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ABSTRACT Electrical impedance tomography (EIT) has attracted great interest in many medical 

publications. It offers several unique advantages for being safe, low cost, and having high temporal resolution 

over other tomographic imaging protocols. Frequency dependence of electrical conductivity in biological 

samples gives EIT imaging a renewed chance to be a monitoring technique for important medical applications 

such as tumor tracking. Therefore, frequency difference EIT (fdEIT), which reconstructs images using 

difference data at two injecting frequencies, is a good candidate for high-speed tissue characterization in 

dynamical settings. However, low spatial resolution of EIT is a major drawback that limits its uses.  In some 

cases, such as treatment of tumours, prior knowledge about the location of a tumor is provided by early 

diagnostic images. This prior knowledge coupled with the spectroscopic knowledge of the frequency response 

of a tumor against normal tissue gives a possibility for localized frequency difference imaging, which can 

significantly enhance the spatial resolution.  Experimental results in this paper demonstrate this for the 

purpose of such monitoring of an inclusion exhibiting frequency dependent impedance and are quantitively 

compared with traditional methods. The new method shows detection of much smaller objects, which is not 

possible in traditional EIT imaging. This could give the EIT new roles to play, for motion compensation in 

conjunction with traditional low-speed but high-resolution medical imaging systems and dynamic tumor 

tracking.  

INDEX TERMS   EIT for tumor tracking, weighted frequency difference, Total Variation, region of interest, 

image evaluation parameter 

I. INTRODUCTION 

Medical imaging for cancer diagnosis requires high 

resolution imaging systems such as MRI and X-ray CT. 

However, these high resolution imaging systems can only 

provide accurate but static assessment due to their inherent 

low data capture rate; this is insufficient during cancer 

treatment, in which respiration-induced tumour motion 

information is required. There are various approaches to 

detect and estimate the respiratory movement, such as 

surrogate devices for the detection of the chest wall 

movement and metallic seeds implanted into a patient’s body 

[1]. Yet none of them manage to achieve an accurate tracking 

of tumour movement with patient friendly operations.  

Electrical Impedance Tomography (EIT) is an imaging 

modality that injects electrical currents to the electrodes 

attached to the periphery of the electrically conductive 

objects and takes electrical measurements from the 

remaining electrodes to image the impedance distribution 

within the medium. EIT was introduced as a safe, rapid, non-

invasive, and non-cumbersome way of visualizing electrical 

properties of human body tissues, especially large organs, by 

Barber and Brown [2]. As EIT virtually causes no adverse 

side effects (lack of radiation, no transport required), the 

method has become an attractive alternative to computed 

tomography, magnetic resonance imaging or ultrasound 

examinations. The key advantages of EIT are its relatively 

high acquisition speed and the availability of powerful 

temporal filtering techniques, which means that it can detect 

the dynamic behaviour of tissues, thus it can provide unique 

clinical information difficult to obtain by other technologies 

at bedside. Such algorithms allow EIT to be developed in 

thoracic functional applications, such as monitoring of 

mechanical ventilation, monitoring of heart activity and lung 

perfusion, and pulmonary function testing [3]. As a result, 
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EIT could be introduced as a guidance during a treatment 

session, though it may not be available of the same level as 

in the diagnostic stage. Studies on combining EIT with other 

slow but high spatial resolution imaging systems, cone beam 

computed tomography (CBCT) for example, have been done 

[1, 4, 5]. In these works, EIT is employed to exact and 

provide lung motion information to CBCT for motion 

compensation so that more accurate tumour imaging can be 

achieved for image-guided radiation therapy.  

In this paper, EIT is presented as a direct tumour tracking 

tool in cancer treatment application. The prior diagnostic 

knowledge provides the area within which the tumour is 

moving so that the reconstruction can be restricted to a region 

of interest (ROI). By applying such localised reconstruction 

techniques, the sensitivity within the ROI can be refined and 

the image resolution can therefore be enhanced [6-8]. 

