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Abstract This paper studies a variant of the Vehicle Routing Problem with Soft Time

Windows (VRPSTW), inspired by real world distribution problems. In applications,

violations of the prescribed delivery time are commonly accepted. Customers’ incon-

venience due to early or late arrival is typically modelled as a penalty cost included

in the VRPSTW objective function, added to the routing costs. However, weighting

routing costs against customer inconvenience is not straightforward for practition-

ers. In our problem definition, practitioners evaluate solutions by comparison with

the hard time windows solution (referred as nominal solution). The desired rout-

ing cost saving is set by the practitioners as a percentage of the nominal solution’s

routing costs. The objective function minimises the time window violations, or the

customer inconvenience, with respect to the nominal solution. This allows practi-

tioners to quantify the opportunity cost (i.e., the customer inconvenience), when a

target routing cost saving is imposed. We propose two exact algorithms: the first is

based on a standard branch-and-cut-and-price, the second is a branch-and-cut-and-

price nested in a bi-section algorithm. Computational results demonstrate that the

second algorithm outperforms the standard implementation. Solutions obtained with

the opportunity cost interpretation of soft time windows are then compared with so-

lutions obtained using both hard time windows and the standard interpretation of soft

time windows.
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1 Introduction

Route planning is a critical task in the logistic industry and it has been estimated

to account for up to 20% of the overall logistic cost (Toth and Vigo, 2002). The

Vehicle Routing Problem (VRP) was proposed more than 50 years ago (Dantzig and

Ramser, 1959) and it is a challenging combinatorial optimization problem. “Rich”

VRP variants have been proposed to respond to the variety of operational constraints

arising in the distribution industry (i.e., multiple depots, heterogeneous fleet, multi-

trips, ...). Academics propose effective exact and heuristic algorithms responding to

the needs of the distribution industry (Toth and Vigo, 2002; Golden et al, 2008; Vidal

et al, 2012).

One of the real-world features attracting a remarkable attention from researchers

and practitioners are the so called time windows constraints (Schrage, 1981; Gen-

dreau and Tarantilis, 2010). Customers receiving goods often demand delivery within

a time interval or time window. Time windows are classified as hard, if customers

must be visited within the specified time interval, and soft, if time windows can be vi-

olated at the expense of customer inconvenience. In the first case, the problem is usu-

ally refereed as the Vehicle Routing Problem with Hard Time Windows (VRPHTW),

in the latter the Vehicle Routing Problem with Soft Time Windows (VRPSTW).

Time window violations are often accepted in practical applications do to the po-

tential routing cost saving. Figure 1 depicts an instance where the cost of traversing

arcs (1,3) and (2,4) is 2 units, whereas all other arcs have cost 1 unit. The vehicle

departs from the depot (the square vertex in the figure) at time zero and should visit

each customer within the corresponding time window (minimum and maximum ar-

rival times at a customer are reported in square brackets). We assume zero service

time at the customers. The time window of customer 2 imposes visits at earliest at

time 4 and this forces the vehicle to a costly routing solution, when hard time win-

dows constraints are imposed (figure on the left). The same instance may result in a

much more convenient routing solution, if customer 2 is visited two units before the

desired time window. Practitioners may favour the soft time windows solution (given

two units routing cost saving) or the hard time window solution (if inconvenience at

customer 2 is not acceptable).
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1 4

2 3

1 4

[4,6]

[1,6]
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Fig. 1 Time windows violation at customer 2.

The VRPHTW was first proposed by Pullen and Webb (1967) and since then

it has been widely studied. An interested reader may refer to the surveys of Cordeau

et al (2002), Bräysy and Gendreau (2005a,b), Kallehauge (2008), Gendrau and Taran-

tilis (2010), Desaulniers et al (2010), Baldacci et al (2012) and Desaulniers et al
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(2014) for comprehensive literature reviews on the VRPHTW. The VRPHTW has

been solved effectively both by exact and heuristic algorithms and high quality solu-

tions are achieved in relatively limited computing times.

A survey and critical discussion of the VRPSTW literature will be presented in

Section 2; however the VRPSTW received less attention and there is not a unique

interpretation of time windows violations. Customer inconvenience for being visited

too late and (possibly) too early with respect to the desired time window is quantified

and the VRPSTW’s objective function is typically modelled as a weighted combina-

tion of routing costs and a measure of the customer inconvenience. However, how to

measure customer inconvenience and how to quantify the relative weight of routing

and customer inconvenience are still open research questions.

