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ABSTRACT: We demonstrate a versatile, catalyst free Chemical Vapor Deposition (CVD) 

process on insulating substrates capable of producing in one single stream one dimensional (1D) 

WO3-x suboxides leading to a wide range of substrate-supported 2H-WS2 polymorphs: a tunable 

class of out-of-plane (of the substrate) nanophases, with 1D nanotubes and a pure WS2, two 

dimensional (2D) nanomesh (defined as a network of webbed, micron-size, few-layer 2D sheets) 

at its extremes; and in-plane (parallel to the substrate) mono- and few-layer 2D domains. This 
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entails a two-stage approach in which the 2WO3 + 7S  2WS2 + 3SO2 reaction is intentionally 

decoupled: first, various morphologies of nanowires or nanorods of high stoichiometry, 

WO2.92/WO2.9 suboxides (belonging to the class of Magnéli’s phases) were formed, followed by 

their sulfurization to undergo reduction to the aforementioned WS2 polymorphs. The continuous 

transition of WS2 from nanotubes to the out-of-plane 2D nanomesh, via intermediary, mixed 1D-

2D phases, delivers tunable functional properties; e.g. linear and non-linear optical properties, such 

as reflectivity (linked to optical excitations in the material), and second harmonic generation 

(SHG) and onset of saturable absorption. The SHG effect is very strong across the entire tunable 

class of WS2 nanomaterials, weakest in nanotubes, and strongest in the 2D nanomesh. 

Furthermore, a mechanism via suboxide (WO3-x) intermediate as a possible path to 2D domain 

growth is demonstrated. 2D, in-plane WS2 domains grow via “self-seeding and feeding” where 

short WO2.92/WO2.9 nanorods provide both the nucleation sites and the precursor feed-stock. 

Understanding the reaction path (here, in the W-O-S space) is an emerging approach towards 

controlling the nucleation, growth and morphology of 2D domains and films of transition metal 

dichalcogenides (TMDs). 

KEYWORDS: WS2 and WO3-x suboxides, transition metal dichalcogenides, two-dimensional 

layered materials, nanotubes, chemical vapor deposition (CVD) growth, linear and non-linear 

optical properties, second harmonic generation 

 

Two-dimensional (2D) transition metal dichalcogenides (TMDs), the inorganic analogues of 

graphene, have attracted significant attention in recent years.1-5 Chemical vapor deposition (CVD) 

has emerged as one of the most efficient and versatile methods for the large area synthesis of a 
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wide range of 2D TMDs.6-11 By varying deposition parameters and improving the CVD apparatus, 

larger and larger domain TMD mono- and few-layer films have been recently reported.12,13 

Among the more than forty varieties of TMDs,14 WS2 and WSe2 have attracted significant 

attention due to their giant spin-orbit splitting, a property of particular interest for spintronics,15 as 

well as optical materials.16,17 In the case of WS2, WO3 and S powders are the precursors most 

widely used for growth by CVD.18 WO3 is converted into WS2 by sulfurization with the proposed 

reaction being 2WO3 + 7S  2WS2 + 3SO2.19 However, this conversion process is not trivial, as 

the W-atom sites in the WO3 monoclinic cell differ significantly from those in the WS2 hexagonal 

unit cell, requiring the nearest W-W inter-atomic distances along the a and c axes to change 

significantly, i.e. from 0.38 nm in WO3 to 0.315 nm in WS2 along the a axis, and from 0.38 nm in 

WO3 to 0.62 nm in WS2 along the c axis.20 An intermediate WO3−x suboxide stage, which would 

allow for partial displacement of W atoms and facilitate the conversion was demonstrated in the 

growth of WS2 nanotubes,21,22 but has never been exploited so far for 2D growth. In general, in 

conventional in-plane (parallel to substrate) 2D growth, where WO3 is rapidly reduced and 

sulfurized in an optimal S atmosphere, a couple of studies have reported oxi-sulfides instead of 

suboxides as the reaction intermediates, though no common growth mechanism has emerged.9,23     

In conventional 2D growth via CVD, the operational window for optimal, monolayer growth is 

very narrow. In general, it is necessary to avoid premature mixing of the WO3 with S vapor as this 

interferes with WO3 sublimation, causing a deficit of W precursor and, hence, precluding WS2 

formation on the growth substrate.24 If S is introduced too late, however, an excess of WO3 

precursor will arrive at the substrate resulting in the growth of thick multi-layer WS2 or W-

nanowires.24,25 The question is then: how early (late) is too early (late)? Hu et al.25 reported that 

introducing S six minutes before the WO3 precursor reaches the target temperature provides 
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optimal conditions for maximum size growth of WS2 (with ~ 150 µm lateral size of 

domains). However, if S was introduced only four minutes before the WO3 precursor reaches the 

target temperature, the WS2 domains became thicker and much smaller (20-30 µm in lateral size).25 

In contrast, in most of the reported works for CVD growth of WS2, S was introduced 

simultaneously with WO3:26-34 this corresponds to the case of “too late” in references.24,25 It is clear 

that the conditions for optimal CVD growth of monolayer WS2 are very sensitive to the specific 

CVD configuration. It is thus of interest to explore if other 2D growth regimes exist that rely less 

on the precise timing of S and WO3 introduction into the gas phase. 

Here, we intentionally created an initial S-deficient environment, in order to decouple the overall 

CVD reaction into a two-stage process. We thus took the decoupling idea to the extreme and 

created a WO3-x phase and nanorod morphologies as precursors, which we then sulfurized. This 

approach has similarities with the concept underpinning the synthesis of WS2 nanotubes, obtained 

by sulfurization of WO3-x nanowires.35,36 As a result of stage decoupling, which does not occur in 

conventional CVD of 2D TMDs, we were able to show that 2D growth of WS2 can occur via the 

WO2.92/WO2.9 suboxides, and hence demonstrate a viable suboxide path to 2D growth. This 

approach also allowed us to demonstrate a facile, tunable CVD route capable of flexibly producing 

in a single process stream a variety of WS2 phases, spanning from 1D to 2D, as well as grown in-

plane or out-of-plane. Through this process, a 2D nanomesh, described as an out-of-plane network 

of webbed 2D sheets (of mainly one to three WS2 layers) with large, µm-range lateral domain size 

was created; this is the ultimate stage in an evolutionary process started with the WO2.92/WO2.9 

nanowires, from which WS2 nanotubes with WO3-x cores formed, which then gave rise to 2D sheets 

as the S-mediated reduction process progressed. The tunability and functionality of this class of 

WS2 materials is demonstrated through comparative investigations of the optical properties of 
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representative phases obtained at progressing stages: the 1D, nanotube-based phase, vs an 

intermediary phase of mixed 1D/2D content, and finally, vs the 2D nanomesh. We thus measured 

(i) reflectivity and correlated it with optical excitations, as well as (ii) non-linear optical properties, 

i.e. second harmonic generation (SHG) and onset of saturable absorption, in the three types of 

materials. All the WS2 materials in the class showed strong non-linear optical properties, with the 

2D nanomesh being most SHG-active. Finally, we showed that in this decoupled, two-stage 

growth, in-plane 2D mono- and few-layer WS2 can be grown in a “self-seeding and feeding” 

process, where the nucleation sites and the source of precursor material are provided by the same 

phase; unlike in heterogeneous seeding processes demonstrated so far, where organic molecular 

species were used as seeds.6,8,37 

 

Results and discussion 

Figure 1 presents the flow chart for the catalyst-free CVD processes discussed in this work, 

showing the inter-relation, and contrasting differences, between the conventional growth of 2D 

domains38 and the processes and phases enabled by the decoupling of the overall reaction into two 

distinct stages.  