Successes of introducing localised reconstruction strategies 

to improve image quality have been obtained both in 

industrial and medical areas, such as multi-phase pipeline 

flow analysis [9], assessment of regional lung ventilation 

[10-12] and potentially vocal folds monitoring [6]. 

Additionally, in the tumour tracking practice, baseline data 

is mostly unavailable. Therefore, frequency difference EIT 

(fdEIT) reconstruction that recovers the changes in 

impedance with respect to stimulation frequencies instead of 

time (tdEIT) will be implemented. This is based on the 

frequency dependent impedance of bio-samples and the 

development of multi-frequency EIT with a high data 

acquisition speed brings feasibility of fdEIT to clinical 

tracking applications [13].  

The idea of monitoring tumour movement using fdEIT 

within the localized region was brought up in [14], however, 

it was only demonstrated with simulation results and was 

lacking experimental evidence. In this work, following the 

success of simulation results presented in [14], two-

dimensional phantom experiments using bio-samples were 

implemented to study the feasibility of the proposed 

technique Specially, objects were placed at horizontally 

varying locations within a central limited region to simulate 

tumour movement in the anterior-posterior (AP) direction. 

Reconstructions were conducted by using the Total Variation 

(TV) functional [15, 16] to overcome the over-smoothed 

effect brought by traditional Tikhonov regularization. 

Results will be compared with traditional global 

reconstruction as well as mathematically modified global 

reconstruction to further validate and verify the proposed 

methodology; and hence offer the confidence in further in 

vitro or in vivo body tissue experiments.  

II. Electrical Impedance Tomography 
  
A. FORWARD PROBLEM 

EIT is the process of constructing a conductivity distribution 

from sets of voltage measurements when stimulated with 

current from different combinations of electrodes. Before 

image reconstruction, some pre-calculations and modelling 

of how a change of conductivity within the view region will 

affect the boundary measurements, which is referred to as the 

forward problem, are conducted.  To model the relationship 

between electric potential from the electrodes and the 

conductivity within the body, the derivation of Maxwell’s 

equation can be introduced as below:  

 ∇ ∙ (𝜎∇𝑢) = 0 (1) 

where 𝜎  is the conductivity, 𝑢  is the electric potential 

distribution, and ∇ ∙  is the divergence operator. In the 

forward problem, the voltage is predicted from any given 

current density within the field under the assumption of a 

constant conductivity. To solve the forward problem, the 

finite element method (FEM) has been used.  

B. Inverse Problem 

EIT reconstruction is the process of estimating conductivity 

from the boundary voltage measurements 𝑽𝒎𝒆𝒂𝒔, which is 

also known as the inverse problem, 

 𝑽𝒎𝒆𝒂𝒔 = 𝑭(𝝈) + 𝒆 
(2) 

where  𝑭  is a forward operator, which estimates the 

boundary voltages using linear approximation from 

calculated Jacobian, and 𝒆  is the mismatch between 

measurements and the estimation from the forward model. In 

EIT, it is common to simplify (2) by using a linear 

approximation:  

 𝑉𝑚𝑒𝑎𝑠 − 𝑭(𝜎0) = 𝐽(𝜎 − 𝜎0) (3) 

where 𝐽 is the Jacobian or sensitivity matrix of F calculated 

at the initial conductivity estimate 𝜎0. Defining  ∆𝜎 = 𝜎 −

𝜎0, and ∆𝑉𝑚𝑒𝑎𝑠 = 𝑉𝑚𝑒𝑎𝑠 − 𝑭(𝜎0), then (3) can be written as: 

 ∆𝑉𝑚𝑒𝑎𝑠 = 𝐽∆𝜎. (4) 

The conventional method of solving (4) is seeking to 

minimize the residual: 

 𝑎𝑟𝑔𝑚𝑖𝑛(‖∆𝑉𝑚𝑒𝑎𝑠 − 𝐽∆𝜎‖2). (5) 

In inverse problems, the imaging process may result in a loss 

of information due to the noisy and discretely sampled data. 

