

LJMU Research Online

Cochrane, MA, Watson, PM, Timpson, H, Haycox, A, Collins, B, Jones, L, Martin, A and Graves, LEF

Systematic review of the methods used in economic evaluations of targeted physical activity and sedentary behaviour interventions

http://researchonline.ljmu.ac.uk/id/eprint/10621/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Cochrane, MA, Watson, PM, Timpson, H, Haycox, A, Collins, B, Jones, L, Martin, A and Graves, LEF (2019) Systematic review of the methods used in economic evaluations of targeted physical activity and sedentary behaviour interventions. Social Science and Medicine. ISSN 0277-9536

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

1	Systematic review of the methods used in economic evaluations of targeted
2	physical activity and sedentary behaviour interventions
3	Cochrane, M.ª, Watson, P,M.ª, Timpson, H. ^b , Haycox, A. ^c , Collins, B. ^d , Jones, L. ^c , Martin, A. ^{d,e} ,
4	Graves, L.E.F.ª
5	
6	^a Physical Activity Exchange, Research Institute for Sport and Exercise Sciences, Liverpool
7	John Moores University, 5 Primrose Hill, Liverpool, L3 2EX, UK
8	^b Public Health Institute, Faculty of Health, Education and Community, Liverpool John Moores
9	University, 3rd Floor, Exchange Station, Tithebarn Street, Liverpool, L2 2QP, UK
10	^c Management School, University of Liverpool, Chatham Street, Liverpool, L69 7ZH, UK
11	^d Department of Public Health and Policy, University of Liverpool, Waterhouse Building, Block
12	B, 2nd Floor Liverpool, L69 3BX, UK
13	^e HCD Economics, The Innovation Centre, Keckwick Lane, Daresbury, Warrington, WA4 4FS,
14	UK
15	
16	Abstract
17	
	The burden of noncommunicable diseases (NCD) on health systems worldwide is
18	The burden of noncommunicable diseases (NCD) on health systems worldwide is substantial. Physical inactivity and sedentary behaviour are major risk factors for NCD.
18 19	
	substantial. Physical inactivity and sedentary behaviour are major risk factors for NCD.
19	substantial. Physical inactivity and sedentary behaviour are major risk factors for NCD. Previous attempts to understand the value for money of preventative interventions targeting
19 20	substantial. Physical inactivity and sedentary behaviour are major risk factors for NCD. Previous attempts to understand the value for money of preventative interventions targeting physically inactive individuals have proved to be challenging due to key methodological
19 20 21	substantial. Physical inactivity and sedentary behaviour are major risk factors for NCD. Previous attempts to understand the value for money of preventative interventions targeting physically inactive individuals have proved to be challenging due to key methodological challenges associated with the conduct of economic evaluations in public health. A
19 20 21 22	substantial. Physical inactivity and sedentary behaviour are major risk factors for NCD. Previous attempts to understand the value for money of preventative interventions targeting physically inactive individuals have proved to be challenging due to key methodological challenges associated with the conduct of economic evaluations in public health. A systematic review was carried out across six databases (Medline, SPORTSDiscus, EconLit,
19 20 21 22 23	substantial. Physical inactivity and sedentary behaviour are major risk factors for NCD. Previous attempts to understand the value for money of preventative interventions targeting physically inactive individuals have proved to be challenging due to key methodological challenges associated with the conduct of economic evaluations in public health. A systematic review was carried out across six databases (Medline, SPORTSDiscus, EconLit, PsychINFO, NHS EED, HTA) along with supplementary searches. The review examines
19 20 21 22 23 24	substantial. Physical inactivity and sedentary behaviour are major risk factors for NCD. Previous attempts to understand the value for money of preventative interventions targeting physically inactive individuals have proved to be challenging due to key methodological challenges associated with the conduct of economic evaluations in public health. A systematic review was carried out across six databases (Medline, SPORTSDiscus, EconLit, PsychINFO, NHS EED, HTA) along with supplementary searches. The review examines how economic evaluations published between 2009-March 2017 have addressed
19 20 21 22 23 24 25	substantial. Physical inactivity and sedentary behaviour are major risk factors for NCD. Previous attempts to understand the value for money of preventative interventions targeting physically inactive individuals have proved to be challenging due to key methodological challenges associated with the conduct of economic evaluations in public health. A systematic review was carried out across six databases (Medline, SPORTSDiscus, EconLit, PsychINFO, NHS EED, HTA) along with supplementary searches. The review examines how economic evaluations published between 2009-March 2017 have addressed methodological challenges with the aim of bringing to light examples of good practice for
19 20 21 22 23 24 25 26	substantial. Physical inactivity and sedentary behaviour are major risk factors for NCD. Previous attempts to understand the value for money of preventative interventions targeting physically inactive individuals have proved to be challenging due to key methodological challenges associated with the conduct of economic evaluations in public health. A systematic review was carried out across six databases (Medline, SPORTSDiscus, EconLit, PsychINFO, NHS EED, HTA) along with supplementary searches. The review examines how economic evaluations published between 2009-March 2017 have addressed methodological challenges with the aim of bringing to light examples of good practice for future studies. Fifteen economic evaluations from four high-income countries were retrieved;

- differing substantially. The scarcity of and inconsistencies across economic evaluations for
 these two behaviours have exposed a mismatch between calls for more preventative action
 to tackle NCD and the lack of information available on how resources may be optimally
 allocated in practice. Consequently, this paper offers a table of recommendations on how
 future studies can be improved.
- 35
- 36

Keywords

- 37 Systematic Review; Economic Evaluation; Physical Activity; Sedentary Behaviour; Equity;
- 38 Public Health; Cost effectiveness analysis; Cost utility analysis

Introduction

40 Background

41 The burden of noncommunicable disease (NCD) on health systems is substantial. 42 Worldwide NCD is the main cause of death and disability (WHO, 2018a). Physical inactivity is a major risk factor for NCD and the fourth leading cause of death globally. There is 43 44 therefore an urgent need to invest in preventative interventions, such as those targeting 45 individuals who do not meet the international guidelines of 150 minutes of moderate physical 46 activity per week (Kohl et al., 2012). Furthermore, sedentary behaviour, defined as any 47 waking behaviour where an individual is in a sitting, reclining or lying posture, has been 48 identified as a risk factor for NCD and all-cause mortality independent of achieving the 49 recommended physical activity guidelines. The level of physical activity found to attenuate 50 the risks associated with sedentary behaviour is 60 minutes of moderate physical activity per 51 day, which equates to 420 minutes per week (Ekelund et al., 2016). As over a third (35%) of 52 females and a guarter (26%) of males in high-income countries do not presently meet the 53 recommended weekly guidelines, a daily target of 60 minutes is unlikely to be attained 54 (WHO, 2018b). Inaction to invest in preventative interventions tackling detrimental levels of physical inactivity and sedentary behaviour is expected to lead to greater levels of NCD and 55 56 inequity, productivity losses and a continued overwhelming demand for costly curative health 57 services (OECD, 2015).

58 As public resources are scarce, economic evaluations are important to prevent both national 59 and local policymakers from disinvesting in highly cost-effective physical activity and 60 sedentary behaviour interventions. Economic evaluations are also needed as not all public 61 health interventions represent good value for money (Owen et al., 2017). Compared to 62 population-level interventions, physical activity and sedentary behaviour interventions 63 targeting individuals who are not meeting the recommended international physical activity guidelines are more likely to be: (a) funded by local-level commissioners; (b) evaluated by 64 65 researchers. This is likely to be due to the challenge of measuring outcomes in the general 66 population. For this reason, this review focuses on economic evaluations of targeted

39

67 interventions such as exercise referral schemes, brief advice in primary care and exercise68 sessions.

69 Despite recommendations for economic evaluations to become routine within public health 70 interventions (Kelly et al., 2005) cost-effectiveness information on physical activity and 71 sedentary behaviour interventions remains scarce (Abu-Omar et al., 2017). One reason for 72 this lack of analysis may be due to the lack of guidance and multidisciplinary efforts to inform 73 analysts on how to conduct economic evaluations in the field of public health (Davis et al., 74 2014). Economic evaluations of public health interventions are subject to four key 75 methodological challenges identified and described in former reviews (Alayli-Goebbels et al., 76 2014; Hill et al., 2017; Weatherly et al., 2009) as: attribution of effects; measuring and 77 valuing outcomes; identifying intersectoral costs and consequences; and incorporating 78 equity. These four challenges are explain in the subsequent sections.

79 Challenge 1: Attribution of effects

80 Randomised controlled trials (RCTs) are the gold standard for evaluating the effectiveness 81 of an intervention. RCTs alone are however insufficient to inform long-term investment 82 decisions in health systems aiming to be sustainable. This is because conducting 83 experimental studies such as RCTs over many years or decades is likely to be resource 84 intensive from both the research funder and participant's perspective. Attrition from the trial 85 and insufficient funding is inevitable. Yet, the greatest health outcomes and cost savings 86 attributable to physical activity and sedentary behaviour interventions do not typically 87 manifest until decades after an intervention has taken place. Due to this long pay-back time 88 (Wanless, 2004), it is recommended economic evaluations link up trial-derived intermediate 89 or surrogate outcomes with additional sources of evidence (e.g. observational studies)

90 (Ramsey et al., 2015).

91 Challenge 2: Measuring and valuing outcomes

92 Previous physical activity studies have used different outcomes, or have classified the same

93 type of outcomes in different ways, which makes it challenging to meaningfully use cost-

94 effectiveness results and compare interventions (Abu-Omar et al., 2017). This is likely to be

95 because physical activity and sedentary behaviour interventions are associated with a broad

96 range of outcomes, many of which are not captured in evaluations that conduct just one type
97 of valuation analysis. Furthermore, many broader important and relevant outcomes such as
98 improved wellbeing or someone's ability to return to work are difficult to assign a monetary
99 value, as they do not have a market price (Weatherly et al., 2014).

