied such as one-sample, two-sample, 185 
bidirectional, multivariable and two-step MR, the details of which can be found elsewhere [42,43]. 186 
Due to limitations in data availability and computational resources required, MR has predominantly 187 
been performed to date on selected methylation loci (e.g. top hits of a robust EWAS), with a few 188 
notable exceptions [44,45]. However, with the advent of more detailed data on genetic variants that 189 
tag methylation variation, the approach promises to be more widely adopted. 190 

3.3.1. Instruments for epigenetic MR analysis  191 

Potential instruments for DNA methylation are single nucleotide polymorphisms (SNPs) that 192 
are strongly associated with methylation at the CpG sites of interest – often referred to as methylation 193 
quantitative trait loci (mQTL). These can be found in online databases that have performed GWAS 194 
of DNA methylation (Table 3). The overwhelming majority of catalogued mQTLs have been derived 195 
from populations of European ancestry and are based on peripheral blood DNA, raising the issue of 196 
whether the same SNP-DNA methylation relationship is observed in other ethnicities or tissues. 197 
Emerging evidence suggests that this assumption might be plausible in some instances [46]. 198 
However, as DNA methylation is often tissue-specific, brain tissue specific databases (Table 3) can be 199 
used to identify mQTLs when the hypothesis implies a biological mechanism that acts via changes in 200 
brain DNA methylation. 201 

Alternatively, blood-derived mQTLs can be used in MR when an EWAS of a brain-related trait 202 
has been conducted in blood and it is plausible that changes in methylation in blood cells are reflected 203 
in changes in brain activity, for instance via circulating hormones that cross the blood-brain barrier 204 
(see section 3.4.1 for a more detailed discussion).   205 

Table 3. Resources that can be used to identify genetic effects on DNA methylation probes. 206 

Resource Description Link 

mQTL database 

[47] 
1000 mother-child pairs across the life 

course; based on blood 
http://mqtldb.org  

BIOS QTL browser 3841 adult blood samples of varying ages https://genenetwork.nl/biosqtlbrowser 

GoDMC [48] 
largest mQTL consortium to date; focus on 

blood tissue 
http://www.godmc.org.uk/projects.html 

Brain xQTL Serve 

[48] 
411 frontal cortex brain samples of older 

adults 
http://mostafavilab.stat.ubc.ca/xqtl  

Brain Epigenomics 

[49] 
166 foetal brain samples https://epigenetics.essex.ac.uk/mQTL 

 207 
 208 
Some of the resources listed in Table 3 are based on data from specific developmental periods 209 

(e.g. foetal sample, cord blood) – however, our ability to use these resources in a developmentally 210 
sensitive manner is still restricted and heterogeneity in ethnicity and cell type composition between 211 
the target and the reference datasets limits any conclusions drawn from these analyses. 212 

Most mQTLs are cis-associations, i.e. they are located proximal to the CpG of interest. Cis-SNPs 213 
have large effects on the CpGs in their proximity, whereas trans-SNPs have smaller effects and tend 214 
to act polygenically on several target loci. For these reasons cis-SNPs, rather than trans, are preferred 215 
as instruments for use in MR. 216 

3.3.2. Methodologies in epigenetic MR analyses 217 

http://mqtldb.org/
https://genenetwork.nl/biosqtlbrowser
http://www.godmc.org.uk/projects.html
http://mostafavilab.stat.ubc.ca/xqtl
https://epigenetics.essex.ac.uk/mQTL
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If mQTLs are available for the CpGs of interest, these can be used as instruments for MR. In 218 
studies where genotypes, DNA methylation data and the outcome (e.g., mental health trait), are 219 
available, it is possible to perform one-sample MR using the 2-stage-least-square regression (Figure 220 
1, top panel). This is easily implemented with the ivreg2 command in the STATA software or the 221 
function tsls in the gmm R package (https://cran.r-project.org/web/packages/gmm/index.html) [50]. 222 

 223 

Figure 1. Overview on methodologies in epigenetic MR analyses. 224 

When this data is not available, a two-sample MR approach can be used (Figure 1, bottom panel). 225 
This relies on extracting the genotype-methylation (G-M) summary statistics (beta regression 226 
coefficients and standard errors) from one study and the genotype-outcome (G-O) statistics from 227 
another, independent study. For one SNP, the causal estimate is the ratio of the genotype-outcome 228 
beta coefficient divided by the genotype-methylation beta coefficient. The standard error of the causal 229 
estimate is estimated via the delta-method as described in Thomas et al. [51]. When at least three 230 
genetic variants are available, the G-M/G-O ratio estimates are meta-analysed using standard meta-231 
analysis methods such as the inverse variance weighted approach with fixed or random effects 232 
models. Two-sample MR can be easily performed using the MR-Base online tool 233 
(http://www.mrbase.org/) and the TwoSampleMR R package available for download at the github 234 
online repository (https://github.com/MRCIEU/TwoSampleMR) [52] . Similarly, the 235 
MendelianRandomization R package performs two-sample MR using existing summary data on genetic 236 
associations with exposure and outcome [53]. When several SNPs are available it is useful to choose 237 
the MR-Egger model, which provides a test for horizontal pleiotropy and a pleiotropy-adjusted 238 
causal estimate [54]. However, this method has lower power and is recommended primarily as a 239 
sensitivity analysis. GWAS summary statistics for the G-O associations can be found in several online 240 
databases (Table 4). 241 

