
Musaddiq, Arslan and Zikria, Yousaf Bin and Hahm, Oliver and Yu, Heejung
and Bashir, Ali Kashif and Kim, Sung Won (2018)A Survey on Resource
Management in IoT Operating Systems. IEEE Access, 6. pp. 8459-8482.
ISSN 2169-3536

Downloaded from: http://e-space.mmu.ac.uk/622914/

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

DOI: https://doi.org/10.1109/access.2018.2808324

Please cite the published version

https://e-space.mmu.ac.uk

http://e-space.mmu.ac.uk/view/creators/Musaddiq=3AArslan=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Zikria=3AYousaf_Bin=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Hahm=3AOliver=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Yu=3AHeejung=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Bashir=3AAli_Kashif=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Kim=3ASung_Won=3A=3A.html
http://e-space.mmu.ac.uk/622914/
https://doi.org/10.1109/access.2018.2808324
https://e-space.mmu.ac.uk


SPECIAL SECTION ON FAIRNESS IN FUTURISTIC WIRELESS NETWORKS: APPLICATIONS,
IMPLEMENTATION, ISSUES, AND OPPORTUNITIES

Received January 8, 2018, accepted February 9, 2018, date of publication February 21, 2018, date of current version March 12, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2808324

A Survey on Resource Management in
IoT Operating Systems
ARSLAN MUSADDIQ1, YOUSAF BIN ZIKRIA1, (Senior Member, IEEE), OLIVER HAHM2,
HEEJUNG YU1, ALI KASHIF BASHIR 3, (Senior Member, IEEE), AND SUNG WON KIM 1
1Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, South Korea
2Zuehlke Engineering GmbH, 65760 Eschborn, Germany
3Faculty of Science and Technology, University of the Faroe Islands, 100 Faroe Islands, Denmark

Corresponding author: Sung Won Kim (swon@yu.ac.kr)

This work was supported by the 2017 Yeungnam University Research Grant.

ABSTRACT Recently, the Internet of Things (IoT) concept has attracted a lot of attention due to its capability
to translate our physical world into a digital cyber world with meaningful information. The IoT devices
are smaller in size, sheer in number, contain less memory, use less energy, and have more computational
capabilities. These scarce resources for IoT devices are powered by small operating systems (OSs) that
are specially designed to support the IoT devices’ diverse applications and operational requirements. These
IoT OSs are responsible for managing the constrained resources of IoT devices efficiently and in a timely
manner. In this paper, discussions on IoT devices and OS resource management are provided. In detail,
the resource management mechanisms of the state-of-the-art IoT OSs, such as Contiki, TinyOS, and
FreeRTOS, are investigated. The different dimensions of their resource management approaches (including
process management, memory management, energy management, communication management, and file
management) are studied, and their advantages and limitations are highlighted.

INDEX TERMS Internet of Things, operating systems, resource management, Contiki, TinyOS, FreeRTOS.

I. INTRODUCTION
The demands on Internet of Things (IoT) technologies have
grown rapidly due to the various application fields and
the advancements in wireless communications technolo-
gies [1], [2]. The term things in the Internet of Things
is a piece of equipment having a sensing, actuating, stor-
age, or processing capability. These devices possess unique
characteristics, i.e., little memory, reduced battery capacity,
and limited processing power [3]. The IoT has great potential
to impact our lives in the future. From home automation
to healthcare systems, the IoT has numerous applications
to improve industries and society by enabling smart com-
munication between objects and devices in a cost-effective
manner [4], [5]. Therefore, it is predicted that there will be
about 50 billion IoT devices by 2050 [6]. Due to the expan-
sion of IoT networks in the last decade, various hardware
platforms have been developed to support IoT sensors and
actuators. Similarly, a number of operating systems (OSs)
have gradually been developed to run these tiny sensors [7].

Various IoT communications standards have emerged
from different organizations. For example, the Internet
Engineering Task Force (IETF) [8], the International

Telecommunication Union-Telecommunication (ITU-T) [9],
the Institute of Electrical and Electronics Engineers (IEEE),
the European Telecommunications Standards Institute
(ETSI) [10], the International Organization for Standard-
ization (ISO) and the International Electrotechnical Com-
mission (IEC) [11], One Machine-to-Machine (M2M) [12]
and the 3rd Generation Partnership Project (3GPP) [13]
are actively working to provide efficient IoT communi-
cations protocols. The IETF currently has various work-
ing groups (WGs) that deal with IoT-related protocols on
any layer above the link layer (e.g., at the network layer).
The IETF Routing over Lossy and Low-Power Network
(ROLL) WG (RFC 6550) [14] is focused on providing
standardization of the IPv6 Routing Protocol for Low-Power
and Lossy Networks (RPL). Similarly, the IETF IPv6 over
Low-Power Wireless Personal Area Networks (6LoWPAN)
(RFC 4944) [15] works on IPv6 networking protocol opti-
mization using IEEE 802.15.4. The IETF 6loBAC WG
(RFC Ed Queue) [16] provides specifications for transmis-
sion of IPv6 packets on master-slave/token-passing (MS/TP)
networks. The IETF 6TiSCH Operation Sublayer (6TOP)
WG (RFC Ed Queue) [17] defines the mode of operation

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

8459

https://orcid.org/0000-0003-2601-9327
https://orcid.org/0000-0001-8454-6980


A. Musaddiq et al.: Survey on Resource Management in IoT OSs

for IPv6 using an IEEE 802.15.4e (6TiSCH) network. Data-
gram Transport Layer Security (DTLS) in a Constrained
Environment (DICE) was drafted by the IETF WG DICE
(RFC 7925) [18]. At the application layer, the IETF Con-
strained Application Protocol (CoAP, RFC 7252) provides
web services to constrained devices [19]. Concise Binary
Object Representation (CBOR, RFC 7049) provides binary
representation of structured data [20]. The Object Signing
and Encryption (COSE) WG (RFC Ed Queue) focuses on
creating CBOR-based signing and encryption formats [20].
Application layer security for data exchangewith CoAP using
the COSE format is provided by IETF’s Object Security of
CoAP (OSCoAP, RFC 7744) [21].

Similarly, ITU-T provided an overview of the IoT and
its reference model [22]. ITU-T Task Group 15 (TG-15)
is working on smart grid communications aspects of the
IoT [23]. Similarly, ITU-T TG 17 is focusing on secu-
rity and identity management aspects of the IoT [24].
An ISO/IEC joint technical committee does not develop
standards but it provides current and future IoT trends and
requirements [25]. The IEEE defines an architectural frame-
work for the IoT [26]. The IEEE P2413 working group
provided a description of ‘‘various IoT domains, definitions
of IoT domain abstractions, and identification of common-
alities between different IoT domains’’ [27]. The IoT IEEE
802.15 working group is dealing with medium access con-
trol (MAC) and physical layer specifications for wireless
personal area networks (WPANS), a mesh topology capa-
bility in WPANs, and short-range wireless optical commu-
nications using visible light. ETSI has developed a low-
throughput network (LTN) as a wide area network (WAN)
for the IoT [28]. One M2M is a standardization body that
consists of eight world standard development organizations.
Their goal is to develop a common standard for M2M com-
munications. 3GPP is also working to meet IoT requirements
[29]. LTE Release 12 [30] from 3GPP provides a power-
saving mode and a lower overhead signaling procedure to
provide energy efficiency [31]. An IoT OS should be flexible
enough to support these protocols without violating the needs
of resource-constrained tiny devices.

IoT devices have limited memory and power and require
real-time capabilities in some scenarios. Additionally, they
should support heterogeneous hardware along with efficient
connectivity and security mechanisms [32]. Connecting and
operating this huge number of devices in an efficient way
is one of the most important design goals for the research
community. In an IoT system, the fundamental research issue
is to manage the available resources in an ordered and con-
trolled manner. The ultimate objective of an IoT resource
management mechanism is to satisfy IoT device requirements
efficiently [33].

IoT devices are classified into two general categories; i.e.,
high-end IoT devices and low-end IoT devices [7]. High-
end devices contain more processing power and energy, such
as smartphones and Raspberry Pi. The low-end devices,
on the other hand, are too resource-constrained. Therefore,

a traditional OS, such as Linux, cannot run these small
resource-constrained devices. Hence, the IoT cannot achieve
its full potential until there is a de facto standard OS providing
support to run these low-end devices across a heteroge-
neous network [6]. Moore’s law [34] is not applicable to
IoT devices in terms of processing power. However, it can
be applied to device size and energy efficiency [35]. The
low-end devices possess very little random access mem-
ory (RAM) and few processing capabilities. The IETF [8]
developed the IPv6 over Low-power Wireless Personal Area
Networks (6LoWPAN) standard adaptation layer to enable
low-power low-data-rate communications [36]. These
devices also require real-time capabilities in scenarios like
vehicular communications, health care systems, and factory
automation and surveillance applications. Providing commu-
nications with energy efficiency and reliability is the main
objective of the IoT. IoT low-end devices contain small
amounts of memory and little processing power. Therefore,
in order to satisfy low-end device resources, choosing a
suitable lightweight OS is of vital importance. Several OSs
have been proposed by numerous companies that offer a
different approach to fundamental problems.

The future IoT environment needs to handle and perform
tasks independently. Similarly, an ultra-dense network yields
computational complexity. In order to cope with IoT low-
end–device challenges, such as limited resources, and dis-
tributed and dense environments, there is considerable need
for an efficient resource management mechanism in an IoT
OS [37]. An IoT OS is primarily responsible for managing
the device’s resources efficiently. Various OSs have presented
different solutions to satisfy low-end devices’ resource needs.
To achieve this goal, various mechanisms are provided by
the different OSs to provide proper functioning of sensing
nodes. Among various proposed OSs for low-end devices,
the Contiki [38], TinyOS [39], and FreeRTOS [40] are most
prominent for operating in a resource-starved network. IoT
low-end devices usually operate with limited battery power.
Consequently, providing an energy-efficient OS is of the
utmost importance [41]. These low-end devices transfer the
sensed data using a communications protocol. In order to be
energy-efficient, the communications protocols should save
the maximum amount of energy. Protocols at the transport
layer, MAC layer, and network layer need to be energy-
efficient [42]–[44].

IoT devices require computational capabilities for their
sensing operations. These constrained sensing motes do not
offer extensive memory and processing capabilities (usually
100 kB flash memory and 10 kB RAM). For example, Cross-
bow’s Telos B mote provides only 10 kB of RAM and 48 kB
of flash memory. Due to this limitation, IoT devices need
to manage their resources efficiently. Additionally, densifica-
tion, randomness, and uncertainty make IoT device resource
management a challenging task. An OS acts as a resource
manager for this complex IoT system [32]. To handle the
limited processing power and memory, an OS requires an
effective process and memory management mechanism. IoT

8460 VOLUME 6, 2018



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

devices are battery-operated and are mostly deployed in
remote environments. Thus, energy management provided by
an OS is highly important. The main objective of an IoT
system is to provide a sensing operation and transfer the
sensed data to the base station for further processing. The
communications design, signal processing, data reception,
data transmission, and radio sleep/wake mechanism need to
be efficient in terms of energy and communications. IoT OSs
store, catalog, and retrieve the data using a file system. There-
fore, the provision of an efficient, robust, and appropriate file
system is highly desirable in IoT OSs.

Moreover, an IoT OS should be highly concurrent to
support these low-end–device sensing operations. Hence,
the importance of efficient resource allocation in the OS
for low-end devices motivates us to write this paper. In this
paper, we consider the IoT low-end device resource manage-
ment solutions offered by various OSs. To the best of our
knowledge, this is the first paper that encompasses detailed
information about the resource management mechanisms in
Contiki, TinyOS, and FreeRTOS. Various resource manage-
ment operations, including process management, memory
management, energymanagement, communications manage-
ment, and file management (and their advantages) are dis-
cussed in order to make the low-end devices more and more
resource-efficient and flexible. Thus, this study has taken
all the resource management mechanisms into considera-
tion. A list of abbreviations is provided in Table 1, whereas
Table 2 provides a comparison of this study and already
existing surveys on tiny sensor device OSs.