100

101 Challenge 3: Identifying intersectoral costs and consequences

102 Many physical activity and sedentary behaviour interventions take place outside of the 103 healthcare setting, necessitating a time and equipment commitment from intervention 104 participants and providers (which has an opportunity cost). Moreover, physical activity and 105 sedentary behaviour interventions are complex, impacting on various sectors simultaneously 106 (Dahlgren & Whitehead, 1991). Therefore, it is important to consider the impact of these 107 interventions on other stakeholders including public sector agencies beyond the health 108 sector, private individuals and the voluntary sector (Weatherly et al., 2014; Weatherly et al., 109 2009). Yet, as there is no universal definition for each perspective type, the costs and 110 consequences deemed relevant for inclusion in the analysis is primarily analyst-dependent 111 (Husereau et al., 2013).

112 Challenge 4: Incorporating equity

113 A key objective in public health is to reduce inequity, meaning inequalities that are 114 avoidable, but have not yet been avoided and are therefore unfair (Marmot & Allen, 2014). 115 By contrast, a key objective in economic evaluation is to maximise efficiency across the 116 whole population (Weatherly et al., 2014). If authors fail to acknowledge equity by not 117 adapting their existing economic analysis approach, it is not transparent which socio-118 economic group have gained or lost out due to a resource allocation decision. Until the 119 recent publication by Cookson et al. (Cookson et al., 2017) recommendations on how to 120 incorporate equity have been limited within international and national guidelines for 121 economic evaluation (Husereau et al., 2013; NICE, 2014; Ramsey et al., 2015; Sanders et 122 al., 2016). Approaches for incorporating equity into the analysis described by Cookson et al. 123 (2017) include: equity impact analysis, equity constraint analysis and equity weighting 124 analysis.

125

126 **Aim**

127 In an attempt to learn how the four challenges outlined above have been addressed in 128 practice, this systematic review aims to provide an overview of the methods used in 129 economic evaluations of physical activity and sedentary behaviour interventions since 2009. 130 Alayli-Goebbels et al. (2014) and Weatherly et al. (2009) reviewed the methods reported in 131 economic evaluations of a range of public health areas including 17 and 26 physical activity 132 economic evaluations published up to 2005 and 2009, respectively, but the reviews found 133 little insight from the empirical evidence. Economic evaluation is a rapidly developing field 134 especially with the growth of decision-analytic modelling and the economic evaluation 135 reporting standards (Drummond et al., 2015; Ramsey et al., 2015). Accordingly there is a 136 strong rationale to provide an update on methods carried out since 2009.

137

138

Methods

139 Information sources and search strategy

140 A comprehensive search took place across six electronic databases that host reports from 141 the medical and economic field (Medline via Ovid; SPORTSDiscus, EconLit and PsycINFO 142 via EBSCOHost, NHS EED and HTA via the Cochrane Library). The database NHS EED 143 stores records up to April 2015, thus searches in this database went up to 2015 only. 144 Additional, supplementary searching was performed: key websites were searched for 145 studies that included specific free text terms: 'physical activity', 'sedentary behaviour', 146 'economic' and 'cost'; reference lists of two relevant systematic reviews (Gc et al., 2016; Wu 147 et al., 2011) were hand searched; and protocols that met the majority of the eligibility criteria 148 were used to search for completed studies via online searching and contacting the authors. 149 An example of the full electronic search strategy for Medline is provided in Appendix A 150 [INSERT LINK TO ONLINE FILE A, B, C, D & E]. This search was replicated for all databases, 151 with amendments made as appropriate to align terms with individual database index terms.

152 Study selection

153 The protocol for this review can be retrieved from the PROSPERO database for registered 154 systematic reviews (registration number CRD42017074382). Full economic evaluations of 155 interventions targeting individuals aged 16 years or over, who are defined as being 156 physically inactive or sedentary, were eligible for inclusion in the review. Population level 157 interventions were excluded as well as protocols. Eligible studies needed to capture physical 158 activity or sedentary behaviour at two or more time points to observe if a change in 159 behaviour has occurred. Comparators could be any alternative intervention including no 160 intervention. Interventions and comparators targeting multiple behaviours such as physical 161 activity and diet were excluded unless the multiple behaviours were physical activity and 162 sedentary behaviour. Both trial and model based economic evaluations were eligible. Letters 163 to editors and conference briefings were excluded. Both published and unpublished 'grey' 164 literature were included. Abstracts where the full text could not be retrieved were excluded. 165 Only English language studies were included due to the restricted language skills of the 166 reviewers available. Eligibility criteria was applied during both screening phases. The 167 present systematic review identifies and discusses studies published from January 2009 to 168 March 2017. In addition, a rapid systematic scoping search was performed in Medline to 169 understand whether new studies had been published in this area from March 2017 to 170 January 2019. Details on methods of the scoping search are not discussed below, rather 171 they are presented in Appendix B [INSERT LINK TO ONLINE FILE A, B, C, D & E].

172 Screening

173 During the title and abstract screening phase two reviewers (first author, seventh author) 174 screened 10% (n=612/ 6,123) of the studies and there was a disagreement rate of 2.94% 175 (n=18). Reviewers discussed the disagreements and resolved them without the need to 176 seek the expertise of a third reviewer. Reviewer one (first author) went on to screen the rest 177 of the studies, informed by the disagreement discussions. Similarly, during the full text 178 screening phase reviewer two (seventh author) screened 10% (n=15/ 153) of the studies. 179 There was disagreement for 33.33% (n=5) of the studies. The reviewers discussed the 180 disagreements and again a consensus was met without the need for a third reviewer. Figure 181 1 shows an overview of the study selection process.

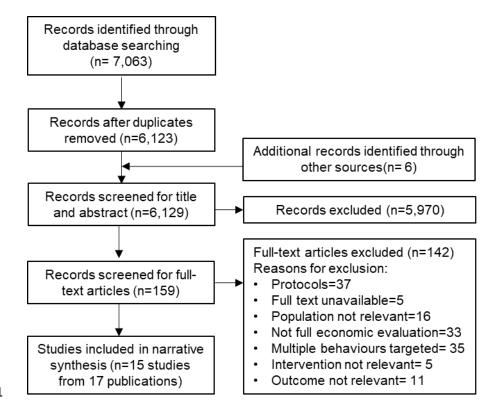
182 Data extraction

183 A data extraction form was developed based on the items featured on the Consolidated 184 Health Economic Evaluation Reporting Standards (CHEERS) checklist (Husereau et al., 185 2013). The form was piloted independently by two reviewers (first author, seventh author) on 186 two (10%) randomly selected studies. Following discussions the form was shortened, and 187 items relevant to the four methodological challenges, and key study characteristics were 188 retained. Following the piloting stage, the first reviewer extracted data for the remaining 189 studies. A template of the final data extraction form is provided in Appendix C [INSERT LINK 190 TO ONLINE FILE A, B, C, D & E]. It was not necessary to request additional information from 191 the study authors.

192 Quality assessment

193 Drummond's 10-item checklist was selected as it is one of the most widely used quality 194 assessment tools (Drummond et al., 2015). A component approach was used when applying 195 the checklist in Appendix D [INSERT LINK TO ONLINE FILE A, B, C, D & E]. This approach is 196 advocated in the PRISMA statement and entails assessing each item individually rather than 197 generating a summary score (Liberati et al., 2009). Two reviewers (first author, seventh 198 author) independently conducted the quality assessment for 10% (n=2/15) of the included 199 studies. Disagreement was limited to item 6 (Item 6: Were costs and consequences valued 200 credibly?) on the checklist, examples in Drummond et al. (2015) were consulted to 201 overcome these disagreements. Practical application of item 10 (Item 10: Did the 202 presentation and discussion of study results include all issues of concern to the users?) was 203 challenging due to the limited guidance, thus findings from this question are less informative. 204 Alayli-Goebbels et al. (2014) also experienced this barrier in an earlier version of the 205 checklist.

206 Method of analysis


The published narrative synthesis framework by Popay et al. (2006) guided the analysis to
ensure a transparent and systematic approach was performed. The narrative synthesis in
this review goes beyond describing how authors have addressed each of the four challenges

210 by attempting to explain why specific approaches have been chosen. The analysis was an 211 iterative process. A priori analysis involved tabulating the data and producing bar charts on 212 key study characteristics: study design, time horizon, valuation technique, study perspective 213 and explicit/ implicit equity analysis. The same study characteristics were focused on in the 214 two former methodological reviews (Alayli-Goebbels et al., 2014; Weatherly et al., 2009). 215 The wider literature also indicated that the following contextual factors were important to 216 review when understanding an analyst's approach: intervention setting, country and year of 217 publication. Additional ad hoc analyses were performed where trends became apparent. 218 Lastly, the strength of the narrative synthesis and the conclusions derived from it were 219 considered by reflecting on the quantity of studies and results of the quality assessment.

220

Results

221 A total of 15 economic evaluations (17 publications) were included in the review (Figure 1). 222 Searching across Medline, SPORTSDiscus, EconLit, PsychINFO, NHS EED and HTA 223 databases retrieved 7,063 records. Supplementary searching retrieved six additional records 224 including: two records from hand searching on key websites, two from the reference list of a 225 systematic review (Gc et al., 2016), and a further two from searching for the completed 226 studies of two protocols (de Vries et al., 2013; Kolt et al., 2009) in Appendix E [INSERT LINK 227 TO ONLINE FILE A, B, C, D & E]. After removing duplicates 6,129 records remained of which a 228 further 5,907 records were removed as title and abstracts did not meet the eligibility criteria. 229 During the full text screening, 159 citations were examined in further detail, of which 142 230 studies were excluded. Reasons are outlined in Figure 1.

