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ABSTRACT 

Transparent nano-structured hematite (α-Fe2O3) films of approximately 550 nm thickness 

on tin-doped indium oxide (ITO) have been obtained conveniently by ink-jet printing of a 

Fe(NO3)3 / Brij® O10 precursor ink and subsequent annealing at 500 °C in air. When 

illuminated with a blue LED ( = 455 nm, ca. 100 mW cm-2), the hematite films exhibited 

photocurrents of up to 70 A cm-2 at 0.4 V vs. SCE in 0.1 M NaOH electrolyte. Thermal 

annealing in vacuum at 500 °C for 2 h increased photocurrents more than three times to 

230 A cm-2 in agreement with previous literature reports for pure hematite materials. 

These results suggest that a simple ink-jetting process with surfactants is viable. The effects 

of vacuum-annealing on the photoelectrical properties of α-Fe2O3 films are discussed in 

terms of a sub-surface state templating hypothesis based on data gathered from photo-

transients, field emission scanning electron microscopy, X-ray photoelectron spectroscopy 

analysis, X-ray diffraction, photocurrent spectra, and cyclic voltammetry. 

   

Keywords: hematite films, photoanode, water splitting, oxygen evolution, solar energy.  
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INTRODUCTION 

One of the greatest challenges of our century is the search for new energy sources, which 

are economical and safe, possibly distributed, and which avoid pollution of the 

environment. The development of solar technologies can provide clean and renewable 

energy when based on an energy vector such as hydrogen. Therefore, the direct solar 

production of hydrogen and oxygen through solar water splitting [1] could be a promising 

technology. The method can be based on photo-electrolysis of water into O2 (at the 

photoanode) and H2 (at the photocathode) on the surface of suitable photo-active materials 

under solar illumination [2,3]. Pursuing this approach requires development of appropriate 

photo-electrode materials, which must fulfill requirements such as strong/effective light 

absorption, suitable band edge position for reduction/oxidation of water and high chemical 

stability [4,5]. In addition, such material should be based on low cost components and be 

suitable for low cost fabrication of electrodes also on large area. A particularly attractive 

fabrication tool today is printing and therefore ink-jet printing has been employed in this 

study based on a Fe(NO3)3 / Brij® O10 surfactant ink to produce nano-structured films of 

hematite. 

 

A promising candidate for photo-anode applications is α-Fe2O3 (hematite [6,7,8]), which 

has a suitable band gap (~2 eV) ideal for visible light harvesting [9,10,11], low cost, earth 

abundance, is non-toxic, and possesses good stability in aqueous media. In theory, this 

semiconducting material can produce a photocurrent density of ca. 4 mA cm-2 (for single 

pass flat interfaces) or up to ca. 12 mA cm-2 (for nano-structured interfaces [12]) under AM 

1.5 solar spectral illumination. However, with varying film fabrication methodologies 
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performance can change. Also, with pure hematite (without catalyst layers) such 

photocurrent has not been achieved in practice because of (i) fast recombination of photo-

generated charge carriers in the bulk and at surface states in α-Fe2O3 [13], (ii) slow surface 

kinetics associated with the formation of oxygen [14], and (iii) poor electrical conductivity 

within the un-doped material (~10-2 cm2 V-1 s-1 [15]), but also inter-grain conductivity 

related problems to a very short hole diffusion length, around 2-4 nm [16] or in some 

materials reported even shorter (0.5-1.5 nm [17]). The electrical conductivity in α-Fe2O3 is 

anisotropic because of its hexagonal crystal structure with antiferromagnetic magnetic 

structure [18,19,20]. Hematite exhibits a typical optical thickness of 45 nm at a wavelength 

of 400 nm [21], which means that only thin layers of material are active. Therefore, based 

on pure hematite it is difficult to develop photoanodes with a photocurrent approaching the 

theoretical limit. Nevertheless, new approaches to the formation of thin hematite films can 

be useful and a comparison of properties based on pure hematite films is needed. 

