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"We’ve grown used to wonders in this century. It’s hard to dazzle us. But for
twenty-five years the United States space program has been doing just that. We’ve

grown used to the idea of space, and, perhaps we forget that we’ve only just
begun. We’re still pioneers..."

President Ronald Reagan. Address to the Nation following the Space Shuttle
Challenger disaster - 28th January 1986



Abstract

Climate change and a growing human population are instigating major
changes on the Earth’s surface. Monitoring and understanding these
changes as they unfold is critical for society and the environment. Satel-
lite remote sensing provides the only means of achieving this over large
spatial and temporal scales, and major progress in the application of
Earth-observation imagery has been made since the beginning of the
space age in the mid-20th century. However, savannahs - dynamic sys-
tems comprised of shrubs, trees, and grass species - have proved chal-
lenging for EO-based monitoring. Yet, these ecosystems cover almost
25% of the Earth’s surface and are home to some of the poorest peo-
ple on the planet. This thesis investigates the use of EO for monitor-
ing ecosystem dynamics in African savannahs, focussing specifically
on woody cover and biomass provision.
One of the most common Earth-observation (EO) based tools for moni-
toring vegetation is the Normalised Difference Vegetation Index (NDVI).
A detailed review of the application of NDVI for monitoring land degra-
dation was undertaken. This covered the historical context and ongo-
ing debates around NDVI analyses, and highlighted key research gaps.
NDVI was then used to map grass biomass for the Kruger National Park
in SouthAfrica, by combining in situdatawith a downscaledNDVI dataset
in a machine-learning framework. These predictions highlighted that
the NDVI-biomass relationship is vulnerable to overfitting in space and
time, due to spatial autocorrelation and a variable species composition,
respectively.
The NDVI was further explored at the continental scale using multiple
time-series analyses. These revealed that a majority of African savan-
nahs have only experienced vegetation greening in the 1982-2016 pe-
riod. Areas of declining vegetation, or changes in the trend direction,



were associatedwith phenological changes (i.e. a shrinking growth sea-
son), woodland degradation, or population increases.
Finally, fractional woody vegetation cover was mapped for the Limpopo
province of South Africa using Landsat spectral metrics and ALOS PAL-
SAR radar imagery and a series of Random Forest regression models.
The most accurate models combined multi-seasonal Landsat data and
the radar layers. However, this was only marginally more accurate than
just using dry and wet season metrics alone. When using a single sea-
son of imagery, the dry season preformed best. These results were reaf-
firmed for categorical savannah land-cover classifications, highlighting
the importance of multi-sensor and multi-temporal data.
The thesis contributes new insights for monitoring savannahs using EO
imagery. By combining EO data with modern statistics and machine-
learningmethods novel insights to ecological and environmental issues
can be gained. In the coming years, the increasing number of opera-
tional sensors and the volume of data collected will be of great benefit
for environmental monitoring, especially in savannahs.
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Chapter 1

Introduction

1.1 Motivation

In July 2018, the human population of the Earth surpassed 7.6 billion persons, co-
inciding with an atmospheric carbon dioxide concentration of > 410 ppm. Both
these records are a testament to anthropogenic manipulation of the Earth’s sur-
face and harnessing of ecosystem service production. By the early 21st century,
humans had directly modified 75% of the Earth’s ice-free surface and appropriated
over 25% of primary production annually for food, fuel, and fibre (Krausmann et al.
2013, Ellis et al. 2010). In addition to these anthropogenic pressures, the biosphere
is increasingly affected by climatic change as temperature and rainfall regimes are
altered. Over the coming decades, both human and climatic affects are likely to
increase, making it essential that ecosystem dynamics - how ecosystems function
and change - are well understood.

Themost obvious ecosystem function changes are abrupt transformations, such
as deforestation or urbanisation. Less apparent are changes occurring in systems
such as savannahs, defined as heterogeneous mosaics of grass, shrub, and tree
species. However, these ecosystems cover 20% of the Earth surface, including a
majority (65%) of the African continent (Figure 1.1), and are cumulatively the largest
terrestrial vegetation carbon stock (Archibold 2012).

Savannahs are critical for both the ecosystem services they provide to some
of the world’s poorest people, and for their unique and endangered biodiversity.
Furthermore, over the coming decades they are projected to experience increasing
ecological, climatic, and human pressures. This makes it imperative that shifts in
their ecosystem functionality are monitored and understood, to better enable their
appropriate management. However, savannahs are difficult systems to monitor,
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due to their heterogeneity and large spatial coverage. It is this difficulty that the
research presented here attempts to elucidate, by focusing on the use of Earth-
observation to monitor and understand the ecosystem dynamics of African savan-
nah systems.

Figure 1.1: Global distribution of biomes and their Carbon stocks. Source UNEP,after Olson et al. (2001)

Why African Savannahs?

It has been argued that nowhere is ecosystemmonitoring more important, for both
social and environmental concerns, than Africa (Reynolds et al. 2011). No African
nation appears in the top third of the global Human Development Index (HDI) rank-
ings, with only five countries (Seychelles, Mauritius, Algeria, Tunisia, and Libya)
obtaining a ’high’ classification (UN 2016) . In particular, sub-Saharan Africa is af-
flicted by low development, with 389million people (41%) currently living in extreme
poverty on less that int.$1.90 per day: a proportion that has declined at a far slower
rate than other regions over the past 30 years (Figure 1.2).

The low development of sub-Saharan Africa coincides with a high dependency
on ecosystem services for livelihoods, particularly within rural populations. A ma-
jority of sub-Saharan residents (80%) depend onwood collection for fuel (IEA 2010);
even in relatively developed South Africa, 54% of rural households use biomass fuel
(Pereira et al. 2011). The woody components of savannahs and sparse woodlands
are therefore crucial for local inhabitants. Concurrently, rearing livestock, such as

2



Figure 1.2: Proportion of people living in extreme poverty by continent. Source:https://ourworldindata.org/extreme-poverty
goats and cattle, is an important source of food and income for rural residents, es-
pecially in arid regions where arable agriculture is less feasible. Pastoralism is, in-
herently, dependent upon the availability of forage in the form of grass; reductions
in grass cover, for either bare ground or woody cover, can incur major economic
consequences (Anadón et al. 2014).

The biodiversity of Africa and it’s savannah regions is globally unique. Mega-
fauna, particularly large mammals, are present across vast areas of African savan-
nahs in densities and diversity not found on other continents. In addition, Africa
possess large number of endemic mammals, birds, and reptiles (Figure 1.3). The
continued sustainability of this biodiversity is dependent upon the existence of suf-
ficient quantity and quality of appropriate habitat. This requirement is amplified by
the large migrations undertaken by many animals, as herds follow seasonal rains
and vegetation. In addition to its intrinsic value, African biodiversity is a major gen-
erator of tourism revenue. Despite poor infrastructure, in 2012 alone the 33.8 mil-
lion visitors in sub-Saharan Africa generated $36 billion (2.8% of GDP) (World Bank
2013).
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Figure 1.3: Global distribution of species richness for different categories ofspecies. Top row: all species in taxon. Middle row: only threatened species (vulner-able, endangered, or critically endangered in the IUCN Red List). Bottom row: onlyspecies with a geographic range less than the median range size for that taxon.Source Jenkins et al. (2013)
Any plans to accelerate development and reduce food insecurity in sub-Saharan

Africa necessitate a focus on agriculture, a goal that has historically been ham-
pered by a proliferation of civil conflict and limited infrastructure, making sub-tropical
Africa one of the least integrated agricultural markets in the world, with a limited
presence of international trade. This situation in liable to imminent change. An
ongoing decrease in conflict is co-occurring with displacement of agriculture from
South America, due to regulation and rising land prices, spurring agricultural in-
vestments. Furthermore, large-scale Chinese infrastructure projects are opening
up inland areas once too isolated for international trade. Large areas of savannahs
are, therefore potentially vulnerable to agricultural conversion, particularly for soy
beans. Although these developments have great potential to reduce poverty and
food insecurity, novel and biodiverse ecosystems could become threatened.
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1.2 Using Remote Sensing to Monitor Ecosystem Dy-
namics

Global environmental problems require data at large spatial and long-term temporal
scales. For many, if not all, regions the only data source meeting these require-
ments is Earth-observation (EO) satellites. The first bespoke Earth-observation
satellite was launched in 1972, as the Earth Resources Technology Satellite 1. This
was the first component ofwhatwas to become the Landsat series, now the longest
continually operational Earth-observation mission. The 46 plus years of imagery
collected by the seven (successfully launched) Landsat sensors is arguably the
most comprehensive evidence of changes occurring on the Earth’s surface over a
period inwhich the human population has doubled and global warming has become
apparent (Kennedy et al. 2014) (Figure 1.4).

Figure 1.4: Periods covered by the most commonly-used Earth-observation sen-sors, corresponding to human population and global temperature, source Kennedyet al. (2014)
Earth-observation sensors can broadly be categorised into two types: passive

or active. Active, such as radar or lidar, sensors emit radiation towards a target
and measure the reflected (or returned) energy. Conversely, passive (i.e optical)
sensors lack a method for generating radiation, and measure the reflected energy
emitted by a third party source (i.e. the Sun) (Warner et al. 2009). These differences
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in operation result in the data provided by both systemspossessing different advan-
tages and limitations. Active sensors are not limited to the radiation wavelengths
present within sunlight; they operate with radar wavebands which can penetrate
clouds and vegetation canopies be to used. Passive sensors, on the other hand,
rely on sunlight which can be blocked by clouds, but negates the need for an en-
ergy source, making them cheaper and operational for longer.

This PhDwas undertaken at an especially opportune time for Earth-observation,
benefiting from two major advances: open-data policies and increases in compu-
tation power. Firstly, in 2008, the US government made their historic and future
Landsat collections freely available and began efforts to collect and centralise im-
age collections held around the world (Woodcock et al. 2008, Wulder et al. 2016).
These efforts have enabled Landsat-based analyses to use an amount of imagery
that would have been economically unfeasible under a commercial distribution
model (Wulder et al. 2012, Kennedy et al. 2014). Traditional studies would typi-
cally use a single image to map land cover, and a handful of images to monitor
change (Singh 1989, Lunetta and Elvidge 1999). It is now possible to use dense
stacks of imagery to map ecosystem properties and change at large spatial and
regular temporal scales (Griffiths et al. 2013, Kennedy et al. 2010, Roy, Ju, Kline,
Scaramuzza, Kovalskyy, Hansen, Loveland, Vermote and Zhang 2010). Secondly,
computing power has become considerably cheaper and more accessible in re-
cent years, for both desktop computers and cloud services. This is exemplified by
Hansen et al. (2013) who analysed 654,178million Landsat scenes (143 billion 30m
pixels) to generate the first high-resolution, globalmaps of forest cover and change.
This was possible due to Google Earth Engine, a cloud-based server developed by
Google inc. in California (Gorelick et al. 2017). By hosting the entire Landsat (and
other imagery) archive on an accessible and freely-available cloud server it is now
possible to perform computationally demanding calculations that would previously
have taken months or years to complete; e.g. Hansen et al. (2013) would have re-
quired onemillion CPU-core hours on 10,000 PCs. This typifies a ’take the methods
to the data’ approach, where the time and money consuming process of data pro-
cessing is completed remotely, and researchers instead move their analysis codes
to where the data is located.

This thesis focuses, in particular, on two ecosystem attributes that are key for
savannahs: woody coverage, and biomass. The woody cover component of sa-
vannahs is the top-down 2-dimensional proportion (%) of ground covered by the
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canopies of woody plants, including trees and shrubs. Biomass is the vegeta-
tion carbon content (Kg ha-1) accumulated through Net Primary Production (NPP).
These attributes were chosen as they are fundamental to ecosystem service provi-
sion, and are key indicators of environmental change (Running et al. 2004, Eldridge
et al. 2011, Myneni et al. 1997).
Land Cover Mapping

The woody cover chapters of this thesis are, fundamentally, concerned with the
mapping of land cover. Classifying imagery into maps of land use or land cover
has been one of the primary applications of Earth-observation since the launch of
Landsat 1- then known as the Earth Resources Technology Satellite 1. The classifi-
cation of satellite imagery involves three stages: the collation of training pixels that
are of a known class; the acquisition of some satellite-derived variables that are to
be classified, and finally, the application of a statistical model to generate predic-
tions for pixels not included in the training data. Although these components have
been consistent since the 1970s, major developments have occurred in the types
of predictors and statistical models available.

Early land cover studies relied heavily on Maximum Likelihood Classification
(MLC), a Bayesian approach that uses the class-level mean and standard deviation
of the predictor variables to assign probabilities of class membership to pixels.
However, asMLC is based on themean of the training data, each predictor band per
classmust be normally distributed. Other classificationmethods used in early stud-
ies include minimum distance, decision trees, and parallelepiped. All of these tech-
niques benefit from being computationally light, a key requirement when dealing
with what was until recently considered sizeable datasets. However, these meth-
ods generally preform sub-optimally when compared with statistical techniques
developed in the 2000s. Therefore, the most commonly used classifiers for con-
temporary studies are generally derived from machine learning, such as Random
Forests (James et al. 2013, Kuhn and Johnson 2013).

Random Forests are an extension of the simpler decision tree technique. In de-
cision trees, the outcome class (or leaf) is determined based on a series of rules
splitting the predictor variables (nodes). This method is easily interpretable and
quick to compute. However, small shifts in the training data can produce markedly
different trees- they have high variance but low bias, making their predictive power
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over unseen data rather weak. Random Forests overcome this weakness of deci-
sion trees by iteratively sampling from the full dataset, generating a decision tree
and validation against the withheld sample. This process can be repeated multiple
times, with a final prediction based on an average of these trees.

Improvements in statistical models has allowed a proliferation in the number
of predictors that can be applied. Traditional classifiers behave poorly when the
number of predictor variables increases, as the dimensionality of the feature space
expands (i.e. the ’curse of dimensionality’) (Guyon et al. 2002, Guyon and Elisseeff
2003). This development has also coincided with improvements in open-data poli-
cies and data availability. Therefore, inputs to classification models are no longer
limited to single date cloud-free images, and instead can be derived from large
numbers of candidate images. Roy, Ju, Kline, Scaramuzza, Kovalskyy, Hansen,
Loveland, Vermote and Zhang (2010), Griffiths et al. (2013) developed the concept
of best available pixel compositing. The approach takes all available Landsat im-
ages and selects the optimum pixel based on a series of criteria, e.g. target date,
year, proximity to clouds, or radiometric quality. A simpler process of generating
spectral-temporal variability metrics has also proved popular. This method gener-
ates summary statistics (e.g. mean, standard deviation, percentiles) on a pixel-level
basis from all cloud-free observations (Müller et al. 2015). These statistics have the
benefit of conveying information on the temporal variability of a pixel, which can be
informative for many land cover types. Further temporal parameters can be de-
rived from fitting statistical curves to raw observations. This is a desirable option,
as many land cover types are distinctive in their temporal evolution (Brandt et al.
2016, Zhang et al. 2014). However, for reliable curves to be fit there must be suf-
ficient data points present, a requirement that is not typically met for many areas
outside of the United States.

In many environments, mapping land cover as a single class is not an ideal
strategy, as habitats may be heterogeneous at the pixel scale. In these regions,
mapping the sub-pixel or fractional cover of different land cover types is more ap-
propriate. This can be achieved through a variety of methods such as spectral un-
mixing, whereby a spectrum is decomposed into contributions from pure spectra
(endmembers) (Lillesand et al. 2004); alternatively, regression analysis can predict
coverage based on training data that quantifies the subpixel content. Fractional
land cover maps can bemore ecologically relevant especially where one class is of
particular concern (Naidoo et al. 2015).
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Biomass and Primary Production

The first step towards the accumulation of vegetation biomass is photosynthesis;
where water (H2O) and carbon dioxide (CO2) are combined with sunlight in the
form of photons (γ), to produce carbohydrates (CH2On) and oxygen (O2); Equation1.1).

2nCO2 + 2nH2O + γ = 2(CH2O)n + 2nO2 (1.1)
In nearly all plants and algae, the chlorophyll pigment within chloroplasts is re-

sponsible for the absorption of sunlight and the operation of photosynthesis. The
biomass accumulated over a period of time is referred to as Gross Primary Pro-
duction (GPP), a portion of which is used by plants for maintenance of cells and
respiration, with the remainder constituting NPP. The main wavelengths of light ab-
sorbed by photosynthesis are the red and blue spectra, which gives vegetation it’s
characteristic green colouring (Figure 1.5.A). Collectively, this spectral region that
is available for photosynthesis is the Photosynthetically Active Radiation (PAR), i.e.
the ratio of NPP to PAR, which quantifies the efficiency of the photosynthesis that
has occurred. The later is referred to as Light Use Efficiency (LUE).

The first attempts to model NPP at large-scales were the empirical equations
developed by Whittaker and Marks (1975). Globally distributed weather data were
used to estimate actual evapotranspiration (AET ), whichwas then regressed against
a small number of NPP crop field sites. The resulting equation (Equation 1.2),

NPP = 3000{1− exp[−0.000995(AET − 20)]} (1.2)
when applied to the extrapolated AET estimates, produced a global NPP value of
118 billion metric tons of carbon per annum. Climate-based methods of estimating
NPP were, for many years, the only method of large-scale analysis. However, they
have fundamental constraints for monitoring purposes, as weather data are limited
in spatial coverage and resolution (Running et al. 2004). Furthermore, this approach
assumes that the only limitation to NPP is climate, with no quantification of the role
played by nutrients, management, or most importantly varying LUE. An ideal option
would be the monitoring of photosynthesis directly, i.e. without having to not rely
on climatic constrains. This aim has been the focus of much work using optical
remote sensing, with varying degrees of success (Eisfelder et al. 2012, Wessels
et al. 2006), .
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As photosynthesis is fundamentally a process of the absorption and processing
of sunlight, it is reasonable to assume that optical-based EO has good potential for
monitoring or modelling the process. The most common, and simplest method for
achieving this is the use of broad-band vegetation indices, the most ubiquitous of
which is the Normalised Difference Vegetation Index (NDVI):

NDV I = (ρNIR− ρRed)
(ρNIR + ρRed) (1.3)

where ρNIR is reflectance in the 0.7-1.3µ near infra-redwavelength range, and ρRed
is reflectance in the visible red spectra, around 0.67µ (Tucker et al. 1973). This
formulation takes advantage of the ’red-edge’ phenomena of vegetation spectra,
where the reflectance of healthy plants increases sharply between 0.68 and 0.73µ
(Figure 1.5.A). This is the threshold at which sunlight transitions from being ben-
eficial to plants and absorbed for photosynthesis, to being potentially harmful by
causing overheating and cell damage, and is reflected (Prince 1991, Warner et al.
2009).

NDVI is not a direct measure of either biomass or NPP; it does however, show a
strong linear relationship to both of these variables in low-to-moderately productive
environments (Prince 1991). In practice, NDVI can more broadly be considered a
proxy of vegetation vigour or greenness, not a strict ecological parameter. As it
is most sensitive to variations in the vegetation of low-to-moderate systems, it is
commonly used in semi-arid area,; where it is one of, if not the most, common
methods ofmonitoring biomass fluctuations over large areas (Eisfelder et al. 2012).

NDVI can be calculated from any sensor that collects red and infra-red wave-
bands, whether aboard a satellite, an aircraft, a drone, or ground based. After being
conceived using ground-based spectroradiometers, the first space-borne applica-
tion of NDVI used imagery from the newly launch Landsat 1 (Tucker et al. 1973,
Prince and Astle 1986). However, the key breakthrough for ecosystem monitoring
came in 1981 when modifications to the Advanced Very High Resolution Radiome-
ter (AVHRR) sensor aboard the 7th instalment of the National Oceanic and Atmo-
spheric Administration’s (NOAA) polar orbiting platforms shifted the near-infared
channel, allowing the detection of vegetation (Tucker 1979, Cracknell 2001). Al-
though AVHRR imagery were coarse resolution (8 km pixels), even by the standards
of the 1970s and 1980s (Landsats 1-4 were 60 m), it had the benefits of being an
operational mission with two sensors continuously in orbit, resulting in rapid repeat
coverage of the whole Earth. This enabled the imagery to be composited at regular
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Figure 1.5: A) Spectral profile of a healthy oak tree (ASTER library), B) respectivewavebands for Landsat and AVHRR)
intervals such asmonthly or bi-monthly (15-day) periods across entire continents, a
spatial and temporal scale unimaginable using Landsat imagery at the time (Tucker
et al. 1986, Prince and Tucker 1986). The NDVI data produced by AVHRR were fun-
damental in the development of global ecological science, providing the ability to
undertake large-scale analyses to issues typically studied at small-scales: includ-
ing deforestation in the Amazon, desertification in the Sahel, and studying pheno-
logical cycles (Tucker et al. 1991, Skole and Tucker 1993, Tucker, Townshend and
Goff 1985).

It is possible to deterministically convert NDVI to NPP. However, this process
requires a number of additional stages. The Moderate resolution imaging spec-
trometer (MODIS) NPP product (MOD17A3) achieves this by the following stages
(Running et al. 2004): firstly, NDVI is used as a measure of the Fraction of PAR
(FPAR) according to:

APAR/PAR ≈ NDV I ≈ FPAR (1.4)
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Secondly, GPP is estimated according to:
GPP ≈ ε× FPAR ≈ ε×NDV I × PAR (1.5)

where ε is a landcover-specific conversion efficiency value, analogous to a simple
LUE score. Thirdly, the daily GPP is converted to net photosynthesis (PSNnet) by
deducting a 24-hour estimate of maintenance costs (Rlr):

PSNnet = GPP −Rlr (1.6)
Finally, the daily GPP is summed to NPP after removing annual maintenance costs
for leaves and roots (Rg and Rm):

NPP =
∑

(PSNnet −Rg −Rm) (1.7)
This approach requires a number of assumptions, such as the parametrisation

of ε and Rlr that are problematic in many regions. In particular, using a landcover-
derived ε has proved flawed in semi-arid African ecosystems, which are highly het-
erogeneous at the 1 km scale of MODIS land cover products (Fensholt et al. 2006).
Therefore, for semi-arid regions, NDVI is often considered preferential to NPPmod-
els, due to simplicity, historical usage, and fewer assumptions.

1.3 Aims

The overarching aim of this thesis is to improve the capacity of Earth-observation
for monitoring the ecosystem dynamics and health of semi-arid savannah ecosys-
tems. This is aim is envisioned as a precursor to potential operational monitoring
systems. The following research questions contribute towards this aim:

1. What is the current status and potential limit of land degradation monitoring
frameworks?

2. Can grass biomass be reliably mapped using coarse-resolution NDVI data?
3. What is the most accurate method for mapping the fractional woody cover of

savannahs?
4. How has regional-scale woody cover changed in northern South Africa since

1984?, and what are the drivers of this change?
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5. What are the continental-scale trends in vegetation greenness since 1982 for
Africa?

1.4 Thesis Structure

This thesis is presented as five stand-alone papers, which have either been pub-
lished, are undergoing peer review, or pending submission. These chapters are
independent but have a common theme of using remote sensing for monitoring
savannah ecosystems.

Chapter Two is a review paper, providing an in-depth summation on the use of
vegetation indices formonitoring land degradation (Higginbottom and Symeonakis
2014). Coarse resolution indices, such as the NDVI, are arguably themost common
method for assessing savannah ecosystemdynamics having been used in the Food
and Agriculture Organisation’s (FAO) Global Assessment of Land Degradation and
Improvement (GLADA) project (Bai et al. 2008). As a concept, using a proxy of pho-
tosynthesis to monitor the condition of ecosystems appears simple and appeal-
ing. However, the theoretical and methodological implementation of this theory is
highly controversial, with a long history of contentious debate. This chapter sum-
marises the historical background and academic debates concerning the use of
NDVI for degradation monitoring, and provides a number of recommendations for
future study.

Chapter Three presents a statistical study on the relationship between NDVI
and grass biomass, for the Kruger National Park South Africa. This relationship
has been acknowledged and studied for 40 years, providing the basis for many
applications (as discussed in Chapter Two). Yet there is a lack of robust spatio-
temporal analysis on how reliable this relationship and what factors have influ-
ence. In this study, machine learningmethods are combined with target-orientated,
spatio-temporal, cross validation procedures to test how reliable and transferable
NDVI-biomass relationships are.

Chapter Four is a methodological study on mapping the fractional woody cover
of savannahs (Higginbottom et al. 2018). This paper tests the ability of radar and
optical data to generate large-area woody cover maps for the Limpopo province of
SouthAfrica. A variety ofmulti-sensor datasets are used including: a pre-processed
L-band radar mosaic, a series of multi-seasonal spectral-temporal metrics derived
from large volumes of Landsat imagery, and high-resolution aerial imagery. These
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data are combined in amachine learning framework to identify the benefits and lim-
itations of different seasonal and sensor combinations for fractional woody cover
mapping.