Table 4. Resources providing GWAS summary statistics for (mental health) traits. 242 

Resource Description Link 

MRInstruments 

R package that contains a number of data files 

from various sources to provide instruments in 

two-sample MR 

https://github.com/MRCIEU/MRIn

struments 

Phenoscanner [55] 
lists over 65 billion GWAS associations, hosted 

at the University of Cambridge 

http://www.phenoscanner.medsch

l.cam.ac.uk 

GWAS catalogue 

[56] 
curated catalog in collaborative between the 

EMBL-EBI and NHGRI 
https://www.ebi.ac.uk/gwas 

Psychiatric 

Genomics 

Consortium [57] 

genome-wide summary data for psychiatric 

disorders 

https://www.med.unc.edu/pgc/res

ults-and-downloads 

https://cran.r-project.org/web/packages/gmm/index.html
http://www.mrbase.org/
https://github.com/MRCIEU/TwoSampleMR
https://github.com/MRCIEU/MRInstruments
https://github.com/MRCIEU/MRInstruments
http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
https://www.ebi.ac.uk/gwas/
https://www.med.unc.edu/pgc/results-and-downloads
https://www.med.unc.edu/pgc/results-and-downloads
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ENIGMA brain 

structure [58] 
genome-wide summary data for brain structure 

phenotypes 

http://enigma.ini.usc.edu/research/

download-enigma-gwas-results  

 243 
Following this strategy, two-sample MR has recently been applied to test for a causal effect of 244 

methylation in the DRD4 gene on physical aggression and did not support a causative link [14]. 245 
The direction of the association, if not known a priori, can be queried using bi-directional MR, 246 

where both a causal effect of methylation on the trait and a causal effect of the trait on methylation 247 
are estimated. Effectively, this procedure involves two MR analyses, requires a set of independent 248 
SNPs for each analysis and can be carried out within the one-sample or the two-sample setting.  249 

When the research interest is to estimate the effect of an exposure on an outcome via DNA 250 
methylation, to supplement the conventional observational mediation approach, it is useful to adopt 251 
an MR strategy that involves two MRs, one from exposure to methylation and one from methylation 252 
to the outcome of interest. In the two-step MR approach, the SNPs used as instruments for each step 253 
need to be independent. Each MR step adopts the usual assumptions for MR and is performed using 254 
the same general principles and methods for MR. This implies that several independent study 255 
samples are needed to obtain the summary statistics for the genotype-exposure (G-E), G-M and G-O 256 
associations, which can be identified using the resources listed in Table 3 and 4. Two-step MR has 257 
been applied to test the causal role of prenatal nutrients involved in the one-carbon metabolism on 258 
schizophrenia via epigenetic changes [59] and to reveal DNA methylation as a mediator between the 259 
exposure to prenatal vitamin B12 and cognitive abilities [60].  260 

Other methods using genetic variants to strengthen causal inference are based on the integration 261 
of genome-wide genetic and epigenetic data with the disease of interest using polygenic risk scores 262 
(PRS) for the disease and co-localisation analyses. PRS are defined as the sum of trait-associated 263 
alleles across many genetic loci, weighted by the GWAS effect size. Similar to the MR approach, the 264 
epigenetic and phenotypic variation associated with PRS is less likely to be confounded by lifestyle 265 
exposures such as smoking and environmental factors such as pollution and is less prone to reverse 266 
causation. For example, EWAS studies on schizophrenia where PRS rather than diagnosis were used 267 
in the analysis have identified DNA methylation differences at novel CpGs [61]. Furthermore, 268 
Bayesian co-localisation analysis, where the results of a GWAS of methylation at the CpG sites and 269 
the results from an independent GWAS for schizophrenia were compared, supported the hypothesis 270 
that some of the genetic variants within the overlapping sites had a regulatory role in the disease via 271 
influencing DNA methylation [62]. PRS for brain-related disease can be computed using summary 272 
statistics from published GWAS (see Table 4 for a list of resources; to derive polygenic scores, see 273 
https://choishingwan.github.io/PRSice, https://www.cog-genomics.org/plink/1.9/score and [63]). 274 
Bayesian colocalization analysis can be performed using existing summary data from mQTL 275 
databases and the coloc R package (https://cran.r-project.org/web/packages/coloc/) [64].  276 