231

232 Figure 1. PRISMA flow diagram representing study selection process

233 Study characteristics

234 Of the 15 studies, ten were single trial-based economic evaluations and five were model-235 based; no studies were single trials that had extrapolated or modelled their results. Table 1 236 provides an overview of study characteristics for the trial- and model-based studies 237 respectively. Studies are arranged by country followed by year of publication. Interventions 238 were set in primary care, community and the home, and setting did not appear to be related 239 to intervention type or country. As shown in Table 1, no studies targeted sedentary 240 behaviour as an independent risk factor from physical activity. The range of interventions 241 was limited to the following types: physical activity programme/ on prescription in primary 242 care (n=9); brief advice in primary care (n=2); home-based informational advice (n=1); 243 physical therapy in a physical therapy setting (n=1); and fall prevention programme in both 244 primary care and the home (n=1). The remaining study compared strategies for recruiting to 245 physical activity interventions in primary care. The overall range of adult-based interventions 246 matches the narrow range identified in a recent review of reviews focussing on the economic 247 results of physical activity interventions (Abu-Omar et al., 2017). Studies came from four

high-income countries. More than half (n=8) of the 15 studies came from the UK, with the remaining coming from New Zealand (n=3), the USA (n=2), and the Netherlands (n=2)

250 (Table 1).

251 Quality assessment

252 Overall, studies performed well against Drummond's 10-item quality assessment checklist 253 (Drummond et al., 2015) in Appendix D [INSERT LINK TO ONLINE FILE A, B, C, D & E]. 254 Nevertheless, six studies scored 'No' on at least one item: two studies did not state their 255 perspective (item 1); three studies did not include all costs and consequences relevant to their 256 stated perspective (item 4); one study did not discount its costs and consequences (item 7); 257 and one study did not report their price source (item 6). Interpretation on whether item 4 was 258 met by any of the ten trial-based economic evaluations who captured costs and outcomes at 259 two years or less, is up for debate. It could be argued that not all important and relevant costs 260 and consequences can be identified for studies, which do not take a systems approach (e.g. 261 if they do not consider the impact on the wider system in which an intervention is being 262 implemented nor capture the long-term impact) (Rutter et al., 2017; Squires et al., 2016). In 263 order to align with other reviews which have used Drummond's checklist, the quality 264 assessment results for item 4 were based on the checklist's accompanying guidance 265 (Drummond et al., 2015). Costs and consequences identified, measured and valued are 266 discussed in greater depth in the subsequent sections.

267 Table 1: Overview of economic evaluations

	Trial-based economic evaluations							
Study & Year of publication	Stated perspective	Country	Population targeted	Sample size	Intervention	Comparator	Setting	Valuation technique
lliffe et al. 2014	Health sector	UK	Inactive ≥65 years old who had fallen less than times in the previous 12 months	100	Falls Management Exercise Programme (Weekly group exercise class & 2 home-based exercise sessions)	Usual care (no intervention); Otago Exercise Programme	Primary care & community (as Home- based)	CEA
Edwards et al. 2013; Murphy et al. 2012	Multi- agency public sector	UK	Sedentary, and over 16 years, with risk factors for coronary heart disease, or mild to moderate anxiety, depression or stress.	798	ERS (primary care)	Information leaflet only	Primary care	CUA
Boehler et al. 2011	Health sector	UK	Inactive adults, 16 to 74 years old	46	Opportunistic recruitment strategy for physical activity interventions	Disease register strategy; Hypothetical no intervention strategy	Primary care	CEA

Shaw et al.	Not	UK	Inactive, adults	79	Individualised walking	Individualised walking	Primary	CEA
2011	reported		(age not defined)		programme: a	programme: a	care	
					pedometer and a 30-min	pedometer, but and 5		
					consultation	min brief advice		
Larsen et al.	Payer	USA	Inactive Latina	266	Home print-based mail-	Wellness contact	Home-	CEA
2015			women, 18-65		delivered MVPA	(information on health	based	
			years old		intervention linguistically	topics excluding		
					and culturally adapted	MVPA)		
					for Latinas			
Young et al.	Societal	USA	Women, following	40	Symptom management	Usual care, 2 week	Community	CEA
2012			coronary artery		intervention delivered by	follow up call by the		
			bypass surgery		telehealth device to	primary providers and		
					improve the physical	cardiac specialists		
					activity level			
de Vries et	Societal	Netherlands	Sedentary adults	130	Patient-centred physical	Usual care for	Physical	CUA
al. 2016			(or at risk of losing		therapy	physical therapy, less	therapy	
			active lifestyle in			patient-centred	setting	
			near future) with					
			mobility problems,					
			≥70 years old					
Maddison et	Not	New	≥18 years old with	171	Exercise prescription	Usual care	Home-	CEA; CUA
al. 2015	reported	Zealand	diagnosis of IHD		and behavioural support	(participation in usual	based	
						Cardiac Rehabilitation		

			within previous 3-		by mobile phone text	e.g. education session		
			24 months.		messages and internet	and psychological		
						support)		
Leung et al.	Public	New	Inactive adults,	330	Pedometer-based	Green prescription,	Community	CEA; CUA
2012	health	Zealand	≥65 years old		prescription, focus was	focus was on physical		
	system and				on step-related goals	activity time-related		
	participant					goals		
Elley et al.	Societal	New	Inactive, 40-74	974	Enhanced green	Usual care from GP	Primary	CEA
2011		Zealand	years old		prescription, 10 min of	(not standard green	care	
					brief advice and a	prescription, usual		
					written exercise	care from GP not		
					prescription with	defined)		
					telephone support at 9			
					months and 30min face-			
					to-face support at 6			
					months			

				Model-based e	conomic evaluations			
Study & Year of publication	Stated perspective	Country	Population targeted	Model type & size of simulation cohort	Intervention	Comparator	Setting	Valuation technique
Campbell et al. 2015	Health Sector	UK	Sedentary adults, ≥50 years old	Markov model (100,000 simulation cohort)	ERS (primary care)	Usual care (refers to Pavey et al. 2011's definition)	Primary care	CUA
Anokye et al. 2012; Anokye et al. 2014	Health sector; Health sector and participant for CCA	UK	Inactive, ≥33 years old	Markov model (100,000 simulation cohort)	Brief Advice (primary care)	Usual care (no intervention)	Primary care	CUA (and CCA)
Anokye et al., 2011	Health sector	UK	Sedentary adults, 40- 60 years old	Decision tree model (1,000 simulation cohort)	ERS (primary care)	Usual care (refers to Pavey et al. 2011's definition)	Primary care	CUA

Pavey et al.	Health	UK	Sedentary	Decision tree	ERS (leisure centre)	Usual care (no	Leisure-	CUA (and
2011	sector		adults, 40-	model (1,000		active ingredient- PA	centre	CCA)
	CUA;		60 years old	simulation		advice or leaflets)		
	Partial-			cohort)				
	societal for							
	CCA							
Over et al.	Health	Netherlands	Inactive, 20-	Markov	GP pedometer	Usual care (no	Primary care	CUA
2012	sector		65 year olds	model	prescription, counselling	intervention)		
				(100,000	combined with			
				simulation	pedometer use			
				cohort)				
	1			1		1	1	1

268 ERS: Exercise Referral Scheme; GP: General Practitioner; MVPA: Moderate-to-vigorous physical activity; CEA: cost-effectiveness analysis; CUA: Cost-utility

269 analysis

270 Challenge 1: Attribution of effects

271 Two thirds (n=10) of the studies in this review, all trial-based, did not compare the costs and 272 consequences of the comparator groups beyond the trial follow up period (Table 3). More 273 specifically, one study compared costs and consequences over a two-year period (Elley et 274 al., 2011), the remaining nine had a time horizon of 12-months or less. For six of these 275 studies, authors referred to their short time horizon as a limitation of their study (Boehler et 276 al., 2011; de Vries et al., 2016; Edwards et al., 2013; Larsen et al., 2015; Leung et al., 2012; 277 Shaw et al., 2011). For instance, it precluded the incorporation of any potential long-term 278 healthcare savings (Larsen et al., 2015). Just one study suggested future modelling 279 exercises could be used to address this challenge (Edwards et al., 2013). Yet, for Shaw et 280 al. (Shaw et al., 2011) a short-time horizon was justified as they reported there was 281 insufficient data to extrapolate their results over the participants' lifetime.

282

283 By contrast, all five model-based studies extrapolated a pooled trial-derived effectiveness 284 estimate over the rest of the participants' lifetime; bridging the gap between the short- and 285 long-term evidence (Table 2). Nevertheless, the assumptions underpinning the model-based 286 studies varied considerably. Two studies (Anokye et al., 2011; Pavey et al., 2011) made 287 large assumptions unsupported by evidence about the duration of the effect, assuming that 288 any short-term change in physical activity observed in the trials 6-12 months after the 289 intervention, would be long-lasting. Over et al. (2012) employed a different approach by 290 extrapolating an effect estimate, observed at 18 weeks, over a 40-year time horizon (the life 291 expectancy of the participants). The authors assumed that only 25% of the effect recorded at 292 18 weeks would remain over the 40-year time horizon; they too reported that their 293 assumptions were unsupported by evidence. These findings demonstrate how studies will 294 vary according to the assumptions made. It is therefore important that end-users of cost-295 effectiveness results check they agree with the assumptions that underpin the economic 296 evaluation.

297

Assumptions underlying the two other model-based studies (Anokye et al., 2012; Campbell et al., 2015) were supported by three robust cohort studies. Campbell et al. (2015) replicated

300 Anokye et al.'s (2012) approach. More specifically, they linked the short-term change in 301 physical activity level observed in trial data, with Hu et al.'s (2007; 2003; 2005) cohort 302 studies that followed a group of active and inactive individuals for a duration of at least 10 303 years to predict how their activity levels and risk of disease changed over time. Anokye et al. 304 (2012) explain how their identification and use of the cohort studies has strengthened 305 previous modelling attempts in the field of physical activity. Campbell et al.(2015) reported 306 this approach has enabled more conservative assumptions to be made around changing 307 physical activity levels and disease development over time.