Chapter Five extends the approach developed in Chapter Three into a multi-
temporal study. Landsat metrics are classified into maps of woody cover change,
for two northern South African provinces from 1986-2012. This change data is then
used to test three theories on the causes of shrub encroachment. There are three
competing theories to explain woody cover changes: i) land managment and graz-
ing, ii) atmospheric carbon fertilisation, and iii) rainfall variation. Considering these
possible explanations, a series of variables were compiled and used in a modelling
framework to test which of these proposal works best in South Africa.

Chapter Six builds on some of the issues raised in Chapter Two, by examining
vegetation greenness in African savannahs, using a variety of methods. A 34 year
NDVI time-series is aggregated into two annualmetrics: maximumand sum. These
metrics are used as inputs into both linear and piecewise, time-series regression
models. By using two metrics and two analyses, it is possible to infer ecological
driver throught the similarities and differences of the results.
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Chapter 2

Assessing Land Degradation and
Desertification Using Vegetation Index
Data: Current Frameworks and Future
Directions

Citation

This chapter has been published as a review paper in the following journal article:
• Higginbottom, T.P., and Symeonakis, E. "Assessing Land Degradation and De-
sertification Using Vegetation Index Data: Current Frameworks and Future
Directions". Remote Sensing, 6(10), 9552-9575;
http://dx.doi.org/10.3390/rs6109552doi:10.3390/rs6109552

2.1 Abstract

Land degradation and desertification has been ranked as a major environmental
and social issue for the coming decades. Thus, the observation and early detection
of degradation is a primary objective for a number of scientific and policy organisa-
tions, with remote sensing methods being a candidate choice for the development
of monitoring systems. This paper reviews the statistical and ecological frame-
works of assessing land degradation and desertification using vegetation index
data. The development of multi-temporal analysis as a desertification assessment
technique is reviewed, with a focus on how current practice has been shaped by
controversy and dispute within the literature. The statistical techniques commonly
employed are examined from both a statistical as well as ecological point of view,
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and recommendations are made for future research directions. The scientific re-
quirements for degradation and desertification monitoring systems identified here
are: (I) the validation of methodologies in a robust and comparable manner; and
(II) the detection of degradation at minor intensities and magnitudes. It is also es-
tablished that the multi-temporal analysis of vegetation index data can provide a
sophisticated measure of ecosystem health and variation, and that, over the last
30 years, considerable progress has been made in the respective research.

2.2 Introduction

The United Nations Convention to Combat Desertification (UNCCD), ratified by 195
countries, identifies land degradation and desertification as one of the most press-
ing environmental concerns of our times (UNCCD 1994, 2002). Furthermore, the
UN Conference on Sustainable Development ("Rio + 20") has called for a target of
"zero net land degradation", whereby the rate of deteriorating lands would be coun-
terbalanced by the rate of land improvement. These political frameworks, whilst
admirable, require sound scientific evidence for effective implementation (Grainger
2015). However, in spite of political and scientific recognition of the importance of
land degradation, current estimates of its extent and severity are highly unreliable
and spurious. The often quoted statistics that 15% of the Earth’s surface and 60%
of drylands are degraded (Oldeman et al. 1991), are acknowledged as qualitative
and unsubstantiated (Nicholson et al. 1998, Thomas et al. 1994). These estimates,
based on coarse resolution expert opinions, are not suitable for policy making or
for scientific investigations into the potential remediation of degraded lands (Glenn
et al. 1998).

The timely and early detection of degradation processes is necessary to prevent
the continuing deterioration of land condition. The lack of authenticated evidence
on the magnitude of desertification has led to questions over the very existence
of a global degradation problem (Fensholt et al. 2012, Helldén and Tottrup 2008),
with large-scale studies frequently at odds with plot and field-scale studies (Miehe
et al. 2010, Hein et al. 2011). There is a pressing need, therefore, for accessible and
accurate measurements on the extent of degradation and desertification for pol-
icy, natural resource management and scientific research needs (Glenn et al. 1998,
Verrôn et al. 2006). Given the temporal nature of land degradation, it is paramount
that measurements adhere to the principles of repetitiveness, objectivity and con-
sistency (Hill et al. 2008). These requirements, combined with the size of the land
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occupied by semi-arid regions and the degree of development of many vulnerable
nations, make Earth Observation (EO)-based systems a candidate choice for es-
tablishing monitoring networks (Bai et al. 2008, Symeonakis and Drake 2004). So
far, the most frequently utilised method employing EO datasets is trend analysis
of vegetation index data, most commonly the Normalised Difference Vegetation
Index (NDVI), as a proxy for Net Primary Production (NPP).

Land degradation and desertification is a complex area of scientific research.
This complexity partly arises from an open discussion on the definition of what ac-
tually constitutes degradation. This confusion occurs due to the interdisciplinary
nature of desertification, encompassing geographical, ecological, meteorological
and social perspectives, all of which can have regionally specific interpretations
(Warren 2002). Early observations, provided by European foresters in 1930’s West
Africa, classified desertification as the consequence of desert boundary displace-
ment (Stebbing 1935). This viewpoint was later adapted to cover a variety of mech-
anisms that would result in a detrimental impact upon "the physical, chemical or bio-
logical status of landwhichmay also restrict the land’s productive capacity" (Chartres
1987). Quantifying desertification by measurements of vegetation productivity and
cover has led to long running debates concerning both the acknowledgement and
inference of climatic influence on semi-arid ecosystems, with the UNCCD acknowl-
edging that degradation can result from "various factors including climate variations
and human activities" (UNCCD 1994). For a comprehensive review of the various
definitions and their contexts see reviews by (Nicholson et al. 1998, Thomas et al.
1994, Herrmann and Hutchinson 2005). For the purpose of this article, we follow
the definition used by the Millennium Ecosystem Assessment (Safriel and Adeel
2005), which refers to land degradation as "the reduction in the capacity of the land
to perform ecosystem goods, functions and services that support society and de-
velopment", and to desertification as the same process in arid and semi-arid envi-
ronments (collectively, the drylands). Hence, we use the terms desertification and
degradation interchangeably. This definition considers the ability of land to support
primary production as key ecosystem service, and its adoption implies that a reduc-
tion in the measured NPP at a site can potentially be viewed as land degradation
(Wessels et al. 2012). This notion forms the theoretical framework on which the
majority of EO-based assessments of degradation are founded, e.g., Symeonakis
and Drake (2004), Bai et al. (2008), Prince et al. (1998). The potential of vegeta-
tion index variation as a measure of ecosystem health has been acknowledged for
nearly 30 years (Tucker et al. 1986), yet in spite of this simple concept, the subject
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has become extremely controversial within the scientific literature (Bai et al. 2008,
Prince et al. 2007, Wessels 2009). This controversy prevents the realisation of land
degradation early warning and monitoring systems, which have been postulated
for some time (Symeonakis and Drake 2004).

In this paper, we review the theoretical and statistical frameworks used for as-
sessing land degradation with vegetation indices with a view to clarify current un-
derstandings and to highlight avenues for future research. Our specific objectives
are to provide:

1. A brief review of the origin of NDVI and the association ofmulti-temporal anal-
ysis in an land degradation framework;

2. An evaluation of the current methods used to assess degradation and deser-
tification through vegetation indices;

3. An assessment of how thesemethods integrate into the wider debates on the
mechanisms and processes of land degradation.

Although the focus of this review is the assessment of degradation and deser-
tification in drylands, the frameworks discussed are by no means exclusive to this
subject or environment, and are in many cases equally applicable to more wide-
ranging global environmental change studies (Alcaraz-Segura, Chuvieco, Epstein,
Kasischke and Trishchenko 2010).

2.3 NDVI: Origin and Data

NDVI is expressed as:
NDV I = NIR−Red

NIR−Red
(2.1)

where NIR and Red are reflectance values in the near-infrared and red wave-
bands, respectively. Thus, values range between -1 and 1 with an NDVI <0 indi-
cating cloud or water and >0.7 dense canopy coverage. There is some confusion
over the exact origin of the NDVI. Although frequently cited as the original record,
both Deering (1978) and Rouse et al. (1973) used the transformed vegetation index
(TV I =

√
NDV I + 0.5), not the NDVI. A number of ecology and spectroscopy stud-

ies through the late 1960s and 1970s used NDVI, with the original paper remaining
elusive (Birth and McVey 1968, Jordan 1969, Pearson and Miller 1972). In light of
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this confusion, the NDVI is most commonly credited to Tucker (1979) who com-
pared field biomass data with various band combinations obtained from hand-held
spectroradiometer readings.

NDVI is not a direct measure of vegetation or biomass, hence, it is not directly
translatable into NPP. However, there is a considerable volume of literature report-
ing a close coupling between NDVI and in-situ NPP measurements (Tucker et al.
1986, Tucker, Vanpraet, Sharman and Van Ittersum 1985, Prince and Astle 1986,
Wessels et al. 2006). For a full review of the advantages and limitations of vege-
tation index usage in dryland regions refer to Eisfelder et al. (2012) and references
therein. A key limitation of NDVI in regions of sparse biomass is the influence of
soil interference, thus it is not advisable to apply NDVI in regions with an average
value of NDVI <0.1.

Time series analysis of NDVI can be applied using any system capable of mea-
suring reflectances in the red and near infrared reflectance bands. However, long-
term studies encounter data consistency and availability issues from a number
of factors, including solar zenith angle, volcanic aerosols, sensor degradation and
sensor compatibility. As such, analyses commonly utilise pre-processed datasets
corrected for these issues (Table 1). The longest source of imagery available is
obtained from the Advanced Very High Resolution Radiometer (AVHRR) sensor.
Developed datasets include the 1981-2001 Pathfinder AVHRR Land-record (PAL)
(Townshend 1994), the 1981-2006 Global Inventory Modelling and Mapping Stud-
ies (GIMMSg) (Tucker et al. 2005), and the 1981-2011 GIMMS3g (Pinzon and Tucker
2014) at 8 km resolutions A recent European consortium havemerged AVHRR data
with SPOT imagery generating a 5 km (1981-1998) and 1 km (1998-2012) product
(Verger et al. 2012). The AVHRR-derived datasets, in particular the GIMMS and
GIMMS3g products, continue as the most popular record, due to the unparalleled
time span, in spite of the increasing availability of higher resolution products, such
as SPOT (1 km), MERIS (1 km) and MODIS (500 m), all of which feature reduced
time-spans. A comprehensive review of the available NDVI data sets is given in
Pettorelli (2013).

2.4 Background of Multi-Temporal Analyses

The use of NDVI for assessing desertification originates in the Sahel region of sub-
Saharan Africa, which experienced a prolonged reduction in rainfall between 1960
and 1990 (Figure 2.1 ), with particularly severe droughts in 1973, 1984, and 1990
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Name Sensor Time-Span Time-Step ResolutionPathfinder (PAL) AVHRR 1981-2001 10-day 8 kmGlobal Vegetation Index (GVI) AVHRR 1981-2009 7-day 4 kmLTDR AVHRR 1981-2013 Daily 5 kmFASIR AVHRR 1982-1998 10-day 0.125ÂřGIMMS AVHRR 1981-2006 15-day 8 kmGIMMS3G AVHRR 1981-2011 15-day 8 kmS10 SPOT-Vegetation 1998+ 10-day 1 kmEM10 ENVISAT-MERIS 2002-2012 10-day 1/1.2 kmSeaWiFS SeaWiFS 1997-2010 Monthly 4 kmMOD (MYD)13 A1/A2 Terra (Aqua) 2000+ 16-day 500 m/1 kmMOD13 (MYD)A3 MODIS Monthly 1 kmMOD13 (MYD)C1/C2 16-day/Monthly 5.6 kmMOD13 (MYD) Q1 16-day 250mMEDOKADS AVHRR 1989+ Daily 1 km
Table 2.1: A summary of commonly utilised Normalised Difference Vegetation In-dex (NDVI) datasets, FASIR - Fourier-Adjusted, Sensor and Solar zenith angle cor-rected,Reconstructed. Interpolated, LTDR - Land Long Term Data Record .
(Hulme 2001). These droughts represent the most dramatic climatic shift on mod-
ern record and resulted in widespread famine across the region (Hulme 2001). This
ecological andmeteorological transitionwas viewed as the consequence of anthro-
pogenic desertification, supporting the "expanding deserts" paradigm (Stebbing
1935, Aubréville et al. 1949, Lamprey 1975). Desertification was understood to re-
sult from human alteration of land-atmosphere interactions (Figure 2.2) (D’Odorico
et al. 2013). Reduced vegetation cover, initiated by increased grazing pressures
(Sinclair and Fryxell 1985, Dregne 1986), was postulated to increase localised albedo
and temperature, in turn reducing regional rainfall leading to further vegetation
cover loss (Charney 1975, Charney et al. 1977). Thus, an increased anthropogenic
pressure was attributed as the major driver of regional climate and land cover pro-
cesses (Prothero 1974). This was in agreement with studies demonstrating the
impact of intensive grazing on surface reflectance across the Negev-Sinai border
(Tsoar and Karnieli 1996, Otterman 1981, Otterman and Tucker 1985). Conclusions
regarding an expanding Sahara and encroaching dune systems, such as those pro-
posed by Lamprey (1975) and Stebbing (1935), were heavily cited in both scientific
publication and media outlets (Hellden 1991). More recent research heavily chal-
lenged this viewpoint and paradigm (Hellden 1984, Ahlcrona et al. 1988, Hanan et al.
1991, Nicholson et al. 1998). A number of studies in the Sudano-Sahelian region
combined field surveys with aerial photography and multi-temporal NDVI. These
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studies revealed little expansion of the Sahara, and a relatively minor human foot-
print when compared to the climatic signal (Hanan et al. 1991). Other regional-scale
analyses (Hellden 1991, Tucker et al. 1991) reinforced this conclusion, casting se-
rious doubt on the expanding deserts paradigm (Thomas et al. 1994). The study
of Tucker et al. (1991) was a seminal study in demonstrating the potential of EO
for long-term regional-scale ecosystem studies. In combination with other studies
in the tropics (Skole and Tucker 1993, Malingreau and Tucker 1988), Tucker et al.
(1991) demonstrated the potential to apply time-series analysis on EO imagery for
monitoring and assessing ecosystem processes.

The demonstration of the potential ofmulti-temporal NDVI imagery (Tucker et al.
1991), coupled with the development of pre-processed long-term data sets (Town-
shend 1994), resulted in an increase in the application of time-series analysis using
NDVI. In the Sahel, a greening trend was observed by numerous studies (Eklundh
and Olsson 2003, Herrmann et al. 2005, Huber et al. 2011, Fensholt and Rasmussen
2011). Herrmann et al. (2005) used the residual trend method (see Section 2.5) in
combination with trend analysis on 19 years of monthly NVDI data to conclude that
the region was, in general, greening with only localised degradation present. This
analysis was reinforced by Huber et al. (2011) on an extended NDVI data set, in
conjunction with soil moisture estimates, with similar conclusions. Process-based
ecosystem-modelling studies reported an agreement between the observed NDVI
patterns and climate model-based estimates (Hickler et al. 2005), with little influ-
ence from population or grazing pressures (Seaquist et al. 2009). Growing sea-
son NDVI was found to have increased by 0.09 units from 1981-2007 (Huber et al.
2011), although a reduction in the rate of greeningwas noted around 2000 (De Jong,
Verbesselt, Zeileis and Schaepman 2013).This greening trend was found to be con-
sistent across semi-arid regions globally, traditionally viewed as the hot-spots of
land degradation (Donohue et al. 2009, de Jong, de Bruin, de Wit, Schaepman and
Dent 2011, Helldén and Tottrup 2008). With comparable desert boundary variation
also noted in Asian drylands (Piao et al. 2005, Jeong et al. 2011). Greening was
found to occur through two mechanisms: a lengthening of the growing season
through earlier springs and delayed senescence and an increase in the maximum
amplitude of NDVI (de Jong, de Bruin, de Wit, Schaepman and Dent 2011, Heumann
et al. 2007, Piao et al. 2006). Evidence of increased vegetation productivity ac-
companied a revised view of the cause of Sahelian rainfall fluctuations. Modelling
studies revealed that the desiccation-vegetation feedback loop, theorised by Char-
ney (1975), had been greatly exaggerated (Nicholson et al. 1998). Regional rainfall
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variation is primarily related to external drivers, principally sea surface temperature
in the low-latitudes (Giannini et al. 2003) but also northern hemisphere volcanic
aerosol emissions (Haywood et al. 2013), with localised vegetation-atmospheric
interactions playing a minor role (Giannini et al. 2003). The majority of vegetation
greening, in the Sahel and globally, can be attributed to increased precipitation over
the past 30 years (De Jong, Schaepman, Furrer, Bruin and Verburg 2013). However,
the question of human influence on semi-arid ecosystems remains highly contro-
versial (Bai et al. 2008, Wessels 2009). Furthermore, the sensitivity of trend meth-
ods to detecting degradation processes has been questioned (Wessels et al. 2012).
Claims that current precipitation patterns may be disguising wide-spread degrada-
tion (Hein et al. 2011, Wessels et al. 2012) require urgent investigation. The conse-
quences of this degradation would be severe when dry periods return to degrading
or degradation-prone localities.

In arid regions, vegetation, and therefore NDVI, is highly correlated to rainfall
(Nicholson et al. 1990), thus any variation in rainfall affects the NPP. Although tem-
perature variation is also important in many regions (Jeong et al. 2011, Peng et al.
2011). Therefore, in order for any long-term permanent degradation to be detected,
it is necessary to remove the influence of a precipitation trend. A number of meth-
ods have been proposed that aim to accomplish this. Le Houerou (1984) originally
proposed the ratio of NPP to rainfall, the Rain-Use Efficiency (RUE), as an ecosys-
tem indicator. It was suggested that arid lands would produce around 4 kg-dry
matter/ha/year/mm rainfall, and that a reduced RUE indicated land degradation.
Further analysis revealed that RUE values varied between regions Nicholson and
Farrar (1994), Farrar et al. (1994). Consequently, temporal variation in RUE was
proposed as an indicator of degradation (Prince et al. 1998). (Prince et al. 1998)
investigated the regional RUE of the Sahel from 1982-1994, using seasonally inte-
grated NDVI as a proxy for NPP. This analysis revealed little temporal variation in
RUE across the region, thus indicating a consistent ecosystemdynamic through pe-
riods of droughts. However, the application of RUE as an indicator of land degrada-
tion has become highly controversial (Prince et al. 2007, Hein and De Ridder 2006,
Wessels 2009). An explanation of the limitations and assumptions of RUE is given
in Section 2.5. Statistical methods to separate NDVI from rainfall trends have also
been proposed; these include the RESidual TRENDds (RESTREND) method (Evans
and Geerken 2004, Archer 2004) and the Precipitation Marginal Response (PMR)
(Verrôn et al. 2006). These methods both focus on detecting a shift in the sta-
tistical relationship between rainfall and NDVI. The proposed degradation mecha-

22



Figure 2.1: Time Series of the Sahel Precipitation Anomaly Index. Anomalies arewith respect to the 1950 - 1979 period
nism is comparable to RUE: as degradation occurs, the usage of precipitation shifts,
whereas meteorologically-induced degradation relationships stay constant (Evans
and Geerken 2004, Archer 2004, Wessels et al. 2007).

2.5 Trend Analysis Frameworks

NDVI Trend Analysis

Time series techniques can be grouped into parametric and non-parametric meth-
ods. The application of these techniques on EO imagery has become a contentious
issue due to the inherent limitations and assumptions; an overview of the most
commonly used ones, is given below. Linear trend analysis applies a linear regres-
sion model to quantify change in the dependent variable, y (i.e., NDVI) against an
independent variable, x (i.e., time). The direction and magnitude of change from
this model thus explains the change in NDVI over the period analysed. This test
has a number of assumptions that must be met in order to be considered robust
(De Beurs and Henebry 2005):

1. independence of the dependent variable;
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Figure 2.2: Representation of the positive feedback loop for desertification
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2. normality in the model residuals
3. consistency in residual variance over time
4. independence in residuals
In addition to spatial autocorrelation functions present (Gaughan et al. 2012,

Lennon 2000a), memory effects in dryland systems make inter- and intra-annual
NDVI values strongly correlated (Martiny et al. 2006, Philippon et al. 2007, Richard
et al. 2012). Thus, assumption one above and, commonly, four, are unlikely to be
met. The consistency in residual variance is heavily influenced by anomalous and
outlier values, such as those caused by hemispheric climatic oscillations (Wessels
et al. 2012), and may also be breached. The Theil-Sen trend is a non-parametric
trend estimation technique. Functionally similar to linear least squares regression,
it operates on non-parametric statistics and is not dependent upon the assump-
tions of linear regression. Trends are estimated using the median values and are
therefore less susceptible to noise and outliers, with a robust trend estimated with
up to ca.29% noise across the data (Theil 1992, Sen 1968). The Mann-Kendall test
measures the monotonicity or consistency of a trend (Kendall 1938). The test is a
cumulative value of the instances of increases or decreases from a pairwise com-
parison, with values of +1 indicating a continually increasing and -1 a continually
decreasing trend. Although robust against the assumption of linear regression, the
trend is susceptible to producing low values for time series with a strong overall
change but moderate annual fluctuations.
Differences between Trends, Datasets and Sensors

A number of studies have compared the results obtained from applying a variety of
trendmethods (Fensholt et al. 2012, de Jong, de Bruin, deWit, Schaepman and Dent
2011). Results indicate that although the trend estimations differ, there is rarely
a major difference between results with both direction and magnitude consistent
across methods. For global semi-arid regions, Fensholt et al. (2012) compared
Mann-Kendall and linear regression models, finding a mean difference of 0.039
and -0.019 for positive and negative trends and maximum differences of 0.285 and
0.158 with standard deviations of 0.037 and 0.029, respectively. A comparison of
trend estimation, for a pixel in the Sudanese Sahel, is shown in Figure 2.3.
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Amajority of studies use NDVI data sets derived from the AVHRR sensor (Table
1). As a meteorological sensor the AVHRR was not designed for terrestrial ecosys-
tem applications (Cracknell 2001), thus a number of issues are inherent. For ex-
ample, the near-infrared waveband (Channel 2) overlaps with a region of strong
atmospheric water vapour absorption, influencing the resulting NDVI values. Un-
like modern sensors such as MODIS and SPOT, AVHRR does not possess ancillary
bands that allow for the detection of atmospheric conditions. Thus, a range of pro-
cessing is applied to raw AVHRR imagery in the preparation of NDVI records. The
PAL and GIMMS/3 g records do not apply atmospheric correction, instead using
maximum value compositing (MVC) of Top of Atmosphere (TOA) values to pre-
serve the original data patterns (Holben 1986, Pinzon and Tucker 2014, Tucker et al.
2005). However, comparison with the LTDR, which possess an atmospheric cor-
rection procedure, highlights the residual error that may remain within the GIMMS
data due to this omission, particularly in regions with high Aerosol Optical Thick-
ness (AOT) (Nagol et al. 2009). Furthermore, ageing of the AVHRR carrying satel-
lite results in a shift in the equatorial crossing time of the sensor, referred to as
orbital drift. Orbital drift can, without reliable correction, influence NDVI values and
computed trends, for a location specific quantification of orbital drift effects on
AVHRR data see Nagol et al. (2014). Comparisons of the various AVHRR-derived
datasets (PAL, GIMMS/3g, LTDR, FASIR) display regionally varying levels of agree-
ment. For the Iberian peninsula, Alcaraz-Segura, Liras, Tabik, Paruelo and Cabello
(2010) found good spatial agreement between the PAL, LTDR and FASIR datasets,
with the GIMMS-derived trends differing. A similar observation was identified in
SouthAmericawhere theGIMMSdata failed to identify trend highlighted byPALand
FASIR records (Baldi et al. 2008). In the USA and Mexico, records displayed good
correlation, however, trend estimates did vary particularly in dryland areas (Scheftic
et al. 2014). In a global-scale analysis, Beck et al. (2011) compared the four AVHRR-
derived records with Landsat and MODIS imagery. Consistency in trends was iden-
tified for Australia and central Asia, with divergent trend estimates in Africa, South
America and the Sahel (Beck et al. 2011).