3.4. Plausibility of biological mechanisms 277 

3.4.1. A word of caution: mechanism vs biomarker 278 

The excitement of obtaining an epigenetic signal, that is strong, robust and potentially causal, 279 
can be exhilarating. However, before deriving at conclusions about the “aetiological mechanism of 280 
disease”, it is advisable to recall the original aim of the study. Frequently, the aim is to identify causes 281 
of disease, which is imperative for interventions to be successful. On the other hand, establishing 282 
non-causal associations (often referred to as biomarkers, see below) can be useful in prediction. 283 
However, a biomarker can be causal or non-causal. Whether the aim is to identify a causal pathway 284 
and/or a biomarker (of risk or of disease) should be set out in the initial stages of the project. Caution 285 
is advised with respect to the conclusions that can be drawn from the study design and data in terms 286 
of biological mechanisms. The interpretation of results will differ, depending on the underlying 287 
assumptions about the likelihood of system-wide effects of the exposure (i.e. genetic or 288 
environmental causes of disease), the relationship between the studied tissue and the primary tissue 289 

http://enigma.ini.usc.edu/research/download-enigma-gwas-results
http://enigma.ini.usc.edu/research/download-enigma-gwas-results
https://choishingwan.github.io/PRSice
https://www.cog-genomics.org/plink/1.9/score
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of pathophysiology. In most cases, methylation profiles would have been obtained from peripheral 290 
tissues (blood or saliva), with a small proportion of studies using post-mortem brain tissue.  291 

Under the assumption that the causal (but not necessarily initial, see argument below) tissue of 292 
pathophysiology is the brain, at least three potential scenarios are possible describing the relationship 293 
between peripheral and CNS methylation profiles: a shared common cause, periphery-mediated or 294 
CNS-mediated pathways to disease (left, middle and right panel in Figure 2). Note that a scenario, in 295 
which DNA methylation is a direct consequence – rather than a precursor - of disease, is an equally 296 
likely possibility, but not the focus of the current discussion. A mechanistic interpretation of findings 297 
based on peripheral tissue only makes sense assuming that the initial cause of pathophysiology 298 
originates in the periphery (scenario b and e in Figure 2) or at the very least assuming concordance 299 
of methylation patterns across tissues (top panel Figure 2, although see below for additional 300 
assumptions). 301 

‘Concordance’ in this case shall be defined as the consistency in effect of the exposure (i.e. cause 302 
of disease) on DNA methylation across tissue. This is different from ‘correlation’ of DNA methylation 303 
across tissue. For example, relative (but meaningful) perturbations in DNA methylation due to an 304 
exposure might be comparable across tissue, while absolute DNA methylation levels themselves are 305 
less correlated across tissues (Figure 3a). This assumes that small levels of perturbations can have 306 
large effects in some but not in other tissues. Likewise, without knowing what precisely causes cross-307 
tissue correlations in DNA methylation, DNA methylation levels might be correlated across tissue, 308 
but the effect of an exposure on DNA methylation in each tissue is different (Figure 3b). Therefore, 309 
while correlation of DNA methylation profiles across tissues is often an important indication, it is 310 
neither necessary nor sufficient for cross-tissue concordant effects. 311 

 312 

Figure 2. Three potential scenarios (by column) describing the relationship between peripheral and 313 
central nervous system (CNS) DNA methylation (DNAm) profiles within the pathway from cause to 314 
disease, assuming either consistency in effect of the risk exposure on DNA methylation across tissue 315 
(i.e. concordance; top panel) or discordance (bottom panel). 316 

All too often, cross-tissue concordance and correlation are implicitly assumed and findings are 317 
interpreted as potentially mechanistic. However, there is evidence that cross-tissue correlation seems 318 
to be the exception, rather than the norm [65]. Concordance of methylation profiles across tissues is 319 
hardly ever investigated, due to the difficulty (and costs) in measuring the effect of a risk factor on 320 
DNA methylation across several tissues in the same individuals. The notable exception of this is the 321 
investigation of tissue-specific mQTLs. For online available resources to investigate cross-tissue 322 
concordance and correlation, see sections 3.4.2 and 3.4.3. 323 

 324 
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 325 

Figure 3. Two scenarios demonstrating that correlation of DNA methylation profiles across tissues is 326 
neither (a) necessary nor (b) sufficient for cross-tissue concordant effects. 327 