309 Table 2. Time horizon and types of outcomes compared to costs

		Trial-based economic evaluations
Study &	Time Horizon	Types of outcomes compared to costs per valuation technique
Year of publication	(trial follow up)	
Larsen et al. 2015	Trial duration	CEA: Cost per minute of increase in physical activity
	(12 months)	
lliffe et al. 2014	Trial duration	CEA: Cost per participant reaching or exceeding 150 minutes of moderate-to-vigorous physical activity per
	(12 months)	week
Young et al. 2012	Trial duration	CEA: Cost per incremental change in daily estimated energy expenditure;
	(3 months)	
		CEA: Cost per the incremental change in minutes spent on moderate-to-vigorous activity
Elley et al. 2011	Trial duration	CEA: Cost per participant achieving 150 minutes of moderate intensity activity per week
	(24 months;	
	12 months)	
Boehler et al.	Trial duration	CEA: Cost per participant achieving 150 minutes of moderate intensity activity per week
2011	(3 months)	
Shaw et al. 2011	Trial duration	CEA: Cost per additional person achieving the target of a weekly increase of \geq 15,000 steps.
	(12 months)	
Maddison et al.	Trial duration	CEA: Cost per MET-hour of walking and leisure activity;
2015	(24 weeks /	CUA: Cost per short-term QALY gain
	[6 months])	

Leung et al. 2012	Trial duration	CEA: Cost per 30 minutes of weekly leisure walking;
	(12 months)	CUA: Cost per short-term QALY gain
de Vries et al.	Trial duration	CLUA: Cost per short term OALV roin
	Trial duration	CUA: Cost per short-term QALY gain
2016	(6 months)	
Edwards et al.	Trial duration	CUA: Cost per short-term QALY gain
2013;	(12 months)	
Murphy et al. 2012		
		Model-based economic evaluations
Study &	Time Horizon	Types of outcomes compared to costs per valuation technique
Year of publication	(trial follow up)	
Campbell et al.	Lifetime	CUA: Cost per short-term QALY gain (mental health gain); Cost per QALYs associated with coronary heart
2015		disease, stroke, type 2 diabetes due to reduced risk for developing these health states
Anokye et al.	Lifetime	CUA: Cost per short-term QALY gain (mental health gain); Cost per QALYs associated with coronary heart
2012; Anokye et		disease, stroke, type 2 diabetes due to reduced risk for developing these health states
al. 2014		CCA: Same outcomes outlined below for Pavey et al.'s (2011) CCA
Anokye et al.,	Lifetime	CUA: QALYs associated with coronary heart disease, stroke, type 2 diabetes due to reduced risk for
2011		developing these health states

Pavey et al. 2011	Lifetime	CUA: Cost per short-term QALY gain (mental health gain); Cost per QALYs associated with coronary heart disease, stroke, type 2 diabetes due to reduced risk for developing these health states
		CCA: Mental health (anxiety), Mental health (depression), Metabolic diabetes, Colon cancer, Breast cancer, Lung cancer, Hypertension (cardiovascular), Coronary Heart Disease, Stroke, Musculoskeletal (Osteroporosis), Musculoskeletal (Osteroarthritis), Lower back pain, Rhumatoid arthritis, Falls prevention, Absenteeism at work, Injury (disbenfit), Disability
Over et al. 2012	Lifetime	CUA: QALYs associated with myocardial infarction, stroke, diabetes, colorectal cancer, breast cancer due to reduced risk for developing these health states

310

311 RCT: randomised controlled trial; cRCT: cluster randomised controlled trial; CEA: Cost-effectiveness analysis; CUA: Cost-utility analysis; CCA: cost-

312 consequence analysis ; MET: Metabolic Equivalent of Task

313 Challenge 2: Measuring and valuing outcomes

314 No studies in this present review conducted a cost-benefit analysis (CBA), despite health 315 economists (Drummond et al., 2015) stating this approach is superior to cost-utility analysis 316 (CUA) (Drummond et al., 2015). Recent UK and US guidelines recommended that studies 317 report a broad range of outcomes alongside their economic analyses, through the use of 318 approaches such as CBA, cost-consequence analysis (CCA) or an impact inventory (NICE, 319 2014; Sanders et al., 2016). Two studies (Anokye et al., 2012; Pavey et al., 2011) included a 320 CCA conducted alongside a CUA. A broad range of health outcomes were included in their 321 CCA (Table 2) yet the only non-health outcome reported was absenteeism.

322 Two thirds (n=11) of the studies presented just one type of valuation technique, either a 323 CUA (n=5) or cost-effectiveness analysis (CEA) (n=6) (Table 2). Table 2 demonstrates 324 further how despite having the same aim to increase physical activity levels and same 325 valuation technique, the way results are presented to the end-user are inconsistent. Young 326 et al. (Young et al., 2012) performed two CEAs reporting on the 'cost per incremental 327 change in daily estimated energy expenditure' and 'cost per incremental change in minutes 328 spent on moderate-to-vigorous activity'. Three other studies (Boehler et al., 2011; Elley et 329 al., 2011; Iliffe et al., 2014) performed a different type of CEA reporting on 'cost per 330 participant achieving 150 minutes of moderate physical activity per week'. The most 331 common way to present the result of the valuation analysis was as 'cost per short-term 332 quality-adjusted life year (QALY) gain'. Nevertheless, this was reported for just under half 333 (n=7) of the economic evaluations: four trial-based (de Vries et al., 2016; Edwards et al., 334 2013; Leung et al., 2012; Maddison et al., 2015) and three model-based (Anokye et al., 335 2012; Campbell et al., 2015; Pavey et al., 2011) studies. All model-based studies 336 conceptualised the long-term gain in QALY in the same way, in terms of the QALYs gained 337 due to not developing coronary heart disease, stroke or type 2 diabetes, or experiencing 338 premature mortality. Over et al.'s (2012) analysis differed slightly, as they also included 339 colorectal and breast cancer. 340

Rationale for the inclusion and exclusion of trial-derived QALYs varied considerably. Shaw
et al. (Shaw et al., 2011) argued against the inclusion of trial-derived QALYs in their

343 analysis, explaining it would be unnecessarily restrictive since evidence already shows that 344 physical activity is associated with a reduction in NCD and premature mortality, which in turn 345 is associated with a much greater gain in QALYs than trial-derived QALYs. Three model-346 based studies (Anokye et al., 2012; Campbell et al., 2015; Pavey et al., 2011) deemed it 347 appropriate to incorporate both short-and long-term gain in QALYs. They conceptualised the 348 short-term QALY gain as being a one-off gain in mental health, which they assumed would 349 be achieved as a result of becoming physically active for at least 90 minutes per week. They assumed the one-off mental health benefit would last for just one year, which they claimed 350 351 was a conservative assumption. Campbell et al. (2015) reported that their cost-effectiveness 352 result was highly sensitive to the inclusion and exclusion of the one-off gain in mental health. 353

354 Challenge 3: Identifying intersectoral costs and consequences

355 The most commonly reported perspective was the health sector perspective (n=7) (Table 1 356 and 2). Six of the eight studies from the UK were from this perspective. In 2014, the UK 357 reference case was updated to recommend the public sector perspective when conducting 358 economic evaluations of public health interventions (NICE, 2014). The multi-agency public 359 sector perspective adopted by Edwards et al. (2013) reflects the start of this paradigm shift. 360 Two more recent UK studies (Campbell et al., 2015; Iliffe et al., 2014) did not adopt a public 361 sector perspective. Despite studies being conducted from the same perspective, the type of 362 costs identified as relevant varied within and across countries and intervention type. This weakness was identified through the quality assessment (Item 4 on Appendix D [INSERT 363 364 LINK TO ONLINE FILE A, B, C, D & E]), as five studies (Boehler et al., 2011; de Vries et al., 365 2016; Maddison et al., 2015; Shaw et al., 2011; Young et al., 2012) did not relate their costs 366 to a study perspective. More specifically, two studies did not report their perspective 367 (Maddison et al., 2015; Shaw et al., 2011) and three included a narrower range of costs and 368 consequences than would be expected for their stated perspective (Boehler et al., 2011; de 369 Vries et al., 2016; Young et al., 2012). For example, two studies stated their study was from 370 the societal perspective yet assessed only direct intervention costs and short-term 371 healthcare savings (de Vries et al., 2016; Young et al., 2012), which were the same costs as

- 372 studies which stated taking a health sector perspective (Table 1 and 2). Weatherly et al.
- 373 (2009) also found that many studies included only a narrow range of costs within their stated
- 374 study perspectives.

375 Figure 2. Cost categories identified across all 15 included studies

376 Figure 2 shows that seven cost categories were identified across all 15 included studies. 377 Like the findings in this review, Alayli-Goebbels et al. (2014) found the most common type of 378 cost reported was the intervention costs, followed by healthcare costs. Participant out-of-379 pocket expenses and productivity losses appeared in only a small proportion of studies in 380 this review and Alayli-Goebbels et al.'s (2014) review. Although most studies looked at both 381 the direct and indirect costs of the interventions, only Edwards et al. (2013) looked at the 382 unintended productivity costs to the provider. More specifically, they examined whether the 383 provider where the intervention was set (the leisure centre) experienced a loss in revenue, 384 as a result of providing the intervention.

385 Challenge 4: Incorporating equity

386 The two former reviews found that authors did not routinely consider equity in their analysis 387 (Alayli-Goebbels et al., 2014; Weatherly et al., 2009). Table 3 shows that all but one study 388 (Shaw et al., 2011) included in the present review did consider equity. All but one study 389 (Edwards et al., 2013) did this implicitly, conducting subgroup analyses of the cost-390 effectiveness result (n=6) or targeting the intervention at a population deemed in need of 391 intervention (n=8). Edwards et al. (2013) were the only authors to explicitly discuss equity 392 and to consider socio-economic status in their equity analysis. They did this by asking 393 participants from areas of different levels of deprivation about how much they would be 394 willing to pay to participate in the intervention of interest; thus informing the reader about 395 participants' economic preferences. Notably this was an exploratory analysis and so the 396 results were not incorporated in the CUA.