Quantifying customer inconvenience as opposed to routing costs is not a simple

task for practitioners. Our previous collaborations with logistic companies made us

realize that VRPSTW objective functions often do not reflect the standard practice

in handling soft time windows constraints. In Ruinelli et al (2012), the handmade

routing plans presented a large number of time windows violations and practitioners

privileged routing cost optimization versus customer satisfaction. Moreover the expe-

rience of human planners and their knowledge about customer needs allowed them to

discriminate among sensible time-windows violations and routing benefits associated

with each violation. Finally, regarding the practice of objective function weighting in

multi-objective optimization, the planner is often “not aware of which weights are the

most appropriate to retrieve a satisfactorily solution, he/she does not know in general

how to change weights to consistently change the solution” Caramia and Dell’ Olmo

(2008).

In this paper, we model soft time windows constraints trying to overcome the

difficulties of practitioners in comparing routing costs and customer’s inconvenience.

A base of comparison is established, by setting as benchmark the optimal solution

of the hard time windows problem. The planner sets a desired mileage saving with

respect to the nominal solution. The exact algorithm minimizes the time window vi-

olations to achieve this goal. Therefore we model the opportunity cost of solutions

with smaller routing cost, that is the incurred customer inconvenience due to time

windows violations. This new variant makes the use of VRPSTW software more in-

tuitive for planners. The parameter they are asked to define is simply a measure of

desired mileage saving. Moreover, the iterative use of the software allows practition-

ers to generate solutions with the desired routing costs and to compare scenarios in

which customer satisfaction is privileged with respect to routing costs and vice-versa.

The exact algorithms we propose are both based on branch-and-cut-and-price.

The first is a standard implementation, the second is a branch-and-cut-and-price

nested in a bisection framework. The solutions obtained are compared with those

produced by similar algorithms for the VRPHTW and the VRPSTW (as defined in

Liberatore et al (2011)).

The reminder of the paper is as follows. Section 2 presents a comprehensive liter-

ature review on the VRPSTW. In Section 3, we provide a mathematical model for our

problem variant. We propose an exact algorithm based on branch-and-price-and-cut

in Section 4. Section 5 presents computational experiments performed on a test set
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derived from the well known Solomon’s data set for the VRPTW Desaulniers et al

(1997). Final remarks and future research directions are reported in Section 6.

2 VRPSTW: Literature review

Early VRPSTWs have been presented in the pioneering articles by Sexton and Bodin

(1985a,b) and Sexton and Choi (1986). Ferland and Fortin (1989) proposed a heuris-

tic adjusting time windows of pairs of customers so to reduce the overall cost. Min

(1991) modelled the problem of goods distribution among libraries using a multi-

objective mixed integer linear programming model. In these article, extra mileage

with respect to the ideal TSP for each route should be counterbalanced by a suitable

reduction in the inconvenience for late arrival or early departure at the customers.

More precisely, customer inconvenience is a included in the objective function as a

linear weighted penalization. Dumas et al (1990) modelled customer inconvenience

as a convex function and proposed an algorithm for optimizing departure and arrival

time at each customer in a single route. The complexity of the resulting scheduling

problems when costs are convex, linear and quadratic is discussed.

Koskosidis et al (1992) presented a cluster-first route-second heuristic for the

VRPSTW in which linear penalizations apply for early and late arrival at customer

locations. Balakrishnan (1993) studied a variant in which the service at a customer

can start early and tardy, but within an outer time window. Linear penalizations apply

when the visit is early/tardy with respect to the inner time window. If the vehicle is

early with respect to the outer time window, waiting time at a customer is allowed

but bounded. Fast constructive heuristics are proposed, namely a nearest neighbour,

a saving heuristic and a space-time heuristic.

In Chang and Russell (2004), a Tabu Search is developed for the same problem

studied in Balakrishnan (1993). Taillard et al (1997) also proposed a Tabu Search for

a VRPSTW, in which linear penalizations are applied only to late visits. Calvete et al

(2004) applies goal programming to the VRPSTW with linear penalizations for early

and tardy visits.