Comparisons between sensor datasets are a common method of quality as-
surance for AVHRR-derived NDVI records. The MODIS sensor is considered the
most accurately calibrated and atmospherically corrected NDVI record available.
Therefore, comparing the MODIS products with overlapping AVHRR-derived data
can highlight issues present with the older AVHRR records. A global comparison of
MODIS and GIMMS NDVI trends, for dryland regions was, undertaken by Fensholt
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Figure 2.3: Comparison of linear and Theil Sen regression slopes for a pixel in theSahel.
et al. (2012). Trend values show high correlations (0.8>) formost semi-arid regions;
however, areas bordering the arid zone with sparse vegetation were lower indicat-
ing spuriousNDVI in these localities. This was in agreement with earlier workwhich
identified that MODIS-GIMMS correlations were higher in the humid regions of the
Sahel, compared to the arid areas (Fensholt and Rasmussen 2011).
Detecting Structural and Real-Time Change

Trend breaks
All of the methods detailed above establish a trend detailing the change in NDVI
over time; this represents a simplification of whatmay be a highly complex chronol-
ogy of shorter duration trends (de Jong et al. 2012, Verbesselt, Hyndman, Newnham
and Culvenor 2010). Analysing the overall trend, particularly with long time series,
may be misleading as contrasting trends can potentially balance out. Verbesselt,
Hyndman, Newnham and Culvenor (2010) proposed that NDVI change can be clas-
sified in three components: seasonal/cyclic changes, gradual variation, and abrupt
or sudden changes. Within this outline, they developed the Breaks for Additive Sea-
son and Trend (BFAST) algorithm, which disaggregates an NDVI time-series into
three constituents: seasonal variation, trends, and noise (Verbesselt, Hyndman,
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Newnham and Culvenor 2010). By allowing the detection of multiple shorter dura-
tion trends, a better understanding of the temporal drivers of NDVI can be obtained.
de Jong et al. (2012) implemented the BFAST algorithm on the global GIMMS ND-
VIg archive. Semi-arid regionswere identified as being highly variable in trend direc-
tion and magnitude, partly due to the impact of hemispheric climatic oscillations
(de Jong et al. 2012, De Jong, Verbesselt, Zeileis and Schaepman 2013). It was high-
lighted that dryland regions frequently displayed abrupt greening spells followed by
periods of gradual browning.

Real-Time Change Detection
The detection of historic trends and shifts in vegetation productivity is very useful
to scientific inquiry, and may serve to inform land management policies to miti-
gate degradation drivers. However, historic trends are of limited value to contem-
porary management, as considerable reductions must first materialise (see Sec-
tion 5.2). Thus, real-time or near real-time detection is necessary to inform policy
makers at the earliest possible opportunity. This objective, i.e., the identification of
real-time environmental disturbance, is shared by a number of environmental ap-
plications, such as food security (Verbesselt, Hyndman, Newnham and Culvenor
2010), deforestation Hargrove et al. (2009) and epidemiology (Spruce et al. 2011).
The challenge of being able to identify real-time disturbance is in distinguishing a
genuine trend from the seasonal trend and noise components. White and Nemani
(2006) demonstrated that phenological change could be forecast by comparing a
user-defined threshold against the historical variability found within clustered phe-
noregions. The setting of arbitrary user-defined thresholds encounters difficulty
when there are complex land cover transitions or frequent periods of high instabil-
ity, adding a significant cost to application (Verbesselt et al. 2012). To overcome
this issue, Verbesselt et al. (2012) proposed a pixel-level disturbance detection ap-
proach, based on the historical time-series of each individual pixel. For each pixel, a
stable "history" period is automatically determined and disturbances are compared
to this regime (Verbesselt et al. 2012). This approach proved suitable for detecting
drought-induced disturbance but was not so successful in removing background
noise.
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Removing Precipitation Influence

As previously mentioned, Rain Use Efficiency (RUE) is the quotient value of NPP
to corresponding precipitation (Le Houerou 1984, Prince et al. 1998). It has been
proposed that degradation reduces the precipitation usage of an area, as overland
flow and runoff increase with reduced vegetation cover and density. Thus, a re-
duced RUE can be indicative of land degradation, independent of climatic effects
(Prince et al. 1998). This mechanism is based on two key assumptions (Fensholt
and Rasmussen 2011):

1. linearity in the response of NDVI/NPP to increased precipitation;
2. independence of RUE to fluctuation in its constituents
Thewell reported linear relationship betweenNPPand rainfall in drylands (Nichol-

son et al. 1990) can potentially be compromised when tail events for both rainfall
and NPP occur. At high precipitation amounts, factors other than rainfall become
limitations to NPP, and increases in precipitation do not induce further productiv-
ity (Nicholson et al. 1990). At very low precipitation there may be no vegetation
present resulting in RUE values approaching infinity. This is further exacerbated by
the positive intercept caused by soil reflectance (Fensholt and Rasmussen 2011).
At low biomass levels the vegetation is unable to prevent runoff and infiltration from
occurring, thus subsequently low RUE will be observed. Rainfall increases may po-
tentially drive an increase in both RUE and biomass, rendering RUE irrelevant as
a detrending technique (Hein and De Ridder 2006). However, this interpretation
has been criticised as being limited to sites with anomalous precipitation regimes
(Prince et al. 2007, Kaspersen et al. 2011, Ruppert et al. 2012). RUE values have been
demonstrated to correlate with inter-annual precipitation fluxes (Fensholt and Ras-
mussen 2011, Wessels et al. 2007). However, it is statistically questionable to test
for dependence between RUE and rain as they are not independent (Dardel et al.
2014). Fensholt et al. (2013) proposed the use of a seasonality subtracted ’small
integral’ of NDVI, as opposed to the full growth season integral, which could miti-
gate against correlations with rainfall, provided linearity assumptions are satisfied.

The Residual Trends (RESTREND) method compares the response of an NDVI
time-series to a predicted response. The predicted response is generated by cal-
culating a regression between NDVI values and precipitation (Evans and Geerken
2004, Archer 2004). The residuals from this regression are then subjected to a
trend analysis. A positive trend in residuals indicates an increasing NDVI signal
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compared to the precipitation trend (land improvement), whereas a negative trend
indicates a declining NDVI per precipitation unit (degradation). By implementing
a statistical rather than a quotient method, this approach avoids the limitations of
RUE with regards to linearity and dependence (Wessels et al. 2007). A comparison
of RUE and RESTREND is shown in Figure 2.4, note the negative RUE trend induced
by high rainfall at the end of the time series.

2.6 Relating Time-Series Frameworks to Degradation
Processes

All trend analysis assessments are based on the foundation that comparable sites,
when subjected to degradation, will display reduced photosynthetic production, and
thus NDVI (Wessels et al. 2006, Prince et al. 2009). This represents a symptomatic
approach, as the mechanism of land degradation is irrelevant, provided a reduction
in NPPmaterialises (Hill et al. 2008). Thus, the two key assumptions of thesemeth-
ods are, firstly, that degradation consistentlymaterialises as a reduction in NPP, and
secondly, that NDVI variation is capable of capturing this reduction. These issues
are reviewed below.
Does Land Degradation Initiate a Decline in NPP?

The assumption that land degradation reduces the NPP of a site is dependent upon
the underlying mechanism. A reduction in vegetation cover, whilst species compo-
sition and diversity ismaintained, willmaterialise as a reduction inNPP (Miehe et al.
2010). However, a common degradation mechanism affecting dryland regions is
encroachment of woody shrub species into grasslands. This process results in an
increase in bare ground coverage coupled with increased runoff and alterations of
soil C and N stocks (D’Odorico et al. 2013, Ravi et al. 2010). Nevertheless, shrub-
land encroachment does not necessitate a reduction in NPP. Thus, the analysis of
the seasonal maximum or annual integral of NDVI is unlikely to detect this process
successfully. However, shrubs species, and encroachment, do exhibit a number
of distinct eco-hydrological responses, which may be exploited by an NDVI-based
analysis. Shrubs species are, in general, perennial plants and manage to survive
the dry season. Mitchard and Flintrop (2013) mapped woody and shrub biomass in
African Savannahs, using the dry season maximum NDVI. The results of this anal-
ysis agreed with collated field data of shrub encroachment and forest degradation,
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Figure 2.4: Comparison of the Rain Use Efficiency and residual trends for a pixel inthe Sahel.
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although the authors stipulate that the results should be viewed with caution due
to the technical issue with dry season NDVI (Mitchard and Flintrop 2013). The abil-
ity of shrub species to support deeper root networks also influences their usage of
precipitation. Williamson et al. (2012) investigated the species-specific response
of NDVI to preceding precipitation events. Grassland species reported the highest
relationships for concurrent precipitations, whereas shrubland relationships were
notably improved when the previous years were included (Williamson et al. 2012).
Verrôn et al. (2006) highlighted the potential of variation in the rainfall-NDVI co-
efficient (the precipitation marginal response) as a potential indicator of species
composition variation. It should be noted that shrub encroachment is not univer-
sally accepted as a component of land degradation (Eldridge et al. 2011). Neverthe-
less, the associated reduction in pastoral resource that accompanies an increase
in shrub coverage makes it a commonly perceived degradation process in many
regions, and is thus included herein. In addition to the commonly acknowledge pro-
cess of shrub encroachment an impoverishment of woody vegetation species has
also been reported (Herrmann andTappan2013). Herrmann andTappan (2013) and
Herrmann et al. (2014) compared Senegalese vegetation trend maps with archive
photography and focus group meetings with local inhabitants. Results indicated
that NDVI derived-greening trends did not necessarily correlate with users percep-
tions of vegetation improvement. In some locations a decrease in tree coverage
and a shift to drought tolerant shrub species was reported, irrespective of changes
in population and land usage. Interestingly, opposing results were found for an area
of the Sahel in Mali, where an increase in cultivation and tree cover was identified
(Spiekermann et al. 2015).

In summary, a variety of NDVI-based methods have been designed and tested,
but validation of results, and hence the suitability of NDVI-basedmethods to assess
degradation, remains limited
Can NDVI Trends Capture a Reduction in NPP?

The ground truthing and validation of products generated by remote sensing is a
critical methodological stage. However, the validation of trend analyses is inher-
ently problematic. It is rarely feasible to validate 30-year trends with a large spatial
footprint. In addition, there are fewbiomass-sampling siteswith a spatial scale suit-
able for validating coarse resolution pixels and even fewer sites with a continuous
record dating back to the early 1980s. Here, we summarise the existing literature on
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comparisons of long-term biomass data with vegetation index values and trends,
and discuss alternative methods of validation, such as qualitative validation and
simulation analysis.

Wessels et al. (2006) compared a 533-site, 19-year biomass dataset with an
AVHRR-derived NDVI record for the Kruger National Park, South Africa. This com-
parison produced generally favourable correlations for the NDVI/biomass relation-
ships, with an average R2 of 0.42 capturing the majority of inter-annual variability.
Sites with low correlations were attributed to the heterogeneous land cover result-
ing in mixed pixels, poorly represented by the biomass samples (Wessels et al.
2006). A number of Sahelian localities have been subjected to long-term obser-
vation under the African Monsoon Multidisciplinary Analysis-Coupling the Tropical
Atmosphere and the Hydrological Cycle (AMMA-CATCH) programme. Two of these
sites, i.e., Gourma, located in northern Mali (data from 1984 - 2011) and Fakara in
southern Niger (data from 1994 - 2011), were assessed against long-termGIMMS3g
NDVI time-series trends (Dardel et al. 2014). At both sites, field data agreed with
the direction and magnitude of the corresponding NDVI trend, with respective cor-
relation co-efficients of 0.74 and 0.41. The co-efficient for Fakara becomes 0.59
when an outlier for 2010 is omitted (Dardel et al. 2014). The lower values obtained
for Fakara were attributed to a mixed agro-pastoral land use pattern, when com-
pared to the predominantly pastoral land use identified at the Gourma site (Dardel
et al. 2014). The issue of localised land use/cover patterns resulting in mixed pix-
els was also noted by Brandt, Verger, Diouf, Baret and Samimi (2014). This was
partially rectified by utilising a higher-resolution NDVI product (Geoland V1 at 5 km
resolution), which revealed patterns obscured by the GIMMS3g data. However, at-
tempts to document localised factors for regional analysis proved problematic due
to the large variety of land use/cover conditions present (Brandt, Romankiewicz,
Spiekermann and Samimi 2014). In the absence of long-term biomass records, a
number of studies have used qualitative comparisons to validate trend outputs.
Wessels et al. (2007) compared rainfall-corrected NDVI trends, using RESTREND,
to a national land survey output, with an acceptable level of agreement between the
two outputs. Further qualitative validation was undertaken by Evans and Geerken
(2004), who used field study surveys and visual interpretation of Landsat imagery
to validate degradation assessments for Syrian drylands. Both of these studies
relied on a generally high level of agreement between outputs and the validation
data to assess the reliability of applied methods. Studies that attempt large-scale
regional(Huber et al. 2011, Fensholt and Rasmussen 2011) or global (Bai et al. 2008,

33



Hill et al. 2008) assessments, frequently rely on even less robust validations and
focus on the linkages of hot-spots with environmental change narratives postu-
lated by field studies. Although commonplace, studies utilising qualitative valida-
tion methods have been highly criticised. Wessels et al. (2012) highlighted that this
process does not sufficiently assess the accuracy and sensitivity ofmethodologies
to variable start-dates and intensities of degradation.

A recent alternative to the approaches above is simulation analysis, which tests
the sensitivity of methods by artificially altering a dataset prior to analysis, thus a
technique is assessed against a known baseline. This approach has been used
to test the responsiveness of time-series segmentation methods aiming to de-
compose noisy data series (Verbesselt, Hyndman, Newnham and Culvenor 2010,
Verbesselt et al. 2012, Verbesselt, Hyndman, Zeileis and Culvenor 2010) prior to the
application on a global time-series (de Jong et al. 2012, De Jong, Verbesselt, Zeileis
and Schaepman 2013). The advantage of the simulation approach is that the inten-
sity and duration of a shift can be determined, and the response of the applied
analysis directly compared (Forkel et al. 2013). A land degradation simulation as-
sessment was implemented by Wessels et al. (2012), where a variety of start-date
and intensity land degradation simulationswere applied to 1 km-NDVI data covering
the Kruger National Park, to represent the degradation of a non-degraded baseline.
This study revealed that an NDVI reduction of 20%-40% was required to identify a
significant negative trend in the region, using either RESTRENDor a number of other
trend techniques (Wessels et al. 2012). Thus, the majority of trend techniques em-
ployed (Fensholt et al. 2012) would be capable of detecting only the most severe of
degradation processes, and would therefore not be useful as a degradation early-
warning system (Wessels et al. 2012). Comparable simulation experiments were
used to test the sensitivity of RUE in the Sahel region (Dardel et al. 2014). Here a
degradation of >20% was found to be detectable, provided it did not occur at the
start or end period of analysis.

A number of studies have proposed that additional analyses using higher reso-
lution imagery, such as the Landsat and SPOT satellites, would bewell suited to pro-
vide further localised information on trends observed(Stellmes et al. 2010, Röder
et al. 2008, Herrmann et al. 2005). Comparisons of Landsat and AVHRR-based
trends have revealed generally similar patterns Stellmes et al. (2010), with further
analysis demonstrating that vegetation estimates derived from Landsat imagery all
display similar trend patterns (Sonnenschein et al. 2011). Recent progress in apply-
ing time-series analysis on Landsat imagery stacks has demonstrated the potential
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for observing land use/cover variation at high spatial and temporal resolution (Grif-
fiths et al. 2012, Kennedy et al. 2007, Pflugmacher et al. 2012, Kennedy et al. 2010).
In addition, the ability to generate large-area compositing techniques from multi-
ple Landsat scenes (Griffiths et al. 2013, Roy, Ju, Kline, Scaramuzza, Kovalskyy,
Hansen, Loveland, Vermote and Zhang 2010), offers new opportunities for multi-
scale analyses to improve on the relationships between land use/cover change and
NDVI trends on multiple spatial and temporal scales. An important consideration
of remote sensing studies is the resolution and scale of imagery used (Woodcock
and Strahler 1987). Higher resolution imagery will better identify local issues and
trends, particularly in heterogeneous areas (Brandt, Romankiewicz, Spiekermann
and Samimi 2014, Stellmes et al. 2010). This advantage must be balanced with the
more generalised large-scale view undertaken a large number of studies, where
observing local factors is not a primary objective (Fensholt et al. 2012, Bai et al.
2008). NDVI-based studies have historically been limited to the coarse-resolution
preprocessed datasets details above (Table 1); this has limited the discussion of
the impacts of altering the scale upon trend estimations. Recent developments in
the provision of both free and pre-processed Landsat data (Masek et al. 2006, Wul-
der et al. 2012) may lead to an increased focus on higher-resolution sensor data,
therefore the impact of varying pixel size on trend estimation should be a research
priority prior to the undertaking analysis.

2.7 Conclusions and Outlook

Land degradation and desertification are important issues to both ecological and
social research. The need for a quantitative, repeatable methodology to assess
land degradation and desertification reliably is more pressing than ever before. EO
data offer the only viablemethod for large-scale assessments, and despite the con-
tinued controversy over the techniques used, considerable progress has beenmade
over the last 30 years. This review has identified two key prerequisites to the estab-
lishment of degradation and desertificationmonitoring and early warning systems.
Firstly, methodologies must be subject to a standardised and robust validation in
order for policymakers and planners to have confidence in results; secondly, degra-
dation atminor intensities or early stagesmust be detectable in order for preventive
action to be taken before irreversible damage occurs.

The validation of trend analysis would ideally be undertaken by robust compar-
isons with field biomass data covering a comparable spatial and temporal scale.
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However, this is rarely possible. The need for using remotely sensed vegetation
data is related to this very issue and a major concern is the requirement for consis-
tency between studies. This could potentially be achieved through a standardised
comparison with whatever long-term data exist. The proposed Global Drylands Ob-
serving System (GDOS) (Verstraete et al. 2009, 2011) would be a critical precursor
to this. Alternatively, the simulation experiments proposed by Wessels et al. (2012)
and Verbesselt et al. (2012) offer clear potential for the development of consistent
and repeatable methodologies (Dardel et al. 2014), which could be aided by the
transition to open-source statistical programs. The availability of packages such
as BFAST (Verbesselt, Hyndman, Newnham and Culvenor 2010) and Greenbrown
(Forkel et al. 2013) demonstrates the potential for such a transition.

The early detection of land degradation, particularly at low intensities represents
amajor limitation on the usability of degradation early-warning andmonitoring sys-
tems. The application of structural and real-time change detection represent the
greatest progress on this issue, but further work is still required. Bayesian statis-
tics, whereby model assumptions are based on prior knowledge, may also be ben-
eficial for identifying deviation form expected trajectories.

The land degradation monitoring community may also benefit from the experi-
ences of deforestation observation projects, which have acknowledged the impor-
tance of local stakeholders and end-users for efficient development (Asner 2014,
Foody andBoyd 2013). The use of volunteered information and photographs for val-
idation of land covermaps could be of value as an additional data source in regions
with limited long-term field data. The monitoring of desertification is meaningless
if not integrated with local end-users. The traditional top-down approach of re-
searchers developing products leads to a lack of connection between the intended
users and the design procedure, and may not be suitable for handling the wide va-
riety of local issues (Asner 2014). Software tailored for land degradation, compara-
ble to the CLASlite (Carnegie Landsat Analysis System-lite) program, which allows
end-users to access information and development methodologies to map defor-
estation and forest cover, would be of advantageous (Asner et al. 2009). However,
technological limitations in many developing regions may hamper the uptake of
such technology (Roy, Ju, Mbow, Frost and Loveland 2010).

It should be cautioned that NDVI analysis is best suited as one component of
a multi-faceted methodology. The multiple symptoms and drivers of land degra-
dation provide a number of opportunities for quantitative assessment using EO
(de Jong, de Bruin, Schaepman and Dent 2011, Vrieling 2006). It is through the
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combination of these indicators that a holistic assessment of land degradation
can be achieved (Symeonakis and Drake 2004, Le et al. 2012). In addition, NDVI-
based analyses only consider the biomass of an ecosystem; this falls short of fully
appreciating the wide range of ecosystem services and local uses that may be
present (Jacob et al. 2014). Degradation assessments cannot be achieved through
abiomassor Carbon stock assessment alone, as it is the usage andflowof biomass/Carbon
that provide benefit to the biosphere (Janzen 2006). Land degradation and deserti-
fication prevention and remediation efforts should also consider local stakeholder
usage and ecosystem functions in order to promote poverty alleviation and envi-
ronmental health objectives in synchrony (Stringer et al. 2012).
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Chapter 3

Enhancing NDVI-based biomass
models through feature selection and
spatio-temporal cross validation

Abstract

The accurate mapping and quantification of above ground biomass (AGB) is re-
quired for a number of applications, including carbon accounting, fire and grazing
management, amongst others. Accordingly, relating field measurements of AGB
to satellite-derived indicators, most prominently the Normalised Difference Vege-
tation Index (NDVI), has been a feature of the remote sensing literature for over 30
years. Recently, there has been an increase in the use of machine learning meth-
ods and the incorporation of auxiliary environmental variables for spatio-temporal
modelling. However, there is increasing evidence that these models may be vulner-
able to artefacts of data structure, such as spatial autocorrelation and inappropri-
ate auxiliary variables, which may hinder the development of accurate models. In
this study, a robust methodology for the creation of moderate-resolution AGB esti-
mates is presented. We obtained AGB data from an 18-year long dataset compris-
ing 533 sites within the Kruger National Park of South Africa. We then generated a
1km-resolution NDVI product by downscaling the GIMMS 3g NDVI using Empirical
Orthogonal Teleconnections (EOT) and the MODIS MYD13A2. AGB was then pre-
dicted based on a series of NDVI-metrics and auxiliary environmental variables in a
Cubist regression model framework. Our analysis consisted of two components: i)
a comparison of validation approaches, including a k-fold cross validation (CV) and
multiple spatial/temporal CVs; and ii) a variable selection component, incorporat-
ing forward feature selections (FFS) on the above validation strategies. Prediction
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accuracies differed considerably, with the Root Mean Squared Error ranging from
1310 to 1844 kg ha1, depending on the variables and validation strategy employed.
Errors were consistently higher with spatial or temporal validation strategies. Spa-
tial overfitting was prominent in most models, which we attribute to spatial auto-
correlation within the predictor variables. Comparatively, the NDVI-biomass rela-
tionship was highly variable between years, with unseen years being very poorly
modelled. This potentially results from changing species composition and mois-
ture content on an annual basis. The FFS was effective at correcting these issues,
where possible, by constructing models with appropriate variable combinations.
For temporal models, the profile of auxiliary variables was increased leading to a
more deterministic prediction approach. This study contributes to the growing lit-
erature highlighting the potential pitfalls of machine learning for spatio-temporal
predictions, and offers strategies for their detection and mitigation.

3.1 Introduction

The Normalised Difference Vegetation Index (NDVI) is one of the most commonly
used remotely sensed indicators of vegetation. NDVI quantifies a measure of veg-
etation vigour by normalising the difference between the wavelengths of light ab-
sorbed for photosynthesis (red) and those reflected to prevent plant cellular over-
heating (near infrared) (Tucker 1979). The resulting value is closely related to the
absorbed fraction of photosynthetically available radiation (fPAR), which in turn
constrains themaximum threshold of Net Primary Production (NPP) (Monteith and
Moss 1977). Accordingly, combining field sampling sites, where above groundbiomass
(AGB) or NPP are measured in situ, with satellite based NDVI imagery to produce
spatially explicit predictions of such variables has long been a focus of study (Eis-
felder et al. 2012, Tucker 1979, Prince 1991, John et al. 2018).

A commonapproach for predicting biomass is linear regression using the summed
growth season NDVI (Eisfelder et al. 2012, Fensholt et al. 2012). This is both simple
and theoretically sound, given the well established linearity between NDVI and low-
moderate biomass levels, particularly in semi-arid regions (Prince 1991, Prince and
Tucker 1986, Prince and Astle 1986). Additionally, models that incorporate aux-
iliary variables representing factors known to influence biomass, such as eleva-
tion or soil type, generally have higher performances (John et al. 2018, Wessels
et al. 2006). Further improvements in accuracy can be obtained through machine
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learning algorithms, such as Random Forest or Cubist models, that use iterative re-
sampling of the data to quantity non-linear relationships and variable importance.
These methods regularly out preform simpler statistical models (Meyer et al. 2016,
John et al. 2018). However, both of these options require careful consideration,
as spatio-temporal models may be vulnerable to effects that incur overfitting and
exaggerate the obtained accuracies (Brenning 2012, Meyer et al. 2016). Brenning
(2012) highlighted that the resampling procedures employed by machine learning
methods may unwittingly exploit residual spatial autocorrelation among predictor
variables, while Meyer et al. (2018) showed the potential for multiple auxiliary vari-
ables to combine and act as pseudo-site codes within complexmodels, due to their
duplication in spatio-temporal data. Therefore, special attention should be paid to
the choice of modelling approach and validation strategy.