397 Table 3. Types of equity considered

Campbell et al. 2015	Pre-existing condition
Pavey et al. 2011	Pre-existing condition

	Anokye et al. 2011	Pre-existing condition
	Edwards et al. 2013; Murphy et al. 2012	Medical diagnosis
	Marphy et al. 2012	Referral reason
Subgroup applygon of		Adherence to scheme
Subgroup analyses of cost-effectiveness		Gender
result		Inequalities
		Age group
	Over et al. 2012	Age group
	Anokye et al.2012 ; Anokye et al. 2014	Age group
Intervention targeted at equity group	de Vries et al.2016	Frail older adults with mobility problems
equity group	Leung et al.2012	Older adults
	lliffe et al. 2014	Older adults
	Boehler et al. 2011	Older adults
	Maddison et al. 2015	People with ischaemic heart disease
	Elley et al. 2011	Females
	Young et al. 2012	Females
	Larsen et al. 2015	Latinas
Willing to pay question	Edwards et al. 2013; Murphy et al. 2012	Socio-economic status (level of deprivation)

398

399 Table 3 details the eight studies which targeted their intervention at a specific population 400 group as well as the six studies that performed subgroup analyses of their cost-effectiveness 401 result. Older adults was the most common equity subgroup targeted for intervention (Boehler 402 et al., 2011; de Vries et al., 2016; Iliffe et al., 2014; Leung et al., 2012), followed by females 403 (Elley et al., 2011; Young et al., 2012). The most common subgroup analyses were on pre-404 existing condition/ medical diagnosis (Anokye et al., 2011; Campbell et al., 2015; Edwards et 405 al., 2013; Pavey et al., 2011) and age group (Anokye et al., 2012; Edwards et al., 2013; 406 Over et al., 2012). Edwards et al.(2013) carried out seven types of equity analyses, all other 407 authors conducted just one type. Furthermore, no studies attempted alternative equity 408 analyses, such as an equity constraint or equity weighing analysis (Cookson et al., 2017).

409 New studies

The results of the rapid systematic scoping search are presented in Appendix B [INSERT LINK TO ONLINE FILE A, B, C, D & E]. In brief, four additional studies were identified as meeting the inclusion criteria of this review. Notably, one study (Gao et al., 2018) was an intervention targeting sedentary behaviour as an independent risk factor from physical activity. Furthermore, two studies (Gao et al., 2018; Harris et al., 2018) were both trial-and model-based economic evaluations, as the analysts had extrapolated their within-trial results a lifetime horizon.

417

Discussion

418 This review identified 15 economic evaluations of interventions that targeted physically 419 inactive adults, and no economic evaluations of interventions that targeted sedentary adults 420 (where sedentary behaviour was addressed an independent risk factor from physical 421 activity). Like Abu-Omar et al's (2017) review of reviews which focuses on the results of 422 economic evaluations, this present review identified economic evaluations on a limited range 423 of physical activity interventions (Abu-Omar et al., 2017). Studies came from just four high-424 income countries, with over half (n=8) coming from the UK. This points to an important 425 evidence gap in countries where economic evaluations are deemed appropriate. Examining 426 a country's traditional beliefs around personal responsibility, efficiency and equity can 427 explain why countries such as France and Germany are low users of economic evaluations 428 and can in part explain why no studies in this review originated from these countries (Torbica 429 et al., 2018). Regardless of cultural and institutional differences, globally health economists 430 agree economic evaluations of preventative interventions are expected to have an important 431 impact on future healthcare decision-making (ISPOR, 2018). In order to answer upcoming 432 complex public health challenges, researchers need to go beyond clinical effectiveness 433 methods and use a multidisciplinary suite of methods (Rutter et al., 2017) which includes 434 economic evaluation. A prerequisite for this is an understanding on how key methodological 435 challenges can be addressed.

436 **Challenge 1: Attribution of effects**

437 Modelling exercises

438 All ten trial-based economic evaluations in this review had a short time horizon; meaning 439 they did not attempt to extrapolate or model the long-term impact of the intervention which 440 could be used to informer longer term investment decision making. Any future reduction in 441 incidence of NCD and premature mortality, attributable to physical activity and sedentary 442 behaviour interventions, is unlikely to manifest until decades after the intervention has taken 443 place. Yet, evaluating these interventions over the wrong timeframe means these 444 interventions may appear ineffective or markedly less effective; they are at risk of not being 445 appropriately prioritised by policymakers (Rutter et al., 2017). Curative interventions that 446 rescue people from very poor health to better health will continue to be favoured, even if 447 they are less cost-effective overall. Alayli-Goebbels et al. (2014) had previously suggested 448 modelling as a way to extend the time horizon of trial-based studies, yet none of the ten trial-449 based studies in this review performed any modelling exercises. The challenges which can 450 preclude extrapolation include the availability of data, and time and skills of the analyst 451 (Squires et al., 2016).

452 Cohort studies

453 Campbell et al. (2015) and Anokye et al. (2012) were the only two studies in this review to 454 identify additional evidence to link up their short- and long-term effect estimate. The three 455 other model-based studies claimed there was insufficient evidence to verify the accuracy of 456 their assumptions (Anokye et al., 2011; Over et al., 2012; Pavey et al., 2011). Notably, the 457 cohort studies which Campbell et al.(2015) and Anokye et al.(2012) draw on were published 458 several years prior to the publication of the three other model-based studies. This suggests 459 that the methodological challenge of 'attribution of effect' may be more dependent upon the 460 analysts' time and skills as opposed to the availability of data.

461

462 Challenge 2: Measuring and valuing outcomes

463 Cost-effectiveness and cost-utility analyses

464 This review found large inconsistencies in the types of outcomes measured and valued.

465 There is no agreed classification system for physical activity outcomes(Abu-Omar et al.,

466 2017) since the analysis of raw objective accelerometer data measuring objective physical 467 activity levels is still in its infancy. Presenting a limited range of results can reduce the 468 applicability of the study's findings to other policymakers. Authors' views also differed firstly 469 on whether short-term QALYs should be included in the economic analysis, secondly on 470 whether a short-term QALY gain represented a one-off gain in mental health or general 471 functional health. Presently, within the economic literature the responsiveness of the EQ-5D-472 3L to detect important differences in the severity of health is being challenged, and had led 473 to the development of the EQ-5D-5L, which measures health on five levels as opposed to 474 just three (Glick et al., 2014). This review has shown that outcomes used in physical activity 475 studies are diverse; therefore, there is a need for analysts to agree on a consistent outcome 476 that best captures the objectives of a physical activity intervention.

477 Cost-benefit and cost-consequence analyses

478 No studies in this review performed a CBA and just two presented a CCA alongside their full 479 economic evaluation. There is a lack of CBAs in other public health areas. Hill et al. (2017) 480 and Alayli-Goebbels et al. (2014) identified a small proportion of studies (n=1 and n=8 481 respectively) who reported conducting a CBA, but due to insufficient reporting gained limited 482 insight into how these were performed such as how outcomes had been monetised (Alayli-483 Goebbels et al., 2014; Hill et al., 2017). Likewise, four studies claimed to be CBAs in the 484 review by Weatherly et al. (2009), but after further assessment were re-classified as CCAs 485 (n=3) and a CEA (n=1). Although classified as a partial-economic evaluation, CCA is a 486 useful alternative to CBA since all relevant costs and consequences can be presented to the 487 reader in the form of an inventory, rather than simplified into a single outcome measure or 488 index as is the case in CEA and CUA, respectively. If an outcome is deemed relevant to the 489 reader, they can reanalyse the data quantified in the CCA. However, CCA puts more onus 490 on decision makers than CBA or CUA, as it does not roll outcomes into a summary measure 491 that can be compared to a decision rule. An example of a decision rule in the UK is: invest where the incremental cost-effectiveness ratio is less than £30,000 per QALY (NICE, 2014). 492

493

494 Challenge 3: Identifying intersectoral costs and consequences

495 Inconsistent perspectives

496 The three most common perspectives stated were the health system, payer and societal 497 perspectives. These match the three most commonly reported perspectives in the broader 498 field of economic evaluation (Husereau et al., 2013). Only Edwards et al. (2013) conducted 499 their analysis from the public sector perspective, a perspective recently recommended in the 500 UK reference case (NICE, 2014). That said, Edwards et al. (2013) did not incorporate 501 participant costs in their CUA, only through an exploratory analysis. Only three studies 502 considered the cost to the participant, which is not surprising since the health sector 503 perspective was the most commonly stated perspective. Participant and voluntary sector 504 costs are deemed important, but previously have not been routinely captured (Weatherly et 505 al., 2009).

506 It was found that even economic evaluations stated the same perspective did not always 507 include the same costs and consequences. This is likely to be because there is a lack of 508 standard definitions for the various perspective types (Husereau et al., 2013). Even where 509 there are examples of standard definitions, such as those proposed by the Second US Panel 510 on Cost-Effectiveness in Health and Medicine (Sanders et al., 2016), not all economists 511 agree with their definitions, and furthermore the definitions may not be applicable to other 512 countries since there are distinct features of each health system (Torbica et al., 2018). For 513 instance, deciding what costs and consequences to capture within a societal perspective is a 514 normative question, requiring the analyst to make social value judgements (Drummond et 515 al., 2015). This is an important issue, since the exclusion of relevant consequences can lead 516 to an underestimation of cost-effectiveness whilst the exclusion of relevant costs can lead to 517 an overestimation of cost-effectiveness (Hill et al., 2017).