 

To improve the photo-electrochemical properties of α-Fe2O3 structures, different strategies 

are applied including doping of hematite to increase conductivity [22,23], coupling 

hematite with other oxides in heterojunctions to enhance a charge carrier collection [24], 

application of nano-textured conductive substrates for more efficient charge collection 

[25,26], surface/interface passivation layers for reduced surface/interface charge 

recombination [27,28,29], and catalyst adsorption for accelerated interfacial water 

oxidation kinetics [30,31,32].  Recently, it has been reported that the incorporation of 

oxygen vacancies into hematite photoelectrodes can be an effective approach to improve 

photocurrents and activity for water oxidation [33,34]. To produce oxygen vacancies in α-
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Fe2O3, both plasma treatment and high-temperature treatment of films under an atmosphere 

of H2 or Ar can be employed [35]. Instead of an argon atmosphere annealing also vacuum 

annealing may be used as has been demonstrated by Joo et al. [36] and by Ling et al. [37] 

and is employed in this report. Considerable effects of oxygen vacancy doping on 

conductivity have been noted similar to those observed by stannate doping. In addition to 

conductivity changes induced by oxygen vacancies, it is interesting to note possible links 

in chemistry (i) when oxygen is extracted from hematite at elevated temperatures and (ii) 

during ambient oxygen evolution in contact to aqueous electrolyte. 

 

Photoelectrochemical processes within the photo-excited hematite film are complex in 

particular in non-planar nano-structured films, but can be simplified based on some 

predominant phenomena, which are shown schematically in Figure 1 for photo-transient 

current responses for “light-on” and “light-off” transients. When switching on the 

illumination, an anodic current spike shows that charge carrier separation occurs with holes 

being captured at surfaces and electrons diffusing into the substrate electrode (see Figure 

1B). When switching off the illumination the remaining holes may cause a flow of electron 

back into the hematite film (see Figure 1C) resulting into a cathodic current spike. 
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Figure 1. Schematic drawing of (A) light-on and light-off photocurrent transients, (B) the 

flow of electrons from hematite into the substrate upon switching on the illumination, and 

(C) the flow of electrons back into the hematite upon switching off the illumination. 

 

 

Net anodic current has to be attributed to the formation of oxygen from water and the rate 

for this process can be represented by a first order rate constant ktr. This process is 

competing with recombination represented here by the first order rate constant krec. The 

fraction of holes that successfully transfer to generate oxygen is given by 𝜂𝑡𝑟𝑎𝑛𝑠 =

𝑘𝑡𝑟 / (𝑘𝑡𝑟 + 𝑘𝑟𝑒𝑐) [38], which is a measure of the resulting anodic steady state 

photocurrent. The transient decay is governed by ktr + krec [39] and the approximate decay 

time of 𝜏 =  
1

𝑘𝑡𝑟 + 𝑘𝑟𝑒𝑐
. Both of these two rate constants may be affected by electron charge 

mobility in the semiconductor. A corresponding reaction layer may be expressed as 

𝛿𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 =  √
𝐷𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛

𝑘𝑡𝑟+𝑘𝑟𝑒𝑐
 (with Delectron indicating the apparent diffusion coefficient for 

electrons). “Harvesting” of electrons from the film into the substrate electrode may also be 

indicated as an apparent transport layer, 𝛿𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, which is dependent on electron 
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mobility as well as the applied bias voltage (see Figure 1B). Both 𝛿𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 or 𝛿𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 

can be associated with the rate/photo-current limiting process. 

   

In this work we report formation of nano-structured α-Fe2O3 films prepared by ink-jet 

printing and the enhancement of photoelectrochemical properties after thermal annealing 

in vacuum at 500 °C. Effects are discussed based on the data from photoelectrochemical 

transients, field emission scanning electron microscopy (FE-SEM), X-ray diffraction, X-

ray photoelectron spectroscopy (XPS) analysis, photocurrent spectra, and cyclic 

voltammetry. We suggest that printed films provide a promising research tool as well as 

being economical for devices. In the future, ink-jet printing could provide a reproducible 

and cost-effective way to: (i) develop photo-electrodes with larger area, (ii) introduce 

dopants and composite components, (iii) study effects of gradual (sub-surface state) doping 

during vacuum-annealing, and (iv) control nano-structure morphology and thickness.  

 

EXPERIMENTAL 

Preparation and annealing of -Fe2O3 films. Thin films of α-Fe2O3 were prepared by 

ink-jet printing (on a Fujifilm DMP-2800 printer with substrates heated to 60°C) of a 

hematite precursor ink onto glass substrates coated by tin-doped indium oxide (ITO, 

obtained from Image Optics Components, Basildon, UK) and subsequently annealing at 

500 °C for 2 h in air with a heating/cooling rate of 3 °C/min in a tube furnace (Elite Thermal 

Systems Ltd., UK). The precursor solution was obtained by dissolving 0.5 g of Fe(NO3)3
. 