Even in the case of cross-tissue concordance, it is easy to overstate risk pathways to disease. In 328 
the concordant, common cause scenario (a in Figure 2), the tendency is to assume system-wide causal 329 
effects, but it might be equally likely that a disease risk factor impacts methylation of the same gene 330 
in different tissues independently. In all concordant scenarios (a-c in Figure 2), concordant gene 331 
function across tissues is presumed, although genes can have different functions in different tissues. 332 
For example, assuming that in an analysis based on data from whole blood a methylation site was 333 
identified with a potential relevance for serotonin function. In the periphery the primary function of 334 
serotonin is digestion, while in the CNS serotonin is mainly involved in sleep and mood [66]. In the 335 
“shared common cause” scenario (Figure 2, scenario a), we do not need to focus on digestion-related 336 
functions, as these are not likely involved in the disease pathophysiology. In the “periphery-337 
mediated” scenario (Figure 2, scenario b), however, digestion should be a main pathway-of-risk while 338 
in the “CNS-mediated” scenario (Figure 2, scenario c), digestion is – if anything - a downstream 339 
pathway of disease. Any mechanistic interpretation of findings depends fundamentally on which 340 
scenario is most likely. 341 

When concordance is not assumed (see discordant scenarios d-f in Figure 2), the default position 342 
is often that - even though the epigenetic variation is not likely to be mechanistically involved - it 343 
may act as a biomarker of disease risk. However, the precise “biomarker” definition referred to is 344 
often not clear. According to the National Institute of Health Biomarkers Definition Working group, 345 
a biomarker is “a characteristic that is objectively measured and evaluated as an indicator of normal 346 
biologic processes, pathologic processes or biological responses to a therapeutic intervention” [67]. 347 
While it is beyond the scope of this review to discuss the role of DNA methylation as a biomarker of 348 
risk or disease, this term should not be used too lightly. Biomarkers should be: easily (in terms of 349 
tissue accessibility) and robustly measurable with little measurement error, reproducible across 350 
studies (e.g. it is not advised to claim biomarker potential based on a single study without replication) 351 
and have predictive power (or alternative advantages such as reducing costs). Finally, it should be 352 
clear, what exactly the established biomarker indexes (risk, disease or treatment). While it is often 353 
claimed that methylation-based biomarkers have the potential to inform intervention strategies, 354 
studies designed to explicitly demonstrate this are rarely seen [68].  355 

It is impossible to test these scenarios (Figure 2) directly without access to longitudinal and 356 
repeated measures of both peripheral and brain tissue in living humans, but their likelihood can be 357 
assessed by using tissue-specific causal inference method such as Mendelian randomization (see 358 
section 3.3) and the increasing body of online resources as described in the following sections. 359 

3.4.2. Biological characterisation 360 

Characterizing the biological relevance of an identified methylation site is often part of an 361 
epigenome-wide analysis, regardless of whether a potential disease mechanism has been established. 362 
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While methylation sites are often primarily viewed in relation to the nearest coding gene, it can be 363 
equally important to consider DNA methylation in the context of regulation of gene expression via 364 
impacting chromatin accessibility and transcription factor binding. For instance, studies have 365 
confirmed that DNA methylation around the transcription start site is largely associated with 366 
reduced gene expression locally [48]. In a study based on brain samples, DNA methylation and 367 
histone modifications were located in regulatory regions and seemed to mediate the association of 368 
genetic variants with gene expression [69]. Many of those epigenomic loci were also replicated in 369 
peripheral blood samples and were associated with psychiatric diseases such as schizophrenia and 370 
bipolar disorder. To characterize the biological context of a methylation site, the results of an EWAS 371 
can first be matched to the annotation file usually provided with the data or openly accessible online 372 
(Illumina 450k and EPIC array annotation are for example available via various R packages such as 373 
meffil [32]). This will provide CpG information on genomic location, SNPs located in or close to the 374 
probe, associated genes, and location with respect to the transcription start site of these genes or CpG 375 
islands. Furthermore, information is provided on low- or high-CpG density regions associated with 376 
FANTOM 4 promoters [70], although the reader should keep in mind that this information was based 377 
on human myeloid leukaemia cell lines and is not specific to CNS tissue. Finally, in the annotation 378 
file the reader will find information on enhancer elements, DNase I Hypersensitivity Sites, open 379 
chromatin regions and transcription factor binding sites (all based on the Encyclopaedia of DNA 380 
Elements (ENCODE) data [71]). 381 