During 2D growth the reaction ideally happens in the vapor phase: WO3 is partially reduced by 

the sulfur vapor to form volatile WO3-x suboxide species, which are then further sulfurized to form 

large crystalline domains of mono- and few-layer WS2 on substrates. However, the reaction occurs 

too fast for any intermediary stages to be observed and confirmed. In contrast, here we 

intentionally decouple the reaction into two stages. In our decoupled reaction, we engineered a 

first reaction stage (WO3 partial reduction performed below atmospheric pressure, blue arrows on 

Figure 1) where the vapor phase is S-deficient, leading to the initial growth of one-dimensional 
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(1D) WO3-x morphologies, such as nanowires or short nanorods. Then, in a second stage 

(sulfurization at atmospheric pressure, red arrows on Figure 1), the nanowires/nanorods are reacted 

in an S-rich atmosphere for varying amounts of time, ultimately leading to the formation of pure 

WS2 nanophases characterized by the emergence of 2D domains and crystallites. It is apparent (see 

Figures 2-5) that the type of 1D suboxide morphology in the first stage and the period of 

sulfurization in the second stage control the resulting WS2 nanophases: (i) using long, out-of-plane 

WO3-x nanowires as precursors yielded WS2 nanotubes, a hybrid 1D/2D film, or an out-of-plane 

2D nanomesh, while (ii) short nanorod precursors yielded in-plane 2D WS2 growth. By performing 

further structural analysis, we were able to demonstrate that the two growth stages map onto the 

two hypothesized reaction stages:39,40 (1) 2WO3 + xS  2WO3-x+ xSO2, and (2) 2WO3-x + (7-x)S 

 2WS2 + (3-x)SO2. We thus confirm this two-stage reaction mechanism, and the involvement of 

suboxides as intermediary sub-species.  
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Figure 1. Flow-chart describing the decoupled, two stage strategy for synthesis of crystalline WS2 

nanophases starting from WO3 and sulfur powders as precursors, mapped onto a two-stage 

reaction. Stage 1 (blue arrows), a low-pressure CVD (LPCVD) process, where partial reduction of 

WO3 takes place in an S deficient atmosphere, leads to the formation of various WO3-x 

morphologies, i.e. long out-of-plane nanowires, short in-plane nanorods, and short nanorod 

bundles. From each of these morphologies, distinct, pure WS2 nanophases result after sulfurization 

in stage 2 (red arrows), such as an out-of-plane 2D nanomesh, as well as 2D in-plane domains of 

various sizes; this is an atmospheric pressure CVD (APCVD) process. Conventional in-plane 2D 

domain growth, obtained by WO3 fast reduction in an optimal S atmosphere, is indicated by the 

green arrow.   
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WO3-x nanowire/nanorod morphologies were obtained in the first reaction stage (Figure 1), using 

a home-built low-pressure CVD (LPCVD) reactor involving a horizontal furnace with a 

temperature gradient (Methods and Supporting Information, Figure S1). The boat containing the 

WO3 precursor was placed in the center of the furnace, within its constant temperature zone; 

temperature was ramped to 1030 °C, at a pressure below 10-1 mBar, and then held constant for 20 

minutes, to ensure sufficient sublimation. Subsequently, the sulfur powder, placed in a boat 40 cm 

upstream of the WO3 boat, was heated to 200 °C over 10 minutes, and then co-evaporated together 

with the WO3 over 15 minutes. Another boat with four pockets, each 2 cm long, and containing 

SiO2/Si substrates, was placed 6 cm downstream of the WO3 boat, in a zone with a temperature 

gradient. Only argon was used for transporting the WO3 and sulfur vapor to the SiO2/Si substrates. 

According to the temperature profile of the furnace, there is a temperature drop of about 60 °C 

between each substrate-containing pocket. This enabled a W precursor concentration gradient 

across the various substrate locations,41,42 leading to a continuous variation in the growth 

conditions. In contrast, the long separation distance between the S and substrate boats ensured that 

the S vapor concentration gradient across the Si/SiO2 substrates can be ignored, unlike that of 

WO3.  

Depending on the position and temperature of the substrate relative to the W precursor, different 

WO3-x morphologies were obtained (Figures 2 and 5, see also Supporting Information, Figure S1). 

(i) In the pocket furthest from the W precursor, the relatively low temperature of around 780 °C, 

induces a low diffusion rate of the precursor, leading to the precursor being trapped at many 

random sites on the substrate. After the nucleation sites become saturated with precursor, further 

trapping of precursor results in crystallization and growth. A high carrier gas flow rate (~150 sccm) 

promotes mass transfer, which contributes to a fast crystal growth rate41 leading to the formation 
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of long, out-of-plane nanowires (Figures 2(a) and 3(a), and Supporting Information, Figure S2). 

(ii) The pocket closer to the WO3 boat was reached by a higher concentration of W precursor, 

while also being held at the highest temperature, 1000 °C, of all the substrates. In general, a high 

temperature induces a high diffusion rate of the precursor, favoring film growth. On the other hand, 

too high a temperature causes large thermal turbulence, resulting in an instability of as-grown 

nucleation sites43 and hindering growth. Hence, under these conditions of temperature and W 

precursor concentration short nanorod bundles were formed (Figure 5(d), and Supporting 

Information, Figure S2). (iii) In between these high and low temperature regimes, in a pocket 

located in an intermediate position at about 960 °C, the decrease in precursor concentration results 

in a crystal growth rate slow-down: the positive influence of a high flow rate balanced by a 

moderate diffusion rate of precursor at a moderate temperature leads to stable, while slow, crystal 

growth under thermodynamic control. Hence, short, in-plane nanorods could be grown (Figure 

5(b)). 

We now analyze the outcome of stage 2 – sulfurization – of the decoupled reaction 

diagrammatically shown in Figure 1, where each of the three nanowire/nanorod morphologies 

described above are reacted with sulfur.   