Hence, EIT reconstruction is considered as ill-posed in that 

simply finding the least square solution is unable to 

overcome the instability of the solution. Rather, 

regularization needs to be applied to smooth ill-posed 

problems by either truncating small values in the sensitivity 

matrix or imposing additional information about the 

solution:  

∆𝜎 = 𝑎𝑟𝑔𝑚𝑖𝑛 (
1

2
‖∆𝑉𝑚𝑒𝑎𝑠 − 𝐽∆𝜎‖2 + 𝛼𝑅(∆𝜎)) (6) 
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where 𝛼 is the regularization parameter controlling trade-off 

between regularization and fidelity; and 𝑅  is the 

regularization functional.  

The standard L2- norm regularization algorithm, e.g. the most 

widely used one Tikhonov regularization method, can be 

formulated as below: 

∆𝜎 = 𝑎𝑟𝑔𝑚𝑖𝑛(‖∆𝑉𝑚𝑒𝑎𝑠 − 𝐽∆𝜎‖2 + 𝛼𝐿‖∆𝜎‖2) (7) 

where 𝐿, the regularization matrix, is commonly an identity 

matrix or diagonal matrix. The standard Tikhonov method is 

realized by replacing L with the identity matrix [17], then (7) 

can be formulated as: 

∆𝜎 = (𝐽𝑇𝐽 + 𝛼𝐼)−1𝐽𝑇∆𝑉𝑚𝑒𝑎𝑠 . (8) 

The penalty term in L2-norm regularization penalizes a large 

gradient of the conductivity and yields smooth 

reconstructions. As a result, they won’t preserve a sharp 

object boundary, and hence are not highly regarded in the 

medical applications. 

The total variation regularization, on the other hand, adopts 

the L1norm which doesn’t penalize image discontinuities and 

helps to preserve the boundaries of perturbations and sharp 

changes in conductivity. This is particularly attractive for 

reconstructing sharp transitions [15, 18] as it would improve 

the characterization  of the object’s size and shape. 

  

II. METHODOLOGY  
 
A. FREQUENCY DIFFERENCE EIT 

EIT reconstruction is mainly categorized into two types, 

difference imaging and static imaging. Static imaging attempts 

to recover images of the absolute impedance distribution of the 

medium, which only requires one set of measurements at one 

instance. Nevertheless, it has suffered from a limited amount 

of measurable information, unknown boundary geometry, 

uncertainties in electrode positions. Difference imaging, on 

the other hand, recovers an estimate of the change in 

impedance, and hence greatly overcomes the drawbacks of 

absolute EIT by cancelling out common errors through data 

subtraction to allow reconstructions to remain stable. One 

approach is to adopt a time-difference (tdEIT) imaging 

method, where the change of impedance in sensing area 

between two instances is reconstructed. However, in the cases 

of tumour imaging or stroke detection when time-referenced 

data is not available, tdEIT method is not applicable [19, 20]. 

Given the fact that biological tissues have different 

frequency responses [21-23], impedance distribution inside 

the viewing region can be imaged by frequency difference 

reconstruction method (fdEIT), where measurements are 

taken under at least two frequencies.  

However, a simple frequency difference may not completely 

benefit from the advantages provided by difference imaging 

as various errors may occur at different frequencies. 

Consequently, weighted fdEIT reconstruction was proposed 

and has been validated by numerical simulations and 

phantom experiments[19, 24-26]. It is particularly useful in 

medical applications where the background is always 

composed of other body tissues that also have frequency 

dependent characteristics, and then the background influence 

can be eliminated while maintaining the impedance contrast 

within the anomaly. Then the boundary voltage 

measurement ∆𝑉𝑚𝑒𝑎𝑠 is denoted as:                             

 ∆𝑉𝑚𝑒𝑎𝑠 = 𝑉𝑓2
− 𝑎𝑉𝑓1

  𝑎 =
<𝑉𝑓1,𝑉𝑓2>

<𝑉𝑓1,𝑉𝑓1>
 (9) 

where 𝑽𝒇𝟏
 and 𝑽𝒇𝟐

 are the measurements collected at 

frequencies 𝒇𝟏 and 𝒇𝟐 respectively; 𝒂 is a frequency weight 

factor and <∙,∙> is the standard inner product of two vectors. 