Whenever possible, however, querying several databases (see Table 5 for selected resources) is 382 
advocated to corroborate results and to summarize all findings to avoid selective reporting. Also, to 383 
achieve a more meaningful interpretation of the regulatory nature of the genomic region in question, 384 
investigating these regulatory characteristics in a cell-type specific manner is advisable, which can be 385 
achieved using ENCODE data (www.encodeproject.org), usually via platforms such as 386 
genome.ucsc.edu.  For example, DNase I hypersensitivity clusters – indicative of regulatory 387 
chromatin regions that are sensitive to cutting by the enzyme DNase - can be viewed for 125 cell types 388 
(including cells derived from blood and brain tissue) as part of the ENCODE project. Histone marks 389 
and transcription levels are available for up to nine cell lines (including blood, embryonic stem cells, 390 
skeletal muscle among others). Transcription factor bindings sites are listed for 161 factors in 91 cell 391 
types (for a list on cell types, see here: https://genome.ucsc.edu/cgi-392 
bin/hgEncodeVocab?type=%22cell%22). Note that information on CNS-specific cell types is not 393 
always available but high (or low) correspondence across these diverse cell types could indicate 394 
similarly (un-)correlated profiles in brain tissue. For cell-type specific profiles related to brain tissue, 395 
a suggestion could be to investigate DNase I and histone mark data from the Roadmap Epigenetics 396 
Project (http://www.roadmapepigenomics.org/data/) that assayed ten different brain regions 397 
(including the hippocampus, cerebellum and mid frontal lobe among others). Note though that 398 
DNase I data is only available for foetal brain (not region-specific) and spinal cord tissue. Also note 399 
that to view Roadmap data in the UCSC genome browser, the reader will need to import these tracks 400 
via the UCSC Track data hub (https://genome.ucsc.edu/cgi-bin/hgHubConnect) or via 401 
http://www.roadmapepigenomics.org/data/. PsychENCODE is a comprehensive resource with 402 
exceptional relevance to brain related traits [72-82]. It provides raw and derived transcriptomic, 403 
epigenomic, and genomic data of post-mortem adult and developing human brains, both at the 404 
single-cell and tissue level. This dataset also includes measures on (hydroxy-)methylation, is based 405 
on up to 2000 individuals and incorporates resources such as GTEx, ENCODE and Roadmap 406 
Epigenetics Project, discussed above and elsewhere in this article. Data and results can be 407 
downloaded from The PsychENCODE knowledge portal (http://www.synapse.org/pec) and from 408 
http://resource.psychencode.org/. 409 

Table 5. Selection of resources to aid in the biological characterisation of DNA methylation findings. 410 

Resource Description Link 

ENCODE data 

[71] 
tissue-specific regulatory elements across a 

wide range of tissues 

www.encodeproject.org; or via  

www.ucsc.genome.edu 

http://www.encodeproject.org/
file://///ads.bris.ac.uk/filestore/myfiles/Staff20/ew16126/science/doretta_review/genome.ucsc.edu
https://genome.ucsc.edu/cgi-bin/hgEncodeVocab?type=%22cell%22
https://genome.ucsc.edu/cgi-bin/hgEncodeVocab?type=%22cell%22
http://www.roadmapepigenomics.org/data/
https://genome.ucsc.edu/cgi-bin/hgHubConnect
http://www.roadmapepigenomics.org/data/
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Roadmap 

Epigenetics 

Project [83] 

tissue-specific regulatory elements specifically 

in brain tissue 

http://www.roadmapepigenomics.org

; or via  www.ucsc.genome.edu 

PsychENCODE 

[74] 
Brain-specific tissue and single-cell 

transcriptomic and epigenomic data 
http://www.psychencode.org/ 

EWAS catalog 
manually curated and quality controlled 

catalog of epigenome-wide association studies 
ewascatalog.org 

Imprinted genes List of imprinted genes (by species)  
http://www.geneimprint.com/site/gen

es-by-species  

 411 
After investigating the regulatory nature of the genomic region, it can also be helpful to query 412 

whether the CpG itself or the differentially methylated region (DMR) has been implicated in other 413 
epigenome-wide analyses, which can be done using a manually curated EWAS catalog hosted at 414 
http://www.ewascatalog.org/.  415 

Finally, it is advised to investigate: 1) whether a CpG-of-interest is under genetic control by 416 
identifying potential mQTLs, ideally in a tissue-specific manner (see section 3.3.1 and Table 3 above 417 
for a list of resources); 2) whether a genomic region might show epigenetic supersimilarity, i.e. where 418 
the similarity in DNA methylation between twins is greater than expected based on shared genetics, 419 
as reported by Van Baak et al. [84]; and 3) whether a CpG-linked gene might be imprinted, meaning 420 
that the expression of this gene depends on the parental origin. For a list of imprinted genes, see 421 
http://www.geneimprint.com/site/genes-by-species.    422 