The longest running NDVI dataset is the Global Inventory Monitoring and Mod-
elling System (GIMMS) product, produced from Advanced Very High Resolution
Radiometer (AVHRR) imagery since 1981. However, this temporal depth is counter-
balanced by a relatively coarse spatial resolution. Raw AVHRR imagery is collected
at 1 km2 pixels, yet the poor calibration and limited cloud detection capabilities
mean that most derived products are finalised at the 8 km pixel scale (Brown et al.
2006, Pinzon and Tucker 2014). This is notably lower than the resolution of more
recent products such as MODIS (250 m), SPOT (1km), SeaWiFS (4km), and MERIS
(1km). Appelhans et al. (2015) and Detsch et al. (2016) propose combining GIMMS
data with a temporally overlapping higher resolution dataset, and using Empirical
Orthogonal Teleconnections (EOT) to downscale the GIMMS data to a higher res-
olution. This procedure proved capable of producing a 1 km NDVI product for the
Kilimanjaro region, Tanzania (Detsch et al. 2016).

In this study, our aim is to develop a robust methodology for the creation of
moderate-resolution biomass estimates. We use a case study in a semi-arid sa-
vannah region to address the following research questions: i) to test the ability
of EOTs to downscale coarse-resolution GIMMS NDVI, ii) to assess the impact of
model validation strategies that account for spatio-temporal overfitting, and iii) to
investigate the potential of variable selection procedures, combined with appropri-
ate validation strategies, to improve the accuracy of models.
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Figure 3.1: (a) Location of the study area, the Kruger National Park, within Africa;(b) a digital elevation model of the study area and the Veld Condition Assessmentsites
3.2 Study Area

The Kruger National Park is located in north-east South Africa, within the provinces
of Limpopo and Mpumalanga (Figure 3.1). The Kruger National Park is one of the
oldest and largest protected areas in Africa, being designated since 1926 and cov-
ering roughly 2,000,000 ha. The park consist of typical mixed savannah land cover
types, with a mosaic of grasses, shrubs, and trees (Mucina et al. 2006). Average
woody cover decreases from 65% in the west to 40% in the east, primarily in line
with soil type and geology. There is a broadly south-north rainfall gradient, with
mean annual precipitation increasing from 350 to 950 mm (Scholes et al. 2001).
Rainfall mainly occurs in the southern hemisphere summer months of October -
April.
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3.3 Data

AVHRR GIMMS-3g NDVI

Weused theGIMMSNDVI dataset - third generation, hereafter NDVIgimms. NDVIgimmsis produced from the various AVHRR sensors in operation since mid-1981. Follow-
ing processing, NDVI data are provided at an aggregated 8 km resolution and semi-
monthly monthly (15 day) intervals. Bayesianmethods are used to ensure compati-
bility between the AVHRR sensors. Additional processing is undertaken to account
for orbital decay, atmospheric affects, and volcanic aerosols (Pinzon and Tucker
2014).

NDVIgimms data,for the 1981 - 2015 period was processed to monthly maximum
value composites (Holben 1986), and a Whittaker smoother applied to minimise
noise and fill remaining temporal gaps. The Whittaker smoother is a bespoke tech-
nique for remotely sensed vegetation time-series. Applying a penalised least squares
curve, fitted values are forced towards the upper envelope of the series (Atzberger
and Eilers 2011). As cloud and atmospheric artefacts generally incur a negative
bias on NDVI, the fitted values are more robust.
MODIS NDVI

NDVI data fromMODIS sensors benefit from considerable improvements in sensor
calibration and design, relative to the older AVHRR imagery (Huete et al. 2002). Var-
ious MODIS-NDVI collections are available. We used the 1 km, 16-day Aqua product
(MYD13A2), hereafter NDVImodis. We limited ourselves to the MODIS-Aqua prod-
uct due to the reported calibration issues, and associated induced bias, with the
MODIS-Terra sensor (Detsch et al. 2016).

To standardise processing of the NDVI datasets. NDVImodis data for the years
2003 - 2015 were used, clouds and contaminated pixels were masked based on
the provided MODIS quality assurance layer, followed by temporal compositing to
maximum monthly values and the application of a Whittaker smoother.
Herbaceous Biomass

Herbaceous biomass data were acquired from the South African National Parks
Vegetation Condition Assessment (VCA) surveys (Trollope 1990). The VCA covers
roughly 533 sites on an annual basis, and has been conducted from 1989 to 2006.
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Sites are distributed to account for landscape heterogeneity within the KNP. Each
site covers 50 m x 60 m (0.003 km2) area. Four 50 m transects are used to take
100 grass height estimates over 2 m intervals. Biomass is estimated using a disc
pasture meter to record grass height. After accounting for grass moisture content,
a regression equation is used to estimates biomass (kg ha-1) from grass height:

y = −3019 + 2260
√
x (3.1)

where y is the estimated herbaceous biomass, and x is the mean disc pasture
readings from the 100 samples per site. This model results in an R2 of 0.895. The
95% confidence interval for the resulting biomass estimates is±328 kg ha-1 for low
values (ca. 1500 kg ha-1), ±285 kg ha-1 for the mean (ca. 4200 kg ha-1), and ±526
kg ha-1 for higher values (ca. 9360 kg ha-1).

3.4 Methods

Empirical Orthogonal Teleconnections

Empirical Orthogonal Teleconnections (EOT) originate in climate science, and are
used to decompose spatio-temporal data sets into independent orthogonal (i.e
non-correlated) trends (Van den Dool et al. 2000). They are similar to the more
common Empirical Orthogonal Functions (EOF). However, whereas EOF decom-
pose across both space and time, EOT are purely focused on time. We provide a
brief outline of EOT, for a full mathematical overview, see Van den Dool et al. (2000)
and Van den Dool (2007).

For our purpose, the aim of using EOT is to identify individual pixels in a pre-
dictor gridded time-series (Pp) - in this case NDVIgimms, that have strong predictive
power over a response gridded time-series (Pr) - NDVImodis. This is achieved by a
multi-stage, brute force, multiple linear regression procedure. Firstly, linear regres-
sions between all predictor pixels (Pp) and all response pixels (Pr) are calculated.
The pixel with the highest predictive power over the response pixels is selected as
the base node. Secondly, the response series are reduced by removing the vari-
ance explained by the base node. Further, nodes are selected by applying the same
process on the reduced series, until a desired number of nodes (EOT) are produced.

EOT functions, calculated from the temporal overlap of NDVImodis and NDVIgimms(2003-2015), can be applied to the non-overlapping (i.e pre-2002) NDVIgimms lay-
ers to produce a downscaled product. We produced a downscaled NDVI series at
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1 km resolution. To validate the EOT-derived, downscaled NDVI layers, hereafter
NDVIeot, we compared NDVIeot against the co-occurring NDVImodis layers. This was
carried out by removing a three-year segment of both datasets from the EOT cal-
culation, and comparing the derived NDVIeot layers with NDVImodis. This process
was repeated four times, resulting in four separate three-year blocks over the 12-
year overlapping period. To quantify the performance of the EOT downscaling, we
calculated the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and
coefficient of variation (R2). This resulted in 1 km2 resolution NVDI dataset for the
1981 - 2015 period.
Modelling of Biomass
Overview

We constructed a series of predictor variables from the NDVIeot, for the years 1989
to 2006. From the layers contained within: a) the southern hemisphere hydrologi-
cal year (30th-April - 30th April), and b) the growth season (1st October - 30th April),
we calculated the following statistics: sum, standard deviation, and a range of per-
centiles (25, 50, 75, 90). We also included the following auxiliary predictors: ele-
vation (from the STRM 30 m DEM); tree cover (from the MODIS MOD44B product);
soil taxonomy, geology, and survey year. All additional variables were resampled to
1 km resolution using nearest neighbour resampling.

Our modelling approach is focussed on two key areas, target-based validation
strategies (Section 3.4), and variable selection procedures (Section 3.4)
Cubist Models

Themachine learningmethodCubistwas used for allmodelling tasks (fromJedWing
et al. 2017). Cubist models are related to regression trees, and generate predictions
based on the following procedure: firstly, a regression tree is constructed, whereby
the tree branches are a series of nested ’if-else’ statements, based on the predictor
variables. Each splitting node calculates a linear regression using the predictors
used thus far. The splitting process continues until there are insufficient samples
to either split the data or fit a model. The terminal leaf of each branch then gener-
ates predictions using a linear regression of the samples retained. This prediction
is smoothed using the preceding linear models. The derived tree is then simplified
using a pruning procedure. Finally, a series of models, refereed to as a ’commit-
tee’, are generated with the prior model fits being used to adjust the trees, and the
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final model being an average of the committee predictions (this is comparable to
boosting).
Validation Strategies

The strategy used to validate model performance can have a major effect on the
perceived accuracy. Themost commonapproaches are: i) test-set-holdout, whereby
the data are divided into separate subsets for training and testing, typically using
a 50:50% or 67:33% ratio; and ii) k-fold cross validation (CV), which segments the
data into k equal folds (normally 5 or 10) with k-1 folds used for training whilst the
withheld subset is used for validation; this process is then repeated until each fold
has been withheld. However, these approaches are based on the assumption that
each observation is independent, which is violated by both spatial and temporal
autocorrelation. Failure to account for the spatio-temporal nature of data, and in-
herent autocorrelations, may result in model overfitting being missed, if the testing
data are drawn from the same (autocorrelated) sample.

Brenning (2012) propose the use of spatialCV to overcome autocorrelation. The
data are divided into k equal folds based on location, according to a k-means clus-
tering of the co-ordinates (Figure 3.2). This acts as a stratified CVwith each fold be-
ing spatially independent of the others. Similarly, Meyer et al. (2018) demonstrated
that spatio-temporal models can be assessed by leave-location-out CV, whereby a
single site is used for validation (Figure 3.2). This approach was particularly ef-
fective at identifying when models were compromised by inappropriate auxiliary
variables, as these values are constant through time, they are replicated within the
data and can cause overfitting. Further consideration should also be given to tem-
poral structures in data, therefore, testing on unseen years and on independent
sites throughout time, is recommended (Meyer et al. 2018).

Considering these issues, we employ the following validation strategies for all
modelling options:

1. k-Fold (K.CV): ten random equally sized blocks, with one block reserved for
testing;

2. Leave Location Out (LLO.CV): one location (site) is omitted for testing;
3. Leave Time Out (LTO.CV): one time period (year) is omitted for testing;
4. Leave Location and Time Out (LLTO.CV): a single site for all time periods is

removed for testing.
45



Figure 3.2: Example of the three spatial validation strategies: (a) k-fold; (b) Spatial10-fold, and (c) Leave Location Out
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Forward Feature Selection

Forward Feature Selection (FFS) is a variable reduction technique designed to high-
light which predictors are unhelpful or detrimental, and can be removed from mod-
els. Firstly, all possible two-variablemodels are trained and accuracy assessedwith
the best preforming combination selected. The effect of iteratively adding the re-
maining variables is then tested. The procedure stops when additional predictors
cause a negative impact on the model error. By combining this technique with a
target-orientated CV, variables that contribute to spatio-temporal overfitting should
be removed. This approach is computationally intensive, requiring the construc-
tion and testing of a large number of models, but is more appropriate than other
variable section methods (e.g Recursive Feature Elimination) which use errors cal-
culated from the training data alone (Meyer et al. 2018, Gasch et al. 2015).
Software Implementation

All data processing and analysis was undertaken in the R programming language
(R Core Team 2015a). Downloading the NDVImodis and NDVIgimms was implemented
in the ’gimms’ package (Detsch 2018). EOT-downscaling was completed in the ’re-
mote’ package (Appelhans et al. 2015). For themodelling, we used ’caret’ as awrap-
per for the ’Cubist’ package (fromJedWing et al. 2017, Kuhn andQuinlan 2017), with
the ’cast’ package providing the target orientated CV and FFS (Meyer 2018).

3.5 Results

NDVI Downscaling

The EOT-based downscaling technique was effective at generating a 1 km2 reso-
lution NDVI product (NDVIeot) from the GIMMS data. Accuracy metrics calculated
from the overlapping pixels between NDVIeot and NDVImodis show a high level of
agreement (R2 = 0.86, RMSE = 0.043). Visual examination (Figure 3.3) of the down-
scaling procedure shows that although residuals (NDVIeot - NDVImodis) are generally
low, they do exhibit spatial autocorrelation; nevertheless, a majority of the spatial
and temporal patterns are captured (Figures 3.3 and 3.4).
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Figure 3.3: Example of theNDVI downscaling process and accompanying residuals,for may 18th 2014
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Figure 3.4: NDVI time-series for the three datasets: GIMMS, MODIS, and EOT down-scaled
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Variable Selection

The variable importance for features selected by the FFS are shown in Figure 3.5.
The use of FFS consistently reduced the number of variables in the modelling pro-
cess. The spatial-orientated approaches, LLO and spatial CV, selected 12 and 10
features, respectively (Figure 3.5.b and 3.5.b). Both temporal methods, LTO and
LLTO, retained five variables (Figure 3.5.d and 3.5.e).

As expected, the models generated by FFS removed a large proportion of the
candidate variables. In addition to discarding a majority of the NDVI-derived layers,
at least one auxiliary variable was discarded. Of the auxiliary variables, geology
and elevation were consistency retained, year and mean tree cover were used by
the spatial-orientated methods (LLO and spatial CV), with soil taxonomy kept by
LLO and LTO.

For the NDVI-derived layers, there was a clear divide between the ’all variables’
model (Figure 3.5.a) and the target-orientated approaches (Figures 3.5.b-e). In the
’all variables’ model, a large number of NDVI metrics were highly ranked. Many
of these were subsequently dropped following feature selection. In the spatially-
selected models, a number of features were consistently retained. These included
the annual 75th percentiles; and from the growth season, the standard deviation
and the 50th and 25th percentiles.

The models derived by the FFS have a number of similarities, with a number of
variables featuring prominently: the NDVI 75th and 90th percentiles of annual NDVI,
elevation, and geology. However, the specific variables selected by the differing CV
strategies is indicative of spatio-temporalmodelling constraints that require further
analysis.
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Model Validation

For the five variable combinations and validation strategies, Figure 3.6 shows den-
sity scatter plots of predicted values compared to the observed measurements,
and associated linear regressions lines. Shaded density histograms for the predic-
tions and training values are shown in Figure 3.8. Corresponding accuracy statis-
tics (RMSE, MAE, and R2) are shown in Table 3.1. The different validation strate-
gies resulted in a wide range of reported accuracies. For the ’all variables’ model,
RMSE increased from 1310 when using k-fold CV to 1860 when LTO CVwas applied,
a difference of 550. Both spatial and temporal approaches incurred an increase in
RMSE, relative to k-fold CV, yet the rise wasmost pronounced when a time-omitting
CV strategywas used. RMSE increased by 110when spatial CVwas used (against k-
fold CV). This compares to increases of 550 and 531 for LTO and LLTO, respectively.
This pattern was consistent for the spatially-tunedmodels, whereas temporally ori-
entated combinations demonstrated the lowest accuracies using spatial CV. This
variability and the large differences between the k-fold CV and target-orientated
approaches, indicates the presence of spatio-temporal overfitting in the initial ’(all
variables’) model. This overfitting can be seen in Figure 3.6, with the predictions
based on k-fold showing the closest fit to the 1:1 line, whereas the other methods
showmore spread and deviation. Further evidence of potential overfitting is shown
in the predictions of three individual sites in Figure 3.7; with the temporally-selected
models showing less reflexivity relative to the spatial variables. A comparison of
two mapped predictions (Spatial CV and LTO) for the years 1997 - 2000 are shown
in Figure 3.9.
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Figure 3.9: Maps of predicted biomass for two model combinations.
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Variables Validation RMSE R2 MAEAll k-Fold 1310 0.53 1026Spatial CV 1420 0.41 1116LLO 1311 0.51 1087LTO 1860 0.11 1547LLTO 1841 0.02 1523Spatial CV k-Fold 1295 0.54 1014Spatial CV 1409 0.42 1111LLO 1293 0.51 1072LTO 1868 0.11 1547LLTO 1835 0.07 1511FFS LLO k-Fold 1302 0.54 1020Spatial CV 1420 0.41 1117LLO 1299 0.51 1078LTO 1878 0.08 1557LLTO 1858 0.01 1533FFS LTO k-Fold 1578 0.34 1243Spatial CV 1925 0.03 1542LLO 1718 0.12 1434LTO 1563 0.39 1286LLTO 1770 0.13 1439FFS LLTO k-Fold 1556 0.34 1227Spatial CV 1840 0.08 1454LLO 1623 0.22 1351LTO 1656 0.22 1331LLTO 1758 0.15 1401
Table 3.1: Model accuracies derived from the four variable sets using the four val-idation strategies. RMSE: Root Mean Square Error, MAE: Mean Absolute Error CV:Cross Validation, FFS: Forward Feature Selection, LLO: Leave Location Out, LTO:Leave Time Out, LLTO: Leave Location and Time Out
3.6 Discussion

Mapping the spatio-temporal dynamics of biomass is important for a range of ap-
plications, such as fire prediction, understanding climate change impacts, and live-
stock management. Although relating satellite-derived metrics, such as NDVI, to
biomass has been a staple of the literature of over 30 years, there has been lim-
ited application of modern statistical methods to this task. To address this gap, we
analysed a long-term, spatially concentrated grass biomass dataset in a machine
learning framework, to identify the benefits and limitations of variable selection and
validation methods. Our study provides a number of insights for the prediction of
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aboveground biomass using NDVI time-series.
Firstly, Empirical Orthogonal Teleconnections (EOT) provide an effective means

of generating moderate resolution NDVI data sets. Our accuracy statistics, calcu-
lated from the overlapping NDVIeot and NDVImodis layers are high (R2 - 0.86, RMSE
- 0.043) and similar to those reported by Detsch et al. (2016) for the Kilimanjaro
region, Tanzania (R2 - 0.96, RMSE - 0.043). This is an encouraging finding, as the
ability to generate robust, long-term, moderate-resolution datasets may be of par-
ticular benefit in similar semi-arid regions where other satellite archives, such as
Landsat or SPOT, are problematic or lacking. The global coverage of AVHRR and
MODIS data would enable applications in many locations.

Secondly, spatial overfitting was evident in the biomass models, as demon-
strated by comparing the k-fold and spatial CV accuracies (Table 3.1), and the fit of
predicted against observed values (Figure 3.6). Meyer et al. (2016, 2018) demon-
strate that spatial overfitting can be caused by an over-representation of auxiliary
variables in temporal models, resulting in features combining to form pseudo-ID
codes for each site. The spatially-selected models (FFS.CV and FFS.LLO) do drop
one auxiliary feature each; however, a far greater proportion of the NDVI layers are
discarded. Of the twelve NDVI metrics, six and eight were discarded by the spatial
models, respectively. Comparing the spatially-selected models, it is noteworthy
that the FFS-spatial CV model retained less variables than the FFS-LLO, and that
spatial CV consistently returned lower accuracies. This would indicate that the
observed overfitting is driven by spatial autocorrelation among the predictor vari-
ables, particularly the NDVI metrics. It is plausible that autocorreltation is more of
an issue in this situation due to the relatively dense field sites. This will reduce the
likelihood of unintended feature combinations forming as unique values. Similarly,
sites are more likely to exhibit autocorrelation in both NDVI and auxiliary layers.

Our third and most significant observation is the severity of temporal overfit-
ting in the models. The ’all variables’ and spatially-selected models had low per-
formance on unseen years (Table 3.1), and exhibited regression towards the mean
in their predictions (Figure 3.6). This was somewhat expected, as these models
had the year variable ranked highly in variable importance (Figure 3.5). We theo-
rise that including year as a parameter in the models allows flexibility in the NDVI-
biomass relationships, by acting as a bias correction for inter-annual fluctuations.
This would concur with Mbow et al. (2013) who found the NDVI-biomass relation-
ship in savannah grasslands varied depending on species composition, particu-
larly during years with anomalous rainfall. Similarly, Wessels et al. (2006) obtained
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higher accuracies when modelling individual years, relative to using a multi-annual
dataset, attributing this to a miss-match in scale between the NDVI and field sites.
Our study uses the samedatasets asWessels et al. (2006), so the influence of scale
differential should not be discounted here; rather, we offer additional explanations
for the observed patterns. The temporally-selected models dealt with the temporal
overfitting by optimising the use of the auxiliary variables, using only one or two
NDVI layers (Figure 3.5). These environmental variables are known to influence the
structure of savannahs, making the predictions more akin to deterministic ecologi-
cal models (Staver et al. 2017, Sankaran et al. 2005). This results in the predictions
being less responsive (Figure 3.7), as the role of the NDVI is reduced, with particu-
lar difficulty in estimating years with suddenly high or low values. This process is
visible in Figure 3.9, where the LTO model results in a less variable output that the
spatial CV.

All predictions were poor for the tails of the training data, particularly values
greater than 5500 kg ha-1 and around zero. (Figures 3.6 and 3.8). These errors
were expected for a number of reasons. Firstly, the biomass data used as training
data are not precise measures of biomass, such as those obtained by destructive
sampling, but are estimated based on grass height and moisture content. For val-
ues between 4200-9360 kg ha-1, there is an increasing confidence interval from 328
to 526 kg ha-1 (Wessels et al. 2006). This relatively high uncertainty will be propa-
gated on to the NDVI-biomass models, making a close fit for high values unlikely.
Secondly, the NDVI-biomass relationship has been shown to saturate at moderate
levels, as NPP becomes constrained by factors other than fPAR (Tucker 1979). Fi-
nally, machine learning methods, in general, tend towards poor prediction in the
tails. Given the long tails of the training data, especially rightwards, errors are to
be expected. Accurate predictive mapping of extreme values is an area that merits
further study.

The overarching observation of this study is that spatio-temporalmodels require
a robust validation strategy that accounts for these structures. However, although
we caution against the use of non-structured approaches, such as k-fold or test-
set-holdout, selecting a suitable alternative method is still somewhat specific to
the particular condition or situation. If models are being developed with the aim of
making predictions within the temporal coverage of the training data, then a spa-
tial CV method will suffice. As unseen years will not be applied for predictions,
any temporal overfitting is inconsequential. Between the spatial methods, spatial
CV was consistently more conservative than LLO. This is likely due to the higher
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density of our field sites and we would recommend that if possible both methods
are applied. If the aim is to generate predictions outside the period of training data
then a temporal approach is required. This will allow identification of any overfitting
or bias correcting variables, such as using year here. These methods are likely to
reduce the reported accuracies in many cases, compared to using non-target CV.
However, this is necessary to obtain an accurate understanding of the limitations
and uncertainties of models and predictions.

3.7 Conclusion

This study adds to recent research in highlighting that machine learning methods,
including those based on bootstrapping or boosting, are not immune to overfitting,
as has commonly been assumed. Accuracy assessment methods that fail to ac-
count for spatio-temporal structures in the data (e.g. reporting training errors, k-fold
CV, etc.), are particularly vulnerable, yet these are the most ubiquitous methods
used in the literature. With regards to the prediction of grass biomass from NDVI,
we emphasise that the inter-annual fluctuation of rainfall and species may be par-
ticularly pertinent to temporal overfitting. These findings combined suggest that
generating reliable biomass maps from NDVI may be more challenging than has
been assumed. However, the usefulness of any final product to is dependent upon
the level of uncertainly that is acceptable.
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Chapter 4

Mapping Woody Cover in Semi-arid
Savannahs using Multi-seasonal
Composites from Landsat Data

This chapter has been published in the following journal article:
• Higginbottom, T.P., Symeonakis, E., Mayer, H and Van der Linder, S. "Map-
ping Woody Cover in Semi-arid Savannahs using Multi-seasonal Composites
from Landsat Data". ISPRS Journal of Photogrammetry and Remote Sensing,
139(88-102),
https://doi.org/10.1016/j.isprsjprs.2018.02.010doi:10.1016/j.isprsjprs.2018.02.010

Abstract

Increasing attention is being directed at mapping the fractional woody cover of sa-
vannahs using Earth-observation data. In this study, we test the utility of Landsat
TM/ ETM+ based spectral-temporal variability metrics for mapping regional-scale
woody cover in the Limpopo Province of South Africa, for 2010. We employ a ma-
chine learning framework to compare the accuracies of Random Forest models
derived using metrics calculated from different seasons. We compare these re-
sults to those from fused Landsat-PALSARdata to establish if seasonalmetrics can
compensate for structural information from the PALSAR signal. Furthermore, we
test the applicability of a statistical variable selectionmethod, the recursive feature
elimination (RFE), in the automation of the model building process in order to re-
duce model complexity and processing time. All of our tests were repeated at four
scales (30, 60, 90, and 120m - pixels) to investigate the role of spatial resolution on
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modelled accuracies. Our results show that multi-seasonal composites combining
imagery from both the dry and wet seasons produced the highest accuracies (R2=
0.77, RMSE= 9.4, at the 120 m scale). When using a single season of observations,
dry season imagery performed best (R2= 0.74, RMSE= 9.9, at the 120m resolution).
Combining Landsat and radar imagery was only marginally beneficial, offering a
mean relative improvement of 1% in accuracy at the 120 m scale. However, this
improvement was concentrated in areas with lower densities of woody coverage
(<30%), which are areas of concern for environmental monitoring. At finer spatial
resolutions, the inclusion of SAR data actually reduced accuracies. Overall, the RFE
was able to produce the most accurate model (R2= 0.8, RMSE= 8.9, at the 120 m
pixel scale). For mapping savannah woody cover at the 30 m pixel scale, we sug-
gest that monitoring methodologies continue to exploit the Landsat archive, but
should aim to use multi-seasonal derived information. When the coarser 120 m
pixel scale is adequate, integration of Landsat and SAR data should be considered,
especially in areas with lower woody cover densities. The use of multiple seasonal
compositing periods offers promise for large-area mapping of savannahs, even in
regions with a limited historical Landsat coverage.