WO3-x long nanowires as precursors. Figure 2(a) shows the WO3-x nanowires grown on the 

SiO2/Si substrate (Methods): their diameters fall in a narrow range, 10 to 30 nm, and they can 

reach several microns in length. A combination of X-ray diffraction (XRD) (Supporting 

Information, Figure S2) and high-resolution transmission electron microscopy (HRTEM) showed 

that WO2.92 (W25O73) and WO2.9 (W20O58) are the phases encountered in the nanowires (Supporting 

Information, Figure S2 (a-d)). Indeed, Fast Fourier Transform (FFT) analysis of the examples 

given in Figures S2 (c-d) show periodicities along the long axis of the nanorods that correspond to 
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3.82 Å and 3.78 Å, respectively, which are in good agreement with the b lattice parameters of 

monoclinic WO2.92
44 and WO2.9.45 Both these suboxides belong to the sub-stoichiometric 

Magnéli’s phases, which have the series formula of WnO3n-2.46 Most importantly, both suboxides 

are non-volatile (see Methods) but can be reduced further into volatile suboxides (see discussion 

below) at the temperatures used in the subsequent sulfurization stage from Figure 1; this is 

consequential, as it strongly influences the type of WS2 nanostructures that can be obtained by 

sulfurization, as demonstrated in the following. 

The as-grown WO2.92/WO2.9 nanowires on SiO2/Si were sulfurized as described in Methods, at 

atmospheric pressure (an APCVD process), in the first instance over ~ 10 minutes. Figure 2(b) 

shows a scanning electron microscopy (SEM) image of the resulting post-sulfurized nanowires: 

two types of material, with different electronic contrast, can be observed. The brighter areas have 

very broad Raman peaks at 271, 326, 714 and 803 cm-1 (Figure 2(d)). Peaks centered at 714 and 

803 cm-1 are attributed to W-O stretching vibration modes, while the two lower peaks at 272 and 

326 cm-1 are induced by O-W-O bending vibration modes,47 identifying these regions as non-

converted, pure suboxide phases. Raman spectroscopy confirms that the regions that appear dark 

in both optical and SEM images are 2H-WS2 (Figure 2(c), and Supporting Information, Figure 

S3): the 352.5 and 418 cm-1 peaks correspond to the E1
2g and A1g vibrational modes, respectively, 

of this phase, while their spectral distance of ~ 65.5 cm-1 shows that the phase is made up of few-

layer WS2 nanotubes.48 HRTEM (Figures 2(e-f)) confirms that the sulfurized nanowire-shaped 

morphologies are actually the suboxide nanowires transforming into multi-layered WS2 nanotubes. 

The HRTEM images and their associated FFTs (inset panels) give a spacing between the layers of 

the nanotubes of about 0.62 nm, consistent with the (002) d-spacing within a multilayer 2H-WS2 

crystal. The nanotubes are partially filled with WO2.92 or WO2.9 suboxides cores, as demonstrated 
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by Figure 2(f); the associated FFT identifies the core inside the nanotube as WO2.92 based on its b 

lattice parameter. However, despite the presence of W suboxide cores inside some of the 

nanotubes, Raman spectroscopy does not detect any of their W-O vibration modes; a similar 

behavior was previously reported for other core-shell systems.48,49 The coexistence of WS2 

nanotubes and W suboxides is reminiscent, in this respect, of the work from Tenne’s group on the 

synthesis of MoS2 and WS2 nanotubes.36,50 Therefore, it is reasonable to assume that the WS2-rich 

areas from Figure 2(b) are actually a proto-stage of the growth of WS2 nanotubes around the 

suboxide nanowire cores. 

 

Figure 2. Long, out-of-plane nanowires of WO2.92 and WO2.9 suboxide, Magnéli phases leading 

to the formation of few-layer multi-walled nanotubes with suboxide cores. (a-b) SEM of pure WO3-

x nanowires before and after 10 minutes of sulfurization, respectively. The example in (b) shows a 

predominant WS2-rich phase (labelled “2”), interspersed with a residual pure WO3-x phase 

(labelled “1”). Their respective Raman spectra (excitation wavelength of 532 nm) are shown in (c) 
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and (d). (e-f) TEM images of the sulfurized nanorods showing multi-walled nanotubes of large 

diameter and relatively few layers. In (e), the highlighted FFT inset vectors correspond to 0.27 nm, 

the distance between the (100) planes of 2H-WS2 crystals, and to 0.62 nm, the van der Waals inter-

tube distance. In (f), the WO2.92 suboxide core nanowire is still visible. The FFT inset highlights, 

in addition to the distances identified in (e), 0.382 nm along the long axis of the suboxide core, 

which corresponds to the distance between the (010) planes of monoclinic WO2.92.  

 

In contrast to here, previous works on the synthesis of WS2 nanotubes mainly used W oxide 

nanowires formed by the hydrothermal method, which primarily consisted of the non-volatile, low-

stoichiometry WO2.72 (W18O49) phase: this is the so-called reduction-resistance phase, and will not 

undergo further reduction.36,51 In their work based on vapor phase reaction in a fluidized bed 

reactor, Tenne et al.35 have found that several intermediate, higher stoichiometry suboxides could 

also be present during the formation of their WO3-x nanowires; however, the non-volatile WO2.72 

was identified as the resulting stable phase in the nanowires, which then served as a template for 

the subsequent sulfurization reaction yielding WS2 nanotubes. The transformation of the suboxide 

nanowires into WS2 nanotubes is then diffusion-controlled, and such conversion takes place slowly 

and layer-by-layer relying on the sulfur diffusing to the core.  In our case, however, with further 

annealing in a S-rich environment the high stoichiometry WO2.92 or WO2.9 nanowire cores, rather 

than being sulfurized layer-by-layer, are able to transform to lower stoichiometry, volatile WO3-x 

phases; 3-x could be 2.89 (i.e. WO2.89  (W19O55))52 or in the range 2.72 – 2.83 that contains volatile 

phases.36,51,52 Such phases can then escape through the open/defective ends of the nanotubes. This 

results in a higher conversion rate to WS2, which can then nucleate and grow as 2D sheets outside 

the nanotubes (see Figure 4 and related discussion).  
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Hence, sulfurization, in the first stage, produces single- or few-wall WS2 nanotubes, with partial 

cores of suboxide still present; the layer-by-layer conversion does not continue long enough to 

involve full transformation of the WO2.92/WO2.9 cores into the nanotube phase as suboxide material 

leaves the nanotubes. In contrast, from the non-volatile WO2.72 phase thick multi-layered 

nanotubes with empty cores are generated. For instance, as shown by HRTEM in Figures 2 (e-f), 

we could obtain tri-layer WS2 nanotubes of diameter more than 25 nm using the WO2.92/WO2.9 

precursors; while from the lower stoichiometry, reduction-resistant, WO2.72 precursor, nanotubes 

of around 20 nm in diameter have more than 10 layers.53 

In order to determine the ultimate effect of the sulfurization, the long, out-of-plane nanowires 

were continuously sulfurized under the same conditions for a large period, typically less than three 

hours. A final morphology was then achieved: Figure 3(b) shows a two-dimensional (2D) 

nanomesh structure of webbed 2D crystallites, extending out-of-plane for microns (up to ~ 10 µm), 

and with a very large specific surface area. Figure 3(c) presents the TEM image, and associated 

FFT, of a typical crystallite: this has a hexagonal lattice structure with 0.27 nm periodicity resulting 

from the (100) planes of 2H-WS2,54 and two layers are visible. A representative nanomesh XRD 

spectrum is shown in Figure 3(d): all the diffraction peaks are indexed relative to the hexagonal 

P63/mmc space group, indicating that the structure of the WS2 phase is 2H-WS2, while there is 

almost no trace of W suboxide peaks. The sharpness of the peaks demonstrates the good 

crystallinity of the sample overall.  
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Figure 3. Full sulfurization of long, out-of-plane WO2.92 and WO2.9 suboxide nanowires, shown in 

(a), leads to a pure WS2 2D nanomesh, shown in (b). The sulfurization was typically performed 

over a period ∆t of 3 hours. The emergence and purity of the 2H-WS2 phase was verified by a 

combination of (c) HRTEM (and associated FFT, example shown in inset), and (d) XRD, where 

the identified crystallographic planes are also shown. In (c), a typical WS2 crystallite with 2 layers 

is shown. 