A ship scheduling pickup and delivery problem with soft time windows is pre-

sented in Fagerholt (2001), in which the concept of maximum violation of a time

window is introduced. Customer visits are allowed both before and after an ”inner”

time window, however earliness and tardiness are bounded within an outer time win-

dow (comprising the inner window). Customer visits falling within the outer time

window are penalized according to a linear, quadratic or constant function. The prob-

lem is solved by first enumerating a large set of feasible routes and than picking the

most suitable subset using a set partitioning formulation.

The same problem with linear penalizations is studied in Ioannou et al (2003), in

which an iterative heuristic is developed. At each iteration, a percentage of the soft

time windows is retained and the remaining windows are assumed to be hard. The

resulting problem is solved by means of a nearest-neighbour heuristic.

Ibaraki et al (2005) extend the concept of time window and measure customer’s

inconvenience as a non-convex, piecewise linear and time dependent function. The

authors propose a dynamic programming algorithm to optimise the arrival time at
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each customer in each route and devise three local search based metaheuristics (multi-

start local search, iterated local search, adaptive multi-start local search). A faster

algorithm is developed in Ibaraki et al (2008) by assuming the inconvenience measure

to be a nonnegative, convex, piecewise linear, time dependent function.

Fu et al (2008) acknowledge the need of a unified approach that model penalties

associated to time windows. The variants modelled in Taillard et al (1997), Kosko-

sidis et al (1992), Balakrishnan (1993), Chang and Russell (2004), and Fagerholt

(2001) are all solved by a single Tabu Search heuristic. Figliozzi (2010) proposed

an iterative route construction and improvement algorithm for the same variant and

compares its results with Balakrishnan (1993), Fu et al (2008) and Chang and Russell

(2004).

Among the exact algorithms for VRPSTWs, it is worth referring to Qureshi et al

(2009). In this article, the authors solve by column generation a problem with semi

soft time windows, such as the problem in which penalizations are applied only for

late arrival at the customers and the maximum delay is bounded. Bhusiri et al (2014)

extend this algorithm to the variant in which both early and late arrival at a customer

are penalized, but the arrival time is bounded in an outer time window. Liberatore et al

(2011) solves the VRPSTW with unbounded penalization of early and late arrival at

the customers using a branch-and-cut-and-price technique.

Figure 2 presents a summary of the penalization functions presented in the liter-

ature. Light grey lines identify the (inner) time window and dark grey lines the max-

imum allowed earliness/tardiness (or the outer time window). When a single light

grey line is present, only tardy arrival is admitted and penalized. Waiting time is rep-

resented with a dashed line (as in Balakrishnan, 1993, Chang and Russell, 2004, Fu

et al, 2008, Figliozzi, 2010).

Penalizations have been modelled with a variety of functions in the literature

to represent customer’s inconvenience. The most sophisticated penalizations involve

5 parameters per customer (i.e., Balakrishnan, 1993, Chang and Russell, 2004, Fu

et al, 2008, Figliozzi, 2010) or even more for piecewise linear or convex functions

(i.e., Dumas et al, 1990, Ibaraki et al, 2005, Ibaraki et al, 2008). These models are

more flexible and rich. On the other hand, defining the penalization parameters for

each customer and setting the relative weight of customer inconvenience is challeng-

ing for practitioners. Moreover, objective functions weighting routing costs and cus-

tomer inconvenience suffer of typical drawbacks of weighted-sum multi objective

optimization problems. Adjusting the weighting parameter between routing costs and

customers inconvenience is often a time consuming task and this parameter often re-

quires to be separately tuned for different instances.

3 Branch-and-cut-and-price algorithms

In what follows, we define the Opportunity Cost VRPSTW (OC-VRPSTW), by first

introducing notation and recalling the definitions of the VRPSTW and of the VR-

PHTW.

A graph G(V,A) is given, where the set V = N ∪ {0} is composed of a special

vertex 0 representing the depot and a set of N customers. Non-negative weights ti j
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Fig. 2 Penalization functions

and ci j are associated with each arc (i, j) ∈ A representing the traveling time and

the transportation cost, respectively. Traveling times satisfy the triangle inequality. A

positive integer demand di is associated with each vertex i ∈ N and Q is the capacity

of each vehicle. The fleet is composed of K vehicles. A non-negative integer service

time si and a time window [ai,bi], defined by two non-negative integers, are also

associated with each vertex i ∈ N.