518 Cost categories identified

The cost categories identified in this review match the five cost categories (healthcare services, intervention costs, patient and family costs, lost productivity costs, future costs) identified as most relevant for inclusion in economic evaluations, by health economists who recently took part in a cross-Europe Delphi study (van Lier et al., 2017). This suggests analysts' choice in costs in this review align with analysts in the more general field of

economic evaluation. It should be noted however that there was a difference in one of the
categories, as family costs were not identified as a relevant cost category in the studies from
this present review. Just two trial-based studies included absenteeism in their study;
similarly only two of the model-based studies included it in their CCA. It continues to be
debated in the literature as to whether absenteeism is an outcome of cost-offset, and thus
whether it should be included in the numerator or denominator part of the incremental costeffectiveness fraction (Drummond et al., 2015).

531 Challenge 4: Incorporating equity considerations

532 *Presenting results by subgroups*

533 Equity impact analysis can be as straightforward as presenting cost-effectiveness results by 534 equity subgroups (Alayli-Goebbels et al., 2014; Hill et al., 2017; Weatherly et al., 2009). Six 535 studies in this review presented an equity impact analysis (Anokye et al., 2012; Anokye et 536 al., 2011; Campbell et al., 2015; Edwards et al., 2013; Over et al., 2012; Pavey et al., 2011). 537 The most common subgroup analysed was individuals with pre-existing medical conditions, 538 nevertheless this analysis was performed in just four studies (Anokye et al., 2011; Campbell 539 et al., 2015; Edwards et al., 2013; Pavey et al., 2011). Furthermore, only one study 540 (Edwards et al., 2013) conducted more than one type of equity subgroup analysis. These 541 findings suggest analysts are not performing equity analyses in a comprehensive nor 542 consistent manner. Weatherly et al. (2009) outlined socio-economic status as an important 543 under-researched equity issue in economic evaluations, however only one study in this 544 review researched socio-economic status by asking participants about their willingness to 545 pay for an intervention component (Edwards et al., 2013). Incorporating equity into decisions 546 on physical activity and sedentary behaviour interventions is especially important, since it is 547 amongst the lower socioeconomic groups where physical inactivity is greatest (OECD, 548 2015).

549 New studies

550 Overall, the four studies published since March 2017 did not change the narrative of this 551 review since there remains a dearth of economic evaluations in the field of physical activity 552 and sedentary behaviour. What the studies have demonstrated is that firstly, there is an

indication that health economic methods have begun to be applied to targeted sedentary
behaviour interventions (Gao et al., 2018). Secondly, that it is feasible and informative to
extrapolate beyond the trial (Gao et al., 2018; Harris et al., 2018).

556 Strengths and limitations

557 This is the first systematic review conducted since 2009 to review the methods used in 558 economic evaluations of interventions targeted at physically inactive individuals, and the first 559 systematic review to search for economic evaluations targeting sedentary behaviour as an 560 independent risk factor from physical activity. This review included comprehensive literature 561 searching and a rigorous methodology in line with the PRISMA guidelines (Moher et al., 562 2009). Economic evaluations aim to inform resource allocation decisions (Drummond et al., 563 2015). Previous reviews have demonstrated that key methodological challenges preclude 564 economic evaluations in the field of public health from achieving this aim (Alayli-Goebbels et 565 al., 2014; Weatherly et al., 2009). By focusing on physical activity and sedentary behaviour, 566 this review has been able to not just provide an overview on whether or not the four key 567 methodological challenges have been addressed in the last decade, but crucially explain in 568 greater depth the methods performed in those few studies where progress has been made.

569 More specifically, progress has been observed in the 14 studies which have considered 570 equity in their analysis (Table 3) and the small proportion of studies where either: the long-571 term model presented has been informed by robust epidemiological evidence (Anokye et al., 572 2012; Campbell et al., 2015); all important and relevant costs and consequences have been 573 outlined to the reader in the form of a cost-consequence analysis (Anokye et al., 2012; 574 Pavey et al., 2011); and/or a multi-sector perspective has been selected (Edwards et al., 575 2013). An output from the narrative synthesis of this review is a number of recommendations 576 (as outlined in Table 4) explaining how analysts can continue to make progress towards 577 addressing the four methodological challenges. Although, the comprehensive search 578 strategy only goes upto March 2017, a rapid systematic scoping search is presented which 579 highlights four new empirical studies. Two of these studies (Gao et al., 2018; Harris et al., 580 2018) support the recommendations emerging from this review in terms of linking up the 581 intermediate evidence with longer term policy relevant outcomes.

582 It was not within the scope of this research to review the methods used in population-level 583 interventions such as national policies or media campaigns. It would therefore be useful for 584 future reviews to explore how economic evaluations are being carried out within this area. In 585 addition, this review focuses on the methods conducted in full economic evaluations and so 586 there is scope to review the methods used in partial evaluations. Nevertheless, full economic 587 evaluations are deemed more informative than partial evaluations, and so it would have 588 been expected that analysts would conduct for instance, a CCA alongside their full economic 589 evaluation, as was done in two studies (Anokye et al., 2014; Pavey et al., 2011) in this 590 review.

591

592 Recommendations

Table 4 presents a list of recommendations for researchers and users of economic
evaluations from a variety of disciplines (health economics, public health, physical activity
etc) to refer to when designing, analysing and appraising economic evaluations of
targeted physical activity and sedentary behaviour interventions.

Table 4. Recommendations for future economic evaluations

Challenge	Recommendation	Explanation
Challenge 1.	Visual representations of disease	It is necessary for public health researchers to invest time in reviewing the existing
Attribution of Effects	pathways	evidence base and develop novel modelling skills. Best practice guidelines state well
		established published models are preferred to those developed specifically for a trial
		(Ramsey et al., 2015). If skill and time permits, analysts can draw on the structure of the
		published models (Anokye et al., 2012; Campbell et al., 2015) identified in this review
		and adapt them according to the local decision-making context. All five models in this
		review presented a visual depiction of the disease pathway for physical activity. Authors
		from non-economic disciplines could build on the disease pathways presented in the
		model-based studies in this review, in order to help policymakers and those designing
		interventions to consider the long-term costs and consequences of investing or
		disinvesting in physical activity interventions. The visual could be as simple as a logic
		model, a visual tool recommended for public health interventions (Moore et al., 2015).
	Long-term objective data derived	Future investment and disinvestment decisions should be informed by economic
	from cohort studies	evaluations which not only assess the short-term impact of interventions, but also
		impact on the medium- and long-term (Academy of Medical Sciences, 2016). As long-

		term RCTs of physical activity and sedentary behaviour interventions are likely to be
		impractical or unethical, evidence from non-experimental studies such as cohort studies
		could be drawn on to evidence the long-term impact of physical activity and sedentary
		behaviour interventions as done in two studies. In the hierarchy of evidence, cohort
		studies are recognised as being the next best alternative to RCTs (Murad et al., 2016).
		The popularity of wireless-enabled wearable activity monitors in high-income countries
		present researchers with an opportunity to conduct more cohort studies and collect
		objective data on behaviour change over a longer time period.
Challenge 2.	Quality of life measurement tools	Future research should aim to understand whether a short-term gain in QALY
Measuring and valuing		represents a one-off benefit in mental health due to becoming physically active. The
outcomes		EQ-5D tool, is the most commonly used tool to measure QALYs but only captures the
		functional health of an individual. Future studies could use other recently developed
		quality of life tools such as the ICECAP-A (Al-Janabi et al., 2012; Al-Janabi et al., 2013;
		Flynn et al., 2015), which has been designed to capture capability in a broader sense,
		beyond functional health. Another solution is for analysts to agree on a tool which
		crosswalks between physical activity outcomes and a summary tool like the EQ-5D.
		There is currently a mapping database of studies that map the EQ-5D tool to other

		outcomes measures (Dakin et al., 2018). No studies on the database have mapped a
		physical activity specific tool to the EQ-5D; future research should address this gap.
	Cost-consequence analysis	There is a need for further methodological developments in the monetisation of effects
		in CBAs (Drummond et al., 2015; Sanders et al., 2016). In the meantime, it is deemed
		more appropriate to conduct a good quality CUA which may be of a narrower
		perspective, than a poor quality CBA which captures a broader perspective (Hill et al.,
		2017; Weatherly et al., 2009). In order to report on multiple outcomes which extend
		beyond health, a CCA or impact inventory conducted alongside a full economic
		evaluation is recommended (NICE, 2014; Sanders et al., 2016). If the word limit in
		journals precludes authors from presenting a CCA in the main manuscript, they should
		present this information in the online supplementary material.
Challenge 3.	Multi-sector perspective	Three studies in this review omitted costs which would typically be deemed relevant to
Identifying		their stated perspective, and two studies did not report their perspective. It is imperative
intersectoral costs		for analysts to describe and justify the costs and consequences which they have
and consequences		deemed relevant for their chosen perspectives (Husereau et al., 2013). Inevitably
		different assumptions on what costs and consequences are included in the analysis
		leads to different results (Sanders et al., 2016). Furthermore, future studies should aim

	to present at least two types of perspectives and conduct a CCA or impact inventory
	alongside their CUA or CEA in order to present the various relevant costs and
	consequences to the various relevant sectors (Alayli-Goebbels et al., 2014; Sanders et
	al., 2016; Weatherly et al., 2009). A multi-sector perspective where costs and
	consequences are presented in their disaggregated form (i.e. in a CCA) for each sector
	is preferred over stating a societal perspective (Drummond et al., 2015; Hill et al., 2017).
Systems thinking approach	Absenteeism was the only non-health effect identified in the two CCAs in this review
	(Anokye et al., 2012; Pavey et al., 2011). During the design stage of future economic
	evaluations analysts could conduct multi-stakeholder and expert consultations to map
	out which costs and consequences are deemed relevant to physical activity and
	sedentary behaviour interventions (Squires et al., 2016). A systems thinking approach
	(Rutter et al., 2017; Squires et al., 2016) is recommended to ensure interventions'
	indirect and unintended costs and consequences on the whole system are considered,
	not just those experienced by the health sector or payer. Two recently published
	frameworks can help analysts apply a systems approach (Cylus et al., 2016; Squires et
	al., 2016).