Between these two extremes, the WS2 material can be evolved in a continuous manner, with a 

variable proportion of nanotube (1D) and 2D phases, as depicted by stages (i-v) on Figure 4(a). 

Figures 4 (b-e) shows TEM images of the material at different stages of sulfurization: after the 

formation of an initial nanotube sheath around the WO2.92/WO2.9 cores, volatile WO3-x suboxide 
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(obtained by subsequent reduction of the non-volatile WO2.92/WO2.9) forms and then leaves the 

nanotubes through their open ends (or, alternatively, through wall defects that sometimes develop) 

(Figure 4(b)), and nucleates 2D crystallites at the nanotubes’ ends (Figure 4(c)). The nanotube 

exterior provides an ideal surface for subsequent epitaxial growth of 2D domains, the evolution of 

which is often accompanied by a gradual opening of the nanotubes, presumably catalyzed by 

stresses on the nanotube bonds induced by the 2D growth (Figures 4(d-e)). “Un-zipping” of WS2 

nanotubes was previously reported, though based on Li intercalation.55 Once opened, the 2D sheets 

and the nanotube edge can also fuse, as shown in the inset of Figure 4(d). Figure 4(a) shows 

diagrammatically the various stages of this evolution, from WO2.92/WO2.9 nanowires, through WS2 

nanotubes (with partial suboxide cores), then hybrid 1D/2D materials, and finally into a pure WS2 

2D nanomesh. 

 

 

Figure 4. Evolution with sulfurization time, ∆t, of the suboxide cores into WS2 nanophases. (a) 

Several stages (i-v) were identified, mapping onto representative TEM images (c-e): WO2.92/WO2.9 
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nanowires (i) become covered with few-layer nanotube sheaths (ii) in a layer-by-layer conversion 

of suboxide into 2H-WS2, (iii) WO2.92/WO2.9 core suboxide reduces to a lower stoichiometry, 

volatile suboxide which leaves the tubes and nucleates into 2H-WS2 sheets at the tube apex, (iv) 

WS2 2D domains grow by epitaxy on the body of the nanotubes, which are then subjected to 

gradual opening, (v) finally, nanotubes fully open and merge with extended 2D 2H-WS2 sheets. 

(b) The emergence of the volatile suboxide phase, with 1, 2 and 4 showing crystalline suboxide, 

while 3 and 5 showing regions of reduced crystallinity (boundary between the two regions shown 

with dashed line). (c) WS2 nanotubes (2 and 3) with no suboxide filling and nucleated 2H-WS2 

sheets at the apex of the tube, while (1) shows the breached end of a nanotube through which filling 

material can escape. (d) Large 2D WS2 sheets nucleated all along the body of the nanotube, which 

is still partially filled. The unfilled region shows gradual nanotube opening, while the zoomed area 

highlighted in the inset figure shows the nanotube layers fusing with the grown 2D sheets. (e) 

Extended, micron-wide 2D sheets grown all along the nanotubes’ bodies.  

 

The formation of the pure WS2 2D nanomesh, with extensive 2D content (Figure 3(b)) is in 

contrast to other recently reported hybrid phases which were a mixture of 2D WS2 crystallites and 

WO3,56 or had a mixed 1D-2D character, with a main nanowire phase and a small 2D phase 

content.57 Temperature-dependent conductivity measurements on our pure WS2 2D nanomesh 

(Supporting Information, Figure S5) demonstrate the semiconducting nature of this phase, while 

an activation energy Ea ≈ 0.33 eV indicates thermally activated transport, via a defect band, around 

(and just below) room temperature. Further optical properties of this nanomesh are presented in 

the last section. 



 17 

WO3-x short nanorods as precursors. Figure 5(a) shows the results of atmospheric pressure 

sulfurization in a region of lower density of suboxide nanowires. It is clear that less dense 

nanowires yield relatively larger and more separated, out-of-plane 2D WS2 crystallites. This 

suggests that if the W suboxide nanowires are well-separated and oriented in plane they may be 

used as seeds for the growth of in-plane 2D WS2 films.  

Hence, as-grown in-plane, single, short WO2.92/WO2.9 nanorods on SiO2/Si were similarly 

sulfurized (Methods) and Figures 5(b-c) show the result of such a scenario: in-plane, triangular, 

few-layer 2D domains grow from the nanorods at their basis. This root growth is enabled by the 

same transformation stage sequence shown in Figure 4(a), with the volatile suboxide emerging 

from the WS2 nanotubes and converting to WS2 domains that nucleate directly onto the SiO2/Si 

substrate, thus keeping the material localized around the original nanorod. Raman spectroscopy 

confirms that the domains grown are WS2, albeit thicker than monolayers (Figure 5(f) and 

Supporting Information, Figure S5(b)). This result demonstrates the feasibility of using W 

suboxide nanorods as seeds for the 2D in-plane growth of WS2. Seeded growth of 2D WS2 domains 

has been studied by using either large aromatic molecules (e.g. perylene-3,4,9,10-tetracarboxylic 

acid tetra-potassium salt (PTAS)6,8,37 or patterned oxide precursor particles58 as externally 

introduced nucleation sites, over which W- and S-carrying species were subsequently introduced. 

However, in our case, the seed is provided by the suboxide nanorods without introducing other 

external contamination. Moreover, the 2D domain growth can be treated as a “self-seeding and 

feeding” one, in which the suboxide nanorods provide both the nucleation sites and the W 

precursor feed-stock for the growth of layers.  
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Figure 5. Effect of sulfurization of sparse WO2.92/WO2.9 nanorods revealing seeded growth of in-

plane 2D 2H-WS2 domains. (a) Sulfurization of low density out-of-plane nanowires leads to 

extended and more separated WS2 2D crystallites; shown by SEM. (b-c) In-plane, individual, short 

nanorods lead to seeded, root-growth of polygonal domains of multi-layered WS2; shown by SEM. 

(d-e) Bundles of short nanorods lead to seeded, in-plane growth of larger single-layered 2D WS2 

domains: (e) is a bright field, optical image, while (d) and inset of (e) are SEM images. (f) Raman 

spectroscopy (at 532 nm excitation) of single-layered WS2 from (e), in top panel; and of multi-

layered WS2 from (c), in bottom panel. The spectral distance ∆ω between the E1
2g (Γ) and A1g (Γ) 

vibrational modes of WS2 is used to identify the number of layers within the 2D domains.  