The VRTSTW asks to find a set of routes with cardinality at most |K|, visiting

all customers exactly once and respecting time windows and vehicles’ capacity con-

straints. The objective is to minimize a combination of routing costs and customer

inconvenience. In the VRPHTW, the vehicle has to wait until the opening of the time

window ai, in case of early arrival at customer’s i location. However, both in the VR-

PHTW and in the VRPSTW, vehicles are allowed to wait at no cost before servicing

the customer.

In the OC-VRPSTW, the model assumes that the optimal routing cost of the un-

derlying VRPHTW, z∗, is known and is strictly positive. A cost saving is imposed by

the planner as a maximum percentage β < 1 of z∗. The objective is to minimize the

overall time windows violation. The model reads as follows:
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gΘ = minimize ∑
r∈Θ

vrxr (1)

s.t. ∑
r∈Θ

f r
i xr ≥ 1 ∀i ∈ N (2)

∑
r∈Θ

crxr ≤ β · z∗ (3)

∑
r∈Θ

xr ≤ |K| (4)

xr ∈ {0,1} ∀r ∈ Θ (5)

where Θ is the set of feasible routes in which the vehicle’s capacity is not ex-

ceeded and vr is the overall time window violation of route r. Constraints (2) impose

that all customer are visited at least once, here f r
i represents the number of times

route r visits customer i. Constraint (3) states that the routing cost must be not greater

than a fraction of the cost of the optimal VRPHTW solution. Constraint (4) imposes

that no more than |K| vehicles are used.

The routing cost improvement β is the only parameter required. Planners are

likely to be comfortable defining parameter β as it directly relates to monetary sav-

ings, and alternative scenarios allow for a direct comparison between solutions in

which customer convenience is more or less sacrificed in favour of routing cost sav-

ings.

4 Exact algorithms for the OC-VRPSTW

Model (1)-(5) may contain a number of variables which grows exponentially with

the size of the instance and cannot be dealt with explicitly. Therefore, to compute

valid lower bounds, we solve the linear relaxation of the model recurring to a col-

umn generation procedure. To obtain feasible integer solutions we embed the column

generation bounding procedure into an enumeration tree (Desaulniers et al, 2005;

Vanderbeck and Wolsey, 1996).

At each column generation iteration, the linear relaxation of the Restricted Master

Problem (RMP, i.e., the model (1)-(5) where a subset of variables is considered) is

solved. We search for new columns with a negative reduced cost:

vr = vr − ∑
i∈N

f r
i πi − crρ− γ (6)

where πi is the nonegative dual variable associated to the ith constraint of the

set (2), ρ is the nonpositive dual variable associated with the threshold constraint

(3) and γ is the nonpositive dual variable associated with constraint (4). The pricing

problem can be modeled as a resource constrained elementary shortest path problem

(RCESPP). In our implementation, we extend the algorithms presented in Righini

and Salani (2006, 2008), Liberatore et al (2011) and make use of some acceleration

techniques presented in Salani and Vacca (2011).
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After some preliminary computational experiments, we observed that the solu-

tion of model (1)-(5) required a substantially greater amount of computational time

in comparison with the time required to solve the original counterpart without time

windows violation. In some instances the time required was of the order of several

magnitudes higher. The reasons for this increased computational effort are the fol-

lowing:

– The set of feasible columns is larger than in the corresponding VRPHTW, as it

contains also routes violating time windows constraints.

– The exact solution of the pricing problem is harder because two new non-dominated

states are generated at each label extension. Therefore the overall number of gen-

erated labels is greater.

– For all routes r feasible for the corresponding VRPHTW instance vr = 0. This

increases both the complexity of the column generation procedure and the pricing

algorithm. In the dynamic programming algorithm, much more labels are non

dominated.

– Proving the infeasibility of a node in the search tree, in particular with respect to

constraint (3) is hard and requires additional effort. Indeed, a linear relaxation of

the RMP may satisfy constraint (3), but no integral solution does.

Therefore, we propose an alternative formulation and an alternative exact solution

algorithm based on bisection search inspired by the ε-constraint method for multi-

objective optimization.