The contributions of this paper compared to the recent
literature in the field are as follows.

a. It provides a literature review related to IoT OSs.
b. It covers the resource management aspects of Contiki,

TinyOS, and FreeRTOS, including:
• process management
• memory management
• energy management
• communication management, and
• file management

c. It provides future research directions and challenges in
resource management of IoT OSs.

The remainder of this paper is structured as follows. Section II
provides an overview of related work. Section III discusses
resource management classifications in detail. Section IV
provides open research issues and recommendations, fol-
lowed by Section V, which concludes the paper.

II. RELATED WORK
Over the years, several OSs for the IoT have emerged.
Contiki, TinyOS, and FreeRTOS emerged as predominant
OSs to provide support to IoT devices. This section dis-
cusses the recent survey papers related to IoT OSs, e.g.,
Hahm et al. provided a detailed analysis of various require-
ments to satisfy low-end IoT devices [7]. The survey dis-
cussed various OSs that could become the de facto standard.
OSs in this survey are categorized into three types, including

TABLE 1. List of abbreviations.

event-driven OSs, multithreading OSs, and pure real-time
operating systems (RTOSs). Along with the key design
choices, the characteristics of each category are presented

VOLUME 6, 2018 8461



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

TABLE 2. Overview of comparison between this study and available surveys.

in the study. Based on the key design choices and low-end
device requirements, the most prominent OS representing
each category is identified.

Similarly, Amjad et al. discussed several aspects of TinyOS
design in detail [45]. This survey encompassed the design
paradigm and main features of TinyOS. It has event-driven
concurrency, a programming layout based on NesC (a dialect
of the C programming language), a monolithic architecture,
and a non-preemptive task scheduler. TinyOS memory man-
agement, energy management, and energy-efficient commu-
nications protocols were presented. TinyOS uses a software
thread integration (TOSSTI) mechanism for energy conserva-
tion, which helps an OS utilize busy–wait time in an efficient
manner [46]. Similarly, an energy tracking mechanism is
also utilized by TinyOS [47]. To maintain network stability
and lifetime, TinyOS supports several communications pro-
tocols at the transport layer, MAC layer, and network layer.
In addition, simulators for TinyOS and its various sensing
applications are also discussed in the paper.

Strazdins et al. surveyed wireless sensor network (WSN)
deployments and analyzed the collected data to study the
design rules for a WSN OS using 40 deployment scenar-
ios [48]. Deployments from 2002 to 2011 are reviewed to
study different WSN applications, including environmen-
tal monitoring, animal monitoring, human-centric applica-
tions, infrastructure monitoring, smart buildings, and military
applications. The authors studied Contiki, TinyOS, LiteOS,
and MansOS, and proposed 25 design rules. The rules

include suggestions related to the task scheduler, networking
protocol, and energy-efficiency mechanism.

TinyOS and Contiki are the two best-known OSs for low-
end devices. A comparison between these two OSs is pre-
sented in a survey by Reusing [49]. The main requirements
an OS should fulfill for a sensor network include concur-
rency, flexibility, and energy efficiency [50]. The contrast
between TinyOS andContiki is shown based on these require-
ments. Special emphasis was placed on a programmingmodel
and execution model, along with the hardware platforms
supported by both OSs. This survey indicates that TinyOS
might be more useful in a resource-constrained environment,
whereas Contiki provides more flexibility in the network.

Farooq and Kunz highlighted major challenges for an OS
design, and identified the advantages and limitations in an
OS for a WSN [51]. For example, Contiki follows a modular
kernel concept. It is a layered approach in which application
modules are independent and can be linked with a kernel at
boot time. In this way, the kernel provides only core services,
while other services can be added when required. Hence,
it reduces the memory footprint and decreases boot time.
However, the kernel may crash due to modules that contain
bugs. Similarly, TinyOS follows a monolithic architecture
similar to Linux. The monolithic architecture helps to reduce
modular interaction costs. However, it may make the OS
unreliable and hard to maintain, because no clear boundaries
are provided between modules. The alternative is a microker-
nel architecture.

8462 VOLUME 6, 2018



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

FIGURE 1. Resources management classification.

FreeRTOS is an example of a microkernel structure which
provides robustness against bugs in the components. The
microkernel provides minimum functionalities to the kernel.
Hence, the kernel size is reduced significantly. All other func-
tions are provided by servers running at the user level. There-
fore, OS functionalities are extendable, and failure in one
user-level server does not crash the kernel itself. The disad-
vantage is poor performance due to user-to-kernel boundary
crossing. The OS architecture, programming model, schedul-
ing mechanism, memory management, and communications
protocol support a major design goal for an IoT OS. Along
with resource sharing, support for real-time applications is
of vital importance. It is pointed out that some OSs support
a priority application capability, whereas few provide real-
time applications. Some miscellaneous features, including
communication security, file system support, simulation sup-
port, and programming language, are also discussed.

Dariz et al. compared Contiki and TinyOS with a real-time
OS named ChibiOS to study the safety-relevant application
in a WSN [52]. Another OS called LiveOS was introduced
to conserve memory and energy for a WSN [53]. Over the
years, various OSs have emerged in the WSN community.
One of the critical issues for an OS is dealing with a large
number of resources to provide ubiquitous services to IoT
low-end devices [54]. In this study, we focus on three well-
known OSs: Contiki, TinyOS, and FreeRTOS. This study
aims to cover all the resource management aspects of a
low-end–device OS.

III. RESOURCE MANAGEMENT CLASSIFICATION
OS provides a layer of abstraction for the hardware bymanag-
ing the resources on each IoT device [55]. The OS provides
a programming interface and manages processor time. IoT
devices operate in resource-constrained concurrent environ-
ments, and to handle this concurrent application, a suitable
execution model must be provided by OS. The execution
model must provide memory efficiency [56]. Similarly, OS
(being battery-powered) must provide a sleep mode when no

application is running [57]. Providing energy efficiency to
the communication components is more challenging for an
OS. The communication components must wake up during
a communication period. Therefore, an OS handles energy
efficiency during communication using various mechanisms,
for example, a separate radio duty cycling procedure [58],
a virtual carrier-sensing mechanism with a network alloca-
tion vector, and time-divisionmultiple access (TDMA)-based
methods. Not all IoT devices have storage like flash memory.
Therefore, an appropriate file system is required to provide
storage needs for some applications. The file system needs
to efficiently map the data into sectors to make writing and
reading of data more efficient. Therefore, an OSmust provide
a full file system interface [59], [60].

The communications needs of diverse applications are
handled by a communications architecture. Considering the
device’s resource scarcity, the communications protocols
must be energy- and memory-efficient during data collection,
event detection or tracking, device synchronization, neigh-
bor discovery, and data delivery [61], [62]. To address the
resource management challenges for low-end IoT devices,
various resource management mechanisms and schemes have
been proposed. These resourcemanagement schemes fall into
five subsections.

The flow chart of resource management in OS for low-end
devices is shown in Figure 1.

A. PROCESS MANAGEMENT
In the context of resource management, the kernel manages
processes and threads to share information, protect process
resources, and assign system resources in a safe way. In the
IoT environment, multiple activities may occur during a cer-
tain time period. Managing these activities and processes by
fairly sharing resources is essential, and it depends on the OS
execution model.

The Contiki and TinyOS follow an event-driven execution
model to provide memory efficiency and low complexity of

VOLUME 6, 2018 8463



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

state machines in the event-driven TCP/IP stack [63], [64].
Event handlers continuously wait for internal or external
events, such as an interrupt. The kernel allocates the mem-
ory stack to the process, and an event handler follows the
run-to-completion mechanism. All the processes effectively
share the same stack and utilize limited memory efficiently.
Some events are queued and processed in first in, first
out (FIFO) fashion. The event-driven concurrency model
introduces certain complexities if multiple events occur. The
task in an event-driven model cannot be blocked during
run-time. Sometimes, time-critical tasks need to be exe-
cuted first. Therefore, real-time performance of the event-
driven approach is poor. Hence, an OS needs multiple event
handlers.

Low-end IoT devices offer only few kilobytes of RAM.
The multithreading approach allocates a stack of memory
to each thread even if the thread is not utilizing memory.
Hence, most of this memory is unused. Therefore, a more
effective hybrid model is required for better memory effi-
ciency and low programming complexity. The Contiki sup-
ports a novel, lightweight, stackless threading mechanism
called a protothread [65]. The protothread utilizes a multi-
threaded model without increasing multiple-stack overhead.
In an event-driven approach, the program runs to completion,
which is not desirable in some scenarios, especially in a
system where a high-priority task is present. A protothread
simplifies the event-driven programming model by providing
a conditional locking wait statement that enables a program
to execute a blocking wait without introducing an additional
stack for each protothread. Between the beginning and end
of each protothread, there is a conditional wait statement.
This conditional wait statement blocks the program if there
is an interruption. In other words, the thread is blocked only
if an explicit blocking wait statement is used. In this way,
the number of explicit state machines in the event-driven
approach is reduced, withmemory overhead of only two bytes
per protothread. The protothread is a better alternative for
memory efficiency. However, providing process synchroniza-
tion between protothreads is not possible.

Sometimes blocking certain components may interrupt
the whole sensing application. TinyOS Thread (TOSThread)
is a complete implementation of a preemptive application-
level thread library to achieve maximum concurrency without
increasing resource usage [66]. TOSThreads categorize all
event-based code into kernel-level threads and application-
level threads. Kernel-level threads are given the highest pri-
ority, and cannot be interrupted by application-level threads.
An application-level thread makes a system call applica-
tion programming interface (API) that does not interrupt the
TinyOS code itself; rather, it sends a message to the kernel
thread. Application-level threads execute only if kernel-level
threads are not active. The basic architecture of a TOSThread
is shown in Figure 2. The overall structure consists of five ele-
ments: a single kernel-level thread, a number of application-
level threads, a task scheduler, a thread scheduler, and
system-call APIs. A number of application threads run

FIGURE 2. TOSThreads architecture (adapted from [66]).

concurrently and make a call to the kernel-level threads
through API slots. The thread scheduler provides con-
currency between application-level threads and system-call
APIs. TOSThread provides a preemptive behavior to TinyOS
but increases the computational complexity. To provide pre-
emptive execution in a simple manner, the TinyOS pre-
emptive original (TOS-PRO) approach was introduced [67].
This approach provides increased flexibility for scheduling
without introducing extra complexity into TinyOS.

FreeRTOS is based on a microkernel architecture and
utilizes a multithreading approach [68]. Each process can
be interrupted, and the scheduler can switch between
threads [69]. It provides a real-time, preemptive multitasking
environment for low-end devices. It ensures execution of a
higher priority task in any given time period. If two tasks
are given equal priority, the scheduler divides execution time
between them. This execution follows a priority-based round-
robin implementation. The FreeRTOS kernel is structured
using four C files (task.c, list.c queue.c and croutine.c),
where task.c provides scheduling functionalities by using
structures and functions in the list.c file. The queue.c file
provides a thread-safe queue to implement inter-task commu-
nication and synchronization, and croutine.c implements sim-
ple lightweight tasks [70]. The IoT OS process management
overview is given in Table 3.

B. MEMORY MANAGEMENT
Memory management provides techniques for allocating
and deallocating memory for various processes and threads.
OS offers two common methods for memory allocation,
i.e., static allocation and dynamic allocation. In static mem-
ory management, OS allocates memory to the system that
cannot be altered during run-time. But a dynamic manage-
ment technique provides flexibility in memory acquisition at
run-time. Static allocation cannot predict how much memory
will be needed, especially in real-time scenarios. Similarly,
memory over-provisioning may result in memory overhead.
With dynamic allocation, if the allocatedmemory is not freed,
it may result in a memory leak.