3.4.3. Cross-tissue comparisons 423 

Cross-tissue correlation (see section 3.4.1) is an important, but not essential requirement, even 424 
for a mechanistic interpretation of findings (e.g. scenario e in Figure 2). In practice, correspondence 425 
can be investigated using cell-type specific data on regulatory regions (see section 3.4.2 and Table 5) 426 
and several other openly accessible online resources (Table 6). BECon [85] 427 
(https://redgar598.shinyapps.io/BECon/) is based on paired blood and post-mortem brain tissue data 428 
from 16 individuals. The user can enter a CpG or gene name to visualize cross-tissue correlation 429 
across blood and three brain regions (BA10 (frontal), BA20 (temporal) and BA7 (parietal)). Another 430 
online resource with similar functionality is available via 431 
https://epigenetics.essex.ac.uk/bloodbrain/, based on matched blood and four post-mortem brain 432 
tissues (cerebellum, entorhinal cortex, frontal cortex and superior temporal gyrus) in 74 individuals. 433 
These two resources are based on the Illumina 450k array. Methylation data based on bisulphite 434 
sequencing are available via MethBase [86] (http://smithlabresearch.org/software/methbase/) and 435 
can be imported via the Track hub option (see section 3.4.2) into the UCSC genome browser. This 436 
resource provides information on methylation levels at individual sites, allele-specific methylation, 437 
and hypo- or hypermethylated regions. Furthermore, MethBase does not only allow for comparisons 438 
across cell types (frontal cortex, neural progenitor cells, embryonic stem cells and blood tissue cells 439 
in humans), but also across development (from 35 days to 64 years in the case of brain tissue data) 440 
and across species (including human, mouse, chimp, dog, zebrafish and plants).  441 

Alternatively, it is possible to test for a tissue-specific enrichment of EWAS probe sets, an option 442 
which is currently implemented in eFORGE (http://eforge.cs.ucl.ac.uk/). Relying on data from 443 
ENCODE and the Epigenomics Roadmap, eFORGE compares DNase I hypersensitivity site hotspot 444 
overlap between an EWAS input list and background probes in a cell-type specific manner. 445 

Table 6. Resources for cross-tissue comparisons of methylation signals. . 446 

Resource Description Link 

BECon [85] 
cross-tissue correlations of 450k 

probes across paired blood and brain 

regions of 16 individuals 

https://redgar598.shinyapps.io/BECon  

http://www.geneimprint.com/site/genes-by-species
http://www.geneimprint.com/site/genes-by-species
http://www.ewascatalog.org/
http://www.geneimprint.com/site/genes-by-species
https://redgar598.shinyapps.io/BECon/
https://epigenetics.essex.ac.uk/bloodbrain/
http://smithlabresearch.org/software/methbase/
http://eforge.cs.ucl.ac.uk/
https://redgar598.shinyapps.io/BECon
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Brain Epigenomics 

cross-tissue correlations of 450k 

probes across paired blood and brain 

regions of 74 individuals 

https://epigenetics.essex.ac.uk/bloodbrain  

MethBase [86] 
methylation profiles across tissues, 

development and species, based on 

bisulphite sequencing 

http://smithlabresearch.org/software/methb

ase 

eFORGE [87] 
analysis of cell type-specific signals 

in epigenomic data 
http://eforge.cs.ucl.ac.uk/  

 447 
An alternative technique to investigate cross-tissue correspondence was applied in Linnér et al. 448 

[88] using data from the Epigenomic Roadmap Consortium (see section 3.4.2; although alternative 449 
resources such as PsychENCODE listed in Table 5 could also be used). There, the authors calculated 450 
average cross-tissue methylation for a selected number of CpG sites linked to educational attainment 451 
and derived deviation from this average for a range of tissues (including brain tissue). These tissue-452 
specific measures of deviation were then correlated with EWAS test statistics (z-scores). The authors 453 
argued that a lack of correlation between EWAS z-scores of educational attainment and tissue-specific 454 
derivation (especially in brain tissue, assumed to be the target tissue of interest) indicated an absence 455 
of brain-tissue specific effects and might be suggestive of confounding. Of note, this method is based 456 
on average methylation levels across tissue and not on correlations (i.e. methylation profiles might 457 
be correlated across tissues, but at different absolute methylation levels). 458 

Finally, there is some evidence that the effects of mQTLs on methylation can be stable across 459 
tissues [47], although large-scale investigations across a wide range of tissue types (including brain 460 
tissue) are still missing. With this in mind, investigating consistency of mQTL effects across tissues 461 
(using resources described in section 3.3.1) can be helpful to obtain some indirect evidence for or 462 
against cross-tissue concordance.  463 

3.4.4. Tissue-specific gene and protein expression  464 

It is generally assumed that DNA methylation influences gene expression. However, this issue 465 
is still extensively debated [89] and the absence of a functional effect of methylation of gene 466 
expression does not preclude the possibility of a meaningful, causal mechanism. Still, it can be highly 467 
informative to investigate whether a gene linked to variation in DNA methylation at a site-of-interest 468 
also shows variation in its level of expression in the tissue-of-interest. The following section and Table 469 
7 provide an overview of online resource to assess gene expression profile by tissue and across 470 
development. 471 