In “self-seeding and feeding”, the size of the in-plane 2D domains that can be grown is 

constrained by the amount of W precursor available in the seeds. Hence, larger 2D domains could 

be grown by increasing the amount of precursor delivered by the nanorod seeds. Therefore, as 

shown in Figure 5(d), we used clusters of short W suboxide nanorods as the precursors in the 
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sulfurization stage; these clusters have also been confirmed by XRD to be a mixture of WO2.92 and 

WO2.9 phases (Supporting Information, Figure S2). Optical/SEM images (Figure 5(e)) and Raman 

characterization (Figure 5(f) and Supporting Information, Figure S5(a)) show that their 

sulfurization resulted in the growth of in-plane triangular domains of predominantly mono-layer 

2D WS2 domains; these domains are also substantially larger than the multi-layer domains shown 

in Figure 5(c) obtained from single nanorods as seeds. As the amount of precursor and distance to 

the substrate increased compared to the case of single, in-plane nanorods, the WS2 domains now 

grow via a mixture of reaction mechanisms: root growth (as observed in Figure 5(c)) competes 

with gas phase transport and reaction. Indeed, by the reduction of WO2.92/WO2.9 to lower-

stoichiometry, volatile WO3-x phases (as per the mechanism depicted in Figure 4(a)), the latter can 

readily transfer to vapor phase as in-situ precursor to supply the conversion reaction. The W 

suboxide seed growth demonstrated above is distinct from a recently shown process where WS2 

nanotubes were sublimated in order to induce WS2 monolayer growth by vapor phase transport 

and surface diffusion.59,60  

“Self-seeding and feeding” from precursor nanowires could potentially be harnessed by 

controlling nanowire growth via substrate engineering, thereby allowing for the positional control 

of WS2 domain growth; while the limited feed-stock of material would limit the resulting domain 

size and facilitate patterning. For example, when sapphire, a substrate frequently used in TMD 

growth,19,61-63 with unstable orientations is annealed at high temperature, it spontaneously becomes 

periodically faceted.64 Specifically, the mis-cut C plane (0001) (2° toward [11̅00]) facets into L-

shaped nanosteps; while the M plane (101̅0) facets into V-shaped nanogrooves. It has been 

demonstrated that various types of nanowires (e.g. of ZnO,65 GaAs,66 or GaN67) etc.) could be 
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grown with a good degree of alignment on both these facets. Furthermore, tungsten oxide nanorods 

have been reported to epitaxially grow on mica using a simple vapor–solid growth process.68  

Figure 6 shows as a corollary the various pathways uncovered so far in previous works for the 

2D growth of TMDs from transition metal tri-oxides.9,23,69,70 On paths 2 and 3, corresponding to 

conventional 2D growth, W or Mo oxi-sulfide nanoparticles first formed and were adsorbed on 

substrates as nucleation cores for further reduction. No common growth mechanism has emerged 

from these studies, the various proposed scenarios being inconsistent with each other and resulting 

in different and complex reactions paths. In contrast, path 1 highlights the suboxide route to 2D 

growth demonstrated in this work. A common mechanism can explain both in-plane and out-of-

plane 2D growth processes: these rely on the initial formation of WO2.92 and WO2.9 (blue arrow on 

the W-O-S phase diagram), Our process of 2D WS2 synthesis always starts with the formation of 

few-layer WS2 nanotubes around the WO2.92/WO2.92 cores. Nanotube formation is controlled by 

the specific crystallographic structure of the Magnéli suboxide phases which contain 

crystallographic shear (CS) planes (Supporting Information, Figure S6) created as result of oxygen 

vacancies introduced by reduction. At atomic level, the shear process is equivalent to the diffusion 

of an atom to a neighboring lattice vacancy; however it was previously proposed that the octahedra 

hop as a whole during the process leading to the formation of edge sharing octahedral units, i.e. 

the CS planes (Supporting Information, Figure S6), as opposed to corner sharing ones.20,71 While 

the reaction progresses, regions of such edge-sharing octahedral units develop across the crystal. 

The edge-sharing octahedral units in WO2.92 and WO2.9 are now similar to the 1T-WS2 octahedral 

structure (Supporting Information, Figure S6). As the sulfurization proceeds, O atoms are released 

from the lattices of the Magnéli phases and replaced by S atoms, leading to the expansion of the 

unit cell along the c axis, while the W-W bond length in the edge-sharing octahedral units of 
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WO2.92/WO2.9 is already very similar to that of 2H-WS2 (Supporting Information, Figure S6). This 

process is depicted by the dotted arrow on the W-O-S phase diagram of path 1 on Figure 6. This 

WO2.92/WO2.9 route is supported by recent findings that starting directly from WO2.9 as a precursor 

(as opposed to WO3 and without controlling the intermediary reaction) promotes 2D growth of 

larger and more uniform domains of WSe2/WS2.27,72 Finally, in our scenario, the 2D WS2 sheets 

always form after the formation of the nanotubes, and the reaction path is depicted by the green-

red path on the W-O-S phase diagram: thus, the residual WO2.92/WO2.9 from inside the nanotubes 

converts into lower stoichiometry, volatile Magnéli WO3-x phases, which can then escape the 

nanotubes and nucleate as WS2 outside them, and then evolve into extended 2D sheets as described 

in Figure 4(a).  

 

Figure 6. W–O–S ternary phase diagrams showing reaction pathways to 2D 2H-WS2 during CVD 

growth from WO3 and sulfur precursors. Path 1 (left diagram) describes a reaction mechanism via 

the non-volatile WO2.92/WO2.9 phases and their subsequent reduction to lower stoichiometry, 

volatile WO3-x phases, as shown in this work. 2D growth corresponds to the blue-green-red path, 

while the black, dotted path corresponds to 1D (nanotube) phase synthesis. Paths 2 (middle) and 3 

(right), identified in conventional 2D growth of WS2, highlight reaction mechanisms where oxi-

sulfides are the intermediary compounds. 
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Finally, we investigated some of the opportunities afforded by the tunability of the relative 1D 

to 2D content of the material. Hence, we measured and contrasted the linear optical properties 

(Methods) of out-of-plane, nanotube-rich and 2D nanomesh samples, as well as an intermediary 

sample with mixed 1D/2D content, and related them to the relevant optical excitations that can 

occur in them. The non-linear optical behavior of these three samples was subsequently tested 

(Methods). Figure 7(a), left, shows a photograph of the 2D nanomesh sample, demonstrating its 

homogeneity over a large area (> 8 × 8 mm2); while at a magnification ×100, randomly distributed 

structures appear well resolved in dark-field illumination (Figure 7(a), right). In order to obtain 

reflectance spectra, illumination was switched to bright-field and measurements were taken at 

normal incidence with unpolarized light; Figure 7(b) shows characteristic optical reflection spectra 

from all three samples, (i) nanotube-rich, (ii) with intermediary 1D/2D content, and (iii) the 2D 

nanomesh, normalized to the reflectivity of the SiO2/Si substrate. Over the 400 – 650 nm range, 

all three samples exhibit dips in reflectivity, marked with A, B, and C, corresponding to increased 

extinction; these can be attributed to excitonic resonances, for A and B, and optical absorption 

between density of states peaks in the valence and conductions bands for C, in agreement with 

previous reports.73,74  For the nanotube-rich sample, these spectral features are located at 628, 