9 H2O (99.95%, Sigma-Aldrich) in 1 mL of ethanol with 0.2 mL of surfactant Brij® O10 

(Sigma-Aldrich). The solution was filtered with a 1.2 µm pore syringe filter before printing. 
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ITO substrates were cleaned by sequential sonication in acetone (30 min) and in ethanol 

(30 min), washing in deionized water, drying and heating to 500 °C for 1 h in air.    

Annealing of α-Fe2O3 films in vacuum (Speedivac Edwards High Vacuum Pump ED50, 

Crawley, England) was performed at 500 °C for 2 h in a quartz tube, which was placed into 

the tube furnace. The vacuum in the tube was maintained during heating and cooling.   

 

Structural and morphological characterization. The morphology and thickness of the 

films were evaluated by high-resolution field emission scanning electron microscopy (FE-

SEM, Zeiss Supra 35 at 2 kV). X-ray diffraction (XRD) patterns were recorded using a 

PANalytical Empyrean diffractometer with CuKα radiation (λ = 1.5406 Å) operated at 45 

kV and 40 mA. Scans were done in the 2ϴ range from 10° to 80° in steps of 0.02° and 1 s 

per step in a continuous mode using grazing incidence technique with an incidence angle 

of 1°. The crystalline phases were identified using X’Pert High Score Plus software and 

ICSD database (ICSD – Inorganic Crystal Structure Database). X-ray photoelectron 

spectroscopy (XPS) spectra were recorded with a Thermo Scientific Inc., Model K-Alpha 

Surface Analysis. Monochromatic Al Kα radiation (E = 1486.68 eV) was used.  

 

Electrochemical testing. Electrochemical measurements were performed with an Autolab 

potentiostat/galvanostat instrument PGSTAT30 (Ecochemie, Netherlands) with Autolab 

GPES software. Photocurrents were recorded with back illumination by using a three-

electrode configuration with a Pt-wire counter electrode, a working electrode with area of 

1 cm2, and a KCl-saturated calomel (SCE) reference electrode. Electrolyte solutions were 

0.1 M NaOH in demineralised water. The light was generated by the blue light-emitting 
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diode M455L2 (455 nm, Thorlabs M455L2) which was controlled by LED driver (T-Cube 

LED driver, Thorlabs, UK) and a DDS Function/Arbitrary TG4001 Generator (TTi, UK). 

The light chopping frequency was set at 0.2 Hz. Photocurrent spectra (incident photon to 

current efficiency (IPCE) data) were plotted as a function of incident light wavelength (λ) 

ranging from 350 to 600 nm in steps of 5 nm. The light intensity was calibrated using a 

standard silicon photodiode. The light chopping frequency was set to 4.3+/-0.2 Hz to 

minimise attenuation affects. The apparatus consisted of a Stanford Research Systems 

SR830 (Stanford, USA) lock-in amplifier, a SR540 chopper controller, a home-built 

potentiostat, a 75 W xenon lamp powered by a Bentham 650 power supply, and a 

monochromator controller PMC3B (Bentham Instruments Ltd, Reading, UK). The spectra 

were recorded using a home-built LabVIEW program. After annealing in vacuum 

electrochemical measurements of α-Fe2O3 films were started after 2 days equilibration in 

ambient conditions.  

 

RESULTS AND DISCUSSION 

The printed hematite films after annealing at 500 °C for 2 h in air have a bright orange 

color typical for hematite (Figure 2) and are optically transparent. The XRD patterns for 

these films (Figure 2) are consistent with the presence of only ITO substrate and hematite 

phase (α-Fe2O3 in hexagonal crystal system). The colour as well as the XRD pattern 

recorded for hematite films before and after vacuum annealing do not differ.  
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Figure 2. X-ray diffraction patterns for the film deposited on ITO substrate (blue α-Fe2O3 

(hematite) and red tin-doped indium oxide or ITO). Also shown is a photograph of the 

orange coloured transparent hematite film on glass. 

 

 

FE-SEM images for α-Fe2O3 films on the ITO substrate (both top view and cross-sectional) 

are shown in Figure 3. The hematite material is formed with a nano-structure patterns of 

typically 20 nm feature size, and this is attributed here to the presence of the Brij® O10 

surfactant in the ink phase. Similar types of pattern are produced/reported for example with 

block-co-polymers [40,41]. Cross-sectional images reveal a film thickness of typically 550 

nm and grain sizes of 10 to 30 nm throughout the film.  
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Figure 3. FE-SEM images (top view (A,B) and cross-sectional (C,D)) of α-Fe2O3 film 

formed on ITO substrate. 