In the medical applications, a set of stimulation frequencies 

will be carefully selected so that the frequency contrast of the 

anomalies is distinguishable from that of the background.  

B. TOTAL VARIATION REGULARIZATION BASED ON 

SPLIT BREGMAN FORMULATION 

The total variation problem is defined by replacing the 

penalty term L1 norm of the gradient of the image: 

 𝑅(∆𝜎) = ‖∇∆𝜎‖1 (10) 

where ‖∙‖1denotes the L1 norm, and ∇ is the gradient.  

The unconstrained formulation for the linearized model of 

EIT problem as following: 

∆𝜎 = 𝑎𝑟𝑔𝑚𝑖𝑛 (
1

2
‖𝐽∆𝜎 − ∆𝑉𝑚𝑒𝑎𝑠‖2

2

+ 𝛼‖∇∆𝜎‖1). 

(11) 

The introduction of the TV method, however, makes the 

inverse problem non-differentiable, so the traditional 

gradient class inversion algorithms are not applicable.  

In this paper, minimization of functions of TV norms is 

solved by the Bregman iteration technique, i.e. error 

forgetting [27], which benefits the advantages of quick 

convergence and a constant regularization parameter. The 

split Bregman algorithm, that combines the Bregman 

distance with splitting technique, was proposed in [28]. It 

was proved a good performance when applied to EIT with 

higher resolution, better noise resistivity and faster 

convergence compared with other TV algorithms[16], such 

as  linearised alternating direction method of multipliers 

(LADMM). This makes SB TV algorithm a good candidate 

especially in medical applications.  

The implementation of the split Bregman method can be 

accomplished by introducing auxiliary variables to separate 
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the non-differentiable L1-norm penalty term and L2-norm 

functional so that they can be solved in two alternating steps. 

Then (11) becomes a constrained optimization problem: 

 
∆𝜎 = 𝑎𝑟𝑔𝑚𝑖𝑛(

1

2
‖𝐽∆𝜎 − ∆𝑉𝑚𝑒𝑎𝑠‖2

2 +

𝛼‖𝑑‖1)  s.t. 𝑑 = ∇∆𝜎 
(12) 

where 𝑑 is an auxiliary variable. 

The corresponding unconstrained solution of (12) by 

applying the Lagrange equation is  

∆𝜎 = 𝑎𝑟𝑔𝑚𝑖𝑛
1

2
‖𝐽∆𝜎 − ∆𝑉𝑚𝑒𝑎𝑠‖2

2 + 𝛼‖𝑑‖1

+
𝛽

2
‖𝑑 − ∇∆𝜎‖2

2 

(13) 

where 𝛽 is the split parameter.  

Applying the Bregman iteration method, the original 

problem can be transformed into the following sub-

problems: 

(∆𝜎𝑘+1, 𝑑𝑘+1) = 𝑎𝑟𝑔𝑚𝑖𝑛
1

2
‖𝐽∆𝜎 − ∆𝑉𝑚𝑒𝑎𝑠

𝑘 ‖2
2

+  𝛼‖𝑑‖1 +
𝛽

2
‖𝑑 − ∇∆𝜎 − 𝑏𝑑

𝑘‖
2

2
 

(14) 

𝑏𝑑
𝑘+1 = 𝑏𝑑

𝑘 + ∇∆𝜎𝑘+1 − 𝑑𝑘+1. (15) 

The minimization of (14) can be handled by separately 

solving the minimization of ∆𝜎 and 𝑑 as below: 

∆𝜎𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛∆𝜎 (
1

2
‖𝐽∆𝜎 − ∆𝑉𝑚𝑒𝑎𝑠

𝑘 ‖2
2

+
𝛽

2
‖𝑑 − ∇∆𝜎 − 𝑏𝑑

𝑘‖
2

2
) 

𝑑𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑑 ( 𝛼‖𝑑‖1 +
𝛽

2
‖𝑑 − ∇∆𝜎𝑘+1 − 𝑏𝑑

𝑘‖
2

2
). 