521.7, and around 450 nm, respectively, and red-shifted relative to the intermediary 1D/2D content 

sample, and the 2D nanomesh. The intermediary, mixed 1D/2D content sample has spectral 

features close to the 2D nanomesh, owing to its large 2D content, though its non-linear optical 

properties are distinctive compared to the other two samples in the series (see Figure 8(b)).  For 

the 2D nanomesh, A, B and C are located at 622.5, 515.8 and ~ 443 nm, respectively, in good 

agreement with spectra of mechanically exfoliated mono- and bi-layer WS2 sheets,73 indicating the 

prevalence of mono- and bi-layer WS2 sheets in our material; in comparison, thicker 2D sheets 
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have their spectral features red-shifted.73 The broadening of the A, B, and C features relative to 

those measured on mechanically exfoliated WS2 2D layers of well-defined thickness73 likely 

reflects the (thickness) polydisperse nature of all three samples, as well as the presence of defects 

in these materials. Above 700 nm, in the nanotube-rich sample there is a very broad spectral feature 

centered around 760 nm, and a counterpart can be seen around 840 nm in both the 2D nanomesh 

sample and the one with mixed 1D/2D content. Due to their broadness and the large spectral 

difference (~ 80 nm) between their location for the three samples, as well as the lack of known 

possible excitations in this spectral region in (perfect) laterally extended WS2 sheets (mono- or 

few-layer) or bulk crystals, it is more likely that these spectral features are caused by 

geometrical/morphological characteristics of the two samples. For nanotubes of diameters 

comparable with the excitation light wavelength, and with many layers (i.e. creating a material 

with high refractive index), cavity mode resonances can be excited: for example, 760 nm excitation 

can excite cavity modes in a 70 nm radius WS2 multi-layer nanotube, while by decreasing the 

nanotube radius the wavelength of the light that can excite cavity modes decreases.74 

Consequently, as the nanotube diameters in our nanotube-rich sample are in the 10 to 30 nm range, 

no cavity resonances can be excited in the spectral range investigated here, and such excitations 

can thereby be ruled out. Most likely, the broad spectral features are sample geometry- or 

morphology-related, for example the result of a collective behavior of the material. Tentatively, 

we propose an explanation based on the nanotube-rich material and the 2D nanomesh being 

approximated as homogenous films with distinctive effective refractive indices, neff, of about 4 for 

the pure WS2 2D nanomesh,74 and moving closer to 2 for the nanotube-rich sample where the cores 

of the nanotubes are air or WO3-x.75 In this approximation, the broad spectral features in the near-

infrared region can be interpreted as antiresonances (manifested as dips in reflectivity) resulting 
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from interference of light reflected from the top and bottom interfaces of the effective WS2 film, 

and the wavelength at which an antiresonance occurs increases with neff. In addition, the 

morphology of the film can affect how pronounced an antiresonance is: it is expected that the 

homogenous film approximation works better for the nanotube-rich sample than for the 2D 

nanomesh where the multiple 2D planes produce more scattering and higher overall reflectivity. 

Hence the antiresonance effect would manifest at larger wavelength and be weaker in the 2D 

nanomesh, which appears to agree with the experimental findings. More investigations are needed 

to clarify the origin of these broad spectral features. 

Figure 7(d) presents spectral maps of the reflection intensity of each of the nanotube-rich and 

2D nanomesh samples, as a function of the angle of incidence; measurements were taken with 

polarized light using the setup from Figure 7(c) (Methods). For both P-polarized light (upper 

panels) the spectral signatures appear to correlate well with those in Figure 7(b), including the A, 

B, and C features, and do not change significantly upon varying the angle of incidence. 

Consequently, these spectral signatures are specific to WS2 as a material. For S-polarized light, the 

spectral maps are also modulated by the features shown in Figure 7(b), however there is a stronger 

contribution from the broad spectral features located above 700 nm. This suggests that the S-

polarized light couples more effectively with the sample as a whole, hence these maps reflect more 

the geometric/morphologic characteristics of the two types of samples rather than being specific 

to their common WS2 constituent material. 
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Figure 7. Linear optical properties of the class of out-of-plane WS2 phases, showing representative 

phases: nanotube-rich (1D); intermediary, with mixed 1D/2D content; and 2D nanomesh.  (a) Left, 

a photograph of the 2D nanomesh; right, a dark-field microscopy image from the 2D nanomesh, 

via a x100 objective. (b) Reflectivity spectra obtained in bright field microscopy at normal 

incidence with unpolarized light, from the three types of phases. (c) Experimental setup for the 

angular-dependent reflectivity measurements shown in (d).  (d) Reflectivity spectral maps, as a 

function of angle of incidence, from the nanotube-rich (1D) and 2D nanomesh samples, and for P- 

and S-polarized light.  

 

Because of their large second-order nonlinear susceptibility, 2D materials such as WS2, are of 

significant interest for nonlinear optical devices.17,76-79 We measured the second harmonic 

generation (SHG) for the same three types of samples investigated in Figure 7(b), in the reflection 

geometry, using the setup from Figure 8(a). SHG is a nonlinear optical technique whereby two 
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photons at the fundamental frequency are annihilated to create a third photon, at double the 

frequency. Because this frequency-doubling process is exquisitely symmetry-sensitive, it is used 

to characterize symmetry breaking effects, such as externally applied electric80 and magnetic81 

fields, strain,82 chirality,83 localized surface electric fields,84 and surface roughness, down to the 

atomic monolayer.85 

The experiments were conducted using a fundamental (incident) light of 800 nm wavelength, 

and 100 fs laser pulses. Figure 8(b) shows the SHG intensity (at 400 nm) as a function of incident 

power of the fundamental light (at 800 nm), for the nanotube-based (1D-rich), intermediary with 

mixed 1D/2D content, and the 2D nanomesh samples, respectively. As a reference, the SHG signal 

generated by the Si substrate, which is a centrosymmetric material with low SHG response,86,87 is 

also shown. All three types of WS2 samples are extremely non-linear, showing between 104 to 105 

larger SHG intensity than Si at a given power. It should be noted that our SHG setup is built for 

sensitivity, with a detector upper limit set to about 105 counts/s, which imposes an experimental 

limit on the power incident on the sample. Figure 8(b) also unambiguously shows the SHG 

response is influenced by the type of WS2 phase making up the sample: it is lowest, though still 

sizeable, in the nanotube sample, increases for the sample with intermediary 1D/2D mixed content, 

and is largest in the 2D nanomesh. Indeed, the WS2 2D nanomesh has several symmetry-breaking 

attributes that favor SHG: (i) it is made of mono- to three-layer sheets, as confirmed by TEM 

images and location of excitonic features in the reflectivity spectra, (ii) has considerable roughness 

arising from the formation of 2D platelets spreading around the initial 1D skeleton (as depicted in 

Figure 4(a)), and finally (iii) WS2, in particular, benefits from the strong electric dipole established 

in the unit cell and linked to strong spin-orbit interaction. It is known that SHG is strongly 

enhanced in transition metal dichalcogenides (TMDs) with odd number of layers where the unit 
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cell lacks inversion symmetry, and is strongest in the monolayer limit,88 and for this reason, for 

non-linear optics applications, such materials are exfoliated by various methods in order to then 

create stacks of isolated sheets.16,76 In the case of our WS2 2D nanomesh, the material grows 

directly on the substrate as “exfoliated” sheets of mono- or low number of layers, and large 

quantities within a high-density film of several microns in thickness, hence favouring non-linear 

optical response. 