8464 VOLUME 6, 2018



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

TABLE 3. An overview of process management.

The memory size for sensor devices is constrained due to
the device’s physical size and the cost. Static memory con-
tains the program code, and dynamic memory contains run-
time variables, the buffer, and the stack. IoT low-end devices
as classified by IETF require about 10 kB of RAM and about
100 kB of flash memory. The Contiki C library provides a set
of functions for allocation and de-allocation of memory for
the heap. For example, themembmacro(), andmemb_alloc(),
and memb_free() functions are used for memory declaration,
allocation, and de-allocation, respectively [71]. The memory
allocation function needs to handle memory fragmentation.
If memory is fragmented, allocation may fail to allocate all
the unusedmemory. Themanagedmemory allocator function
mmem() in the Contiki frees the allocated memory from
fragmentation by compacting it when blocks are unused.
However, dynamic allocation may lead to stack overflow,
and requires more space. TinyOS is based on the NesC pro-
gramming language [72]. To cope with sensor node hardware
constraints, the language does not support dynamic memory
allocation, the program states and memory are declared at
compile time. In this way, memory fragmentation and run-
time allocation failure are prevented. Similarly, maintaining
an additional data stack to manage the dynamic heap is not
required [73]. In the earlier version of TinyOS, the basic
building block (i.e., memory safety) was not available [74].
However, new updates and revisions provided memory
safety and memory safety–check features. Safe TinyOS was

developed mainly to provide memory safety to sensor
nodes [75]. Similarly, Untrusted Extension for TinyOS
(UTOS) utilizes a sandboxing concept to provide enhanced
memory safety features, compared to Safe TinyOS [76].
To provide memory safety features to memory-constrained
devices, CCured is leveraged [77]. CCured provides a red line
that draws a boundary between trusted and untrusted exten-
sions. The untrusted extensions cannot access the hardware
and network resources directly. An extension communicates
with the rest of the system through a proper UTOS system call
interface. The extension is terminated if it violates the safety
model of the system. The CCured compiler inserts dynamic
safety checks before every operation.

Restarting an extension is still faster than rebooting a
TinyOS application. To make the memory more efficient,
unstacked C is used, which is a source-to-source transforma-
tion to translate a TinyOS multithread program into stackless
threads. Since these programs do not have a separate stack,
their memory overhead is reduced significantly. Dynamic
memory-like capabilities can be offered in TinyOS by using
a component named TinyAlloc through an interface called
MemAlloc. Additional memory management and capacity
are provided through a TinyPaging mechanism, which makes
use of flash storage [75]. TinyAlloc allows double referenc-
ing, which means that the memory region is referenced indi-
rectly through another array that contains it current address.
Hence, TinyAlloc can alter the memory address in the

VOLUME 6, 2018 8465



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

TABLE 4. An overview of memory management.

intermediate array, and move the memory region freely with
in the heap. The MemAlloc interface in TinyAlloc returns
a pointer handle to the newly assigned memory region, and
also frees the memory region and returns the handle pointer
to allocated memory. Tinypaging uses virtual addresses. The
memory region is allocated a virtual address. Before using it,
a dereferencing function takes the virtual address and returns
the physical address for that memory. It also reduces the need
to use an additional intermediate array. Hence, Tinypaging
combines these concepts and works with virtual addresses to
exchange parts of memory into flash.

The additional threads in TinyOS that provide more exe-
cution and concurrency support may require more mem-
ory usage. Therefore, memory usage prediction is required
for TinyOS applications. With a real-time operating sys-
tem (FreeRTOS), the kernel allocates memory dynamically
for every event. The malloc() and free() functions are not
desirable in a real-time operating system due to the fact
that dynamic memory allocation has typically deterministic
run-times, needs extra code space, and suffers from mem-
ory fragmentation. To eliminate these problems, FreeRTOS
introduced two new functions: pvPortMalloc() and vPort-
Free() [78]. These functions provide three heap implemen-
tations for memory allocation, depending on the system
design [79]. Heap_1 does not allow de-allocation of memory
once it is allocated. It is suitable for a system where allocated
memory size always remains the same (for example, with
application tasks that do not vary with time and that are
created before the kernel is started). Heap_2, in contrast to
heap_1, allows previously allocated memory to be freed.

It does not combine adjacent free blocks into a larger memory
block. This scheme is suitable for systems where tasks are
created dynamically. Heap_3 is similar to the malloc() and
free() function allocations, and make a safe thread. This
scheme is not memory-efficient, and may increase the kernel
code size. The memory management aspect of IoT OS is
summarized in Table 4.

C. ENERGY MANAGEMENT
IoT devices consume energy during sensing, data processing,
and data transfer. Themanagement of limited energy has been
a key issue for these devices due to the fact that these sensors
are deployed mostly in remote environments and function
without human intervention. Therefore, OS should provide
an energy-efficient mechanism to prolong the life of an IoT
network [80]. The management of a limited energy budget is
rudimentary, and can be accomplished through both hardware
and software techniques [81]. Hardware-based approaches
require additional hardware, which increases system cost.
Software-based techniques are more practical, but may intro-
duce additional overhead. Energy efficiency can be achieved
through network protocol design and OS scheduling aspects,
e.g., sleep/wake and duty-cycle modes are employed in most
OSs to conserve energy [62]. Reducing energy consumption
through a software mechanism requires a comprehensive
view of the application at a different layer of the system, and
is an essential condition for OS.

The Contiki kernel offers no explicit power-saving mech-
anism. The applications provide a power-saving mode by

8466 VOLUME 6, 2018



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

FIGURE 3. TinyOS software thread integration (TOSSTI) (adapted from [46]).

TABLE 5. Predicted energy consumption (in mJ) and node lifetime for TinyOS 1.1.7 component (adapted from [82]).

utilizing an event queue size. The application can put the
CPU into sleep mode when the event queue is empty [63].
The Contiki network-level energy-saving mechanisms are
discussed in more detail in Section D.

TinyOS utilizes software thread integration (STI) for
energy conservation [46]. The node faces idle–busy time
during sensing, processing, and transmission. The idle time is
too short to perform traditional context switching. With STI,
the processor can reclaim this time to perform other useful
tasks, as depicted in Figure 3. Similarly, the processor can
boost battery life by switching to low-power mode sooner.
The TinyOS overall system response time also improves,
which supports higher priority task processing. In this way,
the scheduler can provide the effects of pre-emption at the
task level. Hence, it enhances the concurrency model of the
scheduler.

Allocating the energy dynamically by predicting the power
consumption of nodes can be helpful to conserve energy.
For example, accurate prediction of power consumption
(AEON) is an energy prediction tool for sensor nodes [82].
TinyOS application energy prediction based on AEON is
shown in Table 5. Table 5 shows the amount of energy
consumed by each component. For example, the radio con-
sumes most of the energy, thus, the CPU idle–active mode

duration can be altered to extend node lifetime. Similarly,
the TinyOS programming mode supports an energy-tracking
mechanism to track energy consumption of various compo-
nents. An energy-aware target tracking (EATT) algorithm is
implemented in TinyOS using a clustering and data aggre-
gation technique [83]. The tracking algorithm is executed by
the cluster head (CH) that performs data collection, aggre-
gation tracking, and result propagation to send the results to
the desired location. Through energy tracking optimization,
the number of CPU cycles can be minimized. However, this
mechanism is not suitable for mobile devices, and may intro-
duce additional memory usage. A distributed energy-aware
wake-up counter was tested in TinyOS to provide updated
link status in real time [84].

In an event-driven system, the threads of execu-
tions or tasks spend a portion of their time waiting for an
interrupt, or for a time period to expire. In FreeRTOS, these
tasks are referred to as being in a blocked state [85]. If all
the tasks are in a blocked state, FreeRTOS creates and runs
a task called idle task. Therefore, when the processor is idle,
it can go into power-saving mode. This is implemented in
FreeRTOS using an idle task hook function [86]. The idle task
is given the lowest priority, and the idle hook function gets
called only if there is no higher priority task available [87].

VOLUME 6, 2018 8467



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

TABLE 6. An overview of energy management.

Hence, this function provides an automatic power-saving
mechanism to the FreeRTOS processor. This mechanism
may be beneficial in some scenarios, but if the frequency
of the ticks is too high, the processor will waste energy and
time in entering and exiting idle mode. Hence, the power
savings through this mechanism are not beneficial. Therefore,
to provide an appropriate power-savingmechanism, a tickless
idle technique was introduced [88]. Tickless idle is a power
management technique for FreeRTOS that provides more
power saving during processor idle states. It uses a time-
tracking mechanism to disable a periodic tick source for a
period of time to put the processor into deep sleep mode until
a higher priority external or kernel interrupt occurs. However,
it introduces run-time overhead. The energy management
aspects of IoT OSs is presented in Table 6.

D. COMMUNICATION MANAGEMENT
Providing seamless continuous and ubiquitous communica-
tion between IoT devices is the ultimate goal of an IoT
OS. IoT networking is complicated by the devices’ wireless
nature, heterogeneity, density, and diverse transmission pat-
terns [89]. Therefore, communications support at the MAC
layer, the transport layer, and the network layer impacts
overall IoT network performance. There is a plethora of
IoT communication protocols available in the literature [90].
Some of these protocols are widely accepted and standard-
ized. The IoT communications protocols should focus on
energy efficiency rather than providing higher throughput.
The networking stack for an IoTOSmust support higher-level
services, including data dissemination and accumulation.
It also requires managing low-level services, including radio
management, queue management, and MAC support [91].
Apart from these requirements, there is a need to consider
the devices’ unique traffic characteristics, and consequently,
a need to manage the quality of service (QoS). For example,
in the smart metering scenario, devices periodically transmit
a small burst of data. A detailed tabular overview of commu-
nication management section is provided in Table 7.

1) CONTIKI SUPPORT FOR COMMUNICATION PROTOCOLS
The Contiki provides two networking stacks, i.e., a uIPv6 net-
stack and a Rime communications stack [92]. uIPv6 is the

implementation of the TCP/IP protocol stack for eight-bit
microcontrollers, and can be configured with 6LowPAN,
RPL routing for low-power and lossy networks, User Data-
gram Protocol (UDP) and Constrained Application Pro-
tocol (CoAP) [93]. Similarly, the Rime communications
stack is designed for low-power radio. It supports single-
hop unicast, single-hop broadcast, and multi-hop commu-
nications. In multi-hop scenarios, Rime allows applications
to implement routing protocols other than the Rime stack–
implemented protocols. The Contiki network stack layer
model is shown in Figure 4. The Contiki network stack layer
is a little bit different than the traditional OSI layer. It covers
all the OSI layers; however, there is a radio layer, a radio duty
cycle layer, and a MAC layer present in between the network
layer and the physical layer [94].

a: CONTIKI SUPPORT FOR MAC LAYER PROTOCOLS
IoT resource management under a MAC protocol is usually
achieved in terms of energy efficiency [42]. The MAC proto-
col approach developed for a duty-cycle IoT aims to reduce
radio idle listening duration tominimize energy consumption.
Idle listening is the time the node spends listening to the
medium, even if no packet is present. The X-MAC protocol
is implemented in the Contiki, and it provides a low-power
listening mechanism [95]. If a node sends data, it transmits
a preamble. The receiver wakes up, detects the preamble,
and stays in the idle state to receive the data. In this basic
approach, the receiver stays in the wake-up state until the
preamble is finished, and it then starts the data- and acknowl-
edge (ACK)-packet exchanges (Figure 5). The receiver may
have woken up at the start of the preamble. This results
in wasted energy. X-MAC replaces the low preamble with
short strobe frames [96]. The receiver receives one strobe and
transmits a strobe-ACK. The sender then proceeds with data
transmission. Hence, a short preamble further decreases the
time and energy consumption. However, X-MAC wakes up
each node for a short active period in this procedure. The node
goes to sleep mode again after an active period, which is 5%
to 10% of the wake-up interval.