The Human Protein Atlas (https://www.proteinatlas.org/humanproteome) is an excellent 472 
resource to investigate in which tissues a gene-of-interest is expressed in absolute terms, and also 473 
whether the expression of such a gene is elevated in the target tissue relative to average expression 474 
levels in all tissues. Lists on whole groups of genes that are preferentially expressed in certain tissues 475 
(e.g. n=1460 genes are listed to show elevated expression profiles in brain tissue relative to all other 476 
tissues) can be used to test for enrichment of brain-expressed genes in EWAS results. 477 

The Genotype-Tissue Expression project (GTEx, https://gtexportal.org/home/) provides similar 478 
options, listing information on tissue-specific gene expression, regulation and eQTL information. 479 
Importantly, the eQTL function allows users to investigate tissue-specific eQTL effects (for example 480 
of SNPs that have already been identified to be mQTLs).  481 

To gain insight into gene expression profiles across development, the reader is encouraged to 482 
consult the EMBL-EBI expression atlas (https://www.ebi.ac.uk/gxa/home), which displays data from 483 
a range of resources (including NIH Epigenomics Roadmap, ENCODE and GTEx).  484 

Three resources are of particular relevance to brain tissue-specific gene expression: the Allen 485 
Brain Map and Brain Cloud. The Allen Brain Map portal (http://portal.brain-map.org/) provides a 486 
range of useful data, including the Human Brain Atlas and the Developing Human Brain resources. 487 
The former is a unique multimodal atlas of the human brain, integrating highly detailed anatomic 488 
and genomic information. The user can search for a gene-of-interest and visualize its expression 489 
profile in different brain regions using high-resolution, MRI-based 3-D histology scans. 490 

https://epigenetics.essex.ac.uk/bloodbrain
http://smithlabresearch.org/software/methbase
http://smithlabresearch.org/software/methbase
http://eforge.cs.ucl.ac.uk/
https://www.proteinatlas.org/humanproteome
https://gtexportal.org/home/
https://www.ebi.ac.uk/gxa/home
http://portal.brain-map.org/
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The BrainSpan Atlas of the Developing Human Brain (http://www.brainspan.org) provides 491 
information on the human transcriptome (RNA sequencing and exon microarray data) across 492 
different brain regions and development. The BrainCloud application informs on genome-wide gene 493 
expression and their genetic control in the dorsolateral prefrontal cortex of normal subjects across the 494 
lifespan (http://braincloud.jhmi.edu). 495 

The PsychENCODE project combines data from several resources (including GTEx and 496 
BrainSpan) to characterize a large spectrum of genomic elements with the human brain, including 497 
gene expression as well as multi-QTL maps (for expression, chromatin, transcript expression and cell 498 
fraction), enhancers, splice variants and co-expression modules, often specific to cell type, brain 499 
region or developmental period. For a more detailed discussion on brain-based resources, see Keil et 500 
al [90].   501 

Table 7. Resources to investigate tissue-specific gene expression. 502 

Resource Description Link 

Human Protein 

Atlas 

expression profiles for all protein-

coding genes in 44 tissues and organs 

in the human body 

https://www.proteinatlas.org/humanproteome  

Genotype-Tissue 

Expression project 

(GTEx) 

information on tissue-specific gene 

expression, regulation and eQTL 

information based on 53 non-diseased 

tissues across 714 individuals 

https://gtexportal.org/home/  

BIOS QTL Browser 

[48] 
methylation QTL data based on up to 

3,841 whole-blood samples 
https://genenetwork.nl/biosqtlbrowser/  

EMBL-EPI 

expression atlas 

gene expression profiles across 

development based on a range of 

resources 

https://www.ebi.ac.uk/gxa/home  

Human Brain Atlas 

[91] 

multimodal atlas of the human brain, 

integrating highly detailed anatomic 

and genomic information based on 

six adult brains 

http://human.brain-map.org/ 

Developing Human 

[92] Brain 

human transcriptome in up to 16 

brain regions from 4 weeks post 

conception to over 40 years 

http://www.brainspan.org/ 

BrainCloud [93] 

gene expression and their genetic 

control in the dorsolateral prefrontal 

cortex of normal subjects across the 

lifespan  

http://braincloud.jhmi.edu/ 

PsychENCODE [74] 