	1 -	
Challenge 4.	Equity impact analysis	Analysts should present costs and consequences explicitly in their disaggregated form
Incorporating equity		for various equity groups, so policymakers can start to build a better picture on which
		population groups gain and lose from a specific decision (Hill et al., 2017). From here,
		analysts can conduct an equity impact analysis. This type of analysis is deemed easier
		than conducting equity constraint or equity weighting analysis (Hill et al., 2017). The
		equity effectiveness loop framework (Welch et al., 2008) and PROGRESS-Plus
		framework (O'Neill et al., 2014) are recommended to help analysts consider, in a
		structured way, which equity factors may be relevant to their study (Alayli-Goebbels et
		al., 2014; Welch et al., 2017).
	Participant's preferences	Other types of equity-related analyses not identified in this review, but which future
		studies could investigate, include the public's perspective on trading off efficiency with
		equity (in public services) (Weatherly et al., 2009). It is also recommended that future
		studies, specifically trial-based studies, capture economic information on time, travel
		and out-of-pocket expenses incurred by the participant. The APEASE criteria by Michie
		et al. (2014) could also help analysts to consider the acceptability and affordability of an
		intervention to various stakeholders. Inevitably, these two issues will contribute to the
		success of interventions aiming to change behaviour (Michie et al., 2014).

600

601

Conclusions

602 A focus on the key methodological challenges in economic evaluations is important, as they 603 can impact on the derived cost-effectiveness result, which ultimately can impact on a 604 policymaker's resource allocation decision. As economic evaluation is a rapidly developing 605 field (Drummond et al., 2015) this systematic review has provided an important update on 606 the most recent methods used in targeted physical activity interventions. The review has 607 also highlighted there is a scarcity of economic evaluations for targeted sedentary behaviour 608 interventions. Importantly, this review makes it explicit to policymakers and researchers from 609 the varied disciplines in which physical activity and sedentary behaviour falls under, that 610 there are still key methodological challenges that need further attention. This review has 611 highlighted that methodological choices vary widely not just between countries but also 612 within them. Ultimately, these analyst-based choices affect the results presented and 613 subsequent resource allocation decisions made. A recent consensus statement has called 614 for collaboration across the disciplines to develop guidance specific to the context of 615 economic evaluations of physical activity interventions (Davis et al., 2014). To date, no 616 guidelines have been developed to address this need. The examples of methodological 617 development identified from the studies in this review and the resulting review 618 recommendations can be used to inform future guidelines and their supplementary 619 materials.

References

621 622 623	Abu-Omar, K., Rütten, A., Burlacu, I., Schätzlein, V., Messing, S., & Suhrcke, M. (2017). The cost-effectiveness of physical activity interventions: A systematic review of reviews. <i>Preventive Medicine Reports</i> , 8, 72-78.
624 625	Academy of Medical Sciences. (2016). Improving the health of the public by 2040: optimising the research environment for a healthier, fairer future (September, 2016).
626 627	Al-Janabi, H., Flynn, T.N., & Coast, J. (2012). Development of a self-report measure of capability wellbeing for adults: the ICECAP-A. <i>Quality of Life Research</i> , 21, 167-176.
628 629	Al-Janabi, H., Peters, T.J., Brazier, J., Bryan, S., Flynn, T.N., Clemens, S., et al. (2013). An investigation of the construct validity of the ICECAP-A capability measure. <i>Quality of</i>
630	Life Research, 22, 1831-1840.
631	Alayli-Goebbels, A.F.G., Evers, S.M.A.A., Alexeeva, D., Ament, A.J.H.A., de Vries, N.K.,
632	Tilly, J.C., et al. (2014). A review of economic evaluations of behavior change
633	interventions: setting an agenda for research methods and practice. Journal of
634	Public Health, 36, 336-344.
635	Anokye, N.K., Lord, J., & Fox-Rushby, J. (2012). National Institute for Health and Clinical
636	Excellence: Public Health Intervention Guidance on Physical Activity – Brief advice
637	for adults in primary care: Economic Analysis. pp. 1-72). London: National Institute
638	for Health and Clinical Excellence,.
639	Anokye, N.K., Lord, J., & Fox-Rushby, J. (2014). Is brief advice in primary care a cost-
640	effective way to promote physical activity? British Journal of Sports Medicine, 48,
641	202-206.
642	Anokye, N.K., Trueman, P., Green, C., Pavey, T., Hillsdon, M., & Taylor, R. (2011). The
643	cost-effectiveness of exercise referral schemes. BMC Public Health, 11, 954.
644	Boehler, C.E.H., Milton, K.E., Bull, F.C., & Fox-Rushby, J.A. (2011). The cost of changing
645	physical activity behaviour: evidence from a "physical activity pathway" in the
646	primary care setting. BMC Public Health, 11, 370.
647	Campbell, F., Holmes, M., Everson-Hock, E., Davis, S., Buckley Woods, H., Anokye, N., et
648	al. (2015). A systematic review and economic evaluation of exercise referral
649	schemes in primary care: a short report. <i>Health Technol Assess</i> , 19, 1-110.
650	Cookson, R., Mirelman, A.J., Griffin, S., Asaria, M., Dawkins, B., Norheim, O.F., et al.
651	(2017). Using Cost-Effectiveness Analysis to Address Health Equity Concerns.
652	Value in Health, 20, 206-212.
653	Cylus, J., Papanicolas, I., & Smith, P.C. (2016). A framework for thinking about health
654	system efficiency. <i>Health System Efficiency</i> , 1.
655	Dahlgren, G., & Whitehead, M. (1991). Policies and strategies to promote social equity in
656	health (Mimeo) Stockholm, Sweden: Insititute for Future Studies,.
657	Dakin, H., Abel, L., Burns, R., & Yang, Y. (2018). Review and critical appraisal of studies
658	mapping from quality of life or clinical measures to EQ-5D: an online database and
659	application of the MAPS statement. <i>Health and Quality of Life Outcomes</i> , 16, 31.
660	Davis, J.C., Verhagen, E., Bryan, S., Liu-Ambrose, T., Borland, J., Buchner, D., et al. (2014).
661	2014 Consensus Statement from the first Economics of Physical Inactivity
662	Consensus (EPIC) Conference (Vancouver). <i>British Journal of Sports Medicine</i> , 48,
663	947-951. de Vision N.M. Stool, J.P. Teoremetre, S. Adama, F.M.M. Dikkert, M.C.M.O., & Nijbuja van
664	de Vries, N.M., Staal, J.B., Teerenstra, S., Adang, E.M.M., Rikkert, M.G.M.O., & Nijhuis-van der Sanden, M.W.G. (2013). Physiotherapy to improve physical activity in
665 666	community-dwelling older adults with mobility problems (Coach2Move): study
667	protocol for a randomized controlled trial. <i>Trials</i> , 14, 434.
668	de Vries, N.M., Staal, J.B., van der Wees, P.J., Adang, E.M., Akkermans, R., Olde Rikkert,
669	M.G., et al. (2016). Patient-centred physical therapy is (cost-) effective in increasing
670	physical activity and reducing frailty in older adults with mobility problems: a
671	randomized controlled trial with 6 months follow-up. J Cachexia Sarcopenia Muscle,
672	7, 422-435.
673	Drummond, M.F., Schulpher, M.J., Claxton, K., Stoddart, G.L., & Torrance, G.W. (2015).
674	Methods for the Economic Evaluation of Health Care Programmes (Fourth Edition).
675	Oxford: Oxford University Press.