Contiki 2.4 introduced a carrier sense multiple access
(CSMA) MAC protocol that simply detects a collision and

8468 VOLUME 6, 2018



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

TABLE 7. An overview of communication management.

VOLUME 6, 2018 8469



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

FIGURE 4. Contiki network stack (adapted from [94]).

FIGURE 5. X-MAC medium access (adapted from [96]).

FIGURE 6. ContikiMAC mechanism of sending data packet (adapted from [97]).

retransmits the packets. However, this retransmission infor-
mation is not passed to the upper layers in order to save
computational costs. Hiding this information may affect the
overall routing operation. Therefore, a new power-saving
mechanism called the ContikiMAC radio duty cycling pro-
tocol was introduced in Contiki 2.5 [97]. The ContikiMAC
radio duty cycle mechanismwas inspired by the X-MAC duty
cycling procedure [98].

ContikiMAC periodically wakes up the radio to listen for
a packet transmission. The sending node continuously sends
the data frame to the receiver until it gets an acknowledgment.
The packet’s destination field reduces overhearing, i.e., the
node can go into sleep mode if it is not the packet destination.
The receiver wakes its radio to listen for packet transmis-
sion. After detecting the packets, the receiver stays awake

to receive the full transmission. Once reception of packets is
done, it sends a link layer acknowledgment. This mechanism
is illustrated in Figure 6.

The wake-up duration timing needs to be precise. To pro-
vide power-efficient wake-up timing, Contiki uses a mecha-
nism called clear channel assignment (CCA), which utilizes
the received signal strength indicator (RSSI) value to predict
channel availability. An RSSI value lower than a given thresh-
old returns ‘‘CCA positive,’’ indicating the channel is free.
Similarly, an RSSI value greater than the threshold amount
returns ‘‘CCA negative,’’ indicating the channel is busy. Con-
tikiMAC follows precise timing constraints. ContikiMAC
timing is illustrated in Figure 7; ti is the time duration between
two data packet transmissions, which must be greater than the
time required to transmit and receive the ACK, i.e., ta + td .

8470 VOLUME 6, 2018



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

FIGURE 7. The ContikiMAC transmission and CCA timing (adapted from [97]).

The interval tc between two CCAs (tr ) must be greater than
ti to ensure two CCAs detect a frame. ContikiMAC uses a
phaselock mechanism introduced by WiseMAC [99]. In this
mechanism, the transmitter can estimate the wake-up sched-
ule of the receiver with the ACK packet and can transmit
data frames repeatedly just before the receiver is expected
to be in the wake-up state. This phaselock mechanism in
ContikiMAC reduces both energy and channel utilization, but
at the risk of collision.

Some other MAC layer protocols were designed and tested
with the Contiki OS. RAWMAC, a cross-layer approach
is implemented in Contiki [100]. It exploits the Contiki
RPL [101] protocol at the routing layer, and ContikiMAC at
the MAC layer. It uses RPL’s directed acyclic graph (DAG)
and aligns node wake-up internally estimated by the Contiki-
MAC phase lock mechanismwith its parent node to minimize
data collection delay. Another MAC protocol implemented in
Contiki is called GinLITE [102].

b: CONTIKI SUPPORT FOR NETWORK LAYER PROTOCOLS
IETF provides IPv6 routing in low-power and lossy net-
works. RPL specifies how to construct a destination-oriented
directed acyclic graph (DODAG). Each node is given a rank
based on an objective function (OF). The rank provides the
position of the node in the network. The OF calculates the
rank of the node using a path calculation in a low-power and
lossy network (RFC 6551) [103]. The node joining the RPL
network first listens to a DODAG information object (DIO)
message. If a node is unable to receive the DIO message,
it will broadcast a DODAG information solicitation (DIS)
message, which compels the neighboring node to broadcast
the DIO message. Using the DIO message, the OF selects the
parent node. The packet is forwarded to each parent node
until the packet reaches the sink. When traffic is required
to flow in the opposite direction, the routing state at every
node is built using a DODAG destination advertisement
object (DAO) message. The node sends a DAOmessage to its
parent node, which will forward it through the parent’s parent
node to the sink [104]. Tsiftes et al. proposed a mechanism
to implement RPL protocols inside uIPv6 [101]. Similarly,
Ko et al. [105] tested the ContikiRPL implementation using
two OFs, i.e., OF0 and a minimum rank objective function

with hysteresis (MRHOF). ContikiRPL separates the OF
into various modules. First, the protocol logic module main-
tains DODAG information and the node’s parent-associated
information. Second, the message-construction and parsing
module provides the RPL ICMPv6 message format and data
structure to ContikiRPL. Third, the OF modules provide an
OF API. ContikiRPL provides a forwarding table mechanism
for uIPV6 instead of taking a forwarding packet decision
per packet. The link cost is estimated by a neighbor infor-
mation module and is updated to the forwarding table. The
uIPv6 layer forwards the outgoing packets to the 6LoWPAN
layer, which provides header compression and fragmentation,
and then, the packet is forwarded to ContikiMAC.

RPL faces congestion and packet loss problems during
heavy traffic. Similarly, RPL has a fixed traffic configuration,
it cannot adapt to IoT applications’ varying traffic patterns.
Mobility is another crucial issue that causes link breakage
and invalid routes in DAGs. To address these problems, Tahir
et al. proposed an extension of RPL called backpressure
RPL [106], which combines the RPL OF with backpres-
sure routing. Congestion issues in the 6LowPAN layer are
evaluated in Contiki using a non-cooperative game theory
mechanism [107].

Some other routing protocols have been implemented
in the Contiki, e.g, the Mesh_under Cluster_based Rout-
ing (MUCBR) protocol proposed by Al-Nidawi et al. [108]
reduces the node energy consumption and radio duty cycle by
implementing a clustering structure under the 802.15.4 stan-
dard. Similarly, another mechanism is proposed to provide an
improved RPL routingmetric [109]. It combines a node resid-
ual energy ratio (RER) and a battery discharge index (BDI)
along with expected transmission count (ETX) for parent
selection and rank computation.

c: CONTIKI SUPPORT FOR TRANSPORT LAYER PROTOCOLS
A traditional TCP/IP cannot be implemented in limited-
resources devices; uIP provides theminimum features needed
to implement the full TCP/IP stack [110]. It contains simple
TCP and UDP transport layer protocols. However, UDP in
uIP does not support broadcast or multicast transmission.
Similarly, UDP checksums are also not provided in uIP.

VOLUME 6, 2018 8471



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

2) TINYOS SUPPORT FOR COMMUNICATION PROTOCOLS
The basic communications paradigm of TinyOS is the active
message (AM), a single-hop protocol [111]. AM is a sim-
ple networking primitive where each message includes an
identifier to be invoked on the target node to pass the AM
to its handler. In this way, this event-based communication
between nodes provides a TinyOS publish/subscribe-based
communications architecture. The GenericComm component
in TinyOS 1.x provides AM communications interfaces,
which provide single-hop unicast, and broadcast commu-
nications. TinyOS supports two multi-hop communications
protocols called dissemination and TYMO (which is an
implementation of the Dynamic Manet on Demand Routing
Protocol (DYMO)) [112], [113]. Dissemination protocols
are designed to reduce temporary disconnections and packet
losses by ensuring the reliable delivery of data to every node
in the network.

a: TinyOS SUPPORT FOR MAC LAYER PROTOCOLS
Various MAC protocols have been tested with TinyOS. For
example, B-MAC provides a low-power operation inter-
face [114]. It introduced an adaptive preamble sampling
mechanism, which reduces radio duty cycling and idle listen-
ing. Similarly, X-MAC is a low-power listening approach that
uses a short preamble to conserve energy [98]. The receiving
node’s address information is embedded in the preamble to
resolve the overhearing problem, which in turn, saves energy
for the non-receiving node. It also uses the idea of a short
strobed preamble, which is created by adding pauses in the
short preamble. The strobe preamble enables the receiving
node to interrupt a preamble as soon as it wakes up and imme-
diately recognizes its own address. Then, it transmits an ACK
in the next pause after the preamble. In this way, instead of
waiting for the entire preamble to complete, a node can start
receiving packets without wasting time and energy. Similarly,
a transmitter also does not need to send the remaining short
preambles.

Similarly, TinyOS provides a MAC mechanism called
TinyOS LPL, which is similar to the ConikiMAC tech-
nique [58]. TinyOS LPL allows the radio to implement
sleep/wake cycles at user-defined intervals. The LPL receiver
energy-saving mechanism saves energy by performing short,
periodic receive checks. A node wakes up during every LPL
period to sense the channel. If there is activity on the channel,
the receiver node will switch its radio on to receive packets
and send an ACK. The transmitter stops packet transmission
upon receiving an ACK. The transmitter sends a packet only
during the receive check interval of the receiver. In a tradi-
tional LPL mechanism, the sending node transmits a very
long preamble to span a complete receive check period. The
receiver node radio stays awake during the full duration of
the sending node preamble, and waits for the data pack-
ets after that. Staying awake for a long period and reading
bits consumes lots of energy. TinyOS LPL improved this
mechanism by replacing the long preamble with a smaller

packet transmission. Along with that, a low-power interface
was introduced, which allows the user to deploy nodes with a
pre-defined duty cycle percentage or sleep time. The TinyOS
LPL mechanism provides energy efficiency through a radio
duty–cycling mechanism. However, the default inter-packet
spacing (IPS) in TinyOS LPL is 8 ms, which may result in
lower throughput. With the higher IPS (8 ms) the average
packet reception ratio (PRR) is 11.67%.

A wide variety of MAC protocols were designed in order
to provide energy efficiency to a sensor network. Due to com-
patibility problems, the sensor networks are not interoperable.
To overcome this problem; a MultiMAC network stack to
run multiple MAC protocols using a single radio interface
was introduced [115]. The MultiMAC protocol stack uti-
lizes three known protocols, CSMA with collision avoidance
(CSMA/CA), LPL MAC, and TDMA MAC, on top of the
same radio driver. It introduces the concept of using a virtual
gateway to enable sensor network interoperability using het-
erogeneous MAC protocols. The MultiMAC network stack
architecture is depicted in Figure 8.

FIGURE 8. The architecture of MultiMAC network stack (adapted
from [115]).

The CC2420 driver manages the data transmission, recep-
tion, and frame transmission timing. Similarly, the hardware
abstraction layer (HAL) provides multiplexing of different
MAC protocols. The HAL is responsible for dispatching the
received frame to the correct MAC protocols using a MAC-id
in the frame, performs address recognition, and sends auto-
matic ACK packets for each MAC. Each MAC protocol is
provided a virtual physical layer address to isolate them from
one another.

b: TinyOS SUPPORT FOR NETWORK LAYER PROTOCOLS
ContikiRPL, TinyRPL is based on the IETF RPL (RFC
6550) [13]. TinyOS 2.x utilizes an interface provided by the
Berkeley low-power IP stack (blip), which implements an
IPv6 stack based on 6LoWPAN specifications [116]; blip
utilizes 6LoWPAN header compression, neighbor discov-
ery, and DHCPv6 to provide IPv6 in the upper layer. The
blip architecture is shown in Figure 9. The IP forwarding
abstraction allows RPL implementation on top of ICMv6.

8472 VOLUME 6, 2018



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

FIGURE 9. The basic architecture of the blip stack.