Figure 8(b) also shows that, while the Si reference response follows the expected quadratic 

curve for the SHG power as a function of the fundamental excitation power,89 this is not the case 

for the WS2 samples. All three WS2 samples (nanotubes, with mixed 1D/2D content, and 2D 

nanomesh) deviate from the quadratic dependence and the deviation is strongest for the 2D 

nanomesh. This can be observed visually, but is clearly reflected by the differing R2 values of the 

fit curves (see caption of Figure 8(b)).  This power-dependent divergence can be attributed to the 

onset of saturable absorption, which correlates with increasing presence of edge states90 induced 

by the finite lateral sizes/domains of 2D nanosheets that form when the material progresses from 

1D form to full 2D content.  

The very large values of SHG and promising saturable absorption properties in these materials, 

in particular in the 2D nanomesh, together with the ability to be grown on insulating, transparent 

substrates (demonstrated here on SiO2) point towards promising nonlinear optical applications, 

which will be the subject of future work.  
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Figure 8. Nonlinear optical properties of the class of out-of-plane WS2 phases, showing 

representative phases: nanotube-rich (1D); intermediary, with mixed 1D/2D content; and 2D 

nanomesh. (a) Experimental setup. HWP designates a half wave-plate and PMT stands for photo 

multiplier tube. (b) Second harmonic generation (SHG) intensity as a function of the incident 

power, for the three types of WS2 samples (left Y axis) and for the Si substrate used as a reference 

(right Y axis, indicated by black arrow). Error bars representative for the experiment can be seen 

in the low signal data from Si; these are too small to be visible on the WS2 data. The continuous 

lines are fits to quadratic functions characteristic of SHG behavior (R2 = 0.91; 0.97; 0.98; and 

0.998 for the 2D nanomesh, mixed 1D/2D content, nanotube-rich (1D) samples, and Si substrate, 

respectively); deviations of data from these lines demonstrate onset of saturable absorption.  

 

 

Conclusions 

In conclusion, we demonstrated the sequential growth by CVD of a wide range of nanostructured 

materials, ranging from 1D WO3-x suboxides to WS2 nanophases with tunable 1D to 2D content, 

by intentionally decoupling into two stages (first stage, partial reduction; second stage, 

sulfurization) a reaction from WO3 to WS2 in order to enhance and reveal the role played by W 
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suboxides in CVD growth of WS2. In this process, we created WO2.92/WO2.92 morphologies, such 

as nanowires and nanorods, grown in-plane (i.e. parallel to the substrate) or out-of-plane of the 

substrate; the stoichiometry of these suboxides being found instrumental in the subsequent creation 

of many WS2 polymorphs. We were, thus, able to exploit a WO3-x – intermediate route that is very 

versatile, in that it is able to create by relatively simple tuning of the CVD growth process, and in 

a single process stream, a rich variety of 2H-WS2 phases: a tunable class of materials, ranging 

from nanotubes, to mixed 1D and 2D WS2 phases, to an out-of-plane (of the substrate), pure WS2 

2D nanomesh with extended 2D few-layer crystallites; as well as in-plane (parallel to the 

substrate), self-seeded 2D domains. Regarding the in-plane 2D WS2 films, our study showed that 

their growth can be routed via WO3-x suboxides, a different route than via W oxi-sulfides as 

previously demonstrated in conventional 2D growth. Moreover, their growth proceeds via a “self-

seeding and feeding” mechanism from 1D WO2.92/WO2.92 nanorod precursors which may be able 

to take advantage of the positional and orientational growth within the substrate that can be 

achieved in growth of such 1D precursors.  

The CVD route enables the growth of microns-thick WO3-x suboxide nanowire films and WS2 

phases with tunable 1D/2D content directly on substrates, in an evolutionary manner, and on areas 

of at least several cm2 (limited here by the dimensions of our furnace). WO3-x suboxide nanowire 

films can find their own applications as sensing materials. The morphological tunability of the 

WS2 phases can be exploited to tune their opto-electronic properties. In the examples given here, 

the evolution from WS2 nanotubes with WO3-x cores into a pure WS2 2D nanomesh phase results 

in changes in the optical absorption/reflection spectra, and can provide media with tunable 

effective refractive index. All WS2 nanophases in the class have very strong non-linear optical 

properties, with the 2D nanomesh being extremely SHG active. Films obtained by condensation 
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of TMD suspensions, or composites of nanoscale TMD flakes with polymers have been suggested 

in other works for non-linear optical applications. The 2D nanomesh demonstrated here, however, 

has a “ready-made” sheet-exfoliated morphology, large overall effective thickness of the film, and 

ability to be grown directly on optically compatible substrates (i.e. insulators and transparent, as 

opposed to metallic) which are all important advantages in terms of ease of coupling with optical 

systems and devices, as well as improved material stability.  
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Methods 

Synthesis of nanophases and nanostructures. A home-built setup involving a horizontal 

furnace with a temperature gradient (Supporting Information, Figure S1) was used to first produce 

a variety of W suboxide nanowires/nanorods (by partially reducing WO3 to suboxides) – stage 1; 

which were then sulfurized for conversion to WS2 nanophases – stage 2.  

Synthesis of W suboxide nanowires and nanorods (stage 1). This is a Low-pressure CVD 

(LPCVD) process. The geometrical configuration of the furnace and position of boats with 

precursor materials are shown in Supporting Information, Figure S1.  Differences in process 

substrate position/temperature, discussed in the main text, led to the formation of (i) long, out-of-

plane nanowires, (ii) clusters of short nanorods, and (iii) in-plane nanorods of suboxides, as 

described below. 

WO3-x nanowires/nanorods were synthesized on SiO2/Si (i.e. 300 nm thermal oxide), without 

any catalysts. Typically, 60 mg tungsten (VI) oxide (99.998%, Alfa Aesar) and 400 mg sulfur 

powder (99.5%, Alfa Aesar) were used as precursors. The SiO2/Si substrates were cleaned by 

sonication in acetone, isopropanol (both HPLC grade), and deionized water, in sequence, prior to 

loading them in the furnace. A rotary pump pumped the tube during the whole process. Only argon 

(flow rate 150 sccm) was used for transporting the WO3 and sulfur vapor to the Si/SiO2 substrates. 