4.1 Introduction

Savannah ecosystems are characterised by a dynamic mosaic of tree, shrub and
grass species. Variations in these components can result in widely divergent eco-
logical functions (Sankaran et al. 2005). There is growing concern over the health
and sustainability of savannahs across the world. Increases in shrub cover at the
expense of grasslands (i.e. shrub encroachment) have been reported in semi-arid
environments globally (Naito and Cairns 2011, Stevens et al. 2017, Tian et al. 2017,
Skowno et al. 2017). In contrast, overexploitation of woody shrubs and trees for fu-
elwoodmay be depleting woody cover in other regions (Wessels et al. 2013, Brandt
et al. 2017).

Monitoring savannahs is a challenging endeavour, and due to the discontinuous
nature of land cover in such environments, categorical maps are of limited value
(Xian et al. 2013). Alternatively, representing the 2-dimension horizontal woody
cover component as a continuous fractional layer is more ecologically relevant,
and recent advances in the field have focused their attention to this characteristic
(Armston et al. 2009, Bucini et al. 2010, Naidoo et al. 2016). However, the spatial
heterogeneity of savannahs makes fractional cover modelling vulnerable to scale
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effects, as areas of very high or low coverage will be lost by aggregation to coarser
scales (Guerschman et al. 2009). Therefore, it is necessary to consider analyses
over a range of resolutions, enabling an optimum balance betweenmodel accuracy
and spatial detail to be established (Urbazaev et al. 2015).

Passive optical Earth observation (EO) data, such as Landsat, have commonly
been employed to map savannah vegetation in the past (Prince and Astle 1986).
Such data discriminate vegetation type by exploiting the full spectral range of re-
flected solar radiation. Passive optical data also allow for vegetation indices, such
as the Normalized Difference Vegetation Index (NDVI), to be used as proxies of var-
ious biogeophysical parameters, such as net primary productivity (NPP), fraction of
photosynthetically active radiation (fPAR), and leaf area index (LAI) (Higginbottom
and Symeonakis 2014, Zhu et al. 2013, Carlson and Ripley 1997). Yet single date op-
tical imagery can be inappropriate for discriminating woody and grass coverage, as
photosynthetic activity is detected indiscriminately (Olsson et al. 2011). In savan-
nahs, the woody cover component decreases temporal variation within the NDVI
signal, as bushes and shrubs maintain leaves throughout the dry season (Bucini
et al. 2010, Naidoo et al. 2016). Information derived from a pixel-level time se-
ries can therefore contain valuable information for land cover mapping. If suffi-
cient observations are available, phenological metrics detailing the start and end
points of seasons can be calculated (Brandt et al. 2016, Zhang et al. 2014). Alter-
natively, spectral-temporal variability metrics from single spectral bands or indices
(e.g. minimum, maximum, mean, median, etc.) can quantify variability even in re-
gions with lower observation densities (Müller et al. 2015, Zhong et al. 2014).

Irrespective of processing method, optical data possesses fundamental limita-
tions for mapping woody environments, because it does not directly correlate to
surface structure (Naidoo et al. 2016, Cutler et al. 2012). Active EO sensors such
as Synthetic Aperture Radar (SAR) provide information on the 3-dimensional struc-
ture of the land surface, by emitting microwaves and measuring the intensity of
energy reflected back to the sensor after interactions with ground objects i.e. the
backscatter (σ) of the signal. The use of SAR data in fractional woody cover map-
ping, particularly L-band, operating with wavelengths of 0-15 cm , has been well
demonstrated (Naidoo et al. 2015, 2016, Bucini et al. 2010, Mathieu et al. 2013).
Mitchard et al. (2009) identified a consistent relationship between cross-polarised
L-band backscatter and aboveground biomass (AGB) across four pan-African trop-
ical savannahs, regardless of vegetation composition. Advanced Land Observing
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Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) im-
agery has been highlighted as the most reliable satellite-based indicator of both
AGB and canopy coverage for woody cover in semi-arid savannahs (Naidoo et al.
2015, 2016). However, the use of L-band imagery for mapping long-term land cover
change is affected by a number of data continuity issues, sensor failures (JERS-1,
ALOS PALSAR), high data costs, and the short lifespan of radar systems, resulting
in a limited temporal archive compared to Landsat. There are less limitations when
using C-band radar, such as Radarsat or Sentinel-1, due to more consistent cover-
age (Reiche et al. 2015). However, C-band radar is not as sensitive to woody cover,
compared to L-band (Mathieu et al. 2013).

More recently, the fusion of optical and radar imagery has been shown to pro-
vide an improvement upon single-sensor fractional cover accuracies (Bucini et al.
2010, Naidoo et al. 2016). Bucini et al. (2010), Naidoo et al. (2016) combined L-band
radar data with Landsat to map woody canopy coverage in the Kruger National
Park, South Africa: the fusion approach improved the accuracy over single sensor
predictions, particularly when combining SAR with multi-season imagery. Lucas
et al. (2006) used PALSAR thresholds in conjunction with Landsat-derived Foliage
Projected Cover maps to successfully discriminate regrowth stages in open Euca-
lyptus forests. Merging various SAR wavebands, such as C, X, or L, have also been
shown to provide benefits for woody cover mapping, although these improvements
were found to be smaller (around 3%) when compared with L-band alone (Naidoo
et al. 2015). Choosing the appropriate sensor, or combination of sensors, for woody
cover mapping, is therefore an increasingly complex decision with further study re-
quired.

The increasing number and variety of EO systems in operation, coupled with
open-data policies, presents a wide range of pathways for land cover mapping.
Compared to earlier investigations, it is now routine for studies to use high-dimensional
data. However, this approach comes with statistical limitations. Predictive models
trained using high-dimensional data are prone to overfitting, thus transferring poorly
to unseen validation data. This issue is important, potentially incurring a high de-
gree of variance into classifications, whilst reducing bias (i.e. the bias-variance
dilemma) (James et al. 2013, Kuhn and Johnson 2013). A number of techniques
exist to process high-dimensional data and extract themost relevant variables, aim-
ing to reduce model complexity whilst retaining predictive accuracy (Guyon et al.
2002, Guyon and Elisseeff 2003). To date the implementation of these methods
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in remote sensing analyses has been limited (Meyer et al. 2016), but may be in-
creasingly beneficial in the near future as the number of data sources continues to
increase.

Within this context, the overarching aim of this study is to develop a framework
for accurately mapping the fractional woody cover of semi-arid savannahs at large
spatial scales, using freely and widely available data sources. We address this
overarching aim by carrying out a multi-scale comparative exercise that provides
answers to the following questions:

1. Can annual time series of Landsat metrics be used to accurately map frac-
tional woody cover, and to what extent does seasonality of the compositing
period influence results?

2. HowdoLandsat-based estimates compare tomulti-sensor fusion approaches
combining L-band SAR data?

3. Can automated variable selection methods, such as Recursive Feature Elimi-
nation, assist in reducing the number of variables usedwithout compromising
accuracy?

4.2 Study Area

Our study area is the Limpopo Province, South Africa (Figure 4.1). The province
is 125,000 km2 and intersects 14 Landsat WRS-2 scenes. This region is predomi-
nantly open deciduous savannah and grassland, with discontinuous woody cover
ranging from 0-60% coverage (Mucina et al. 2006). The climate is mainly semi-arid
with small humid subtropical areas (Kottek et al. 2006). Mean annual temperatures
range from 21-23 ◦C and winters are mild and frost-free (Scholes et al. 2001). Rain-
fall increases along a north-south gradient, with mean annual precipitation of 450
mm/year in the north, rising to 700 mm/year in the south (Scholes et al. 2001). The
majority of rainfall occurs in the winter months (October to March; Figure 4.2).

There are pronounced contrasts in land use intensity across the region. In the
east, the Kruger National Park is the largest protected area in South Africa featuring
minimal human usage beyond fire experiments and animal enclosures. This con-
trasts with the communally governed areas originating from apartheid-era home-
lands (Worden 2012). These areas generally feature very high population densities
ranging from 200-300 people per km2, resulting from forced resettlement in the
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Figure 4.1: Location of the study area, the Limpopo Province of South Africa
1960-1990 apartheid period (Pollard et al. 2003). Consequently, overgrazing and
unsustainable wood harvesting are widespread with many areas classified as de-
graded (Wessels et al. 2007)

4.3 Data

Training and Validation Data

We aimed to develop a transferablemethod for woody covermapping. Accordingly,
we used training and validation data from aerial imagery, so that our methodologi-
cal framework would be applicable in study areas where such imagery is available
but other data may not be or are costly, e.g. field surveys, Lidar. In South Africa, the
National Geospatial Information (NGI) agency of the Department of Rural Develop-
ment and Land Reform have been providing 0.5 m colour aerial photography since
2008 , with an orthoreftification accuracy of ±3 m (NGI 2017) . Six 5x5 km images
were selected according to a stratified approach based on mean annual precipita-
tion, with acquisition dates between the 19th April and 7th August of the years 2008
and 2009 (Table 4.2).
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Figure 4.2: Annual seasonality of NDVI for a dense shrub and grassland pixel, andregional rainfall for the Limpopo Province. NDVI is the mean value from 15 yearof MODIS-MCD43A4 16 day observations, rainfall data is the mean and standarddeviations from FEWS-NET (https://www.fews.net/). The vertical lines indicate thestart and the end of the dry season.
Satellite Imagery
Landsat

Spectral-temporal variability metrics are a method of capturing information on the
temporal evolution of spectral valueswithin a pixel (Müller et al. 2015). We hypothe-
sised thatmetrics capturing this variability would be effective forwoody covermon-
itoring. To generate metrics, all available Landsat 5 and 7 images that intersected
the Limpopo Province for 2009-2010 were used (Table 4.1); for the wet season,
additional images from the two neighbouring hydrological years were also used
(scene footprints shown in Figure 4.1). Top-of-atmosphere (TOA) reflectance was
calculated using standard bias-gain equations. Pixels affected by clouds or cloud
shadow were removed based on the F-mask algorithm (Zhu and Woodcock 2012).
No correction was applied for the Scan Line Corrector (SLC-off) errors and these
pixels were omitted. For each pixel, all available co-located observations were used
to calculate the following statistics: mean, median, minimum, maximum, and stan-
dard deviation. These metrics were calculated over three time-periods: annual, dry
season and wet season (Figure 4.2), resulting in a total of 90 Landsat-derived lay-
ers. The number of images used within each observation period is given in Table
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Period Start Date End Date Landsat 5 Landsat 7 Total ImagesAnnual Cycle 1st January 31st December 86 259 345Wet 1st November 30th April 52 186 238Dry 1st May 1st October 27 102 129Total 88 324 412
Table 4.1: Number of Landsat images used in each period for variability metric cal-culations. Wet season metrics are calculated over three hydrological years: 2009-2010, 2010-2011, and 2011-2012. Total does not equal the sum of rows as imagescan be included in both a single season and the annual period.
4.1. Due to persistent high cloud cover, wet season metrics were calculated over
three southern hemisphere hydrological years. Processing was undertaken in the
Google Earth Engine cloud computing environment (Gorelick et al. 2017, Moore and
Hansen 2011).
ALOS PALSAR

ALOS PALSAR, and its successor ALOS-2 PALSAR-2, are fully polarimetric L-band
Synthetic Aperture Radar systems (Rosenqvist et al. 2007). These sensors operate
at a wavelength of 23.6 cm. We used the 2010 data from the ALOS PALSAR global
mosaic, a science-ready product generated annually for 2007 to 2010 (ALOS), and
2015 (ALOS-2). The images for this mosaic were from the dry season, with acquisi-
tion dates between 1st July - 3rd October and two images from 2009. Dual polariza-
tion HH (horizontal-horizontal) and HV (horizontal-vertical) backscatter data were
used. Pre-processing of the input raw imagery includes orthorectification using
the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), cali-
bration, speckle reduction, and a destriping procedure (Shimada and Ohtaki 2010,
Shimada et al. 2014). The raw digital number format was converted to backscatter
(σ0) using the calibration equation:

σ0 = 10 ∗ log10(DN + 0.001)2 + CF

where DN is the raw digital number and CF is a calibration factor (=-83). The
25mmosaic was resampled to match the Landsat resolution using bilinear resam-
pling.
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Figure 4.3: Flow chart of methodological framework. VVI: Visible Vegetation Index;PCA: Principle Components Analysis; RFE: Recursive Feature Elimination.
4.4 Methods

The methodological framework is shown in Figure 4.3. To establish the optimum
approach for fractional woody cover mapping, we ran a series of random forest
regressions to compare the accuracies achieved from single season Landsat met-
rics, multi-season data, or multi-sensor combining Landsat and SAR data. These
models were repeated at four resolutions: 30, 60, 90 and 120 m, to ascertain the
ideal scale for large-area monitoring. Processing was undertaken in the R Statis-
tical Software Environment, using the raster, caret, and randomForest packages
(Hijmans et al. 2015, Kuhn and Johnson 2013, Liaw and Wiener 2002, R Core Team
2015b). Fractional cover sampling code was adapted from Leutner and Horning
(2016).
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Creation of Reference Data

Tocreate training data the six aerial imagery subsetswere classified intowoody/non
woody masks. We opted for aerial image classification to enable methods to be
transferable to other locations, due to the generally satisfactory availability of aerial
imagery at appropriate scales (Staben et al. 2016). Firstly, a principal components
analysis (PCA) was applied to the three RGB layers and the first two components
were extracted. Secondly, we calculated the visible vegetation index (Joseph and
Devadas 2015) which uses visible light spectra to estimate photosynthetic activity
and is defined as:

V V I =
[(

1−
∣∣∣∣R−R0

R +R0

)(
1−

∣∣∣∣G−G0

G+G0

∣∣∣∣) (1−
∣∣∣∣B −B0

B +B0

∣∣∣∣)]
1
w

where VVI is the visible vegetation index, R, G and B are the red, green, and blue
intensities in the image, R0, G0 andB0 are values of red, green, blue used to reference
green colour (30, 50, and 1, respectively), determined by the image bit rate (Joseph
and Devadas 2015).

A Random Forest classifier was used to create the binary woody-non woody
layers from the original RGB layers, principle components, and VVI. Individual mod-
els were generated for each image using 400 manually selected points per image
(75/25% training-validation split). The mean classification accuracy was 85%. Full
accuracy statistics are given in Table 4.2. An example classified mask is shown in
Figure 4.4.

To generate training and validation data for the satellite imagery, Landsat pixel-
sized squares (i.e. 30x30 m) were extracted from the woody/non-woody masks
and the percentage woody coverage calculated. From each image, 7000/α sam-
ples were extracted, where α takes the values of 1, 2, 3 or 4, depending on the
aggregation level used to test the effect of scale in the accuracy of the woody
cover estimates (Figure 4.3). For example, for a pixel size of 30m, α= 1 and the
samples extracted from each image are 7000, whereas for an aggregation level of
α= 2 or a pixel size of 60 m, the number of samples extracted are 7000/2= 3500.
These samples were merged and split into equal training and validation subsets
with equal probability distributions of woody cover (Figure 4.5). The spatial aggre-
gation process may incur central tendency in training values, with the reduction in
high or low samples making the subsequent regression task easier. To quantify
this, we tested for any significant difference between the sample distributions us-
ing Pairwise-Wilcoxon tests. These highlighted a significant (p < 0.05) difference
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(a) (b) (c)
Figure 4.4: Example of the RGB woody classification.a) raw RGB image, b) classi-fied woody cover shown in red, and c) 30 m grid for fractional cover sampling.
Mask Number Date Accuracy Sensitivity Specificity1 19/04/2009 0.74 0.73 0.752 30/04/2009 0.85 0.88 0.83 01/05/2009 0.85 0.88 0.84 07/08/2008 0.87 0.87 0.885 23/06/2008 0.85 0.86 0.856 01/06/2008 0.92 0.88 0.95

Table 4.2: Woody cover mask classification accuracies. Positive Class: WoodyCover
between the data at 30 m and all other scales which can also be visualised in the
relatively reduced number of high (>75%) and low (<10%) values in the respective
aggregated pixel histograms (Figure 5).
Random Forest Regression

Predictive models were generated using the Random Forest algorithm. Random
Forest is an ensemble machine learning procedure that combines bootstrapping
and aggregation (bagging) with decision trees (Breiman 2001). All models were
individually tuned using 10 repeats of 10-fold cross validation to identify the ideal
parameter specification. This covered the number of variables considered at each
tree node and the number of trees constructed. As a further measure, we tested
the effect of varying the sample size; we tested: i) using all available samples, and
ii) using an equal sample size for each resolution. The differences between these
were insignificant, and therefore only the all sample results are shown.
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Figure 4.5: Density histograms of model training values at the four scales tested
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Variable Selection

To identify optimum predictive models, we incorporated all potential variables into
a variable selection process. According to statistical learning theory, a model con-
taining fewer predictors that is comparably accurate is preferential to a more com-
plex model (James et al. 2013, Kuhn and Johnson 2013). Backwards selection
methods are effective in identifying the ideal number of variables for prediction,
allowing the selection of the most parsimonious model that offers comparable ac-
curacy (Guyon and Elisseeff 2003, James et al. 2013, Kuhn and Johnson 2013).
The combination of Landsat metrics and PALSAR data resulted in 92 predictors
(90 Landsat metrics + 2 PALSAR backscatter), a number of which are correlated.
To identify the most important predictors, we implemented the backwards selec-
tion method of recursive feature elimination (RFE). RFE is a parameter selection
process that incorporates the estimation of test (validation) errors and variable im-
portance (Guyon et al., 2002). Firstly, a model is constructed using all available
predictors (Mp). The test error of this model (i.e. adjusted R2 and RMSE) is then
estimated using 10-fold cross validation, and variable importance scores are calcu-
lated. A second model is then established which excludes the lowest contributing
variable from Mp, and test error and variable importance are recalculated. This
process is repeated until a one-variable model remains. A full iteration of this pro-
cedure is repeated 10 times to account for variations in the cross validation sam-
pling, providing a robust estimate of test errors. An ideal model that offers the best
performance whilst using the least variables can then be selected.

4.5 Results

Woody Cover Mapping

A fractional woody cover map derived from the most accurate model tested, is
shown in Figure 4.6. Subsets comparing the mapped woody cover estimates from
a number of models and the NGI aerial imagery are shown in Figure 4.7.
Seasonal Landsat Models

The performance of Landsat-based models is shown in Figure 4.8 and Table 4.4.
When using metrics derived from a single season, the highest accuracies were ob-
tained by using the dry season metrics, followed by the full annual cycle, with the

71



Figure 4.6: Fractional woody cover results for the Limpopo Province based on theRecursive Feature Elimination model at the 120 m pixel scale. Black squares A andB are the locations of the subsets in Figure 4.7.
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Figure 4.7: Spatial patterns of woody cover for subsets A and B of Figure 4.6 at 30and 120 m pixel scales. Five model predictions and the respective reference aerialimagery from the NGI are shown. Aerial imagery acquisition dates: A: 19th April2009, B: 30th April 2009.
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Figure 4.8: Model accuracy results for Landsat metrics-based models RMSE unitsare percentage woody cover (0-100%)
wet season performing the worst. This pattern was consistent across all scales
(Figure 4.8). Using a combination of metrics derived from two seasons, the high-
est accuracies came frommodels incorporating both dry and wet season data, fol-
lowed by dry and annual, and finally wet and annual (Figure 4.8). Reducing the
pixel resolutions (i.e. increasing the aggregation factor), consistently raised the
model performances, with the largest improvement occurring in the initial aggre-
gation from 30 m to 60 m.
Fused Models

Accuracy statistics from models combining Landsat metrics with ALOS PALSAR
backscatter are shown in Figure 4.9 and Table 4.4. Overall, the same ranking of
seasonal performance as Landsat-only models was observed. For a single season,
accuracy decreased from dry to annual to wet, whilst multi-season models were
ranked: dry and wet, dry and annual, and wet and annual. The only exception to
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120 m 90 m 60 m 30 mR2 RMSE R2 RMSE R2 RMSE R2 RMSE
Landsat Dry and Wet 0.003 -0.1 -0.5 0 -0.9 0.2 -0.005 0.1Landsat Dry and Annual 0.006 -0.1 -0.2 0 -0.4 0.1 -0.004 0Landsat Wet and Annual 0.003 -0.1 -0.3 0 -0.7 0.1 -0.002 0.1Landsat Dry 0.014 -0.3 -0.1 0 -0.2 0.1 -0.004 0.1Landsat Annual 0.025 -0.5 1.4 -0.3 0.9 -0.2 0.001 -0.1Landsat Wet 0.009 -0.2 0.4 -0.1 -0.7 0 -0.003 0

Table 4.3: Difference between the Landsat only and Landsat-PALSAR fusion mod-els.
this order was at the 90 m pixel scale, where the single season annual metrics and
dry-annual multi-season models performed best (Figure 4.9).

The fusion of PALSAR backscatter with Landsat metrics had contrasting im-
pacts onmodel accuracy (Table 4.3). At the 120m scale, all models were improved.
Conversely, at the 30mscale, performanceswere negatively affected. Atmid-range
scales (60 and 90 m), the single season annual models were improved, as did the
90 m ’wet’ model. All other mid-scale models responded negatively to the SAR fu-
sion or were unaffected. At the 120mscale, the fusionwas generallymore effective
for single season models over multi-temporal combinations. Finally, at all scales,
the annual models performed better when used together with the SAR data. PAL-
SAR only model were consistently the lower preforming model, with the following
accuracy statistics: 30 m: R2- 0.37, RMSE- 15.5; 60 m: R2- 0.313, RMSE- 16.9; 90 m:
R2- 0.25, RMSE- 18.7; R2- 0.18, RMSE- 22.2.
Recursive Feature Elimination

The accuracy results from the RFE automated variable selection approach is shown
in Figure 4.10. At all scales, model accuracies were higher when more than 25 vari-
ables where included in the model and performance declined rapidly when fewer
than that were considered. The optimal number of variables to balance predictive
accuracy and model simplicity was established as 57 for the 120 m-pixel scale, 54
for the 90 m, 70 for the 60 m, and 85 for the 30 m, the top five variable for each
model are shown in Table 4.5. Applying a threshold of two standard errors, based
on the cross validations samples for the best model, allows similarly performing
models to be compared (James et al. 2013). These models ranged from the one
that includes all 92 layers to a minimum of 14 variables for the 120 m scale, 20
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120 m 90 m 60 m 30 mn-3,848 n-6,826 n-10,499 n-21,000
R2 RMSE R2 RMSE R2 RMSE R2 RMSELandsat Dry and Wet 0.77 9.4 0.76 10 0.74 11 0.65 14.2Landsat Dry and Annual 0.76 9.5 0.76 10 0.73 11.1 0.6 14.4Landsat Wet and Annual 0.76 9.6 0.76 10.1 0.73 11.2 0.64 14.4Landsat Dry 0.74 9.9 0.73 10.5 0.71 11.6 0.62 14.9Landsat Annual 0.72 10.4 0.72 10.7 0.69 12 0.61 15.1Landsat Wet 0.71 10.5 0.70 11.1 0.67 12.3 0.60 15.2Landsat Dry and Wet+ 0.77 9.3 0.76 10 0.73 11.2 0.65 14.3Landsat Dry and Annual+ 0.77 9.4 0.76 10 0.73 11.2 0.64 14.4Landsat Wet and Annual+ 0.76 9.5 0.753 10.1 0.72 11.3 0.64 14.5Landsat Dry+ 0.76 9.6 0.73 10.5 0.70 11.7 0.61 15Landsat Annual+ 0.74 9.9 0.74 10.4 0.70 11.8 0.61 15Landsat Wet+ 0.72 10.3 0.71 11 0.67 12.3 0.60 15.2PALSAR Only 0.37 15.5 0.313 16.9 0.25 18.7 0.18 22.2Recursive Feature Elimination 0.79 8.9 0.78 9.7 0.75 11 0.66 14.2All 92 Variables 0.78 9.2 0.77 9.8 0.74 11 0.66 14.2

Table 4.4: Accuracy statistics for all modes, + indicates Landsat-PALSAR fusionmodels
for the 90 m scale, 29 for the 60 m, and 39 for the 30 m scale. At all scales, the
model constructed by the RFE was the best preforming (Figure 4.11), providing an
improvement in the achieved R2 of at least 0.012. The 120m scale RFE model was
the overall most accurate (Figure 4.6). To compare the within model variation in ac-
curacy, Figure 12 shows class accuracy statistics for 10% intervals of woody cover

30 m 60 m 90 m 120 m1 HH HH HV HV2 B1 SD Dry B1 SD Dry HH HH3 B2 SD Dry B4 SD Dry B4 Median Annual B3 Median Annual4 B4 Median Wet HV B3 Median Dry B5 Median Dry5 B4 SD Dry B1 Min Wet B3 Median Annual B3 Median Dry
Table 4.5: Top five variables from the Recursive Feature Elimination model, at eachscale (30m, 60m, 90m and 120m). SD: standard deviation.
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4.6 Discussion

Landsat metrics, seasonality and scale

The accuracies obtained from the Landsat-derived woody cover maps varied ac-
cording to the temporal window for which metrics were calculated. For single sea-
son data, the dry period metrics were the most useful. This result was anticipated
due to the persistence of green shrubs into the dry season, comparedwith the grass
layer (Figure 4.2; (Naidoo et al. 2016, Tsalyuk et al. 2017)). This makes woody cover
easier to discriminate, compared to other periods where differences are less pro-
nounced (Brandt et al., 2016). This can also explain the overestimation of wet sea-
sonmodels in Figure 4.7, as the grass andwood layers aremore difficult to separate
and identify.