As explained in ContikiRPL, the packet is forwarded once
DODAG is constructed using aDIOmessage. Then, TinyRPL
saves its route in the blip forwarding module. Both Con-
tikiRPL and TinyRPL implement OF0 and MRHOF objec-
tive functions for route selection. However, the routing in
RPL depends on other layer functions, as well. For example,
the MAC layer retransmission timeout affects the RPL link
discovery function. It is been shown that the ContikiRPL
retransmission timeout is two times the TinyRPL retrans-
mission timeout because of the MAC layer retransmission
timeout difference between them [105].

Load balancing under heavy traffic in RPL is carried out
efficiently by queue utilization (QU) [117]. The proposed
QU-RPL mechanism aims to achieve load balancing by
offering a better parent-selection method, which results in
less congestion at both the link level and the queue level,
along with a better packet reception ratio. During DODAG
construction, the DIO message contains information about
the RPL node rank and routing metrics. The QU-RPL pro-
cedure added new QU information in DIO. During heavy
traffic and fast Tickletime, the amount of overhead can cause
severe delay in a large IoT network. Similarly, the pro-
posed algorithm is required to add the battery’s remaining
energy information during parent selection. In the same way,
the Tickletimer resetting strategy depends on network size.
It requires a more efficient Tickletimer strategy for better out-
put. Providingmultimedia application support in this scenario
is also very challenging due to constrained environment and
overhead costs.

TinyOSOpportunistic Routing Protocol (TORP) forWSNs
is designed to conserve energy by implementing an efficient
forwarding mechanism [118]. Similarly, the Low-Energy
Adaptation Clustering Hierarchy (LEACH) protocol was
tested with TinyOS [119]. LEACH forms node clusters using
their RSSI values. Then, the local cluster head (CH) is
declared a router to communicate with the base station. In this
protocol, energy conservation is based on the idea of prevent-
ing long distance communications by each node, since only
the CH is responsible for communicating with the base sta-
tion. Another energy-efficient routing protocol named Bea-
con Vector Routing (BVR) is implemented in TinyOS [120].

It defines a beacon vector routing metric and routes the
packets in a greedy manner to the next closest hop, which
is calculated by a beacon vector distance metric. A proactive
distance-vector protocol (Babel) is implemented in TinyOS
to support low-power sensor operation [121]. Babel is based
on Destination-Sequenced Distance-Vector (DSDV) routing
and Ad Hoc On-Demand Distance Vector (AODV) proto-
cols. Location-aided routing (LAR), Destination-Sequenced
Vector Routing (DSVR) and an event-driven data-centric
routing protocol are also implemented in TinyOS to support
sensors’ battery lifetime [122].

c: TinyOS SUPPORT FOR TRANSPORT LAYER PROTOCOLS
IoT applications demand a certain level in quality of ser-
vice plus specific resource requirements. TinyOS does not
provide any specific transport layer protocol implementa-
tion. The blip interface in TinyOS provides a UDP socket
layer as a basic transport layer implementation [116]. The
UDPShell provided by blip contains simple commands,
including help, echo, uptime, ping, and ident, to provide
debugging commands to the sensor node. Similarly, blip also
offers a very simple TCP stack. In order not to exhaust the
sensor resources, the TinyOS TCP implementation does not
do receive-side buffering. The new packets are dispatched
does not do transmitter-side buffering; the dropped segment
is automatically retransmitted instantly [123].

Besides the above-mentioned transport layer support,
TinyOS supports a variety of transport layer protocols to con-
serve energy. For example, Sensor Transmission Control Pro-
tocol (STCP) was implemented and tested in TinyOS [124].
In STCP, most of the functionalities are implemented at
the base station. Thus, a considerable amount of energy
is conserved in the sensor nodes. The sensor nodes asso-
ciate themselves with the base station using a session ini-
tiation packet, which informs the base station about the
number of flows, data types, and transmission types, and
reliability requirements. Likewise, the Hybrid and Dynamic
Reliable Transport Protocol (HDRTP) was proposed using
TinyOS [44]. It has been shown that HDRTP enhances sensor
node performance in terms of success rate, average latency,
and average delivery ratio. Similarly, various transport layer

VOLUME 6, 2018 8473



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

protocols were tested on TinyOS, e.g., a post-order–based
protocol [125], the Energy-efficient and Reliable Transport
Protocol (ERTP) [126] and the Rate-Controlled Reliable
Transport Protocol (RCRT) were implemented and tested in
TinyOS [127].

3) FREERTOS SUPPORT FOR
COMMUNICATION PROTOCOLS
FreeRTOS utilizes third-party additional tools and applica-
tions to provide networking support, e.g., Real Time Engi-
neers Ltd. provides the FreeRTOS+TCP configuration [128].
The FreeRTOS+TCP configuration allows Ethernet-based
IPv4 protocol networking solutions. Similarly, a third-party
networking port stack e.g., uIP and IwIP, is utilized in a
constrained environment [129].

a: FreeRTOS SUPPORT FOR TRANSPORT
LAYER PROTOCOLS
FreeRTOS, being a minimalistic OS, does not provide a
native MAC layer implementation. However, a third-party
implementation is available. For example, IoT-LAB provided
a FreeRTOS-based MAC layer implementation to provide
better real-time support [130]. They implemented three MAC
layers, including CSMA, TDMA, and X-MAC. This CSMA
implementation provides a user-defined number of transmit-
ting requests before packet dropping. TDMA is useful to han-
dle a large number of nodes operating on the same channel.
X-MAC provides a low-power duty cyclingMACmechanism
that is suited to low-traffic networks. Schoofs et al. provided
an 802.15.4 MAC implementation on a FreeRTOS micro-
kernel [131]. In this configuration, MAC is considered an
application that is run by a FreeRTOS task as a FreeRTOS
MAC task and is given the highest priority.

b: FreeRTOS SUPPORT FOR NETWORK LAYER PROTOCOLS
Real Time Engineers Ltd. provides FreeRTOS+TCP, which
is an open-source TCP/IP stack [128]. It is based on a Berke-
ley sockets interface supporting an Ethernet-based IPv4 stack
that offers support for UDP and TCP, and lwIP is based on a
TCP/IP protocol suite with low RAM usage. IwIP is suitable
for devices with 10 kBRAM.Hence, it is suitable for IoT low-
end devices. Most of the FreeRTOS demosmake use of an old
IwIP version. At the network level, it supports Internet Proto-
col, Internet Control Message Protocol (ICMP) and Internet
Group Management Protocol (IGMP). IwIP utilizes basic IP
functionalities, it sends, receives, and forwards packets, but
does not handle fragmented IP packets with IP options. The
OS does not use function calls and data structures directly
in the code. In order to make IwIP more portable, an OS
uses an emulation layer to provide the IwIP functions. The
emulation layer provides a common interface between the
kernel and the IwIP code. This interface provides services that
include a timer used by TCP/IP. It processes synchronization
(semaphores) and has a message processing mechanism that
uses an abstraction called mailboxes. The uIP implemented
in Contiki does not support all UDP and multicast features,

i.e., uIP can send UDP multicast messages, but is unable to
join multicast groups and receive multicast messages [110].
Unlike uIP, IwIP provides the necessary UDP and multicast
components. FreeRTOS also supports ports of an embedded
network stack called Nanostack [132], which was developed
by Sensinode. It is based on a 6LowPAN implementation and
decreases RAM usage by executing as a single task under
FreeRTOS. Similarly, 6LowPAN compresses the IPv6 head-
ers to make them useful for resource-constrained sensor
devices.

c: FreeRTOS SUPPORT FOR TRANSPORT LAYER PROTOCOLS
FreeRTOS uses TCP and UDP as transport proto-
cols. FreeRTOS+UDP is a socket-based fully thread–aware
stack for FreeRTOS. It provides a Berkeley socket–like
interface with compact code size that makes it useful for
communication between limited-resource IoT devices. The
FreeRTOS+TCP stack, on the other hand, provides a more
reliable stream service. Therefore, TCP contains 50% of the
total code size of the lwIP stack [129].

E. FILE MANAGEMENT
A typical IoT network consists of thousands of tiny devices
that sense the environment and process raw information. This
information sometimes needs to be stored. In the past, a wire-
less sensor network was communication-centric and used to
transfer sensed data to one or more sensor devices or a base
station. However, in recent years, the presence of onboard
flash storage in IoT hardware platforms has provided a stor-
age capability to the sensor network. As a sensor node’smem-
ory is a scarce resource, an efficient file system is required,
although not every IoT scenario requires a file system.
Contiki provides a flash-based file system called Coffee,
which gives support to flash-based sensor devices [133].
A typical IoT device contains a few kilobytes of RAM. The
onboard flash-based storage provides more memory capa-
bilities. The file system must support storage-centric sen-
sor applications and networking components’ storage needs.
In other words, how to store and retrieve the data in an
efficient manner is handled by the file system. The OS in
this scenario is required to support the file system in order to
satisfy the IoT resource requirements. TinyOS, on the other
hand, uses a single-level file based on the assumption that
a node runs a single application at a time [134]. Similarly,
FreeRTOS+FAT is a DOS-compatible, open source file sys-
tem for FreeRTOS [135]. Table 8 summarizes the overview
of file management.

1) CONTIKI FILE SYSTEM
Contiki File System (CFS) is a virtual file system to provide
an interface to different file systems [133]. Building stor-
age abstraction is a challenging task in a limited-resource
environment (little code and a small RAM footprint) [136].
In this scenario, Contiki provides a base for building
such an abstraction to support various resource-constrained
devices. The two file systems that implement CFS with full

8474 VOLUME 6, 2018



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

TABLE 8. An overview of file management.

functionalities are CFS-POSIX and Coffee. CFX-POSIX on
the Contiki platform runs in native mode. Other file systems
supported by CFS are also available, such as CFS-EEPROM,
CFS-RAM, and CFS-XMEM, but these file systems are con-
strained to a single file only. Coffee, on the other hand, sup-
ports a file system for flash (EEPROM)-based sensor devices.
Each file system uses the CFS API for reading, writing, and
extracting files in amechanism similar to the Portable Operat-
ing System Interface for Unix (POSIX) API. Coffee provides
a programming interface to develop an independent storage
abstraction. Coffee uses a small RAM footprint profile, and
requires 5 kB ROM for the code and 0.5 kB RAM at run-time.
Hence, it is suitable for resource-constrained devices. Coffee
allows multiple files to coexist on the same onboard flash
chip, and provides 92% of the achievable direct flash driver
throughput. In order to provide better memory management,
the concept of micrologs was introduced. A microlog, unlike
the conventional log structure, allows configuring the logs
of individual files, providing a tradeoff between space and
speed. Flash memory may increase the chance of memory
corruption if it erases the page every time. Coffee spreads the
spectrum evenly to reduce the risk of corruption.

2) TINYOS FILE SYSTEM
TinyOS supports a single-level file system. It assumes that
a node runs a single file in any given time period [134].
Therefore, a single-level file system is sufficient (e.g. TinyOS
1.x uses a microfile system called Matchbox, which provides
an interface to read, write, delete, and rename files [137]).
Matchbox is designed to provide reliability and low-resource
consumption. The Matchbox filing system is very simple;
it stores files in an unstructured way and provides only
sequential reads and append-only writes. Other third-party
file system implementations are also present, e.g. TinyOS
FAT 16 supports SD cards aimed at reducing the overall
power consumption of sensor nodes. TinyOS 2.x is based on
the NesC programming language, which provides an abstrac-
tion layer that separates hardware interfaces and provides a
framework for developing a portable application [138]. The
portable implementation of the FAT file system allows a
node to store a large amount of data. Similarly, the Efficient

Log-structured Flash (ELF) file system for microsensors is
implemented in TinyOS [139]. The ELF log structure pro-
vides better memory efficiency, low-power operation, and
tailored support for the common types of sensor files.

3) FREERTOS FILE SYSTEM
FreeRTOS uses the Super Lean FAT File System
(FreeRTOS+FAT SL). FreeRTOS+FAT (FAT12/FAT16/
FAT32) is a DOS/Windows-compatible embedded file system
with the main objective of minimizing both flash and RAM
footprint (<4 kB and <1 kB, respectively).