This LPCVD stage has two distinct periods: (i) an initial period where just WO3 is sublimed 

(without S vapor being introduced into the reactor), a set of typical conditions being 1030 °C, at a 

pressure below 10-1 mBar, and for 20 minutes;  followed by (ii) a period where S is introduced and 

co-evaporated together with the WO3 over 15 minutes, leading to partial reduction of the WO3 

vapor, and, then, its condensation on the substrate as WO2.92 and WO2.9 nanostructures. 
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We have verified in dedicated experiments that in the conditions described at (i) WO3 is volatile 

during our LPCVD process: after annealing (non-hydrated) WO3 powder for 45 minutes, its weight 

decreased by two thirds, while the remaining powder in the furnace pocket was verified by XRD 

to still be entirely WO3 (i.e. did not undergo any unexpected reduction) at the end of the annealing 

period. No nanowires were formed on the SiO2/Si substrates after just this process. 

Synthesis of out-of-plane WS2 nanotubes, mixed 1D and 2D phases, and 2D nanomesh (stage 2). 

This is an Atmospheric pressure CVD (APCVD) process. Out-of-plane WO2.92/WO2.9 nanowires 

on SiO2/Si were heated in the 850 - 925 °C range, under atmospheric pressure in the furnace center, 

whereas 400 mg sulfur powder (99.5%, Alfa Aesar) was heated upstream (about 40 cm) at 180 °C. 

Argon, at a flow rate of 100 sccm, was used to transport the sulfur vapor to the nanowires on 

SiO2/Si sample. The same furnace geometry as above was employed. For generating Figure 4, 

where the transition between nanotube and 2D nanomesh phases was monitored, identical parts of 

the same initial WO2.92/WO2.9 nanowire sample were reacted at 850 °C in S environment (in the 

conditions described above), each for an increasing amount of time (∆t) up to three hours, to form 

the series described in the figure caption.  

We have also verified (by a combination of SEM, TEM and XRD) that WO2.9 and WO2.92 are 

non-volatile in the conditions of our APCVD process by annealing the WO2.92/WO2.9 nanowires 

(supported by their SiO2/Si substrate) for one hour just in an Ar atmosphere (i.e. without the 

presence of S) in APCVD conditions, and over the same temperature range at which the various 

WS2 phases were obtained (as described above). 

Synthesis of in-plane, 2D WS2 domains (stage 2). As-grown WO2.92/WO2.9 short nanorods on 

SiO2/Si were heated in the 850 - 925 °C range in the center of the furnace, under atmospheric 

pressure (i.e. in an APCVD process), while 400 mg sulfur powder (99.5%, Alfa Aesar) was heated 
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upstream (about 40 cm) at 180 °C. Argon, at 100 sccm flow rate, was used to transport the sulfur 

vapor to the nanorods on SiO2/Si sample. The same furnace geometry as above was employed. 

 

Structural characterization of grown nanophases and nanostructures.  

X-ray diffraction (XRD). WO3-x nanowires/nanorods and WS2 nanomesh as grown on their 

SiO2/Si substrates were characterized by XRD performed on a BRUKER AXS D8 Advance 

instrument, equipped with a Vantec-1 detector, and using CuKα radiation at λ= 1.5418 Å.  

High resolution transmission electron microscopy (HRTEM) and selected area electron 

diffraction (SAED). Complementary HRTEM and SAED were performed on a JEOL JEM-

2100Plus microscope operated at 200 kV and using a bottom-mounted CCD camera. A drop of 

nanowires/nanotubes/nanomesh suspension in ethanol was drop-cast onto a mesh TEM support 

grid.   

Raman spectroscopy. All nanostructures, as grown on their SiO2/Si substrates – WO3-x 

nanowires/nanorods, WS2 nanomesh, and in-plane, WS2 2D domains – were characterized by 

Raman spectroscopy performed with a Renishaw inVia Raman microscope, using 532 nm 

excitation laser. Samples were illuminated through a ×50 objective lens (1.9 μm diameter spot 

size), at a laser power of 0.7 mW, while spectra were acquired with an exposure time of 1 s and 

using 200 accumulations.  

Scanning electron microscopy (SEM). The nanostructured samples, as grown on the SiO2/Si 

substrates, were observed using a JEOL SEM6480LV microscope in secondary electrons (SE) 

mode with acceleration voltages in the 5-15 kV range depending on the penetration depth needed 

for the various morphologies. 

Linear and non-linear optical properties.  
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Microscopy and normal incidence reflection measurements. An Axioplan 2 microscope (ZEISS) 

with a halogen lamp and a 100x microscope objective were used, measurements being performed 

in brightfield mode. Microscope colour images were taken with an Axiocam 105 color camera, 

while optical spectra were taken over the 400 – 950 nm spectral range with an Ocean Optics QE 

Pro spectrometer, using an integration time of 1 s and averaging over 10 scans. The spectra were 

normalized with respect to the untreated silicon wafer. 

Angle-dependent linear optical characterization. A Fianium SC400-2 2 W laser source with a 

1064 nm output wavelength and 20 MHz repetition rate and a 5 ps pulse spliced to an in-house 

fabricated supercontinuum fibre91 capable of a 450-2400 nm spectral range was used. Two 

uncoated Glan-Laser polarizers were used to control the power output and polarization of the 

incident light. The reflected light from the sample was collected via a 200 µm diameter SMA fibre 

(0.22 NA) mounted on a fibre launch stage and measured with an Ocean Optics QE Pro 

spectrometer over 450 – 950 nm, using an integration time of 300 ms and averaging over 10 scans. 

An automated setup was used to determine the reflected light angle. The spectra were normalized 

with respect to the untreated silicon wafer. 

Second harmonic generation (SHG) measurements. A femtosecond laser (MaiTai HP from 

Spectra Physics), tuned to a wavelength of 800 nm, provided the incident fundamental beam. The 

laser produced pulses at a repetition rate of 80 MHz, which are approximately 100 fs long in time 

with a bandwidth of 10 nm. Two crossed polarizers (Glan-laser calcite anti-reflection coated) 

controlled the laser power. An achromatic half-waveplate ensured that the incident beam is P-

polarized (horizontal polarization). Two colored glass bandpass filters were used to reject any 

spurious light at the second harmonic. An achromatic lens (focal length 150 mm, anti-reflection 

coated) focused the beam onto the sample at an incident angle of 45° relative to the sample.  
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Another achromatic lens (focal length 150 mm, anti-reflection coated) collimated the SHG in 

reflection, while a colored bandpass filter rejected the fundamental beam, leaving only the SHG. 

The signal beam was focused into a cooled photomultiplier tube (PMT) using an anti-reflection 

coated lens (focal length 200 mm). The PMT produced current pulses, which were pre-amplified 

and fed into a gated photon counter. The data point for each incident power was the average of 20 

measurements, where the counting duration of each measurement was 5 seconds.  

 

Supporting Information 

(i) CVD setup for nanostructure synthesis, and phase diagram for WO3-x phases. (ii) 

Characterization (XRD, SEM and HRTEM) of grown WO3-x nanowires and nanorods. (iii) Raman 

characterization of WS2 nanophases. (iv) Electrical characterization of WS2 2D nanomesh. (v) 

Atomistic description of layer-by-layer evolution from WO3 to WS2 via WO2.92/WO2.9 Magnéli 

phases. 
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