 

 

Figure 4A-D summarize the XPS results for two types of hematite films: (i) ambient 

annealed and (ii) vacuum annealed. Figure 4A shows a survey spectrum with prominent 

signals for Fe and O. As seen in Figure 4B, the peak positions of the Fe 2p signals do not 

differ substantially for both types of films. Satellite peaks at 715 eV and 729 eV have in 

the past been attributed to presence of Fe(III) shake-up signals [37,42]. XPS signals for 

Fe(II) would be expected as shoulders, but are here not resolved probably due to low Fe(II) 

concentrations generated during vacuum-annealing. However, a more significant change 

is seen in the O 1s peak shown in Figure 4D. This peak can be deconvoluted into the main 

peak at 529.6 eV (oxygen atoms bound to Fe(III) at the surface) and a shoulder peak at 
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530.9eV (attributed here to effects of surface hydration and possibly indicative of 

additional defect sites with hydroxide coordination [43]). For the hematite film which was 

ambient-annealed, the shoulder peak is less expressed in the O 1s signal (Figure 4C). In 

this case, the O 1s peak can be deconvoluted into the main peak at 529.4 eV and the 

shoulder peak at 530.4 eV. The intensity for the shoulder peak is higher for the film, which 

was vacuum-annealed. This may suggest that annealing of hematite films in vacuo at 500 

°C for 2 h followed by re-equilibration to room temperature leads to a significant increase 

in surface hydration, which may be linked to the number of near-surface oxygen vacancies. 

An improved hydration of the hematite surface may also be linked to a change in oxygen 

evolution reactivity, consistent with literature reports on reactive hydrated surface layers 

[44].  
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Figure 4. Data for X-ray photoelectron spectroscopy (XPS) analysis. The survey spectra 

(A) and the Fe2p peaks (B) were recorded for the ambient-annealed (curve 1) and vacuum-

annealed (curve 2) hematite films. The O 1s peaks were obtained for (C) the film which 

was ambient-annealed and (D) the film after vacuum-annealing. 

 

 

The photocurrent spectra (all obtained with back illumination) for typical α-Fe2O3 films 

recorded before and after annealing in vacuum at 500 °C are shown in Figure 5. Spectral 

features with maximum at 387 nm are in good agreement with literature data [37] and 

reflect the ability of hematite to absorb photons of light followed by charge separation and 

photo-current response. The IPCE values are measured at anodic 0.1 V vs. SCE bias 

immersed in 0.1 M NaOH solution. The estimation of the band gap based on these spectra 

suggests a value of approximately 2.4 to 2.5 eV (see lines in Figure 5). This value is in 
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good agreement with literature values of 1.9 to 2.5 eV [45,46,47]. Variation are usually 

attributed to grain size and crystallinity.  

 

 

Figure 5. The Incident Photon to Current Efficiency (IPCE) for a Fe2O3 film electrode in 

0.1 M NaOH electrolyte at 0.1 V vs. SCE before and after vacuum-annealing at 500 °C for 

2 h.  

 

 

The effect of the vacuum annealing is clearly significant and therefore photo-transients are 

further investigated. The linear sweep voltammetry photo-transient data recorded before 

annealing of α-Fe2O3 film in vacuo and after are presented in Figure 6. Before vacuum-

annealing the typical photocurrent is limited at about 70 A cm-2 at 0.4 V vs. SCE in 0.1 

M NaOH electrolyte. This corresponds to a bias potential of approximately 1.4 V vs. RHE 

corresponding to relatively high bias (RHE = relative hydrogen electrode with ERHE = ESCE 

+ 0.98 V).  After vacuum-annealing of the α-Fe2O3 film, the photocurrent increased more 
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than three-fold and reached 230 A cm-2 at 0.4 V vs. SCE under the same conditions 

(Figure 6).  

 

 

Figure 6. (A) Cyclic voltammetry (scan rate 10 mV s-1) for a Fe2O3 film electrode 

immersed in 0.1 M NaOH electrolyte under pulsed blue light ( = 455 nm, 0.2 Hz) before 

(curve 1) and after (curve 2) vacuum-annealing at 500 oC for 2 h. (B,C) Schematic drawing 

of the hematite lattice before and after vacuum annealing highlighting the role of sub 

surface states in the catalytic process. 
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It is interesting to explore some further features of the photo-transient data: (i) although the 

shape of photo-transient during light-on and light-off switching remains the same, the 

switching time constant 𝜏 =  
1

𝑘𝑡𝑟 + 𝑘𝑟𝑒𝑐
 appears to be faster after vacuum-annealing 

indicative possibly of an increase in ktr and/or krec; (ii) the current response during light-off 

periods (see “hole accumulation” in Figure 6A) is lower after vacuum-annealing indicative 

of less hole accumulation and an increase in ktr and/or krec; (iii) although the photocurrents 

seem to saturate before vacuum-annealing, they appear to increase with applied potential 

after vacuum-annealing, indicative of a switch from a potential independent to potential 

dependent transport layer transport. These three observations are linked by the formation of 

the oxygen vacancies and sub surface states and indicative mainly of a faster rate of transfer 

ktr. It is interesting to compare to a similar effect induced by tin doping [48]. 