IV. OPEN RESEARCH ISSUES AND RECOMMENDATIONS
To develop a practical and efficient IoT OS, many research
challenges need to be addressed. The OS should mainly focus
on the severe resource shortages and requirements for diverse
IoT applications. In this section, we first discuss the general
IoT OS research directions, and we then pinpoint some spe-
cific research directions.

A. SMALL MEMORY FOOTPRINT
For general research directions, we first argue that more
research should be put into the effort to utilize a small mem-
ory footprint while providing a developer-friendly API and
adding sophisticated features, which may require adding a
new programming language or extensions of existing ones.
An IoT device contains only a few kilobytes of memory.
Hence, the fundamental characteristics of an IoT OS are to
reduce the code size and utilize the minimum memory in an
efficient manner.

B. ENERGY EFFICIENCY
Another general research direction is to consider a practi-
cal energy-efficiency mechanism to prolong the IoT device
battery lifetime by designing more efficient network proto-
cols. Similarly, leveraging the hardware features in a smarter
manner can lead to better energy efficiency.

C. RELIABILITY OF IoT DEVICES
The reliability of IoT device operation is extremely cru-
cial, especially if they are deployed in a remote location.

VOLUME 6, 2018 8475



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

To support IoT complex deployments, OS reliability can be
achieved by using a microkernel, memory protection units,
static code analysis, etc.

D. REAL-TIME SUPPORT
IoT devices require diverse applications; some of them pro-
vide real-time operation. These real-time sensings tend to be
time-sensitive. Thus, a timely real-time operation guarantee
is another challenge faced by the IoT OS.

E. SCHEDULING MODEL
The IoT OS also faces some limitations during task execu-
tions that affect the processor and which can lead to extra
burden and load on the processor. They can also affect the
system’s energy efficiency and real-time capabilities.

F. NETWORK BUFFER MANAGEMENT
The network buffer is the main component of the IoT oper-
ation. This area requires extensive research to efficiently
allocate limited memory to the packets.

G. PROGRAMMING LANGUAGE
Choosing a standard programming language, such as C or
C++, or an OS-specific language like NesC, can affect per-
formance, safety, and portability.

H. PROGRAMMING MODEL
The IoT environment could have diverse application needs;
application development is highly affected by the program-
ming model. Therefore, the limitation with the programming
structure also needs to be addressed.

I. HARDWARE ABSTRACTION LAYER
Research to reduce the amount of overhead in designing
the HAL could benefit the overall OS efficiency, especially
in dense and lossy networks. On the other hand, it is very
important that the HAL be well-designed and portable to
different platforms.

J. REAL-TIME OS ISSUES:
Managing a real-time OS is quite challenging. In a complex
IoT system, a simple RTOS task may result in complex
run-time behavior. Extensive research is required to provide
proper task priorities and processor shared timing. FreeRTOS
utilizes a multi-threading approach where each process can
be interrupted, and the higher priority task can be executed
in any given time period, which can delay low priority–
task execution time. Similarly, the dependency between tasks
may block execution of certain tasks, which may also result
in unnecessary delay. Priority inversion, timing properties,
and task dependencies require further investigation for RTOS
systems. Predicting real-time behavior is very difficult; tasks
may execute slower than predicted; they may fail during
execution, or can have unexpected delays. Therefore, imple-
menting an RTOS in the IoT environment, especially for

time-critical applications, might cause a problem. Hence,
dealing with these RTOS challenges is an important research
direction.

K. COEXISTENCE
With the growing application scenarios of IoT networks in a
limited frequency spectrum, coexistence technologies are an
ongoing research problem for OS and radio designers. It is
a diverse research area that requires an optimal design of the
physical,MAC, and network layers. Achievingwireless coex-
istence can provide spectrum resource sharing, traffic off-
loading, and optimal connectivity for diverse IoT services.

Besides the above-mentioned challenges; we also highlight
some specific issues, which are yet to be fully addressed.

L. CONTIKI PROTOTHREADS
Contiki provides multi-threading using protothreads, which
are stackless and lightweight. Each process runs to com-
pletion, and does not allow interrupt handlers to post new
events. If an IoT application requires priority for processes
and threads, Contiki would not be an ideal OS choice. Hence,
extensive research could be done to provide proper process
synchronization in Contiki.

M. TinyOS SCHEDULING
The TinyOS scheduling mechanism is not suitable for all
application scenarios. For example, the application of encryp-
tion security task execution time is very long. If the execution
time of some tasks is longer, compared to others, it can affect
the baud rate. Similarly, if the local task frequency is high,
the OS may lose the other tasks, which affects the overall
IoT communications system. TinyOS also fails to handle
execution of abnormal tasks, which can lead to a system
crash.

N. FreeRTOS SCHEDULING
FreeRTOS is a small real-time OS and provides a very basic
scheduling procedure, i.e., highest priority first. Therefore,
it does not offer the possibility of hard real-time scheduling.
FreeRTOS is well suitable to a small embedded system that
has limited, predefined tasks. Research should be done on
designing FreeRTOS to handle large IoT system tasks with
more advanced scheduling mechanisms.

O. MEMORY PROTECTION IN CONTIKI
Contiki supports a dynamic memory management mecha-
nism. It does not provide a memory protection unit (MPU).
Hence, this area still needs to be explored.

P. X-MAC
X-MACuses a stream of strobes for broadcasting. The strobes
do not contain a destination address, which forces each node
to wake up for a specific time period. It also does not pro-
vide a collision avoidance mechanism, i.e., no clear channel
assessment is provided.

8476 VOLUME 6, 2018



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

Q. ContikiMAC
ContikiMAC is an asynchronous radio duty-cycling proce-
dure. The nodes perform clear channel assignment to deter-
mine the presence of ongoing transmissions. It is based on
radio signal strength. If this signal strength threshold is not
calibrated properly, ContikiMAC can face false and unneces-
sary wake-ups. This could be an interesting research area in
order to provide proper CCA threshold calibration. Similarly,
the phase-lock mechanism in ContikiMAC allows a node
to learn neighboring nodes’ wake up phases. More research
efforts can be devoted to improving the phase-lock accuracy.

R. TinyOS LPL
TinyOS LPL provides low-power listening implementations
to radios with predefined intervals. A basic problem with
LPL is that it may suffer from false alarms, including false
positives (waking up when there is no activity on the channel)
and false negatives (falling asleep when there is traffic on
the channel). LPL performance can degrade dramatically in
the presence of external interference and hidden terminal
collisions. An open research area is to study the complex
relationships between TinyOS LPL duty cycling false posi-
tives, false negatives, and latency in the presence of external
interference and the hidden terminal problem.

S. ContikiRPL AND TinyRPL INTEROPERABILITY
Interoperability between different protocols is of utmost
importance, especially in commercial IoT networks.
ContikiRPL performs better in an independent implementa-
tion but can affect system performance in a mixed setup. Sim-
ilarly, ContikiRPL interaction with different MAC protocols
has not been investigated yet. Therefore, there is still a need to
carry out extensive research to make the ContikiRPL protocol
interoperable [140]. Similarly, the current RPL protocols do
not support mobility. Hence, a lot of research issues need to
be explored, for example, neighbor discovery, link quality
estimation, and mobility pattern identification.

T. NETWORK AND LINK LAYER INTEROPERABILITY
The interoperability on the network and link layers is highly
important. ETSI has developed plugtest events to solve this
kind of problem. The shortcomings of the standards can be
tested to develop a new standard or update an existing one.

U. MULTIMEDIA IoT DEVICE TRANSPORT
PROTOCOL SUPPORT
Contiki and FreeRTOS provide a simple implementation of
the TCP and UPD protocol stack. The IoT contains wide
application scenarios for multimedia applications where the
battery is either provided by solar or green energy. In these
cases, using SCTP is more suitable, which provides contin-
uous and event-driven data flow support. Hence, research is
required to implement an efficient protocol at the transport
layer in the Contiki and FreeRTOS to fit the requirements of
multi-streaming and multi-homing features.

V. CONGESTION CONTROL MECHANISM
The IoT contains a huge number of devices, for example,
IEEE 802.11ah access points can support approximately
8000 devices. With this huge number of devices, there is a
need to provide an optimal congestion control mechanism.
One possible solution is to implement TCP-friendly rate
control (TFRC) and a datagram congestion control proto-
col (DCCP). Therefore, implementing a transport layer pro-
tocol with the congestion issue simplified by the TFRC or
DCCP should be considered in future research directions.

W. CONTIKI FILE SYSTEM
The Coffee file system provides an excellent storage abstrac-
tion in a limited-resource environment. The size of the files
requires them to reserve sizes beforehand. If the size of the
file is more than the reserved size, Coffee will make a new
file with the bigger size. Thus, it will copy all the data
from an old file to a new file. This introduces some delay
in real-time application scenarios. Similarly, Coffee supports
random access semantics, which adds some complexity in
delay for log and storage read/write operations.

X. TinyOS FILE SYSTEM
The TinyOS single-level file system provides easy access to
files in the directory. However, the main limitation is that the
system cannot deal with a large number of files simultane-
ously. It is also inconvenient to name a large number of files.

Y. FreeRTOS FILE SYSTEM
The FreeRTOS super lean FAT file system is a DOS-
compatible basic embedded file system. This file system has
yet to mature. It needs further research to enhance storage
abstraction capabilities of an RTOS system.

Z. NEW OS CHALLENGES
There are some new OSs, like RIOT [141], Mbed OS
[142], embedded Linux, and Zephyr [143]. There is a need
to study these OSs in detail to explore future research
challenges.

V. CONCLUSION
In this paper, an effort is made to provide insight into various
proposed approaches in the IoT OS resource management
research area. This paper provides the characteristics of dif-
ferent IoT OS protocols, their design strategies, along with
their relevant advantages and limitations. The contributions
are multi-fold. First, the IoT concept, various standardization
efforts, and motivations to study the management of IoT
resources through an IoT OS are provided. Second, various
previous surveyed papers are discussed. Third, each resource
management aspect of Contiki, TinyOS and FreeRTOS is
elucidated. Their resource management mechanisms are clas-
sified into various sections, including process management,
memory management, energy management, communication
management, and file management. These approaches are
further classified according to their problem formulations.

VOLUME 6, 2018 8477



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

Each OS’s main approach is discussed with a summary of its
underlying idea followed by its advantages and limitations.
Finally, open research issues are split into two categories;
i.e., general and specific directions for future research, with
recommendations given.We believe this surveywill stimulate
the research community, and pave the way towards more-
efficient and robust OSs for low-end devices.

REFERENCES
[1] M. Weiser, ‘‘The computer for the 21st century,’’ ACM SIGMOBILE

Comput. Commun. Rev., vol. 3, no. 3, pp. 3–11, Jul. 1999.
[2] A. Gubbi, R. Buyya, S.Marusic, andM. Palaniswami, ‘‘Internet of Things

(IoT): A vision, architectural elements, and future directions,’’ Future
Generat. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[3] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, ‘‘Internet of
Things: Vision, applications and research challenges,’’ Ad Hoc Netw.,
vol. 10, no. 7, pp. 1497–1516, Sep. 2012.

[4] L. D. Xu, W. He, and S. Li, ‘‘Internet of Things in industries: A survey,’’
IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2233–2243, Nov. 2014.

[5] I. Yaqoob et al., ‘‘Internet of Things architecture: Recent advances,
taxonomy, requirements, and open challenges,’’ IEEEWireless Commun.,
vol. 24, no. 3, pp. 10–16, Jun. 2017.

[6] D. Lake, A. Rayes, and M. Morrow, ‘‘The Internet of Things,’’ Internet
Protocol J., vol. 15, no. 3, pp. 10–19, Sep. 2012.