This was computed as the following procedure and initially 

assign value to ∆𝜎0 = 0, and then set  𝑑0 = 𝑏𝑑
0 = 0:  

Step 1: 𝐵∆𝜎𝑘+1 = 𝛽(𝑑𝑘 − 𝑏𝑑
𝑘) + 𝐽𝑇∆𝑉𝑚𝑒𝑎𝑠

𝑘 ,  

where 𝐵 = 𝐽𝑇𝐽 + 𝛽𝐼 

Step 2: 𝑑𝑘+1 = 𝑠ℎ𝑟𝑖𝑛𝑘(∆𝜎𝑘+1 + 𝑏𝑑
𝑘, 𝛼

𝛽⁄ ) 

Step 3: 𝑏𝑑
𝑘+1 = 𝑏𝑑

𝑘 + ∆𝜎𝑘+1 − 𝑑𝑘+1 

Step 4: ∆𝑉𝑚𝑒𝑎𝑠
𝑘+1 =  ∆𝑉𝑚𝑒𝑎𝑠

𝑘 − 𝐽∆𝜎𝑘+1 

In addition to the Total Variation regularization discussed 

above, a Bescov regularizer was proposed and evaluated to 

produce a superior image reconstruction [28], that is, the 

regularization term becomes ‖𝑢‖𝐵𝑉 + ‖𝑢‖𝐵1,1 . The 

inclusion of multiple regularizers helps to reconstruct 

smooth images with little effect on the convergence time. 

 

C. LOCALIZED RECONSTRUCTION  

The conventional algorithm reconstructs images over the 

entire medium without emphasis on the information in the 

region of interest. The main drawback of the traditional 

algorithm is that the ill-posedness nature of EIT inherently 

results in a high sensitivity to the changes occurring near the 

boundary  than those in the middle of the medium [29]. This 

will impose a more significant effect when the targets to be 

recovered are rather small and the changes in impedance 

caused by objects could severely be contaminated by noise 

occurring at the boundary. A strategy using all boundary 

measurements to reconstruct images within a defined ROI is 

proposed in this paper to enhance image resolution. 

Applying ROI is equivalent to the conventional 

reconstruction but with more independent measurements. In 

the content of our proposed applications, i.e. tumour 

monitoring, the location of the tumour can be initially 

determined by traditional CT scan and will be utilized as 

prior knowledge in the EIT reconstruction. Subsequently, a 

sub-volume in this case can be selected larger than the size 

of the tumour to allow for the respiration-induced tumour 

movement.  

The conventional global reconstruction can be formulated as 

(15) considering that the sensing field is discretized into 𝑁𝐹 

elements and there are 𝑁𝑀 independent measurements.  

 [𝐽]𝑁𝑀×𝑁𝐹
[∆𝜎]𝑁𝐹×1 = [∆𝑉]𝑁𝑀×1. (16) 

The principle of ROI reconstruction is restricting the image 

reconstruction process to a sufficiently large ROI that covers 

the anomaly completely. Therefore, the original medium can 

be divided into two areas: one is the conductivity-varying 

area, which is known as ROI; the other is constant-

conductivity area that ∆𝜎 is zero. Assuming the ROI consists 

of 𝑁𝑅𝑂𝐼  elements and the remaining elements 𝑁𝑃  correspond 

to the zero conductivity change. Now the conductivity vector 

becomes  

 [∆𝜎]N𝐹×1 = [∆𝜎1, ⋯ , ∆𝜎𝑁𝑅𝑂𝐼
, 0, ⋯ ,0]

𝑇
 (17) 

and yields the reconstruction equation:  

 [𝐽𝑁𝑀×𝑁𝑅𝑂𝐼
𝐽𝑁𝑀×𝑁𝑃

] [
∆𝜎𝑁𝑅𝑂𝐼×1

0𝑁𝑃×1
] = [∆𝑉]𝑁𝑀×1. (18) 

Equation (17) can then be reduced to: 

 [𝐽]𝑁𝑀×𝑁𝑅𝑂𝐼
[∆𝜎]𝑁𝑅𝑂𝐼×1 = [∆𝑉]𝑁𝑀×1. (19) 