The distribution of errors also varied with seasonality. Dry season metrics per-
formed better in areas of sparse woody cover (0-30% cover), whereas wet metrics
offeredmarginal improvements in the 30-40% and 50-60%percentiles (Figure 4.12).
This can be attributed to the dry season metrics having relatively greater discrim-
inatory power at sparse coverage where woody canopies are more distinct. Fur-
thermore, some areas of moderate woody coverage were under-predicted by dry
season only metrics. This can be attributed to the fact that some woody species
are less persistent in dry conditions (Subset B in Figure 4.7).

The best result from the multi-seasonal Landsat comparisons was the combi-
nation of dry and wet season metrics. Although wet season metrics were the least
effective mono-temporal models, when combined with the contrasting dry season,
the information covering the peak biomass period was beneficial. This improve-
ment was mainly limited to coverage between 10 and 70% where each percentile
produced greater class accuracies than either single-season case, at both fine (30
m) and coarse (120 m scales). In general, the multi-seasonal combinations im-
proved prediction across the full range of woody cover densities, with the 10-40%
percentiles, at 120 m resolution, achieving the highest-class accuracies. The abil-
ity to extract multiple sets of metrics from a time-series of images is noteworthy,
reducing to a certain extent the drawback of a temporally limited Landsat archive
in many savannah regions. As fractional woody cover approaches the highest val-
ues (>70%), all models perform poorly with no model achieving a percentile class
accuracy of more than 56% (Figure 4.12). This is partly due to the rare occurrence
of this class, which affects the regression analysis. The poor accuracy for dense
woody savannahs has been noted by numerous other studies (Naidoo et al. 2016,
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Bucini et al. 2010), and should be a priority for future studies. We tested models at
four scales: 30, 60, 90, and 120 m pixels. As pixel size increased, model accura-
cies consistently improved (Figs 8 and 9). The largest improvement occurred with
the initial aggregation from 30 to 60 m, with a mean R2 increase of 13.09%±0.9,
across the 13 models tested. However, this change must be considered with the
distribution of the input training values. At 30 m, there is a relativity larger spread
of values and a higher proportion of dense and sparse woody coverage (Figure
4.5). Accordingly, this distribution is a more complicated endeavour for the regres-
sion analysis, as indicated by the low class accuracies for high cover percentiles
(Figure 4.12). Concurrently, the greater proportion, and pixel purity, of sparsely (0-
10%) wooded areas at 30 m result in comparably high class accuracies for the first
percentile class (Figure 4.12). Resampling to a coarser resolution reduces the oc-
currence of dense woody coverage, due to central tendency, making the regression
exercise easier. This simplification is restricted to the 30 to 60 m aggregation with
no visual or statistical evidence that additional resampling improves the outcome
of the regression. Further reductions in the pixel resolution result in more mod-
est but consistent improvements of 4.20%±0.74 and 1.30%±0.99 in the R2 when
re-scaling from 60 to 90 m and from 90 to 120 m, respectively. At coarser scales,
artefacts from the Landsat processing are likely to be smoothed, as errors resulting
from the Scan Line Corrector failure and undetected clouds are minimised (Figure
4.7). Furthermore, despite the high georeferencing accuracy of the datasets, er-
rors from potential misalignment of the training imagery and Landsat data may be
more prevalent at 30 m and averaged at coarser scales. For many regional-scale
applications, land cover maps at 90 or 120 m may be sufficient, and an accuracy
vs. precision trade-off might be appropriate. Maps at 120mmay bemore accurate,
but have less fidelity for detecting the clumps and canopies of dryland vegetation.
This trade off may become more pertinent with the availability of 10-20 m imagery
from Sentinel-2 (Bastin et al. 2017).

Overall, the accuracies achieved by the Landsat-based models are comparable
to those of radar-based studies at similar scales. Urbazaev et al. (2015) achieved R2
values of 0.71 and 0.66 using multiple and single season PALSAR images at 50 m
resolution, respectively, whilst Naidoo et al. (2016) obtained R2 of 0.8 and 0.81 using
single-season PALSAR data at 105 m. Given our considerably larger study area, our
results are promising for regional-scale analysis, as the spatial breadth, temporal
depth, and rapid processing potential of the Landsat archive is unmatched by any
radar system (Roy et al. 2014, Kennedy et al. 2014). Our metrics-based approach
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outperforms the various single date Landsat scenarios across multiple seasons
achieved by Naidoo et al. (2016) who reported R2 values of 0.32-0.65 at 105 m res-
olution. There are clear benefits to quantifying seasonal variability using metrics,
as demonstrated by the high ranking of standard deviation layers (Table 4.5). Fur-
thermore, multi-seasonal metrics further improved results over multi-seasonal im-
age combinations. We attributed this refinement to two factors: firstly, metrics are
more resistant to bias incurred by rainfall and moisture variation; secondly, metrics
such as standard deviation can represent the temporal profile of the land cover, im-
itating time-series approaches. This is in agreement with Müller et al. (2015), who
found that annual metrics outperform best available pixel composites for tropical
savannahs in Brazil.

Large-area mapping of savannah systems remains a challenge due to high het-
erogeneity and subjective biome classifications (Herold et al. 2008, Hüttich et al.
2011). Current approaches for regional-scale mapping generally focus on best-
available pixel composites for classification (Frantz et al. 2017, Griffiths et al. 2013,
White et al. 2014). Due to the high temporal variation in savannahs, this method
is particularly vulnerable to bias effects caused by pixels being selected in differ-
ent phenological stages (Hüttich et al. 2011, Müller et al. 2015). We demonstrate
that Landsat-based spectral variability metrics offer a robust alternative for land
cover mapping at large spatial scales, applicable to epochal or annual analyses.
South Africa possesses good availability of Landsat imagery in the USGS archive,
owing to the successful transfer of data from the Johannesburg receiving station,
active since 1980 (Wulder et al. 2016). However, in many savannah regions, such
as the Sahel and east Africa, the historical Landsat archive is sparse. By combining
multiple years of observations, wall-to-wall mapping should be possible even with
low annual image availability. Furthermore, segmenting a time-series into multiple
temporal windows allows additional value to be extracted from a single series of
observations, potentially compensating for a relatively limited archive. The high im-
age acquisition rate of Landsat 8 relative to the historic Landsat archive, combined
with comparable imagery from the Sentinel-2 satellites, will result in improved tem-
poral resolution for optical imagery (Roy et al. 2014, Drusch et al. 2012). Increased
observations should enable our multi-seasonal metrics approach to be expanded
by usingmore or smaller temporal windows, for example the beginning or ending of
the dry season. Evidence fromMODIS-based studies suggests that this refinement
may allow increased discrimination of subtle land covers, such as densely wooded
savannahs, which are currently poorly mapped (Hüttich et al. 2009).

83



Landsat-PALSAR Fusion

Integrating the Landsat metrics with L-band PALSAR backscatter had divergent im-
pacts. Finer-scale maps (30 to 90 m) were negatively affected by the inclusion of
radar, with the Landsat-onlymodels outperforming their fused counterparts (Figure
4.9). Comparably, the PALSAR-only models performed poorly, especially at fine-
scales (Table 4.3). We attribute the detrimental effect of radar at fine resolutions
to the high-level of noise in radar imagery at this scale, as illustrated in Figure 4.13.
Errors caused by factors such as speckle, moisture content and geolocation accu-
racy are far more prevalent in finer-scale radar data. Therefore, at 30 to 90 m pixel
scales, the PALSAR imagery contains a weak signal-to-noise ratio, incurring a neg-
ative impact on the regressionmodel. Accordingly, SAR-fusion reduced class accu-
racy by 1% for area 20-60% coverage, at 30 m scales (Figure 4.12). Conversely, the
coarse scalemodels (120m)were consistently improved by the addition of PALSAR
backscatter to the Landsat metrics, with the single-season combinations undergo-
ing the greatest improvement. The lower improvements for themulti-seasonal sce-
narios indicates that some of the information contained in radar backscatter can be
obtained from multi-seasonal metrics. The inclusion of L-band radar had the high-
est impact on sparse woody cover classes (0-30%). Within these classes, inclusion
of the SAR variables increased balanced accuracies by 1-9% and 1-2%, at 120 and
30 m scales, respectively (Figure 4.12). Visual examination of the prediction sub-
set maps indicates that this improvement is due to the SAR fusion correcting for
overestimations when there is 0 - 20 % woody cover (e.g. the central pivot irriga-
tion fields in Subset A of Figure 4.7). The high-ranking of radar variables by the RFE
variable importance scores (Table 4.5), indicates that compared to individual Land-
sat metric layers PALSAR performs well. This may seem contradictory against the
low accuracy of the radar only models. However, it is well documented that radar
backscatter is a correlates strongly with woody cover, and the superiority of the
Landsat models is most likely due to the large number of variables deployed. This
affect is further amplified when multi-seasonal Landsat models are considered.

Multi-sensor fusion approaches are becomingmore popular, due to an increase
in the number of operational sensors and the open-access data policies. The im-
provements at coarse scales are in line with those found in other studies employing
SARand Landsat data together (Bucini et al. 2010, Naidoo et al. 2016). However, this
study is the first to quantify the effect and mechanism of this fusion across multi-
ple seasons and scales. The accuracies of our PALSAR-only models are lower than
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other South African studies (e.g. (Naidoo et al. 2016, Urbazaev et al. 2015)). We
attribute this to the following issues; firstly, our study area is larger and more het-
erogeneous, encompassing human modified landscapes, whereas the other two
studies were confined to the Kruger National Park. Secondly, the source of training
data could also have affected the accuracy of our PALSAR-based estimates: we
employ aerial photographs while Naidoo et al. (2016) and Urbazaev et al. (2015)
use characterisations that are more accurate from the field or from LiDAR sources
(Naidoo et al. 2016). Finally, it should also be noted that our study used amosaicked
ALOS PALSAR layer produced from images acquired across a three month window
(1st July - 3rd October), including two images acquired in the previous year. Seasonal
effects, such as canopy density and moisture content, may prevent the mosaicked
images from being artefact-free. Alternatively, the global-scale processing under-
taken in the creation of themosaicked PALSAR layer, such as speckle reduction and
topographic normalisation, may reduce the fidelity of backscatter measurements
when compared to scene-specific methods applied elsewhere (e.g.(Naidoo et al.
2016, Urbazaev et al. 2015)). Furthermore, multi-sensor fusion has a potential for
image miss-registration errors between the imagery (Lehmann et al. 2015).

Althoughoverallmodel accuracies are onlymoderately changed by the inclusion
of L-band SAR data, the consistent allocation of improvements at low densities of
woody cover may be highly relevant to semi-arid savannah case studies. The pro-
cess of shrub encroachment into grasslands is a major threat to the livelihoods of
many pastoralists in the developing world. For prevention and remediation to be
successful, action must be taken as early as possible. The periodic monitoring of
sparsely wooded savannahs, which are vulnerable to shrub encroachment, is there-
fore a pressing requirement. For this purpose, the fusion of PALSAR and Landsat
imagery is beneficial, offering a higher likelihood of timely change detection than
single-sensor approaches. In the coming years, fusion techniques based C-band
radar from Sentinel-1 may offer good promise, owing to the 12 day revisit time.
Merit of variable reduction methods

To ascertain the value of variable reduction methods we applied a Recursive Fea-
ture Elimination (RFE) on out 92 variable dataset. The RFE produced the best pre-
forming model at all scales, compared to all Landsat and Landsat-PALSAR fusion
cases (Figure 4.11). In general, the number of variables used in the RFE models de-
creased with aggregation: we attribute the requirement of less variables at coarser
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Figure 4.13: Subsets of HVpolarized PALSARbackscatter across a grassland-shrubtransition at different resolutions
resolutions due to improvements in signal-to-noise ratios as noisier layers are smoothed.
Dimension reduction methods are also useful for highlighting the type of variables
that contain useful information for themodel building. The high ranking of standard
deviation - a proxy for seasonal variability highlights the importance of temporal in-
formation for woody cover mapping.

As both the number of active sensors and the availability of open data archives
increase, remote sensing analyses are using high-dimensional datasets. The utility
of variable selection or dimension reduction methods will inevitably increase in or-
der to deal with the increasing data volume. Currently, these tools are primarily used
in hyperspectral analyses, but are underutilised in other areas (Pal and Foody 2010).
The fact that the RFE was able to automate the process of selecting a superior
model highlights the potential of automating model construction using machine
learning methods that may currently be underused (Meyer et al. 2016). At large-
scales, mapping land cover with fewer variables can drastically reduce processing
time, leaving unnecessary variables out can therefore be useful for computing and
statistical purposes.
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4.7 Conclusions

We tested the potential of Landsat-derived spectral variability metrics and PALSAR
composites formappingwoody coverage, in southern African savannahs. We com-
pared the role of seasonal compositing period, and the effect ofmulti-sensor fusion
through the addition of ALOS PALSAR backscatter to the Landsat layers. Further-
more, we investigated the role of pixel scale on map accuracy, and the potential of
variable selection methods for automating the model building process.

We draw a number of conclusions from our modelling scenarios. Firstly, Land-
sat metrics can produce highly accurate maps of fractional cover in savannahs,
with dry season imagery being the preferred temporal window. Further improve-
ments can be made by combining multi-seasonal metrics, derived from two con-
trasting seasons. In particular, integrating dry and wet season layers produced
good improvements in map accuracy. Secondly, the fusion of Landsat and PALSAR
layers is not always beneficial. At fine scales (30-60 m), L-band SAR integration
reduced model performance consistently, potentially due to the high level of noise
inherent to radar data, particularly in savannahs. Conversely, at the 120m scale, the
addition of PALSAR was beneficial, particularly for areas with less than 30% cov-
erage, and for some models at 90 m scales as well. Finally, the use of a recursive
feature elimination automated variable selection process was very efficient in con-
structing an accurate parsimonious model, producing the most effective model at
every scale examined whilst reducing the number of variables used to of 57 out of
90.

In summary, Landsat metrics offer a suitable option for regional-scale mapping
of savannah woody cover, and should allow decadal scale analysis of land cover
changes. The use of multi-seasonal composites are particularly promising for ac-
curate fractional woody cover mapping. For contemporary monitoring, the fusion
of Landsat metrics with L-band radar is recommended for areas with lower woody
cover densities, and particularly for the rapid detection of shrub encroachment into
grass-dominated savannahs. Future studies will benefit from automated variable
reduction approaches and the increased image acquisition rates from the Sentinel
constellation, which feature both radar (C-Band) and optical satellites.
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Chapter 5

Carbon Fertilisation is the Primary
Driver of Shrub Enchroachment in
South African Savannahs

5.1 Introduction

Savannahs and grasslands throughout the world are experiencing an increase in
the coverage and density of woody plants, relative to historical levels (Stevens et al.
2017). The rate and nature of this change varies over spatial and temporal scales,
and has resulted in a range of ecosystem conversions (Naito and Cairns 2011). In
many grasslands, indigenous shrubs have increased in densities sufficient to initi-
ate conversion to shrubland, particularly in North America (Van Auken 2009). Con-
currently, the occurrence and size of trees within savannah systems has risen, es-
pecially in Africa and South America (O’Connor et al. 2014, Naito and Cairns 2011).
While in humid-savannah, many forest boundaries are expanding (Cuni-Sanchez
et al. 2016). Regardless of the process by which woody encroachment occurs,
many ecosystem function properties are altered, making it a major, yet poorly un-
derstood, global change mechanism (Eldridge et al. 2011, Ward 2005). Woody en-
croachment is also more than a purely environmental concern: reductions in grass
biomass are highly detrimental to pastoralists who depend on rangelands for their
livelihoods (Anadón et al. 2014). Savannah systems are predicted to be hotspots
of global change in the coming decades, with increasing variation in both rainfall
and temperature (Diffenbaugh and Giorgi 2012). In addition, African savannahs are
projected to host a rapidly growing, human population (Bradshaw and Brook 2014).
Understanding the drivers of ecosystem change in these systems is, therefore, a
pressing social and environmental concern.
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The traditional ecological narrative dictates that shrub encroachment is a lo-
calised phenomenon, resulting from poor land management regimes (Scholes and
Archer 1997, Archer 1994). The most frequently proposed mechanisms are over-
grazing and suppression of fire, both of which are common management tech-
niques in rangelands. Herbivory reduces grassy biomass, increasing the competi-
tiveness of woody plants through water, light, and space availability, whilst simulta-
neously reducing fuel-loads for potential fires (Roques et al. 2001, Sankaran et al.
2008). Reductions in fire frequency prevent the destruction of saplings and small
shrubs, allowing them to reach maturity and sizes sufficient to survive fire events
(Bond and Keeley 2005). Field studies comparing grazed and ungrazed plots have
frequently observed higher rates of woody encroachment in the presence of her-
bivory. While, in intensely stocked commercial areas woody plants will often be
removed to facilitate the creation of grazing lawns, reducing woody coverage.

More recently, increased focus has been directed at the role of global factors
in woody cover dynamics. As savannah woody cover is constrained by both total
and wet season rainfall (Good and Caylor 2011, Sankaran et al. 2005), changes in
precipitation regime have been proposed as drivers of shrub encroachment. This
theory has been supported by small-scale field experiments showing shrubs dis-
proportionally benefiting from increases in rainfall frequency, amount, and variabil-
ity (Gherardi and Sala 2015, Ward 2005). Yet there is little consensus over what
effect, if any, rainfall variation has on large-scale woody cover changes. Further-
more, shrub encroachment is a near-global phenomenon, and rainfall changes are
predominantly regional and exhibit little intra-regional consistency.

A further potential global factor is the ongoing rise in atmospheric CO2 con-
centrations since the industrial revolution. The efficiency of plants in converting
CO2 to biomass is governed by Water Use Efficiency (WUE). As CO2 concentrationsrise, stomartal conductance is lowered facilitating greater primary production at
lower levels of water availability, theoretically aiding woody plants in rainfall limited
systems. Chamber experiments have demonstrated that increasing CO2 concen-
trations from pre-industrial to contemporary and higher levels resulted in a 300%
increase in stem biomass and below-ground starch reserves for African savannah
woody species (Kgope et al. 2010). Furthermore, the potential and speed of re-
growth following fire events increased. Quantifying the role of CO2 in the field is
difficult due to the absence of Free-Air Concentration Enrichment (FACE) exper-
iments in savannahs. However, a theoretical understanding of water limitations
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to woody cover in savannahs makes it reasonable to assume that CO2-driven in-
creases would be concentrated in water limited environments (Stevens et al. 2016,
Sankaran et al. 2005). This has been observed across South Africa using aerial
photography and globally using satellite-derived Rain Use Efficiency (RUE) (Stevens
et al. 2016, Buitenwerf et al. 2012, Donohue et al. 2013).

Unravelling the cause of woody encroachment is complicated by the potential
for field studies to lack regional representativeness. An alternative approach is
aerial imagery or EO data. In this study, we combine satellite-derived woody cover
maps with an ensemble of predictive variables in a spatial modelling framework
question the validity of the candidate theories. Specifically, we aim to conduct
a holistic analysis enabling regional-scale inference on the drivers of woody en-
croachment for South African savannahs.

5.2 Study Area

The study area consists of the Limpopo and North West Provinces in northern
South Africa. These municipalities cover a plurality of the savannah biome within
South Africa (193,200 km2, 49% of the total savannah area), in addition to contain-
ing 33,830 km2 of grassland (Mucina et al. 2006). There is an increasing west-east
rainfall gradient, with Mean Annual Precipitation (MAP) rising from 300mm/year
in the west to a maximum of 1500 mm/year in the Drakensberg Escarpment in the
east (Scholes et al. 2001). The majority of rainfall occurs in the October-March
rainy season. Overall, annual rainfall levels are low considering savannahs globally.
Mean annual temperatures are generally between 21-23°C, with winters being mild
and frost-free (Scholes et al. 2001). The study area is covered by a heterogeneous
woody cover layer, consisting of shrubs and isolated trees that rarely reach canopy
closure (Mucina et al. 2006). To further refine the study area, we used the 30 m
Landsat-derived, South African National Land-Cover -2014 map to exclude exten-
sively modified areas, including urban, mine, and intensive cropland or plantation
related classes
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5.3 Methods

Woody Cover Change Mapping

Woody cover changes were mapped using Landsat-derived woody cover layers,
based on the methodology developed in Higginbottom et al. (2018). In summary,
two five-year epochs (1984-1988 and 2008-2012) of Landsat imagery were used to
generate pixel-level seasonal spectral variability metrics, at 120 m resolution. Re-
ducing the pixel resolutions improves the classification accuracies, and is more
suited for observing overall trends. High-resolution imagery were classified into
woody/non woody masks, and used as training data for a Random Forest regres-
sion for the fractional cover of each 120mpixel. The RandomForestmodel was ap-
plied to the Landsat metric stacks to generate the two epochal maps. We then cal-
culated both the absolute percentage change, and the relative percentage change
in woody cover between the two maps using the following equations:

AbsoluteChange = WoodyCover2010 −WoodyCover1986 (5.1)

RelativeChange = WoodyCover2010 −WoodyCover1986

WoodyCover1986
× 100 (5.2)

where the subscript year is the central point of the classification temporal win-
dow.
Statistical Analysis
Generalised Additive Models

Ourmodelling frameworkwasdeveloped usingGeneralisedAdditiveModels (GAM).
As generalised models, GAMs incorporate the dependent variable (y) using a link
function (g(.)) to a distribution family, establishing the expected mean (µ) and vari-
ance (σ2), e.g. the Gaussian (normal) distribution (N (µ, σ2)). As additive models,
linear covariant coefficients (βx) may be replaced with smoother functions (f(x)),
allowing for non-linear responses enabling the data to ’speak for itself’ (Wood2006).
GAMs can therefore be expressed as:

g(µ) = β0 + f(x1) + f(x2)...f(xp) (5.3)
where:

91



µ ≡ E(yi) (5.4)
and:

y ∼ N (µ, σ2) (5.5)
Models were constructed using the mgcv package within the R statistical en-

vironment (R Core Team 2015b). Thin plate splines were used as smoothers, and
were estimated using Residual Maximum Likelihood (REML) (Wood 2003, 2011).
Theoretical Framework

We collated a series of 11 variables that have a hypothetical basis for explaining
woody cover changes (Table 5.1) . These variables can be grouped into three cat-
egories: rainfall-derived, human, and natural factors. The rainfall variables were
calculated using the TAMSAT database, grazing data was extracted from the FAO
global livestock layers, population density was acquired from the Global Human
Settlement Layers, soil data came from the International Soil Reference and Infor-
mation Centre’s (ISRIC) soil grid dataset.