676	Edwards, R.T., Linck, P., Hounsome, N., Raisanen, L., Williams, N., Moore, L., et al. (2013).
677	Cost-effectiveness of a national exercise referral programme for primary care
678	patients in Wales: results of a randomised controlled trial. BMC Public Health, 13.
679	Ekelund, U., Steene-Johannessen, J., Brown, W.J., Fagerland, M.W., Owen, N., Powell,
680	K.E., et al. (2016). Does physical activity attenuate, or even eliminate, the
681	detrimental association of sitting time with mortality? A harmonised meta-analysis of
682	data from more than 1 million men and women. <i>Lancet</i> , 388, 1302-1310.
683	Elley, C.R., Garrett, S., Rose, S.B., O'Dea, D., Lawton, B.A., Moyes, S.A., et al. (2011).
684	Cost-effectiveness of exercise on prescription with telephone support among women
685	in general practice over 2 years. Br J Sports Med, 45, 1223-1229.
686	Flynn, T.N., Huynh, E., Peters, T.J., Al-Janabi, H., Clemens, S., Moody, A., et al. (2015).
687	Scoring the ICECAP-A capability instrument. Estimation of a UK general population
688	tariff. Health Economics, 24, 258-269.
689	Gao, L., Flego, A., Dunstan, D.W., Winkler, E.A.H., Healy, G.N., Eakin, E.G., et al. (2018).
690	Economic evaluation of a randomized controlled trial of an intervention to reduce
691	office workers' sitting time: the "Stand Up Victoria" trial. Scandinavian Journal of
692	Work, Environment & Health, 503-511.
693	Gc, V., Wilson, E.C.F., Suhrcke, M., Hardeman, W., & Sutton, S. (2016). Are brief
694	interventions to increase physical activity cost-effective? A systematic review. British
695	Journal of Sports Medicine, 50, 408-417.
696	Glick, H.A., Doshi, J.A., Sonnad, S.S., & Polsky, D. (2014). <i>Economic Evaluation in Clinical</i>
697	Trials: Oxford University Press.
698	Harris, T., Kerry, S.M., Limb, E.S., Furness, C., Wahlich, C., & Victor, C.R. (2018). Physical
699	activity levels in adults and older adults 3-4 years after pedometer-based walking
700	interventions: long-term follow-up of participants from two randomised controlled
701	trials in UK primary care. 15, e1002526.
702	Hill, S.R., Vale, L., Hunter, D., Henderson, E., & Oluboyede, Y. (2017). Economic
703	evaluations of alcohol prevention interventions: Is the evidence sufficient? A review
704	of methodological challenges. <i>Health Policy</i> , 121, 1249-1262.
705	Hu, G., Jousilahti, P., Borodulin, K., Barengo, N.C., Lakka, T.A., Nissinen, A., et al. (2007).
706	Occupational, commuting and leisure-time physical activity in relation to coronary
707	heart disease among middle-aged Finnish men and women. Atherosclerosis, 194,
708	490-497.
708	Hu, G., Qiao, Q., Silventoinen, K., Eriksson, J.G., Jousilahti, P., Lindstrom, J., et al. (2003).
710	Occupational, commuting, and leisure-time physical activity in relation to risk for
711	Type 2 diabetes in middle-aged Finnish men and women. <i>Diabetologia</i> , 46, 322-
712	329.
713	Hu, G., Sarti, C., Jousilahti, P., Silventoinen, K., Barengo, N.C., & Tuomilehto, J. (2005).
714	Leisure time, occupational, and commuting physical activity and the risk of stroke.
715	<i>Stroke,</i> 36, 1994-1999.
716	Husereau, D., Drummond, M., Petrou, S., Carswell, C., Moher, D., Greenberg, D., et al.
717	(2013). Consolidated Health Economic Evaluation Reporting Standards (CHEERS)
718	statement. BMJ : British Medical Journal, 346.
719	lliffe, S., Kendrick, D., Morris, R., Masud, T., Gage, H., Skelton, D., et al. (2014). Multicentre
720	cluster randomised trial comparing a community group exercise programme and
721	home-based exercise with usual care for people aged 65 years and over in primary
722	care. Health Technol Assess, 18, vii-xxvii, 1-105.
723	ISPOR. (2018). Top 10 HEOR Trends.
724	Kelly, M.P., McDaid, D., Ludbrook, A., & Powell, J.E. (2005). Economic appraisal of public
725	health interventions.: Health Development Agency,.
726	Kohl, H.W., Craig, C.L., Lambert, E.V., Inoue, S., Alkandari, J.R., Leetongin, G., et al.
727	(2012). The pandemic of physical inactivity: global action for public health. <i>The</i>
728	Lancet, 380, 294-305.
729	Kolt, G.S., Schofield, G.M., Kerse, N., Garrett, N., Schluter, P.J., Ashton, T., et al. (2009).
730	The Healthy Steps Study: A randomized controlled trial of a pedometer-based
731	Green Prescription for older adults. Trial protocol. BMC Public Health, 9, 404.
732	Larsen, B., Gilmer, T., Pekmezi, D., Napolitano, M.A., & Marcus, B.H. (2015). Cost
733	effectiveness of a mail-delivered individually tailored physical activity intervention for
734	Latinas vs. a mailed contact control. The International Journal of Behavioral Nutrition
735	and Physical Activity, 12, 140.

736	Leung, W., Ashton, T., Kolt, G.S., Schofield, G.M., Garrett, N., Kerse, N., et al. (2012). Cost-
737	effectiveness of pedometer-based versus time-based Green Prescriptions: the
738	Healthy Steps Study. Aust J Prim Health, 18, 204-211.
739	Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gøtzsche, P.C., Ioannidis, J.P.A., et al.
740	(2009). The PRISMA Statement for Reporting Systematic Reviews and Meta-
740 741	Analyses of Studies That Evaluate Health Care Interventions: Explanation and
742	Elaboration. <i>PLoS Medicine</i> , 6, e1000100.
743	Maddison, R., Pfaeffli, L., Whittaker, R., Stewart, R., Kerr, A., Jiang, Y., et al. (2015). A
744	mobile phone intervention increases physical activity in people with cardiovascular
745	disease: Results from the HEART randomized controlled trial. Eur J Prev Cardiol,
746	22, 701-709.
747	Marmot, M., & Allen, J.J. (2014). Social Determinants of Health Equity. American Journal of
748	Public Health, 104, S517-S519.
749	Michie, S., Atkins, L., & West, R. (2014). The Behaviour Change Wheel: A Guide to
750	Developing Interventions London: Silverback Publishing.
751	Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., & The, P.G. (2009). Preferred Reporting
752	Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. <i>PLoS</i>
753	Medicine, 6, e1000097.
754	Moore, G.F., Audrey, S., Barker, M., Bond, L., Bonell, C., Hardeman, W., et al. (2015).
755	Process evaluation of complex interventions: Medical Research Council guidance.
756	BMJ : British Medical Journal, 350.
757	Murad, M.H., Asi, N., Alsawas, M., & Alahdab, F. (2016). New evidence pyramid. Evidence
758	Based Medicine, 21, 125-127.
759	NICE. (2014). National Institute for Health and Care Excellence: Incorporating economic
760	evaluation.
761	O'Neill, J., Tabish, H., Welch, V., Petticrew, M., Pottie, K., Clarke, M., et al. (2014). Applying
762	an equity lens to interventions: using PROGRESS ensures consideration of socially
763	stratifying factors to illuminate inequities in health. Journal of Clinical Epidemiology,
764	67, 56-64.
765	OECD. (2015). Organisation for Economic Cooperation and Development; World Health
766	Organization: Promoting Health, Preventing Disease.
767	Over, E.A.B., Wendel-Vos, G.C.W., van den Berg, M., Reenen, H.H.Hv., Tariq, L.,
768	Hoogenveen, R.T., et al. (2012). Cost-effectiveness of counseling and pedometer
769	use to increase physical activity in the Netherlands: a modeling study. Cost
770	Effectiveness and Resource Allocation : C/E, 10, 13-13.
771	Owen, L., Pennington, B., Fischer, A., & Jeong, K. (2017). The cost-effectiveness of public
772	health interventions examined by NICE from 2011 to 2016. Journal of Public Health,
773	1-10.
774	Pavey, T.G., Anokye, N., Taylor, A.H., Trueman, P., Moxham, T., Fox, K.R., et al. (2011).
775	The clinical effectiveness and cost-effectiveness of exercise referral schemes: a
776	systematic review and economic evaluation. Health Technol Assess, 15, i.
777	Popay, J., Roberts, H.M., Sowden, A., Petticrew, M., Arai, L., Rodgers, M., et al. (2006).
778	Guidance on the conduct of narrative synthesis in sytematic reviews. Institute for
779	Health Research.
780	Ramsey, S.D., Willke, R.J., Glick, H., Reed, S.D., Augustovski, F., Jonsson, B., et al. (2015).
781	Cost-Effectiveness Analysis Alongside Clinical Trials II—An ISPOR Good Research
782	Practices Task Force Report. Value in Health, 18, 161-172.
783	Rutter, H., Savona, N., Glonti, K., Bibby, J., Cummins, S., Finegood, D.T., et al. (2017). The
784	need for a complex systems model of evidence for public health. The Lancet, 390,
785	2602-2604.
786	Sanders, G.D., Neumann, P.J., Basu, A., & et al. (2016). Recommendations for conduct,
787	methodological practices, and reporting of cost-effectiveness analyses: Second
788	panel on cost-effectiveness in health and medicine. JAMA, 316, 1093-1103.
789	Shaw, R., Fenwick, E., Baker, G., McAdam, C., Fitzsimons, C., & Mutrie, N. (2011).
790	'Pedometers cost buttons': the feasibility of implementing a pedometer based
791	walking programme within the community. <i>BMC Public Health</i> , 11, 200.
792	Squires, H., Chilcott, J., Akehurst, R., Burr, J., & Kelly, M.P. (2016). A Framework for
792	
	Developing the Structure of Public Health Economic Models. <i>Value in Health</i> , 19,
794	588-601.

795	Torbica, A., Tarricone, R., & Drummond, M. (2018). Does the approach to economic
796	evaluation in health care depend on culture, values, and institutional context? The
797	European Journal of Health Economics, 19, 769-774.
798	van Lier, L.I., Bosmans, J.E., van Hout, H.P.J., Mokkink, L.B., van den Hout, W.B., de Wit,
799	G.A., et al. (2017). Consensus-based cross-European recommendations for the
800	identification, measurement and valuation of costs in health economic evaluations: a
801	European Delphi study. The European Journal of Health Economics.
802	Wanless, D. (2004). Securing good for the whole population: Final Report. London: HM
803	Treasury.
804	Weatherly, H.L.A., Cookson, R.A., & Drummond., M.F. (2014). Economic Evaluation of
805	Public Health Interventions: Methodological Challenges. In A.J. Culyer (Ed.),
806	Encyclopedia of Health Economics pp. 217-223). USA: Elesvier.
807	Weatherly, H.L.A., Drummond, M., Claxton, K., Cookson, R., Ferguson, B., Godfrey, C., et
808	al. (2009). Methods for assessing the cost-effectiveness of public health
809	interventions: Key challenges and recommendations. <i>Health Policy</i> , 93, 85-92.
810	Welch, V.A., Norheim, O.F., Jull, J., Cookson, R., Sommerfelt, H., & Tugwell, P. (2017).
811	CONSORT-Equity 2017 extension and elaboration for better reporting of health
812	equity in randomised trials. BMJ, 359.
813	Welch, V.A., Tugwell, P., & Morris, E.B. (2008). The equity-effectiveness loop as a tool for
814	evaluating population health interventions. Rev Salud Publica (Bogota), 10 Suppl,
815	83-96.
816	WHO. (2018a). World Health Organisation: Noncommunicable diseases.
817	WHO. (2018b). World Health Organisation: Physical Activity: Key Facts.
818	Wu, S., Cohen, D., Shi, Y., Pearson, M., & Sturm, R. (2011). Economic analysis of physical
819	activity interventions. Am J Prev Med, 40, 149-158.
820	Young, L., Zimmerman, L., Pozehl, B., Barnason, S., & Wang, H. (2012). Cost-effectiveness
821	of a symptom management intervention: improving physical activity in older women
822	following coronary artery bypass surgery. <i>Nurs Econ,</i> 30, 94-103.
823	
025	