[7] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, ‘‘Operating systems
for low-end devices in the Internet of Things: A survey,’’ IEEE Internet
Things J., vol. 3, no. 5, pp. 720–734, Oct. 2016.

[8] The Internet Engineering Task Force. Internet Standards. Accessed:
Jan. 5, 2018. [Online]. Available: https://www.ietf.org/

[9] ITU Telecommunication Standardization Sector. Standardization.
Accessed: Jan. 5, 2018. [Online]. Available: http://www.itu.int/en/ITU-
T/Pages/default.aspx

[10] European Telecommunications Standards Institute. Standards. Accessed:
Jan. 5, 2018. [Online]. Available: http://www.etsi.org/

[11] ISO/IEC JTC 1: Internet of Things (IoT). Accessed: Jan. 5, 2018.
[Online]. Available: https://www.iso.org/files/live/sites/isoorg/files/
developing_standards/docs/en/internet_of_things_report-jtc1.pdf

[12] One M2M: Standards for M2M and the Internet of Things. Accessed:
Jan. 5, 2018. [Online]. Available: http://www.onem2m.org/

[13] 3GPP Standards for the Internet-of-Things. Accessed: Jan. 5, 2018.
[Online]. Available: http://www.3gpp.org/images/presentations/
2016_11_3gpp_Standards_for_IoT.pdf

[14] RPL: IPv6 Routing Protocol for Low-Power and Lossy
Networks. Accessed: Jan. 5, 2018. [Online]. Available: https://
tools.ietf.org/html/rfc6550

[15] Transmission of IPv6 Packets Over IEEE 802.15.4 Networks. Accessed:
Jan. 5, 2018. [Online]. Available: https://tools.ietf.org/html/rfc4944

[16] Transmission of IPv6 Over MS/TP Networks. Accessed: Jan. 5, 2018.
[Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-6lo-6lobac/

[17] 6TiSCH Operation Sublayer (6TOP) Interface. Accessed: Jan. 5, 2018.
[Online]. Available: https://tools.ietf.org/html/draft-ietf-6tisch-6top-
interface-04

[18] Transport Layer Security (TLS): Datagram Transport Layer Security
(DTLS) Profiles for the Internet of Things. Accessed: Jan. 5, 2018.
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc7925

[19] The Constrained Application Protocol (CoAP). Accessed: Jan. 5, 2018.
[Online]. Available: https://tools.ietf.org/html/rfc7252

[20] Concise Binary Object Representation (CBOR). Accessed: Jan. 5, 2018.
[Online]. Available: https://tools.ietf.org/html/rfc7049

[21] CBOR Object Signing and Encryption (COSE). Accessed: Jan. 5, 2018.
[Online]. Available: https://datatracker.ietf.org/wg/cose/documents/

[22] Y.2060: Overview of the Internet of Things. Accessed: Jan. 5, 2018.
[Online]. Available: https://www.itu.int/rec/T-REC-Y.2060-201206-I/en

[23] G. M. Lee and D. H. Su, ‘‘Standarization of smart grid in ITU-T,’’ IEEE
Commun. Mag., vol. 51, no. 1, pp. 90–97, Jan. 2013.

[24] SG17: Security. Accessed: Jan. 5, 2018. [Online]. Available: http://
www.itu.int/en/ITU-T/studygroups/2017-2020/17/Pages/default.aspx

[25] ISO/IEC JTC 1: Information Technology. Accessed: Jan. 5, 2018.
[Online]. Available: https://www.iso.org/isoiec-jtc-1.html

[26] IEEE SA P2431: Standard for an Architectural Framework for the
Internet of Things (IoT). Accessed: Jan. 5, 2018. [Online]. Available:
https://standards.ieee.org/develop/project/2413.html

[27] IEEE SA P2431: Standard for an Architectural Framework for the
Internet of Things (IoT). Accessed: Jan. 5, 2018. [Online]. Available:
http://grouper.ieee.org/groups/2413/Intro-to-IEEE-P2413.pdf

[28] ETSI. GS LTN 003: Low Throughput Networks (LTN)—Protocols
and Interfaces. Accessed: Jan. 5, 2018. [Online]. Available:
http://www.etsi.org/

[29] A. Díaz-Zayas, C. A. García-Pérez, A. M. Recio-Pérez, and P. Merino,
‘‘3GPP standards to deliver LTE connectivity for IoT,’’ in Proc. IEEE 1st
Int. Conf. Internet-Things Design Implement. (IoTDI), Berlin, Germany,
Apr. 2016, pp. 283–288.

[30] 3GPP: Release 12. Accessed: Jan. 5, 2018. [Online]. Available:
http://www.3gpp.org/specifications/releases/68-release-12

[31] D. Astely, E. Dahlman, G. Fodor, S. Parkvall, and J. Sachs, ‘‘LTE release
12 and beyond [accepted from open call],’’ IEEE Commun. Mag., vol. 51,
no. 7, pp. 154–160, Jul. 2013.

[32] W. Dong, C. Chen, X. Liu, and J. Bu, ‘‘Providing OS support for wireless
sensor networks: Challenges and approaches,’’ IEEE Commun. Surveys
Tuts., vol. 12, no. 4, pp. 519–530, 4th Quart., 2010.

[33] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C. Schmidt,
‘‘OS for the IoT—Goals, challenges, and solutions,’’ in Proc. Workshop
Interdisciplinaire Sécurité Globale (WISG), Troyes, France, Jan. 2013,
pp. 1–6.

[34] G. E. Moore, ‘‘Cramming more components onto integrated circuits,’’
Electronics, vol. 38, no. 8, pp. 114–117, Apr. 1965.

[35] A. Sehgal, V. Perelman, S. Kuryla, and J. Schonwalder, ‘‘Management of
resource constrained devices in the Internet of Things,’’ IEEE Commun.
Mag., vol. 50, no. 12, pp. 144–149, Dec. 2012.

[36] I. Ishaq et al., ‘‘IETF standardization in the field of the Internet of Things
(IoT): A survey,’’ J. Sensor Actuator Netw., vol. 2, no. 2, pp. 235–287,
Apr. 2013.

[37] P. Semasinghe, S. Maghsudi, and E. Hossain, ‘‘Game theoretic mecha-
nisms for resource management in massive wireless IoT systems,’’ IEEE
Commun. Mag., vol. 55, no. 2, pp. 121–127, Feb. 2017.

[38] Contiki: The Open Source Operating System for the Internet of Things.
Accessed: Jan. 5, 2018. [Online]. Available: http://www.contiki-os.org/

[39] P. A. Levis, ‘‘TinyOS: An open operating system for wireless sensor
networks (invited seminar),’’ in Proc. 7th Int. Conf. Mobile DataManage.
(MDM), May 2006, p. 63.

[40] FreeRTOS: Quality RTOS&Embedded Software. Accessed: Jan. 5, 2018.
[Online]. Available: http://www.freertos.org/

[41] M. Watfa, M. Moubarak, and A. Kashani, ‘‘Operating system designs in
future wireless sensor networks,’’ J. Netw., vol. 10, no. 1, pp. 1201–1214,
Oct. 2010.

[42] A. Rajandekar and B. Sikdar, ‘‘A survey of MAC layer issues and proto-
cols for machine-to-machine communications,’’ IEEE Internet Things J.,
vol. 2, no. 2, pp. 175–186, Apr. 2015.

[43] N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados, ‘‘Energy-efficient
routing protocols in wireless sensor networks: A survey,’’ IEEE Commun.
Surveys Tuts., vol. 15, no. 2, pp. 551–591, 2nd Quart., 2013.

[44] B. Sharma and T. C. Aseri, ‘‘A hybrid and dynamic reliable transport
protocol for wireless sensor networks,’’ Comput. Elect. Eng., vol. 48,
pp. 298–311, Nov. 2015.

[45] M. Amjad, M. Sharif, M. K. Afzal, and S. W. Kim, ‘‘TinyOS-new trends,
comparative views, and supported sensing applications: A review,’’ IEEE
Sensors J., vol. 16, no. 9, pp. 2865–2889, May 2016.

[46] Z. D. Purvis and A. G. Dean, ‘‘TOSSTI: Saving time and energy in
TinyOS with software thread integration,’’ in Proc. IEEE Real-Time
Embedded Technol. Appl. Symp. (RTAS), St. Louis, MO, USA, Apr. 2008,
pp. 354–363.

[47] S. Abbate, M. Avvenuti, A. Biondi, and A. Vecchio, ‘‘Estimation of
energy consumption in wireless sensor networks using TinyOS 2.x,’’ in
Proc. IEEE Consum. Commun. Netw. Conf. (CCNC), Las Vegas, NV,
USA, May 2011, pp. 842–843.

[48] G. Strazdins, A. Elsts, K. Nesenbergs, and L. Selavo, ‘‘Wireless sen-
sor network operating system design rules based on real-world deploy-
ment survey,’’ J. Sens. Actuator Netw., vol. 2, no. 3, pp. 509–556,
2013.

[49] T. Reusing, ‘‘Comparison of operating systems TinyOS and
Contiki,’’ Sensor-Nodes Oper. Netw. Appl., vol. 7, pp. 7–13,
Aug. 2012.

8478 VOLUME 6, 2018



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

[50] A. A. Fröhlich and L. F. Wanner, ‘‘Operating system support for wireless
sensor networks,’’ J. Comput. Sci., vol. 4, no. 4, pp. 272–281, Apr. 2008.

[51] M. O. Farooq and T. Kunz, ‘‘Operating systems for wireless sensor
networks: A survey,’’ Sensors, vol. 11, no. 6, pp. 5900–5930, May 2011.

[52] L. Dariz, M. Selvatici, and M. Ruggeri, ‘‘Evaluation of operating sys-
tem requirements for safe wireless sensor networks,’’ in Proc. 42nd
Annu. Conf. IEEE Ind. Electron. Soc., Florence, Italy, Dec. 2016,
pp. 5671–5676.

[53] X. Liu et al., ‘‘Memory and energy optimization strategies for multi-
threaded operating system on the resource-constrained wireless sensor
node,’’ Sensors, vol. 15, no. 1, pp. 22–48, Dec. 2014.

[54] P. Corcoran, ‘‘The Internet of Things: Why now, and what’s next?’’ IEEE
Commun. Mag., vol. 5, no. 1, pp. 63–68, Jan. 2016.

[55] R. S. Oliver, I. Shcherbakov, and G. Fohler, ‘‘An operating system
abstraction layer for portable applications in wireless sensor networks,’’
in Proc. ACM Symp. Appl. Comput., Sierre, Switzerland, Mar. 2010,
pp. 742–748.

[56] J. Hill and D. Culler, ‘‘A wireless embedded sensor architecture
for system-level optimization,’’ UC Berkeley, Berkeley, CA, USA,
Tech. Rep., 2002. [Online]. Available: http://www.cs.uml.edu/~fredm/
courses/91.548-spr05/papers/MICA_ARCH.pdf

[57] L. Wang and Y. Xiao, ‘‘A survey of energy-efficient scheduling mech-
anisms in sensor networks,’’ Mobile Netw. Appl., vol. 11, no. 5,
pp. 723–740, Oct. 2006.

[58] J. G. Ko, N. Tsiftes, A. Dunkels, and A. Terzis, ‘‘Pragmatic low-power
interoperability: ContikiMAC vs TinyOS LPL,’’ in Proc. 9th Annu. IEEE
Commun. Soc. Conf. Sensor, Mesh Ad Hoc Commun. Netw. (SECON),
Seoul, South Korea, Jun. 2012, pp. 94–96.

[59] N. Tsiftes and A. Dunkels, ‘‘A database in every sensor,’’ in Proc. Conf.
Embedded Netw. Sensor Syst. (SenSys), Seattle, WA, USA, Nov. 2011,
pp. 316–332.