 

It is known that vacuum-annealing also causes an increase in electron conductivity in the 

underlying ITO film/contacts [49], which could be to some extent linked to the observed 

improvements in photo-electrochemical properties. However, when focusing on the 

hematite film, the enhancement of photo-electrochemical properties of α-Fe2O3 films is 

probably related to a loss of oxygen from surface, sub-surface, and from the crystal lattice 

during vacuum-annealing. Reports in the literature suggest formation of states below the 

conduction band to enhance electron mobility (see states in Figure 6C). When charged 

positively and located close to the surface, these states may also allow transfer of holes to 

the surface (see “sub-surface states” in Figure 6C). To date, several explanations of the role 

of oxygen vacancies in hematite have been proposed in the literature, such as blocking of 
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slow surface hole-bulk electron recombination pathways by oxygen vacancies, increasing 

of carrier density as a result of the production of new oxygen vacancies in hematite, which 

leads to the enhanced oxygen evolution reaction activity, as well as higher charge 

separation yields and decreased contact resistances at the semiconductor / transparent 

conducting oxide interface [50]. All of these may be to some extent relevant. However, it 

is intriguing to also consider effects of sub-surface states [51] created when oxygen 

vacancies are generated under vacuum annealing conditions (see Figure 6C). The presence 

of these states in the bulk is consistent with n-doping and therefore related to enhanced 

electron transport. But the sub-surface states may also allow holes to reach lower-lying 

surface states, which could have the effect of a “conduit” allowing holes to emerge at high 

concentration at a specific surface site, which will cause a higher reactivity towards oxygen 

evolution (i.e. an increase in ktr). Furthermore, the formation of an oxygen molecule (which 

is released into the vacuum under thermal annealing conditions) will provide exactly four 

Fe(II) sites in close vicinity and these four sites may then work in a concerted manner in 

the ambient photo-electrochemical oxygen evolution process to give a higher ktr. The 

hypothesis of a possible mechanistic link of thermal oxygen release into vacuum and photo-

electrochemical oxygen production and the role of sub-surface states will require further 

investigation. 

 

CONCLUSION 

Transparent films of α-Fe2O3 were prepared on ITO substrates by inkjet printing with 

subsequent annealing at 500 °C for 2 h in air. XRD analysis confirmed the presence of 

hematite phase (α-Fe2O3, hexagonal crystal system) without other iron oxides or impurities. 
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It was found that thermal vacuum-annealing at 500 °C for 2 h substantially improves the 

photocurrents, which increased more than three times, from 70 A cm-2 to 230 A cm-2 

(under LED illumination,  = 455 nm, ca. 100 mW cm-2) at 0.4 V vs. SCE in 0.1 M NaOH 

electrolyte. The enhancement of photocurrent is accompanied by the increase of incident 

photon to current efficiency. The improvement of photoelectrical properties observed for 

ink-jet printed hematite films is attributed here to the loss of oxygen/formation of oxygen 

vacancies during vacuum-annealing. Indirect evidence of oxygen vacancies after vacuum-

annealing has been obtained by the XPS analysis and a link between oxygen vacancies and 

surface reactivity appears plausible. However, the mechanism by which the photo-currents 

are increased is currently not fully understood.   

 

This study is preliminary in nature and more detailed data will be needed (e.g. controlling 

the vacuum-annealing conditions to explore effects from the number and depth of 

vacancies) to shed further light onto the mechanisms responsible for photocurrent 

enhancement and to allow optimization of conditions for device production. Ink-jetting as 

a methodology for the preparation of hematite films is attractive, although the photo-

electrochemical performance of films reported here appears limited even after vacuum 

annealing. Further improvements in the ink-jetting recipe (e.g. different surfactants, other 

types of ligands on the Fe(III) precursor, more control during deposition, additional ligand 

control over the thermal mineralization process, etc.) will be needed to further improve the 

hematite micro-structure. 
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