Based on the underlying explanatory theories forwoody encroachment, it is pos-
sible to develop a series of expected responses that would support each hypothe-
sis. Accordingly, we examined our modelling results based on the following a priori
hypotheses:

• The Land Use theory holds that grazing and human pressures alter the grass-
shrub equilibrium, leading to an increase in woody cover. This would be con-
firmed by a strong positive effect from population and grazing density

• The Rainfall Variation hypothesis states that increases in the amount and
variability of rainfall lead to a preferential environment for woody plants, this
would be supported by a strong positive effect at high levels of rainfall (annual
and wet season) and increasing trends

• TheCarbon Fertilisation argument postulates that increasing atmospheric CO2concentrations allow woody plants to be more productive at lower levels of
rainfall (i.e improved Water Use Efficiency) than the previously. Under this
theory, increases would be expected in areas of low woody cover (<60%) and
which are rainfall limited (<650 mm/year).
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Type Variable Source

Rainfall

Mean Annual Precipitation
Mean Wet Season PrecipitationMean Annual Rainy DaysMean Wet Season Rainy DaysMean Annual Rainy Days TrendMean Wet Season Precipitation Trend

TAMSAT

Anthropogenic Livestock DensityPopulation Density FAO
Environmental Sand ContentInitial Woody Cover ISRIC Soil GridsThis Study
Table 5.1: Explanatory variables that may influence woody cover encroachment

5.4 Results and Discussion

The mean woody cover change across our study area was a gain of 1 percentage
point (standard deviation: 14%) or a relative change gain of 28% (standard devi-
ation: 16%). Both measures showed a slight rightwards skew, with woody cover
increases more prevalent than decreases. The woody cover maps have an overall
accuracy of 65%. This must be considered, as the errors within these map propa-
gate into the statistical analysis. However, the largest prediction errors are in the
tails, mainly at higher values, with the more typical values of 0-30% woody cover
having smaller residuals and greater accuracy. Errors of this magnitude in indi-
vidual maps would be greatly problematic for inferring land cover change using a
categorical land cover map.

To quantify the drivers of woody cover change of both increases and decreases,
we analysed the absolute and relative rates of change (Figure 5.1) against a suite of
explanatory variables. This statistical framework allowed multiple hypotheses to
be interrogated. Accordingly, the three predominant explanations for woody cover
change could be analysed at once. These theories are: 1) carbon fertilisation; 2)
rainfall trends and variability; and 3) land-use management. The fitted models had
R2 values of 0.39 for absolute change and 0.41 for relative change. The model-
derived variable response curves are shown in Figures 5.2 and 5.3.
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Figure 5.1: a) Absolute woody cover change from 1986-2010. b) Relative woodycover change. Inset shows the study area within sub-Saharan Africa.
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Figure 5.2: Smooth variable functions for absolute woody cover change derivedfrom the GAM
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Figure 5.3: Smooth variable functions for relative woody cover change derived fromthe GAM
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Poor land-use management and high grazing densities have long been casti-
gated as drivers of shrub encroachment (Archer 1994). This argument originates
in the two-layer savannah model of Walter (1939); who theorised that grazing re-
moves the grass layer of the savannah, allowing the competing tree layer access
to increased moisture- thus facilitating en masse recruitment. Support for this the-
ory comes from a range of case studies where shrub encroachment was identi-
fied on heavily grazed rangelands, particularly in North America and Africa. How-
ever, this reflects both a classic case of confusing correlation and causation, and
of site selection bias. The existence of encroachment on grazed lands does not
affirm a causal driver, particularly when many non-grazed areas also demonstrate
increasing woody cover. Furthermore, a disproportionate number of studies have
been conducted at a limited number of sites: particularly, the Jornada Experimen-
tal Range in New Mexico and the Kruger National Park in South Africa (Laliberte
et al. 2004, O’Connor et al. 2014). The Kruger National Park is notably and unrepre-
sentative choice due to an extreme juxtaposition of heavily grazed communal land
and protected semi-natural savannah (Wessels et al. 2007). This contrast reflects
extremes of land-use intensity in southern Africa and is not a typical contrast.

Our analysis revealed a limited effect of livestock density. Relative change rates
were unaffected, until densities of 20 LSU per pixel were reached after which a
positive trend emerged. This is a high stocking density, which is not typical for ei-
ther South Africa or the wider southern Africa. For absolute change, a slight, near-
linear, negative relationship was identified; woody cover change was predicted to
decrease from around 15% to -2% as livestock density increased from 0 to 40 units
per tile. That increasing livestock would reduce encroachment rates may seem
counter intuitive when set against the prevailing literature of grazing-facilitated en-
croachment. However, this is most likely due to the most intensively grazed areas
(i.e intensive commercial grazing lawns) being completely cleared of woody plants,
inducing a negative trend at high values. Otherwise, livestock densities appear to
have a minor effect on woody cover increases, which is an interesting finding when
compared to the number of studies that have identified grazing as a primary driver.
This omission of an affect may be influenced by the coarse resolution of the live-
stock data (0.5°); however, as this is the only consistent regional-scale data avail-
able, it remains the most appropriate source. The availability of high-resolution
land-use data, including grazing type and density, would be of benefit for future
studies.
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Carbon fertilisation-driven shrub encroachment would, theoretically, improve
theWater Use Efficiency (WUE) of woody plants, increasingwoody cover by improv-
ing root development and seedling survival rates (Bond and Keeley 2005, Stevens
et al. 2016). Therefore, cover increases would be concentrated in water-limited
areas, which receive / 600-650 mm/year in African savannahs (Sankaran et al.
2005). Neither of our models predicted this pattern when using MAP. However,
high rates of increasing cover were identified for areas with low mean wet season
rainfall. Given the correlation between the wet season and mean annual precipita-
tion totals, this may imply a stronger affect of seasonal rainfall patterns. As woody
plants in savannahs have evolved tomaximise growth during the seasonally limited
growth season, our results would be consistent with proposed ecological mecha-
nisms of increased WUE under elevated CO2. The variable affect with the tightest
confidence interval, for both models, was the initial woody cover, with increases
more prominent at proportions below 40%. Low cover areas typically occur in low
rainfall areas, so some variable duplication is expected. However, the strength and
direction of themodelled trend is further support for the elevated CO2 theory. Thesefindings are in agreement with a number of studies that have linked a carbon fertili-
sationmechanismwith shrub encroachment based on Earth-observation (Donohue
et al. 2013), aerial photography (Stevens et al. 2016), and field surveys (Bond and
Midgley 2012).

Savannah woody cover is determined by both annual and wet season precipita-
tion (Sankaran et al. 2008, 2005, Good and Caylor 2011). It is, therefore, plausible
that changes in rainfall dynamics may incur a shift in woody cover levels (Gherardi
and Sala 2015). For absolute change, trends in rainfall were an insignificant variable
for the models. For relative change, MAP and wet season rainfall had divergent ef-
fects, with increasing MAP predicting woody cover increases, whilst declining wet
season rainfall also having a positive affect. However, the model considered these
variables to be weak predictors. This was expected, as there have been only minor
trends in rainfall for South Africa over the 1960-2010 period (MacKellar et al. 2014).
Further work on the interactions between rainfall dynamics and woody cover is ad-
vised; a simple linear trend in rainfall total, as used here, is not a sophisticated
enough method for quantifying changes in rainfall regime and does not account
for potentially relevant factors, such as the frequency, intensity and regularity of
precipitation events. Furthermore, this is one regional case study; pan-dryland or
global studies may be more successful in comparing divergent changes in rainfall
regime.
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5.5 Conclusion

The phenomena of woody plant encroachment have been documented for savan-
nahs and grasslands in nearly all continents (Stevens et al. 2017). Yet the drivers
of this process remain unclear, with a range of local and global factors postulated
(Stevens et al. 2016, Archer 1994, O’Connor et al. 2014). Here, we combine satellite-
derived woody cover maps with a suite of potentially explanatory variables, to elu-
cidate on the potential drivers and mechanisms of woody cover change, in South
African savannahs. The changemaps derived from the 1986 and 2010woody cover
classifications are shown in Figure 5.1.

In this study, we aimed to test three competing hypotheses on the drivers of
woody encroachment for South African savannahs. The modelled variables most
closely matched the a priori responses of the carbon fertilisation hypothesis. In re-
cent years, this explanation has been postulated by studies using a variety of meth-
ods to account for the observed woody encroachment. Further work in this arena
is still necessary, particularly where the data sources are sub-optimal. Land-use
history and rainfall dynamics are especially difficult to quantify and would require
further investigation. Furthermore, additional factors, such as reactive nitrogen de-
position andmega-fauna extinctions, are likely to be relevent butwhere not included
in our models. If Carbon fertilisation is the key driver of shrub encroachment in
savannahs, it would raise concerns for future environmental change: as CO2 levels
continue to rise more savannahs and grassland are likely to experience an increase
in woody cover levels, which has been linked to savannah land degradation.
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Chapter 6

Pervasive greening of African
Savannahs from 1982 - 2016

6.1 Introduction

Trends in vegetation greenness, measured using the Normalised Difference Veg-
etation Index (NDVI), are one of the most ubiquitous tools for inferring ecological
change at large spatial scales. The NDVI has long been a favoured metric, owing
to its simple calculation, correlation with various ecological attributes, and trans-
ferability between sensors (Brown et al. 2006, Pettorelli 2013). In particular, the Ad-
vanced Very High Resolution Radiometer (AVHRR) - derived Global Inventory Moni-
toring and Modelling System (GIMMS) dataset has been used extensively for envi-
ronmental change purposes (Higginbottom and Symeonakis 2014). Compared to
other data records, such as the Landsat collections, AVHRR-derived datasets may
appear somewhat basic; with broad spectral channels, coarse resolution pixels,
and limited options for atmospheric correction (Cracknell 2001). However, for re-
gional to continental scale studies, AVHRR offers unparalleled temporal and spatial
coverage, providing a globally consistent record since 1981.

The regions most studied using GIMMS-NDVI data are the drylands of Africa.
These areas are particularly well suited for this form of analysis, due to the lim-
ited historical coverage of other Earth-observation archives in the region, with the
exception of South Africa (Wulder et al. 2016). Furthermore, NDVI becomes less
sensitive to vegetation in dense canopies (NDVI > 0.7), but is relatively responsive
to the low biomass levels found in savannahs and grasslands (Eisfelder et al. 2012,
Prince and Tucker 1986). Accordingly, a considerable amount of earlier work on the
use of NDVI for monitoring environmental change focussed on the Sahel region .

100



In the 1970s and 1980s, the Sahel experienced one of the most prolonged and
intense droughts of the 20th century, with annual rainfall decreasing by 50% (Nichol-
son 2000, Hulme 2001). The ecological changes caused by this drought fuelled a
narrative of anthropogenic-driven desertification, focussed on the southwards ex-
pansion of the Sahara desert as a consequence of poor land management (Char-
ney 1975). When the dry period began to abate, satellite observations of vegetation
greening provided regional-scale evidence of the close coupling between climate
and vegetation; refuting the anthropogenic desertification theory (Nicholson et al.
1998, Tucker et al. 1991). AVHRR-based NDVI estimates revealed that greening oc-
curred through two distinct mechanisms: an increase in the seasonal maximum
NDVI, and an expansion of the growing season (Heumann et al. 2007, Herrmann
et al. 2005). Further regional-scale analysis highlighted the influence of climatic
oscillations, such as El Niño Southern Oscillation (ENSO) and the Pacific Decadal
Oscillation (PDO) on African vegetation (Brown et al. 2010). On a more local scale,
NDVI trends have shown changes in cropland and increases inwoody cover (Brandt
et al. 2015, Brandt, Verger, Diouf, Baret and Samimi 2014).

The most common statistical method for detecting change is linear regression
against time, using either seasonally or annually summed NDVI (Herrmann et al.
2005). However, linear regression has a number of assumptions, such as the inputs
being independent on the y-axis and conforming to a normal distribution, that are
rarely fulfilled by an NDVI time-series (De Beurs and Henebry 2005, Wessels et al.
2012). Alternatively, the use of non-parametric approaches has been proposed,
such as the Mann-Kendall and Theil Sen regressions (Higginbottom and Symeon-
akis 2014). These techniques have fewer assumptions than parametric models,
and are more suited for noisy time-series (Theil 1992, Sen 1968, Kendall 1938). All
of these operations result in amonotonic trend co-efficient, indicating themodelled
change over time, which when positive (i.e. an increase over time), indicates veg-
etation greening, and when negative, purports browning (de Jong, de Bruin, de Wit,
Schaepman and Dent 2011). However, reducing a 30-year plus time series to a sin-
gle trend is often overly simplistic, as the direction of change may reverse multi-
ple times within this period (de Jong et al. 2012, Verbesselt, Hyndman, Newnham
and Culvenor 2010). Detecting breakpoints in time-series requires more complex
models, with a variety of techniques capable of determining when a change has
occurred (Forkel et al. 2013). However, quantifying the change points in vegetation
dynamics can be informative of both human and anthropogenic drivers, providing a
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more insightful picture of ecological function and changes that are occurring (Ho-
rion et al. 2016).

Long time-series can be analysed in various ways, Fensholt et al. (2012) com-
pared monotonic NDVI trends for global drylands against potential climatic con-
straints, to critique land degradation claims. Similarly, De Jong, Schaepman, Furrer,
Bruin and Verburg (2013) modelled changes in NDVI and climatic variables, high-
lighting that although climate (especially precipitation) could explain a large pro-
portion of NDVI change, large areas of browning in Africa were not attributable
to it. Fensholt et al. (2015) compared NDVI trends calculated using two different
aggregation methods (annual mean and growth season sum), with divergences in-
dicating land-cover changes, such as shrub encroachment in southern Africa. Us-
ing a Breaks For Additive Season and Trend (BFAST) breakpoint analysis, Horion
et al. (2016) were able tomap the vegetation changes resulting from the collapse of
the Soviet Union and associated agricultural abandonment in central Asia. At finer
scales, the combination of Landsat imagery with breakpoint methods, especially
LandTrendR (Landsat-based detection of Trends in Disturbance and Recovery) and
CCDC (Continuous Change Detection and Classification), has been highly effective
for forest monitoring (Kennedy et al. 2010, Zhu et al. 2012).

This study investigates the NDVI dynamics of African savannahs using a vari-
ety of time-series analysis techniques and NDVI-derived metrics. The overarching
aim is to understand how vegetation dynamics have occurred and evolved during
the 1982-2016 period and the ecological implications of these changes. Towards
this aim, we generate two NDVI time-series from the GIMMS dataset: the annual
maximum and aggregate sum values, hereafter NDVImax and NDVIsum, respectively. These series are used as inputs into monotonic linear and breakpoint regression
models. The slopes and any associated breakpoints of thesemodels are classified
and examined as indicators of large-scale ecological change.

6.2 Data and Methods

GIMMS 3g NDVI

We used the GIMMS 3g NDVI dataset, derived from the AVHRR sensors carried on-
board the seven National Oceanic and Atmospheric Administration satellites since
June 1981. NDVI is calculated using the standard equation:

102



NDV I = (ρNIR− ρRed)
(ρNIR + ρRed) (6.1)

where, ρNIR is reflectance in the near infra-red range, and ρRed is reflectance in
the visible red part of the electromagnetic spectrum.

The GIMMS dataset is generated from AVHRR imagery. The raw daily 1 km pix-
els are binned into optimum 15-day, 8 km composites. The pre-processing rou-
tines include empirical mode decomposition and Bayesian methods, to remove
non-vegetation related artefacts, such as orbital drift, solar zenith angle effects,
and sensor transitions. A radiative transfer model is used to correct for the vol-
canic aerosol loading caused by El Chichón and Mount Pinatubo eruptions (Pinzon
and Tucker 2014)

We further processed the GIMMS data to maximum monthly composites and
discarded the months for the incomplete 1981 year, resulting in a 34-year (408
months) time-series. When gaps remained after compositing, values were esti-
mated by linear interpolation across months. Our analysis focus was on savan-
nahs, therefore we masked out areas that are likely to be dominated by forests or
marginal vegetation. This was achieved by calculating the median NDVI using the
monthly time-series, and discarded pixels with a value of less than 0.15 or greater
than 0.8 from further analysis. This removed areas with very low vegetation cover
(e.g the Sahara and Namib deserts) and dense forests (e.g. the Congo and Guinean
forests).

The monthly time-series was aggregated into two annual metrics: NDVImax andNDVIsum. This resulted in two 34-year annual time series, to be used as inputs for
the trend analyses.
Trend Analyses

A standard linear regression is expressed as:
yi = x>i β + ui (6.2)

where at time i, the dependent variable (y) is estimated based on the predictor vari-
able(s) (x) and the associated co-efficient (β), plus an error term u (i.e. the residual).
In our case, NDVI is modelled as a function of time, with the co-efficient quantifying
the change. This model assumes that the co-efficient remains constant. To incor-
porate the potential for one or more change in the co-efficient, Equation 6.2 can be
modified as follows:
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yi = x>i βj + ui (i = ij−1 + 1, ..., , ij, j = 1, ...,m+ 1) (6.3)
where, the j parameter indicates a segment index, and Im,n = i1...im is a series
of breakpoints, thus allowing a different co-efficient to be applied to the predictor
variable at different periods. Breakpoints are determined first by an ordinary-least
squares moving sum (MOSUM) test. When breaks are detected, the number is es-
timated by the Bayesian Information Criterion (BIC), and timings are set based on
the residual sum of squares (RSS). For a full mathematical overview of the stages
in this procedure, see Zeileis et al. (2003), Bai and Perron (2003) and Mann (1945).
For details on the application to NDVI time-series see Forkel et al. (2013).

We applied these models on both annual NDVI time-series. Firstly, a standard
linear model was implemented with no breaks quantified. Secondly, a model allow-
ing for two structural changes was applied. All analysis was conducted in the R sta-
tistical environment (R Core Team 2017). The raster and rgdal packages provided
data handling functionality (Bivand et al. 2018, Hijmans et al. 2015). The GIMMS
data were downloaded and processed using the gimms package (Detsch 2018).
Finally, trends were calculated in the greenbrown package (Forkel et al. 2013).
Trend Classification

The slopes resulting from the linear models were grouped into three categories:
greening, no change, or browning, after removing pixels with insignificant trends.
By comparing the trend classifications from the NDVImax and NDVIsum models, six
combinations are possible.

To classify the breakpoint outputs the following procedureswere applied. Firstly,
all segments with a length less than seven years or resulting from an insignificant
break were discounted. This was to ensure that the analysis was focused on long-
term trends, and not influenced by short-term shocks, such as drought years, which
may induce fleeting breaks. Secondly, the remaining components were classified
into greening, browning or no change based on the slope value. Finally, as two
breakswere allowed, amaximumof three segments is possible, these classeswere
conditionally grouped into six categories as follows:

1. Only Greening: pixels where only greening and no-change trends occurred
(e.g. Gr-Gr-Gr, Gr-Nc-Nc, Nc-Gr-Nc)
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2. Only Browning: pixels where only browning and no-change trends occurred
(e.g. Br-Br-Br, Br-Nc-Nc, Nc-Br-Nc)

3. Greening toBrowning: pixelswhere a greening trendswas followedby a brown-
ing trends (e.g. Gr-Br-Nc, Gr-Nc-Br, Gr-Gr-Br)

4. Browning to Greening: pixels where a browning trends was followed by a
greening trends (e.g. Br-Gr-Nc, Br-Nc-Gr, Br-Br-Gr)

5. Multiple Changes: pixels featuring more than one shift from the different
change trends (e.g. Br-Gr-Br, Gr-Br-Gr)

6. No Trends: pixels with no directional trend component

6.3 Results

Linear Trend

Changes inNDVI,modelled by linear trends in the annualmaximumand sumvalues,
are shown in Figure 6.1. Both metrics show that the dominant trajectory across the
study area is of increasing NDVI and greening. Greening pixels comprised 75% of
the NDVIsum slopes, and 80% of the NDVImax, whereas browning was identified in
25% and 20% of pixels, respectively. Removing trends that did not meet a P <

0.05 significance threshold eliminated some of these pixels. Proportionally, more
browning was masked for both metrics than greening (Figure 6.3a-b). Pronounced
increases in NDVI were observed in the Sahel and southern Africa. Browning was
concentrated in east Africa, Angola, Zambia, and Mozambique, with dispersed and
isolated patches in the northern Sahel. Non-trending areas, displaying no change,
were found in the west of South Africa and in Namibia and sparingly in Western
Africa.

Differences between the trend layers, after aggregation into three categories
(greening, browning, and no-change), are shown in Figure 6.2. There is a broad
agreement between trends, with 68% of pixels showing the same direction or no
change at a P < 0.05 threshold (Figure 6.3c). However, areas of divergence do
occur, whilst changes from no-change to a change category are considerably more
common that trend direction reversals (Figure 6.3.c). Themain areas of divergence
are dispersed across the Sahel and South Africa (NDVImax: no change and NDVIsum:
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Greening), Angola, Zambia, and Mozambique (NDVImax: no change and NDVIsum:browning), and west Africa (various).
Trend Breaks

The number and dates of trend changes identified by the breakpoint analysis are
shown in Figure 6.4, figure 6.6 show the number of breakpoints as an annually ag-
gregated time-series . A large number of pixels are shown to be highly dynamic,
featuring one or two trend changes. The NDVIsum time-series shows more vari-
ability than the maximum value, where a majority of pixels are monotonic. Using
NDVIsum, 48% of pixels were monotonic, with 38% and 14% undergoing one or two
breaks, respectively (P < 0.05). For the NDVImax trends, a greater proportion of
pixels had no breaks (55%), whilst 35% had one and 10% had two (P < 0.05).

A classification of the multiple trend constituents from the breakpoint analysis
is shown in Figure 6.5. Only segments occurring after a significant break (P < 0.05)
and lasting aminimumof seven years are considered. Figure 6.5 shows that regard-
less of NDVI metric, a large majority of African drylands, across all regions, have
experienced only greening trends in the 1982-2015 period: a minimum of seven-
years’ increase and no seven-year decrease in the NDVI metrics. Conversely, few
areas displayed only browning trends (aminimum of seven years’ decrease with no
increase). These pixels were geographically clustered in the central Sahel, Angola-
Zambia-Mozambique, and Tanzania. Patches of trend reversals (e.g. browning to
greening) were present, although not geographically extensive. Using NDVImax, re-versals were identified in: Angola, Zambia, and southern Somalia (browning - green-
ing), and in Tanzania, Kenya, and the western Sahel (greening - browning). Multiple
changes of more than one reversal occurred in Botswana and Kenya. When the
NDVIsum is considered, trend changes were more widespread, typically bordering
areas of browning such as in Tanzania, Angola, and the Sahel.

6.4 Discussion

Linear Trends

The linear analyses revealed a prevalent trend of greening for African savannahs
(Figure 6.1) This is in agreement with other studies at regional, continental, and
global scales (de Jong, de Bruin, de Wit, Schaepman and Dent 2011, Fensholt et al.
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Figure 6.3: a-b) Density plots of slopes for the NDVImax and NDVIsum slopes, respec-tively, showing all pixels and only those that are significant at the P < 0.05 levels.c) Counts of pixels from the trend classification comparisons at the P < 0.05 level.Gr: Greening, Br: Browning, NA: No change
2012, Herrmann et al. 2005), and is consistent with observations of increasing veg-
etation turnover worldwide since the 1980s (Bai et al. 2008). Themost pronounced
greening has occurred in the Sahel, where long-term increases in vegetation (’re-
greening’) have cocoincided with increasing rainfall, in contrast to earlier narratives
of anthropogenic-driven land degradation and desertification (UNCCD 1994, Higgin-
bottom and Symeonakis 2014). However, a relatively limited number of areas in the
northernmost parts of the Sahel have experienced browning: more so according to
the NDVIsum and the NDVImax this potentially indicates limits to the increases in rain-
fall and a shortening fo the growing season (de Jong, de Bruin, de Wit, Schaepman
and Dent 2011). The NDVIsum model, and to a lesser extend the NDVImax, revealedexpansive browning across sub-tropical, southern Africa (Figure 6.1.a and c). How-
ever, when the insignificant trends were omitted, much of this browning was dis-
carded (Figure 6.1.b and d). Implying that this region has a less consistent NDVI
trajectory than other areas, potentially featuring trend changes over the period of
analysis (de Jong et al. 2012).

Fensholt et al. (2015) proposed that divergences in the trends of different NDVI
metrics may be indicative of changes in ecosystem function. We identified three
types of trend divergence at noticeable frequencies. In order of occurrence these
were:

1. NDVImax:greening – NDVIsum:no change
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2. NDVImax:no change – NDVIsum:browning
3. NDVImax:greening – NDVIsum:no change

(Figure 6.2 and 6.3). Divergence types one and two (consistent NDVImax with in-
creasing or decreasing NDVIsum) are spatially located in southern Africa (Namibia
and Botswana) and across the Sahel. These most likely indicate areas where the
overall vegetation productivity has increased or decreased but the amplitude has
remained constant, such as grasslands experiencing a lengthening or shortening
of the growing season but no peak productivity change. The third type of diver-
gence (max:greening - sum:no change) is predominantly located in South Africa,
Ethiopia, and Tanzania. An increase in peak (amplitude) NDVI whilst the annual in-
tegral remains constant is more likely to be indicitive of land cover or ecosystem
function changes; such as, shrub encroachment or agricultural expansion. (Fen-
sholt et al. 2015) These phenonema have been reported for the highlighted areas
and are discussed in Section 6.4.