Therefore, the way of achieving the localised reconstruction 

is to restrict the Jacobian matrix to that in (19). The 

improvement of imaging can be interpreted by considering 
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Jacobian matrices, which represent the sensitivity of the 

measurements at the boundary to the changes occurred inside 

the medium. By properly resizing the Jacobian matrix, the 

sensitivity to the changes happening outside the ROI can be 

weakened. This can bring several advantages:  

(1)  The elements with constant conductivity are no 

longer included in the reconstruction process; 

therefore, the chances of accumulating zero-

conductivity change can be reduced; 

(2) The condition for (19) to have unique solution is 

now 𝑁𝑅𝑂𝐼 < 𝑁𝑀 rather than 𝑁𝑃 < 𝑁𝑀;  

IV. EXPERIMENTS 

Feasibility studies of the proposed method were carried out 

experimentally. In this paper, only 2-dimensional models 

were considered.  

A. MEASUREMENT SYSTEM SETUP 

Phantom experiments were established in a cylindrical tank 

of 19 cm diameter, with 16 equally spaced stainless-steel 

electrodes on the periphery. EIT measurements were carried 

out with a 16 channel KHU Mark 2.5 EIT system, which 

injects 2 mA currents over a wide range of frequencies from 

10 Hz to 500 kHz.  An adjacent injection method was 

implemented that results in a total of 208 measurements per 

frame. To improve the precision of reconstruction, 

measurements are typically averaged over many data frames, 

and in the experiments presented, measurements at each 

location are results of averaging over 20 frames.  

Three sets of experimental tests were considered. In all cases, 

four realizations of EIT measurements were collected: 𝑉𝑓1 

and 𝑉𝑏1 corresponding to measurements of background only 

and with inclusion under 1 kHz stimulation respectively; and 

𝑉𝑓2 and 𝑉𝑏2 corresponding to measurements of background 

only and with inclusion under 50 kHz stimulation 

respectively. Potato pieces were chosen to simulate tumour 

tissue and were placed in 0.5% saline water (conductive 

background). Objects to be reconstructed are in the sizes of 

3.5 cm × 3.5 cm, 2.5 cm × 2.5 cm and 2 cm × 2 cm, and each 

is placed at horizontally various locations within a pre-

defined area (bold yellow circle in Table 1, Table 2 and Table 

3) in the phantom.  

 

B. EXPERIMENT PROCEDURE 

In each of the three cases, reconstructions can be computed 

in three different protocols:  

 Conventional global weighted frequency difference 

(GWFD) reconstruction as formulated in equation (9). 

 Modified global weighted frequency difference 

(MGWFD) reconstruction, which subtracts common 

errors in the background from the measurements  

∆𝑉𝑑𝑎𝑡𝑎 = (𝑣𝑓2
− 𝛼𝑣𝑓1

) − (𝑣𝑏2
− 𝛽𝑣𝑏1

), 

𝛽 =
< 𝑉𝑏1, 𝑉𝑏2 >

< 𝑉𝑏1, 𝑉𝑏1 >
. 

 Limited region weighted frequency difference 

(ROI_WFD) reconstruction. The region of interest is 

defined by applying a threshold of 0.6 over the entire 

view region. 

As suggested above, in addition to the conventional global 

reconstruction, a modified global reconstruction that 

subtracts the common background noise from the original 

datasets was also performed to compare with the proposed 

method. Considering the tumour tracking application, where 

background data is no longer available, MGWFD 

reconstruction is only accessible in the lab scenario for 

verifying the significance of the proposed technique. 

Image reconstructions were performed by solving the 

forward problem using EIDORS (Electrical Impedance and 

Diffuse Optical tomography Reconstruction Software), 

which is a software suite implemented in MATLAB, and 

implementing Split Bregman Total Variation regularization 

to solve inverse problem. The resulting impedance 

distribution is normalized since only the size and location of 

the objects are considered.  