At each iteration of the bisection search, we solve the model (7)-(11) which pre-

scribes the minimization of the overall routing cost subject to a maximal permitted

time windows violation. In the bisection search algorithm, the permitted time win-

dows violation is then updated according to the value of the optimal solution of the

model. Briefly: when the routing costs satisfy the savings prescribed by the planner,

then the permitted time windows violation is reduced. When the routing costs do

not satisfy the savings prescribed by the planner, then the permitted time windows

violation is increased.

The model is solved with branch-and-cut-and-price and reads as follows:

hΘ = minimize ∑
r∈Θ

cryr (7)

s.t. ∑
r∈Θ

f r
i yr ≥ 1 ∀i ∈ N (8)

∑
r∈Θ

vryr ≤ gmax (9)

∑
r∈Θ

yr ≤ |K| (10)

yr ∈ {0,1} ∀r ∈ Θ (11)

where gmax represents the maximal permitted time windows violation. Note that

we model the overall time windows violation as the sum of violations of each selected

route in constraint (9).

Problem (7)-(11) is defined over the same set of feasible routes Θ as problem (1)-

(5) and is solved with a branch-and-cut-and-pricealgorithm. In the column generation
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process, the pricing problem searches for columns minimizing the following reduced

cost:

cr = cr − ∑
i∈N

f r
i πi − vrψ− γ (12)

where πi is the nonegative dual variable associated to the ith constraint of the set

(8), ψ is the nonpositive dual variable associated with the time windows violation

(9) and γ is the nonpositive dual variable associated with constraint (10). The pricing

problem associated to this formulation is equivalent to that studied by Liberatore et al

(2011), where the linear penalty for earliness and tardiness is adjusted by means of the

dual variable of constraint (9). We choose, therefore, to exploit algorithms presented

in Liberatore et al (2011) and Salani and Vacca (2011).

The overall exact algorithm is based on a bisection search on the value of the per-

mitted violation gmax. The key finding that allows us to devise an efficient algorithm

is that at each iteration gmax represents either an upper or a lower bound to the optimal

value of model (1)-(5), g∗Θ.

Let y∗(gmax) be an optimal solution of (7) - (11) for a given value of gmax and

h∗Θ(gmax) the corresponding value of the objective function. The bisection algorithm

exploits the following two properties:

1. If h∗Θ(gmax) > β · z∗Ω, then gmax is a valid lower bound to g∗Θ, indeed, as the set of

routes Θ is the same for problems (1)-(5) and (7)-(11), then any feasible solution

of (1)-(5) would incur a time windows violation strictly greater than gmax.

2. If h∗Θ(gmax) ≤ β · z∗Ω, then ∑r∈Θ vryr is a valid upper bound to g∗Θ. Trivially, a

feasible solution to (1)-(5) is provided by y∗(gmax).

The algorithm requires the existence of a feasible solution and the value of an

upper bound gUB to g∗Θ. In order to prove the existence of a feasible solution, the

associated Capacitated Vehicle Routing Problem (CVRP), in which time windows

are neglected, is solved. Assume that z∗CV RP is the optimal solution of the associated

CVRP, if β · z∗ ≥ z∗CV RP then a feasible solution to (1)-(5) exist. Moreover, in the

bisection algorithm, gUB can be set to the violation incurred by the optimal solution

of the associated CVRP.

We report in Algorithm 1 the pseudo code of the bisection algorithm.
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Algorithm 1 Bisection search

Require: β, z∗Ω, gUB

it := 0; git
UB,Θ := gUB; git

LB,Θ := 0;

while
(

git
UB,Θ − git

LB,Θ > ε
)

do

gmax :=
(

git
UB,Θ + git

LB,Θ

)

/2;

h
∗,it
Θ := Solve (7) - (11);

if h
∗,it
Θ > β · z∗Ω then

git+1
LB,Θ := gmax; git+1

UB,Θ := git
UB,Θ;

else

git+1
UB,Θ := ∑r∈Θ vryr; git+1

lB,Θ := git
LB,Θ;

end if

it := it + 1;

end while

The algorithm is initialized with a given value for gUB. At each iteration, the

range of possible values for the violation of time windows (git
LB,Θ,g

it
UB,Θ) is halved.

The algorithm stops when the gap between the lower and the upper bounds is less

than ε. The value ε is strictly positive and is determined using the instance data.

5 Computational results

We performed our experiments using the well-known Solomon’s data set (Solomon,

1983). For 17 instances of classes R1 and RC1 we considered the first n = 25 cus-

tomers. For each instance, we required a percentage improvement with respect to the

nominal solution of 1%, 5% and 10% (i.e., β equal to 0.99,0.95,0.90, respectively).