Integration of expression and other 

regulatory elements across different 

brain cell types, regions and 

developmental periods 

http://www.psychencode.org/ 

 503 

Finally, it is important to note that gene expression levels (either in absolute terms or relative to 504 
average levels across tissues) can be misinterpreted. For example, DRD4 (coding for the dopamine 505 
D4 receptor) does not appear to be preferentially expressed in brain tissue, but it would be misleading 506 
to come to the conclusion therefore that DRD4 has no role in psychopathology, as numerous studies 507 
have demonstrated DRD4 functioning to be involved in emotion and complex behaviours such as 508 
novelty seeking [94-96]. Furthermore, there is a renewed interest in dopamine D4 receptor-based 509 
pharmacological treatments for substance use and Parkinson disease [97]. As highlighted throughout 510 
this review, molecular phenotypes including DNA methylation and gene expression vary over time 511 
and across tissues meaning that any measure will be specific to the temporal context at which the 512 
sample was taken and thus limiting the inferences that can be made with respect to cause. 513 

http://www.brainspan.org/
http://braincloud.jhmi.edu/
https://www.proteinatlas.org/humanproteome
https://gtexportal.org/home/
https://genenetwork.nl/biosqtlbrowser/
https://www.ebi.ac.uk/gxa/home
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3.4.5. Gene ontology analysis 514 

At last, it can be of interest to carry out an ontology analysis (or, relatedly, pathway or gene 515 
property analyses) to investigate whether the most associated CpG probes cluster within distinct 516 
biological functions. A plethora of online resources are available for ontology analyses and the reader 517 
is referred to excellent reviews on the topic [98,99]. In general, analysis tools with the option to carry 518 
out tissue-specific analyses are recommended. For example, FUMA (http://fuma.ctglab.nl, [100]) 519 
tests the relationships between tissue-specific gene expression and disease-gene associations, using 520 
gene expression data from GTEx and the BrainSpan project, among others. As this resource was 521 
primarily designed for genetic data, the user needs to map CpGs first to a gene before carrying out 522 
the analysis using the GENE2FUNC option. With this functionality, Linnér et al. [88] reported that 523 
genes closest to CpG probes linked to educational attainment were not preferentially expressed in 524 
brain tissue, suggesting that findings might have been driven by confounding factors. 525 

4. Strengths and limitations  526 

Epigenetic epidemiological studies of mental health and related phenotypes continue to be the 527 
focus of much interest with the hope of enhancing understanding of the biological mechanisms 528 
underlying the aetiology and progression of psychiatric diseases. However, they still present 529 
challenges and limitations.  530 

The platforms to generate data that have been most widely employed sample only a very small 531 
portion of CpG sites in the genome. Studies using sequencing-based approaches such as a recent 532 
methylome-wide association study of major depressive disorder that measured DNA methylation in 533 
28 million CpGs promise to unlock more information on epigenetic variation and will unravel more 534 
insights into the role of methylation in mental health [101]. Moreover, while the majority of the 535 
current studies focus on CpG methylation, DNA methylation is also present at non-CpG sites, 536 
particularly in brain tissue, suggesting a potential role in neurodevelopment and mental health [102]. 537 
Methylome sequencing only recently allowed the characterisation of non-CpG methylation in brain 538 
tissue [103], but could provide an additional avenue to discover novel effects in relation to 539 
neuropsychiatric traits. 540 

Mendelian randomization is proving to be a useful tool to strengthen causal inference and 541 
explore molecular mediation by DNA methylation. It does however have recognized limitations and 542 
is unlikely to provide definitive evidence of causal pathways without triangulation using 543 
complementary approaches in epidemiology and other disciplines. 544 

Epidemiological studies of methylation and brain-related processes using peripheral tissue 545 
alone may not be able to unravel true biological mechanisms, but the associations found can be 546 
translated in useful biomarkers (whether causal or not) for diseases or their progression and therefore 547 
are worthwhile investigating. They can also be used to establish how substantial the contribution of 548 
genetic factors to variance in methylation is. Also, it is often of interest to know whether a CpG 549 
impacts gene expression (or vice versa), even if not causally linked to disease. Finally, these 550 
approaches are useful to explain the correlation between peripheral DNA methylation to brain-based 551 
processes, even if these processes index (non-causal) disease correlates. Even with the limitation of 552 
not necessarily addressing the issue of causal correlates of psychiatric diseases that could be 553 
translated into intervention, peripheral epigenetic associations can answer biological questions that 554 
ultimately help understanding mental health. 555 

5. Future perspectives and conclusions 556 

In conclusion, recently developed openly accessible resources allow epigenetic epidemiological 557 
studies of mental health and offer multiple opportunities to understand the aetiology and 558 
progression of psychiatric conditions. Future advances in software development specific for 559 
epigenetics and statistical methodologies for causal inference as well as large biobanks in multiple 560 
complementary populations will increase substantially our understanding of mental health and lead 561 
to the generation of reproducible results to inform prevention and intervention strategies. 562 

http://fuma.ctglab.nl/
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