For complex ecological systems, using a simple linear model, which returns a
single slope value, for a 34 year time-series is likely to be overly simplistic and fail
to consider ecologically significant trajectory changes. To address this, we com-
plemented the monotonic analysis with a trend breaks model, allowing the series
to be segmented into multiple change periods with varying trajectories.
Trend Breaks

Semi-arid regions, in particular the western Sahel and Sudanese zones, contain a
majority of pixels that display multiple breakpoints. This was expected for num-
ber of reasons. Firstly, the Sahel experienced increasing annual rainfall amounts
during the earlier period of our analysis, which later abated (Nicholson et al. 1998).
Secondly, semi-arid regions are characterised by highly variable rainfall and multi-
year droughts, such as those that occurred in east Africa in the 2000s. Finally, as
semi-arid regions have lower NDVI values, smaller shifts are required to instigate a
significant trend change. The NDVImax series had relatively fewer breakpoints than
NDVIsum. This potentially indicates a near continuous increase in the maximum
photosynthetic capacity, whilst the total vegetation productivity is more variable.

The detected breakpoints can be spatially and temporally grouped in to a num-
ber of clusters. Firstly, around 1988 in the western and central Sahel for both met-
rics, and the Kalahari for NDVImax. Secondly, between 1991 and 1997 an increasing
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number of breaks were detected in the far eastern Sahel and the Horn of Africa for
NDVIsum. Finally, eastern Africa, especially Kenya and Tanzania, northern Namibia,
and southernAngola underwent breaks forNDVImax in 2003, and in 2007 forNDVIsum.These clusters can be attributed to the role of large-scale drivers. The first Sahe-
lian cluster has been previously discussed as a response to regional rainfall trends
(Herrmann et al. 2005). The second, east African, cluster coincides with the com-
mencement of a pronounced decline in regional rainfall in early-mid 1990s, a trend
that has accelerated post-2000 (Lyon and DeWitt 2012). This decline is mainly con-
centrated in the longer of the two rainfall seasons, this explains the divergence
between NDVImax and NDVIsum, as the cumulative value is more likely to be af-
fected than the max. No comparable climate factor can explain the shift in Angola-
Namibia; however, NDVI trend breakswere observed in the same region by De Jong,
Verbesselt, Zeileis and Schaepman (2013). One potential contributing factor to
breaks in 2007 could be artefacts from the decommissioning of NOAA-14, which
having been launched in 1994was the longest operating NOAA satellite. Secondary
breaks displayed less homogeneity; increasing in frequency from the early 1990s,
with only a slight peak in 2005, predominantly in arid regions. Low spatial homo-
geneity in breakpoints post-2000 was also noted by De Jong, Verbesselt, Zeileis
and Schaepman (2013). Interestingly, 1997-1999, when major El Niño and La Niña
events occurred, do not display a noticeably larger number of breakpoints. How-
ever, other weaker ENSO events are apparent, in particular: 1988, 2003, and 2007.
The 1991 Mount Pinatubo eruption does not appear to have resulted in an increase
in change points, most likely due to a low sensitivity of savannahs to insolation
levels (De Jong, Schaepman, Furrer, Bruin and Verburg 2013). Nevertheless, the
absence of an volcanic effect, which is understandable from an ecological point
of view,can be attributed to the fact that the aerosol correction procedure in the
GIMMS3g dataset is effective (Pinzon and Tucker 2014).

Our breakpoints analysis results in noticeably fewer pixelswith directional changes
than a similar procedure by De Jong, Verbesselt, Zeileis and Schaepman (2013)
(Figure 6.4). This can be attributed to the different approaches for classifying trend
breaks. We limited our analysis to segments with aminimum length of seven years,
whereas De Jong, Verbesselt, Zeileis and Schaepman (2013) used a seasonal trend
model, whilst applying a threshold of a 0.25%/year NDVI change for 3.5 years to
indicate non-stable trends. Both methods use a P < 0.05 MOSUM test. These
differences make our trend classification more indicative of the overall long-term
direction of the time-series, whereas themethod of De Jong, Verbesselt, Zeileis and
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Schaepman (2013) ismore suited to detectminor shifts or fluctuations, such as the
’burst’ type events they considered. Similarly, de Jong et al. (2012) identified a far
higher number of breakpoints in semi-arid Africa using a Breaks For Additive Sea-
son and Trend (BFAST) approach (Verbesselt, Hyndman, Newnham and Culvenor
2010), with South Africa, Botswana, and Somalia featuring up to four changes. This
was possible as they considered 4-year trend segments, designed to detect the ef-
fect of drought events and climate oscillations, whereas our study is focussed on
more broad trends. The segment length requirement also explains why we did not
identify many changes around major El Niño/ La Niña episodes (Figure 6.4), as
these events result in short-term anomalies, which, despite having major impacts
on NDVI values, do not persist long enough for inclusion (Brown et al. 2010).

The observed dynamism across our study area highlights the need to consider
non-linear or segmented time-series approacheswhen analysing Earth-observation
data. As the length of the satellite-derived data record increases, more areas are
likely to reverse or alter their trend trajectory. Monotonic and linear methods have
well established limitations, such as susceptibility to outliers and an inertness to
late-occurring shifts, that make their use on long time-series less helpful (Wessels
et al. 2012, De Beurs and Henebry 2005, De Jong, Verbesselt, Zeileis and Schaep-
man 2013). The trend-break method implemented here is mathematically compa-
rable to BFAST and LandTrendR which are increasingly being used to detect trends
(Kennedy et al. 2010, Forkel et al. 2013). However, there exists a wide-range of sta-
tistical methods that may also be beneficial, such as, Generalised Additive Models
(GAMs), which fit the response as a smooth function of timewith less assumptions
and are capable of detecting periods of significant change in noisy series (Wood
2006).
Ecological Interpretation

The dominant trend dynamic identified for African savannahs was that of greening
(Figure 6.2 & 6.5). This is in agreement with other studies that have used both NDVI
and ecosystem models (Fensholt et al. 2012, Hickler et al. 2005, De Jong, Schaep-
man, Furrer, Bruin and Verburg 2013). As greening occurs almost pan-continentally,
large-scale drivers should be considered as driving factors. Over the past 40 years,
biogeochemical changes, such as increases in reactive nitrogen deposition and el-
evated atmospheric CO2, have occurred, which increase the maximum potential
vegetation production (Los 2013, Donohue et al. 2013). Furthermore, the climatic
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constraints on plant growth have weakened, as rainfall has generally increased,
whilst air temperature changes have been relatively minor (De Jong, Schaepman,
Furrer, Bruin and Verburg 2013, Myneni et al. 1997). Combined, these factors would
lead to an assumption of increasing vegetation turnover and production, especially
for semi-arid regions, where constrains on plant growth are higher (Poulter et al.
2014). However, how this increase materialises is unclear, with a potential prolifer-
ation of woody cover at the expense of grasslands occurring (Stevens et al. 2016,
Eldridge et al. 2011). Areas of reported shrub encroachment coincidewith divergent
trends in our linear models, particularly increases in the NDVImax but no change in
the NDVIsum.The largest area of browning, identified by all analyses, is a latitudinal transect
extending from southern Angola, through to Zambia to northern Mozambique, and
Madagascar (Figures 6.2 & 6.5). Ecologically, this zone marks a transition from
southern African savannah to semi-tropical woodland. This region is notable for the
range and dynamism of land use/land cover changes. The end of the 1975 to 2002
Angolan civil war facilitated an increase in agriculture, which materialised through
intensification of cropping frequency, within shifting cultivation (Schneibel, Frantz,
Röder, Stellmes, Fischer and Hill 2017, Schneibel, Stellmes, Röder, Frantz, Kowalski,
Haß and Hill 2017). Further agricultural expansion has occurred in Zambia, as part
of an up-serge in soybean plantations (Gasparri et al. 2016). These changes have
driven declines in Net Primary Production (NPP) and forest cover, as identified by
Zhu and Southworth (2013), Brink and Eva (2009), Hansen et al. (2013). Yet, in re-
cent years, woody biomass has increased, due to rapid regrowth and shrub expan-
sion (McNicol et al. 2018, Tian et al. 2017). Reconciling these dynamic processes
within 8 km resolution pixels, is a challenging endeavour. Over the long-term (1980-
present), it is plausible that forest degradation, through agricultural expansion and
charcoal harvesting, has driven browning trends, with recent regrowth leading to
browning-greening reversals, whereas, woody regrowth in recent years may have
contributed to browning-greening trend reversals.

The most dynamic region featuring trend reversals and divergence in the linear
models is East Africa, in particular, Tanzania, but also Kenya and Ethiopia (Fig-
ures 6.2 & 6.5). Analysis in this area may be complicated by the bimodal rain-
fall regimes, as the maximum and sum-NDVI will be less correlated. The wider
Eastern-African region, as noted by Vrieling et al. (2013), is experiencing signifi-
cant decreases in the length of the growing season(s), with vegetation senescence
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occurring up to one month earlier by 2010 than in the early 1980s. The most pro-
nounced declines in growth season length, in western Tanzania, show a strong ge-
ographic alignment with a number of our identified browning pixels (Vrieling et al.
2013). The NDVIsum series, analysed by both monotonic and breakpoint analyses,
highlighted this area as consistently browning (Figures 6.2 & 6.5). This contrasts
with the NDVImax, which showed a higher rate of no-change pixels when assessed
as a monotonic slope. However, when assessed using the breakpoints analysis, a
trend reversal from greening to browning occurs in the early 2000s (Figure 6.4).
These differences support a phenology-based explanation: initially, the NDVImaxwill be unaffected by early senescence, until sufficient reductions have occurred,
whereas the NDVIsum will respond more rapidly.

Sahelian and East African browning, identified in both analyses, show an align-
ment with regions of high and rapidly increasing population (Figure 6.2 & 6.5). Pop-
ulation growth was identified by Brandt et al. (2017) as a localised constraint on
continental-scale woody cover increases between 1992-2011. The mechanism for
this decrease was postulated as increasing demand for fuelwood and agricultural
land, driving the degradation of woodlands and clearing of savannahs. This agrees
with Tian et al. (2017), who identified declining woody biomass in Kenya. Inter-
estingly, neither Brandt et al. (2017) or Tian et al. (2017) mapped a decrease in
woodland condition in the Miombo woodlands of Angola-Zambia, as reported by
Schneibel, Frantz, Röder, Stellmes, Fischer and Hill (2017) and Schneibel, Stellmes,
Röder, Frantz, Kowalski, Haß and Hill (2017), and where our analysis highlighted
extensive browning. This discrepancy may be due to the coarse resolution of the
radar data used by Brandt and Tian, or alternatively this coarse scale may result in
losses being balanced by shrub encroachment and regrowth. Population growth
and agricultural expansion in the Sahel may result in divergent trends in woody
coverage, depending on aridity. In the humid areas, cropland results in fewer trees
and shrubs, than the surrounding savannah; conversely, in the arid, northern Sahel,
farmlands have higher levels of woody cover than surrounding areas, as this re-
source is used as windbreaks and fencing (Brandt et al. 2018). From our analysis,
browning pixels were predominantly located in the southern Sahel, especially for
NDVImax, coinciding with agricultural expansion in this region.
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6.5 Conclusion

We used multiple time-series analysis to investigate the trends and dynamics of
African savannahs for the 1982-2015 period. By aggregating the AVHRR GIMMS
NDVI data set into two annual metrics (maximum and sum) we aimed to identify
a range of environmental change processes. The overarching trends of African
savannahs across our study period is of vegetation greening. This has occurred
across all regions, even when different precipitation patterns have occurred. This
would indicate the role of pan-continental driver(s). There are numerous ongo-
ing trends which are beneficial for plant growth that could contribute to this, such
as elevated CO2 levels, nitrogen deposition, and increased temperatures. Areas
of browning predominantly occurred in areas where either population growth had
been high, or where phenological change has curtailed the growth season.
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Chapter 7

Synthesis

The overarching aimof this thesis was to improve the capacity of Earth-observation
for monitoring the ecosystem dynamics and health of semi-arid savannah ecosys-
tems. This was approached through five research chapters, each of which ad-
dressed a distinct aspect of Earth-observation in semi-arid environments. The key
findings of each chapter are as follows:

Chapter Two reviewed the use of NDVI trends to assess land degradation and
desertification. This review covered the historical context of the NDVI, EO-based
time-series analysis, and land degradationmonitoring frameworks. Key knowledge
gaps that remained unresolved or controversial were highlighted, these include: i)
quantifying the robustness of trend techniques, ii) detecting degradation at minor
intensities, and iii) improving the ecological interpretation of trends.

Chapter Three investigates the mapping of grass biomass by combining in situ
field datawith coarse-resolutionNDVImetrics. A statistical downscaling procedure
was applied to MODIS and AVHRR data to generate a 1 km resolution NDVI data
set. These data were combined with a spatially dense 18-year grass biomass field
dataset in a machine learning framework. The spatial and temporal consistency of
the NDVI-biomass relationships were tested using spatio-temporal cross validation
and feature selection procedures. Many of the models tested had good overall
predictive performance, but accuracies declined when subject to target-orientated
validation stratergies designed to identify over-fitting. Results showed that spatial
overfitting in models is driven by the inclusion of auxiliary variables (e.g elevation),
whilst temporal over-fitting was caused by annual variation in the NDVI-biomass
relationship - which was attributed to varying species composition. In summary,
predicting grass biomass from NDVI is not a simple process, and care must be
taken to ensure any developed models are robust to spatial and temporal artefacts
in the training data.
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Chapter Four tested the utility of Landsat-based spectral-temporal metrics and
ALOSPALSARglobalmosaics formapping regional-scalewoody cover in the Limpopo
Province of SouthAfrica, for 2010. Amachine learning frameworkwas used to com-
pare the accuracies of Random Forest models developed with i) seasonal Landsat
metrics, ii) multi-seasonal Landsat metrics, and, iii) combined Landsat-PALSAR
data. Furthermore, a statistical variable selection method, the recursive feature
elimination (RFE), was used as a automated alternative to user-defined models. All
tests were undertaken at four aggregation levels (30, 60, 90, and 120 m - pixels) to
test the impact of spatial resolution on results. These test showed that combin-
ing Landsat and PALSAR data was beneficial for woody cover mapping. Whereas
multi-sensormodels were onlymarginallymore effective thanmulti-temporal Land-
sat metrics using wet and dry season data. When using a single period of imagery
the highest accuracies were obtained by the dry season. The RFE was effective at
selected accurate models and generated the best overall model, but this was only
slightly more accurate than other methods.

Chapter Five modelled changes in woody cover against a suite of explanatory
variable, to test competing theories on the drivers of shrub encroachment. Car-
bon fertilisation-driver shrub encroachment was the theory most supported by the
observed trends. This was inferred by the proportionally large increases in woody
cover in areas with low wet season rainfall and low initial woody coverage. These
findings support the theory that increasing atmospheric CO2 levels are improving
the water use efficiency of woody plants, allowing the expansion of woody cover in
areas previously limited by water availability.

Chapter Six presents an NDVI trend-based assessment of vegetation in pan-
African savannahs. A 34-year NDVI dataset was processed into two metrics: the
annual sumandmaximumvalues. Thesemetricswere input into two trend analysis
frameworks: a linear regression against time, and a structural breaks method that
allows for directional changes in the trend direction. The overall result of these
analyses was of near ubiquitous vegetation greening, with a majority of the land
area experiencing only positive NDVI trends. Themost conspicuous areas of either
divergence between the metrics or negative trends were a latitudinal transect from
Angola to Mozambique and the horn of Africa. Browning in east Africa may be
caused by phenological change and a shortening of the growing season. While
negative trends in Angola-Mozambique overlap with areas of continuing woodland
degradation.
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7.1 Is a Land DegradationMonitoring System Feasible?

A major environmental concern for savannah and dryland systems globally is land
degradation; defined by the United Nations as "the reduction in the capacity of the
land to perform ecosystem goods, functions and services that support society and
development" (Safriel and Adeel 2005). As discussed in Chapter Two (Higginbot-
tomandSymeonakis 2014), themapping of land degradation using Earth-observation
has typically focused on either trends in vegetation greenness (e.g. (Fensholt et al.
2012, Wessels et al. 2007)) or multi-criteria analysis of different indicators (e.g.
(Symeonakis and Drake 2004, Le et al. 2012)). Given the range of Earth-observation
data now available and demonstration of the effective mapping of many savan-
nah attributes, it is theoretically feasible that a land degradationmonitoring system
could be developed, as comparable systems have been demonstrated in forest re-
gions (Hansen et al. 2013, 2016). However, the key limitation to such a system is
not technical but theoretical. The generally accepted definition of land degrada-
tion, provided by the UN, is not easily translated into objective measures that can
be repeatedly monitored over large scales. For example, in grass dominated sa-
vannahs bush encroachment is considered a negative process as it depletes the
potential grazing resource, which falls under the ’services that support society and
development’ clause of the UN definition (O’Connor et al. 2014, Anadón et al. 2014)
. Conversely, in miombo woodlands, a reduction in woody canopy cover would be a
negative indicator, as fuelwood resources, which are also a service for society and
development, decrease (Schneibel, Frantz, Röder, Stellmes, Fischer and Hill 2017).
Therefore, the same trajectory in a single objective indicator, such as woody cover,
could have a minimum of two divergent interpretations depending on the locality.

Earth-observation has a clear and continually improving ability to mapmany sa-
vannah attributes (Main et al. 2016, Mathieu et al. 2013). The conversion of these
indicators into a land degradation framework is, however, a fundamentally subjec-
tive process (Warren 2002). Over large spatial and temporal scales, these decisions
may render any derived product or indicator unhelpful at a local level, where the un-
dertaken decisions are not consistent with regional ecology or livelihoods (Wessels
2009). A more appropriate framework may be a focus on generating large-scale
maps of desirable indicators, such as land cover or biomass, which can be used
by local actors in unique contexts, thus avoiding subjective decision on condition
assessment.
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7.2 Potential Future Developments

Land Cover Mapping

Mapping of land use and land cover change will greatly benefit from the launch of
new sensors and the ongoing increase of open data policies. Whereas this applies
to LULCC studies in general, savannahs especially will benefit, due to their strong
seasonal signal and subtle spectral differences between land cover types (Hüttich
et al. 2009). The density of observations currently being acquired by Landsat 8 and
Sentinel 2 allows, when combined as a virtual constellation, a data point every 2.9
days, on average (Li and Roy 2017). This temporal frequency will allow the fitting
of seasonal curves to quantify land cover, this approach has improved fidelity com-
pared to the epochal metrics used in Chapters Three, Four, and Seven (Roy and Yan
2018). Greater precision, especially of seasonal timings, should allow mapping at
a species level opposed to broad physiological classes. Further improvements are
also being realised through multi-sensor fusion. In Chapter Three and Seven, the
benefit of combining data from the L-band radar ALOS PALSAR with Landsat met-
rics was demonstrated. Baumann et al. (2018) recently combined temporally dense
observation from Landsat 8 and the C-band radar Sentinel 1 for the South Ameri-
can Chaco region, this fusion was effective at mapping both shrub and tree cover
as separate factional cover fields. Radar data have historically been expensive and
their usage therefore limited. The recent rectification of in this situation, typified
by ALOS PALSAR and Sentinel 1, will allow radar data to be processed in bulk and
combined with complimentary sensors (Reiche et al. 2015).
Primary Production and Biomass

This thesis addressed two themes concerning primary production and biomass
motoring: 1) themapping of biomass using NDVI and field data, and 2) using trends
in NDVI as an indicator of ecosystem condition. Therefore, two distinct areas exist
that may benefit from further research.

The prediction of Gross Primary Production - and therefore biomass - from op-
tical sensors has fundamental limitations, as photosynthesis is inferred from ab-
sorbed light measurements, not quantified directly. This limitation can be eased
by narrow spectral bands that are well placed in the red-edge region, such as with
Sentinel 2 (Drusch et al. 2012). However, this does not address the issue that photo-
synthesis is still not directly measured. An alternative to optical Earth-observation,
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for GPPmonitoring, is to monitor the light emitted by chlorophyll molecules as they
transition from an excited to non-excited state. This chlorophyll fluorescence more
closely relates to photosynthetic activity than ratios of absorbed spectral wave-
lengths. There are currently limited spaceborne sensors in operation capable of
measuring activity in this spectral region, and these are typically coarse-resolution
atmospheric or soil moisture orientated missions (Meroni et al. 2009). Neverthe-
less, the Solar-Induced chlorophyll Fluorescence (SIF) readings obtained by these
sensors have produced good relationships with GPP and areas of dense cropland
(Frankenberg et al. 2011). The European Space Agency has plans for the launch of
a bespoke SIF mission, Fluorescence Explorer (FLEX), for 2022, which will provide
valuable insights on photosynthetic processes (Drusch et al. 2017).

Trend analysis of NDVI has a range of statistical and ecological concerns, which
are reviewed in detail in Chapter Two (Higginbottom and Symeonakis 2014). The
key issues that were identified during review were 1) an absence of methods to en-
sure the robustness of trend techniques, and 2) uncertainty over the ecological in-
terpretation of trends. To date, only Wessels et al. (2012) has attempted to develop
a process to overcome the first issue, and this has not been generally adopted,
despite acknowledgement of the underlying issue. Regarding issue two, since the
publication of Chapter Two in 2014, it has becomemore common for studies to em-
ploy trend analysis on different metrics, with potential divergences being indicative
of ecosystem changes (Fensholt et al. 2015). Nevertheless, ecological interpreta-
tion of NDVI trends is still highly subjective and uncertain, and merits further study.
Machine (Deep?) Learning and Earth-Observation

Several chapters of this thesis would not have been possible without the develop-
ment of machine learning (ML) methods, such as random forest and cubist (Kuhn
and Johnson 2013). These techniques have conferred considerable benefits to the
Earth-observation community, by increasing the accuracy of land use/land cover
change products, relative to older approaches. The proliferation of machine learn-
ing software is one contributor to the high accuracies reported by contemporary EO
studies; which, with few exceptions, typically range from 75-90%. However, com-
pared to more traditional statistics, these methods are highly opaque, operating as
a "black-box" whereby the underlying mechanism for prediction is not readily avail-
able. Given that machine learning is not a geographic discipline, this black-box
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process may prove problematic. EO data is inherently spatial, and therefore, is as-
sociated with issues such as spatial autocorrelation and non-stationarity (Lennon
2000b, Meyer et al. 2016). How ML handles such problems is not clear; as ML,
by design, strives for statistical performance whilst operating in a black-box, it is
possible – or likely– that spatially-based biases and errors may be propagated.
Chapter three identified that ML approaches would "learn" spatial autocorrelation
structures present in field biomass data, and incorporate this into predictivemodels
using NDVI, therefore, exaggerating the accuracy of themodel relationship. Several
recent studies have moved beyond ML and applied novel deep learning procedures
to EO imagery (Kemker et al. 2018). This family of methods is based on usingmulti-
layered neural networks for pattern analysis and detections. Again, these technolo-
gies have been developed in a non-spatial statistical field, which does not have the
considerations of geographic data. Therefore, novel statistical developments have
great potential for EO analysis, but they require assessment and proving in a geo-
graphic data framework to ensure suitability. Without such quality assurance there
is a strong likelihood that classical statistical issues such as spatial autocorrelation
and non-stationarity may incur unforeseen errors.
Cloud Computing, Open Source Software, and Earth-Observation

Nearly all analyses in this thesis were conducted in an open-source software envi-
ronment, mainly R or Python (R Core Team 2015b, Bivand et al. 2018). The ability of
scientists to access and share open-source software has led to major strides for
technique development in recent years. Remote sensing is, in essence, a compu-
tation discipline with a common source of data. This makes it well placed to ben-
efit from the sharing and community-based development of analysis techniques.
For example, Chapter Six used an open-source, time-series algorithm initially de-
veloped for application in Alaska (Forkel et al. 2013). The sharing of this software
has resulted in considerably more benefit to the EO community than any single ap-
plied study could have done. Many of the most cited remote sensing papers of the
past 15 years have described new software or algorithms e.g. Zhu and Woodcock
(2012), Kennedy et al. (2007), Verbesselt, Hyndman, NewnhamandCulvenor (2010).
The development of cloud-based analysis platforms, such as Google Earth Engine,
has the potential to further increase the benefits obtained from open-source soft-
ware (Gorelick et al. 2017). By hosting imagery in the cloud, it is possible to reverse
the traditional analysis framework, now algorithms can be developed and "taken
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to the data" without the need to download the raw data (Hansen et al. 2013). This
means analysis can be repeated anywhere in the world (with an internet connec-
tion). This paradigm shift has enormous potential to allow the results of studies
to be widely shared, and validated. As EO data is increasingly a fixture of ecolog-
ical analysis (Kennedy et al. 2014), the ability to validate and test the replicability
of results is crucial, particularly when considered in light of the replication crisis in
other disciplines (e.g. psychology, (Shrout and Rodgers 2018)). The combination of
open-source software and cloud computing, therefore, has the potential to expand
the reach, robustness and usability of EO analysis.
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