The overall number of runs amounts therefore to 51. A time limit of one hour was

imposed on all runs.

All tests were performed on a PC equipped with an Intel Core i7 2.67 GHz 2

Cores processor with 3 GB RAM. The branch-and-price-and-cut is coded in ANSI-C

and the linear relaxation solver is IBM-Cplex 12.0

Table 5 illustrates the exact solution of both models (1)-(5) and (7)-(5) and it is

organized as follows. Each row is dedicated to one instance and the name of the in-

stance is given in the first column; three groups of three columns follow. Each group

provides the results associated with a specific value of β. Column g∗ contains the

opportunity cost (i.e. time windows violation) associated with the set cost saving. An

asterisk (∗) means that no feasible solution exists for the instance and the desired

value of β. Column t(s) contains the overall computational time required by the stan-

dard branch-and-cut-and-price algorithm, whereas column t ′(s) provides information

on the overall computational time required by the bisection algorithm.

A dash line (−) in the cell related to the computational time means that the cor-

responding procedure did not converge within the time limit.
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OC (β = 0.99) OC (β = 0.95) OC (β = 0.90)

g∗ t(s) t ′(s) g∗ t(s) t ′(s) g∗ t(s) t ′(s)
R101 7.0 0.9 0.2 21.0 7.0 16.6 41.4 0.2 7.9

R102 2.4 1.2 0.1 2.4 1.2 0.1 29.4 3.8 18.5

R103 7.0 84.1 0.4 23.6 148.0 31.0 * 0.4 1.1

R104 6.7 1841.9 0.2 43.3 - 501.4 86.2 - 0.9

R105 2.2 1.7 0.1 19.4 2.6 4.8 47.7 17.4 16.0

R106 11.0 634.8 11.1 19.1 60.6 9.8 56.9 - 1.6

R107 6.7 - 25.2 47.9 - 28.0 * 0.9 1.0

R108 2.3 - 1.9 25.7 - 1938.9 * 0.4 3.6

R109 20.3 1491.7 14.1 68.8 881.9 0.5 * 0.4 0.6

RC101 3.4 195.8 853.9 4.3 2207.0 1237.7 4.3 38.5 2.2

RC102 0.3 519.8 0.8 16.3 - 46.6 * 0.6 2.5

RC103 2.0 - 0.8 37.1 - 122.2 * 0.9 10.3

RC104 14.3 - 15.1 * 0.7 2.0 * 0.7 44.7

RC105 3.4 3125.5 0.6 8.0 13.2 15.1 8.0 12.9 20.6

RC106 3.0 2758.9 2.4 11.1 2264.9 14.8 73.2 - 3.72

RC107 * 1.1 6.1 * 1.1 9.3 * 1.1 4.7

RC108 * 2.4 2.4 * 2.4 22.8 * 2.4 2.2

Table 1 Computational comparison between two exact algorithms for the OC-VRPSTW

Table 5 illustrates that the bisection algorithm produced an optimal solution for

all instances in which such a solution exists or proved that an optimal solution does

not exist.

The results in Table 5 show that the bisection algorithm was able to find an opti-

mal solution or prove that no one exists for all instances, while the standard branch-

and-price-and-cut procedure failed on 12 instances out of 51. or the instances solved

by both algorithms, the bisection algorithm is in average faster than the standard-

branch-and-price-and-cut. In many cases the improvement is of two orders of magni-

tude. In few instances, the standard branch-and-price-and-cut is faster, but the order

of magnitude of computational time is the same for the two algorithms. Our final

observation is that infeasible instances are quickly detected by both algorithms.

5.1 Comparison with VRPSTW

We compare our results with those obtained with an exact method for the VRPSTW.

We recall that in the VRPSTW the violation of time windows is permitted and penal-

ized in the objective function. Each time unit of violation is penalized by a constant

factor. For the comparison, we executed the exact branch-and-price procedure by

Liberatore et al (2011) over the same set of instances.

We are interested in the values of time windows violation and the corresponding

value of the primary objective when a method based on soft-constraints is used, i.e. a

linear combination of primary objective and time windows violation. To perform our

comparison, we set the penalty for time windows violation equal to 1 as done in the

tests reported by Liberatore et al (2011).