 

C. RESULTS 

In this section, reconstructed images of three samples using 

the proposed method, i.e. ROI_WFD, as well as the 

conventional algorithm with and without data modification 

are presented.  All three sets of results are compared with real 

images. When applying ROI_WFD, the entire reconstruction 

region is limited to the ROI as previously defined and is 

compared with the view region within the yellow solid circle 

in each real image.  

TABLE 1 THEORETICAL MODEL AND RECONSTRUCTIONS OF LARGE SAMPLE  

 Real image GWFD MGWFD ROI_WFD 
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In Table 1, all three columns of reconstructed images manage 

to recover the real images. Yet, it is still worth noting that 

both MGWFD and ROI_WFD remove the noise effect.  

TABLE 2 THEORETICAL MODEL AND RECONSTRUCTIONS OF MEDIUM 

SAMPLE  

 Real Image GWFD MGWFD ROI_WFD 
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In Table 2, a series of medium objects were tested and image 

reconstruction results are presented. When compared with 

the  large sample case, a consistency of error existence in the 

left-top of the tank is seen in the GWFD reconstructed 

images. Again, a better image quality (in terms of getting rid 

of the background artefacts) was achieved by both MGWFD 

and ROI_WFD.  

TABLE 3 THEORETICAL MODEL AND RECONSTRUCTIONS OF SMALL SAMPLE  

 Real image GWFD MGWFD ROI_WFD 
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The small object case unsurprisingly gives the worst image 

reconstructions as shown in Table 3. With the presence of 

noise, the signal is more prone to be contaminated. 

Moreover, facts that potato samples can absorb from 

background saline water by osmosis, the conductivity of 

potato samples can change as the experiments went along. 

Therefore, using the GWFD failed to track the movement of 
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object. Even with a modified dataset, the inherent ill-posed 

nature of EIT still gives rise to difficulties on reconstructing 

images without the disturbance of the noise signal. 

Reconstruction using ROI_WFD also experiences a notable 

image distortion, but still shows a better location matching 

in comparison with GWFD. Further quantitative image 

quality analysis is required to justify the significance of 

ROI_WFD in the next section.  
 
V. ANALYSIS AND DISCUSSIONS 
 

To further compare the results of the proposed methods with 

the other two, three evaluation parameters are used in this 

section. Position error (PE) and resolution (RES), which are 

selected based on [30], together with relative error (RE) of 

each reconstruction are plotted against different locations to 

evaluate images. Each image is comprised of 200×200 pixels 

and can be represented by a column vector  �̂�. A threshold of 

one-fourth of the maximum amplitude is applied, which 

detects most of the visually significant effects:  

 [�̂�𝑞]
𝑖

= { 1, &[�̂�𝑞]
𝑖

≥
1

4
max (�̂�)

0,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (20) 

A. POSITION ERROR 

Position error describes the difference between the center of 

mass of the real 𝑃0 and reconstructed images 𝑃𝑞 ,   

 𝑃𝐸 =  |𝑃0 − 𝑃𝑞|. (21) 

PE is preferably as small as possible so that the it can provide 

reliable results in locating the tumour; hence PE is of the 

most importance figure of merit in our case so that the 

confidence in tumour tracking applications can be assured. 

Figure 1 to Figure 3 plot the position error of three samples 

in centimetres against location variation.  

 
Figure 1 Position error plots of Large object 

 
Figure 2 Position error plots of Medium object 

 
Figure 3 Position error plots of Small object 

The position error plot of the large object does not suggest a 

notable improvement using the proposed method in 

comparison with the conventional method using both the 

modified and original datasets. This is due to the sufficient 

impedance contrast in large sample tests compared to the 

background noise that has been introduced. Yet, as the size 

of the inclusion decreases, position errors tend to increase 

massively with all three protocols. However, using 

ROI_WFD not only provides comparable results to a de-

noised dataset, but also shows a better consistency of 

position displacements. This is advantageous as it provides 

the possibility of data calibration in practice.  