Results are summarised in Table 2 which is organized as follows: the first col-

umn contains the instance name followed by the optimal value without time win-

dows violation z∗Ω; the following two columns are dedicated to the optimal solution

of VRPSTW and they contain the value of the violation of time windows, gΘ and

the primary objective value, zΘ. We recall that their sum is optimal for the model
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with soft time windows. Subsequent columns illustrate the minimal time windows

violation, g∗Θ, and the value of the routing cost objective corresponding to the optimal

solution, z(g∗Θ), for the opportunity cost approach (OC) with requested cost saving of

1%, 5% and 10%. As above, when column g∗Θ contains an asterisk (∗), it means that

the corresponding instance is infeasible.

We observe that the soft constraints method always produces a solution. For 3 out

of 17 instances, the solution is the same as for the VRPHTW. For some other instances

(e.g., r101 and r102), the time windows violation is larger than that necessary to

obtain a 10% improvement over the optimal VRPHTW solution.

We recall that the reported solutions have been obtained by setting the same

penalty to all customers. Different penalties would indeed lead to different solutions.

This fluctuating behaviour of the algorithm is undesirable for planners. They can-

not rely on these results as the same settings for the parameters lead to substantially

different solutions in different structurally similar instances.

Soft TW OC (β = 0.99) OC (β = 0.95) OC (β = 0.90)

Instance z∗Ω gΘ zΘ g∗Θ z(g∗Θ) g∗Θ z(g∗Θ) g∗Θ z(g∗Θ)
R101 617.1 46.7 538.0 7.0 605.4 21.0 583.4 41.4 553.4

R102 547.1 35.2 475.8 2.4 515.5 2.4 515.5 29.4 483.3

R103 454.6 9.9 439.8 7.0 448.1 23.6 430.8 * *

R104 416.9 6.7 410.1 6.7 410.1 43.3 389.2 86.2 375.1

R105 530.5 40.2 481.3 2.2 523.0 19.4 503.7 47.7 474.4

R106 465.4 21.0 440.8 11.0 453.7 19.1 440.8 56.9 415.0

R107 424.3 6.7 413.6 6.7 418.7 47.9 402.0 * *

R108 397.3 2.3 393.0 2.3 389.2 25.7 373.9 * *

R109 441.3 0.0 441.3 20.3 435.4 68.9 418.0 * *

RC101 461.1 12.1 359.6 3.4 455.9 4.3 413.0 4.3 413.0

RC102 351.8 3.3 338.8 0.3 346.0 16.3 333.5 * *

RC103 332.8 2.0 329.4 2.0 329.4 37.1 316.0 * *

RC104 306.6 0.0 306.6 14.3 299.7 * * * *

RC105 411.3 14.8 346.6 3.4 405.0 8.0 358.0 8.0 358.0

RC106 345.5 11.1 327.6 3.0 341.0 11.1 327.6 73.2 310.5

RC107 298.3 1.0 296.3 * * * * * *

RC108 294.5 0.0 294.5 * * * * * *

Table 2 Comparison of VRPSTW with penalty 1 and OC-VRPSTW with β equal 99%, 95% and 90%.

6 Conclusions

We introduced a new variant of the VRPSTW, in which practitioners are allowed

to set a desired routing cost saving with respect to the VRPHTW solution. The op-

portunity cost of cheaper solutions is quantified by minimising the customer incon-

venience due to time windows violations. This problem definition does not require

practitioners to define a weighting coefficient between routing cost and time window

violations, and allows for the analysis of alternative scenarios with increasing routing

savings and decreasing customer satisfaction. Furthermore, customer dissatisfaction

can be quantified with alternative measures (i.e., minimization of the maximum time

window violations, minimization of the number of time window violations).
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We propose two branch-and-cut-and-price algorithms. The second algorithm is

embedded within a bi-section framework and takes advantage of an easier pricing

algorithm. Despite its iterative nature, this algorithm outperforms the first and it is

capable of generating a larger number of optimal solutions.

Our computational results showcase that scenarios of decreasing routing cost and

increasing time window violations can be easily obtained using smaller values of

β. The opportunity cost solutions obtained by iteratively decrementing β allow for

an overview of the possible alternative solutions that can be obtained by prioritising

routing cost versus customer inconvenience.
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