B. RESOLUTION 

Resolution measures the size of reconstructed inclusion as a 

fraction of size of entire imaging region. In this paper, it is 

defined as the area ratio of the recognizable anomaly to the 

entire sensing area instead of the diameter ratio as suggested 

in [30]: 

 𝑅𝐸𝑆 =  𝐴𝑞 𝐴0⁄  (22) 
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where 𝐴𝑞 = ∑ [�̂�𝑞]
𝑘𝑘  is the number of pixels in �̂�𝑞  and 𝐴0 is 

the number of pixels over the entire medium region.  RES 

should be uniform and small, in order to accurately represent 

the shape of the target conductivity distribution.  

 
Figure 4 Resolution plots of Large object 

 
Figure 5 Resolution plots of Medium object 

 
Figure 6 Resolution plots of Small object 

Resolution plots of three objects at different locations are 

presented above in Figure 4, Figure 5 and Figure 6. 

Theoretical resolutions calculated from the real image are 

also plotted in each figure as a reference. Evidently, 

reconstructions using ROI_WFD perform the best in terms 

of preserving the uniform resolution. Similarly, to Position 

error plots, the advantages of using the proposed method 

become more significant as the object size gets smaller. 

Interestingly, ROI_WFD is even seen a degradation of 

matching with the theoretical RES, which suggests that it 

will be particularly useful when the tumour size is at least 

smaller than 13% of the view region.   

C. RELATIVE ERROR 

Relative error, which quantifies the difference between the 

reconstructed image and the real image with respect to the 

real image, can be defined as: 

 𝑅𝐸 =
‖𝑥0 − �̂�𝑞‖

‖𝑥0‖
 (23) 

where 𝑥0  is the pixel vector of the real image. As the 

definition suggests, the smaller RE is, the higher quality of 

the reconstructed image it is. Figure 7, Figure 8 and Figure 9 

plotted relative errors of large, medium and small objects 

against locations respectively 

 
Figure 7 Relative error plots of Large object 
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Figure 8 Relative error plots of Medium object 

 
Figure 9 Relative error plots of Small object 

An overall increase of relative error is suggested with the size 

of the inclusions decreasing. As a smaller object will yield a 

smaller impedance change and hence a weaker sensing 

signal, assuming a same amount of noise present in the 

system, it will be more difficult to extract the information 

from the background noise. Among the three methods, 

ROI_WFD provides the best RE results in small inclusion 

tests and minimizes the background error to the similar 

extent as using the modified datasets, MGWFD.  

 
VI. CONCLUSION 

Tumour treatment using radiation therapy often requires a 

conventional imaging system, such as volumetric X-ray CT 

and PET prior to a treatment session. The organ movement 

can be a major source of artefacts in these imaging systems 

with low temporal resolution. In this work, a weighted 

frequency difference reconstruction within the region of 

interest is proposed and validated by two dimensional 

phantom experiments. This method offers EIT an 

opportunity of being considered as a tracking tool in tumour 

treatment applications. To simulate the proposed application, 

bio-samples of different sizes were selected and placed at 

various locations within a pre-defined fraction of area in the 

phantom. Images were reconstructed using Split Bregman 

Total Variation regularization and the image quality was 

analysed by using position error, resolution and relative 

error. An improvement can then be confirmed by comparing 

the results from ROI_WDF to conventional GWFD as well 

as MGWFD, especially in the cases of tracking small 

samples. Moreover, the proposed method applies a filtering 

effect of noise as the results are comparable with MGWFD. 

This is particularly useful in the tumour tracking cases, 

where the background noises caused by contact impedance 

between electrodes and skin as well as other organs’ 

movements are significant. These noises cannot be removed 

by MGWFD in practice due to the lack of background data 

whereas the proposed method, ROI_WDF, achieves the 

similar noises subtraction effect, and hence can be 

introduced into such applications.  

With the confidence obtained from both 2-D simulation and 

experiment results, this limited region based EIT with 

frequency difference imaging could potentially be 

considered as a key tool for treatment planning and treatment 

monitoring. Further 3-D experiments would be beneficial as 

in such cases capturing tumour motion would be more 

challenging. The proposed localized EIT system will create 

potential for motion compensation data for PET and CT. 

Additionally the proposed method here can extend to 

tracking tumours during radiation therapy making an 

adaptive radiation therapy possible.  
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