[60] L. Luo, Q. Cao, C. Huang, T. Abdelzaher, J. A. Stankovic, and M. Ward,
‘‘EnviroMic: Towards cooperative storage and retrieval in audio sensor
networks,’’ in Proc. 27th Int. Conf. Distrib. Comput. Syst. (ICDCS),
Toronto, ON, Canada, Jun. 2007, p. 34.

[61] A. Dunkels, F. Osterlind, and Z. He, ‘‘An adaptive communication archi-
tecture for wireless sensor networks,’’ in Proc. 5th ACM Conf. Netw.
Embedded Sensor Syst. (SenSys), Sydney, NSW, Australia, Nov. 2007,
pp. 335–349.

[62] P. Dutta and A. Dunkels, ‘‘Operating systems and network protocols for
wireless sensor networks,’’ Phil. Trans. Roy. Soc. A, Math., Phys. Eng.
Sci., vol. 370, no. 1958, pp. 68–84, Jan. 2012.

[63] A. Dunkels, B. Gronvall, and T. Voigt, ‘‘Contiki—A lightweight and
flexible operating system for tiny networked sensors,’’ inProc. 29th Annu.
IEEE Int. Conf. Local Comput. Netw., Tampa, FL, USA, Nov. 2004,
pp. 455–462.

[64] P. Levis et al., ‘‘TinyOS: An operating system for sensor networks,’’ in
Ambient Intelligence, W. Weber, J. M. Rabaey, and E. Aarts, Eds. Berlin,
Germany: Springer-Verlag, 2005, ch. 7, pp. 115–148.

[65] A. Dunkels, O. Schmidt, T. Voigt, andM. Ali, ‘‘Protothreads: Simplifying
event-driven programming of memory-constrained embedded systems,’’
inProc. 4th Int. Conf. Embedded Netw. Sensor Syst., NewYork, NY,USA,
Oct. 2006, pp. 29–42.

[66] T. Alliance, ‘‘TinyOS 2.1 adding threads and memory protection to
TinyOS,’’ in Proc. 6th ACM Conf. Embedded Netw. Sensor Syst.,
Berkeley, CA, USA, Nov. 2008, pp. 413–414.

[67] P. Lindgren, H. Mäkitaavola, J. Eriksson, and J. Eliasson, ‘‘Leveraging
TinyOS for integration in process automation and control systems,’’ in
Proc. 38th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Montreal, QC,
Canada, Oct. 2012, pp. 5779–5785.

[68] R. Goyette, ‘‘An analysis and description of the inner workings of the
FreeRTOS kernel,’’ Dept. Syst. Comput. Eng., CarletonUniv., Tech. Rep.,
Apr. 2007.

[69] D. Déharbe, S. Galvão, and A. M. Moreira, ‘‘Formalizing FreeRTOS:
First steps,’’ in Formal Methods: Foundations and Applications (Lec-
ture Notes in Computer Science), vol. 5902, M. V. M. Oliveira and
J. Woodcock, Eds. Berlin, Germany: Springer, Aug. 2009, pp. 101–117.

[70] J. F. Ferreira, C. Gherghina, G. He, S. Qin, and W.-N. Chin, ‘‘Automated
verification of the FreeRTOS scheduler in HIP/SLEEK,’’ Int. J. Softw.
Tools Technol. Transf., vol. 16, no. 4, pp. 381–397, Aug. 2014.

[71] Contiki 2.6: Memory Block Management Functions. Accessed:
Jan. 5, 2018. [Online]. Available: http://contiki.sourceforge.net/
docs/2.6/a01684.html

[72] D.Gay, P. Levis, R. vonBehren,M.Welsh, E. Brewer, andD. Culler, ‘‘The
nesC language: A holistic approach to networked embedded systems,’’ in
Proc. Program. Lang. Design Implement. (PLDI), San Diego, CA, USA,
Jun. 2003, pp. 1–11.

[73] R. Züger, ‘‘Paging in TinyOS,’’ Swiss Fed. Inst. Technol., Zürich,
Switzerland, Tech. Rep., Aug. 2006.

[74] J. L. Hill, ‘‘Electronic access control, tracking and paging system,’’
U.S. Patent 7 367 497, May 6, 2008.

[75] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr, ‘‘Efficient
memory safety for TinyOS,’’ in Proc. 5th Int. Conf. Embedded Netw.
Sensor Syst., Sydney, NSW, Australia, Nov. 2007, pp. 205–218.

[76] J. Regehr, N. Cooprider, W. Archer, and E. Eide, ‘‘Memory safety
and untrusted extensions for TinyOS,’’ School Comput., Univ. Utah,
Salt Lake City, UT, USA, Tech. Rep. UUCS-06-007, 2006.

[77] G. C. Necula, J. Condit,M.Harren, S.McPeak, andW.Weimer, ‘‘CCured:
Type-safe retrofitting of legacy software,’’ ACM Trans. Program. Lang.
Syst., vol. 27, no. 3, pp. 477–526, May 2005.

[78] J. Mistry, M. Naylor, and J. Woodcock, ‘‘Adapting FreeRTOS for mul-
ticores: An experience report,’’ Softw., Pract. Exper., vol. 44, no. 9,
pp. 1129–1154, Feb. 2014.

[79] Using the FreeRTOS Real Time Kernel. Accessed: Jan. 5, 2018.
[Online]. Available: http://www.freertos.org/Documentation/FreeRTOS-
tutorial-book-PIC32-edition-TOC.pdf

[80] R. Lajara, J. Pelegrí-Sebastiá, and J. J. P. Solano, ‘‘Power consumption
analysis of operating systems for wireless sensor networks,’’ Sensors,
vol. 10, no. 6, pp. 5809–5826, Jun. 2010.

[81] S. Abbate, M. Avvenuti, D. Cesarini, and A. Vecchio, ‘‘Estimation of
energy consumption for TinyOS 2.x-based applications,’’ Proc. Comput.
Sci., vol. 10, pp. 1166–1171, Dec. 2012.

[82] O. Landsiedel, K. Wehrle, and S. Götz, ‘‘Accurate prediction of power
consumption in sensor networks,’’ in Proc. 2nd Workshop Embedded
Netw. Sensors, Washington, DC, USA, May 2005, pp. 37–44.

[83] S. K. Sarna and M. Zaveri, ‘‘EATT: Energy aware target tracking
for wireless sensor networks using TinyOS,’’ in Proc. 3rd IEEE Int.
Conf. Comput. Sci. Inf. Technol. (ICCSIT), Chengdu, China, Jul. 2010,
pp. 187–191.

[84] D. Liu, Z. Cao, Y. Zhang, and M. Hou, ‘‘Achieving accurate and real-
time link estimation for low power wireless sensor networks,’’ IEEE/ACM
Trans. Netw., vol. 25, no. 4, pp. 2096–2109, Apr. 2017.

[85] Study of AnOperating System: Freertos. Accessed: Jan. 5, 2018. [Online].
Available: http://wiki.csie.ncku.edu.tw/embedded/FreeRTOS_Melot.pdf

[86] M.-Y. Zhu, ‘‘Understanding FreeRTOS: A requirement analysis,’’
CoreTek Syst., Inc., Beijing, China, Tech. Rep., Sep. 2016.

[87] Hook Functions. Accessed: Jan. 5, 2018. [Online]. Available:
http://www.freertos.org/a00016.html

[88] LowPower Support: Tickless IdleMode. Accessed: Jan. 5, 2018. [Online].
Available: http://www.freertos.org/low-power-tickless-rtos.html

[89] O. Bello and S. Zeadally, ‘‘Intelligent device-to-device communication
in the Internet of Things,’’ IEEE Syst. J., vol. 10, no. 3, pp. 1172–1182,
Sep. 2016.

[90] A. Al-Fuqaha,M. Guizani,M.Mohammadi,M. Aledhari, andM.Ayyash,
‘‘Internet of Things: A survey on enabling technologies, protocols,
and applications,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 4,
pp. 2347–2376, 4th Quart., 2015.

[91] K. Sohraby, D. Minoli, and T. Znati,Wireless Sensor Networks: Technol-
ogy, Protocols, and Applications. Hoboken, NJ, USA: Wiley, Mar. 2007.

[92] I. Glaropoulos, V. Vukadinovic, and S. Mangold, ‘‘Contiki80211: An
IEEE 802.11 radio link layer for the Contiki OS,’’ in Proc. IEEE 6th Int.
Symp. Cyberspace Safety Secur., Paris, France, Aug. 2014, pp. 621–624.

[93] The uIP TCP/IP Stack. Accessed: Jan. 5, 2018. [Online]. Available:
http://contiki.sourceforge.net/docs/2.6/a01793.html#_details

[94] Contiki Netstack. Accessed: Jan. 5, 2018. [Online]. Available:
http://anrg.usc.edu/contiki/index.php/Network_Stack

[95] M. Michel and B. Quoitin. (Apr. 2014). ‘‘Technical report: Con-
tikiMAC vs X-MAC performance analysis.’’ [Online]. Available:
https://arxiv.org/abs/1404.3589

[96] H. Wang, X. Zhang, F. Naït-Abdesselam, and A. Khokhar, ‘‘An asyn-
chronous low-power medium access control protocol for wireless sen-
sor networks,’’ Wireless Commun. Mobile Comput., vol. 13, no. 6,
pp. 604–618, Apr. 2013.

[97] A. Dunkels, ‘‘The ContikiMAC radio duty cycling protocol,’’ Swedish
Inst. Comput. Sci., Stockholm, Sweden, Tech. Rep., Dec. 2011.

VOLUME 6, 2018 8479



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

[98] M. Buettner, G. V. Yee, E. Anderson, and R. Han, ‘‘X-MAC: A short
preamble MAC protocol for duty-cycled wireless sensor networks,’’ in
Proc. 4th Int. Conf. Embedded Netw. Sensor Syst., Boulder, CO, USA,
Nov. 2006, pp. 307–320.

[99] A. El-Hoiydi and J.-D. Decotignie, ‘‘WiseMAC: An ultra low power
MAC protocol for the downlink of infrastructure wireless sensor net-
works,’’ in Proc. 9th Int. Symp. Comput. Commun., Alexandria, Egypt,
Jul. 2004, pp. 244–251.

[100] P. Gonizzi, P. Medagliani, G. Ferrari, and J. Leguay, ‘‘RAWMAC: A
routing aware wave-based MAC protocol for WSNs,’’ in Proc. IEEE 10th
Int. Conf. Wireless Mobile Comput., Netw. Commun. (WiMob), Larnaca,
Cyprus, Oct. 2014, pp. 205–212.

[101] N. Tsiftes, J. Eriksson, and A. Dunkels, ‘‘Low-power wireless IPv6
routingwith ContikiRPL,’’ inProc. 9th ACM/IEEE Int. Conf. Inf. Process.
Sensor Netw. (ISPN), Stockholm, Sweden, Apr. 2010, pp. 406–407.

[102] J. Brown and U. Roedig, ‘‘Demo abstract: GinLITE—A MAC protocol
for real-time sensor networks,’’ in Proc. 9th Eur. Conf. Wireless Sensor
Netw. (EWSN), Trento, Italy, Feb. 2012, pp. 1–2.

[103] Routing Metrics Used for Path Calculation in Low-Power and
Lossy Networks. Accessed: Jan. 5, 2018. [Online]. Available:
https://tools.ietf.org/html/rfc6551.

[104] D. Carels, E. De Poorter, I. Moerman, and P. Demeester, ‘‘RPL mobility
support for point-to-point traffic flows towards mobile nodes,’’ Int. J.
Distrib. Sensor Netw., vol. 2015, Jan. 2015, Art. no. 111.

[105] J. Ko et al., ‘‘ContikiRPL and TinyRPL: Happy together,’’ in Proc.
Workshop Extending Internet Low Power Lossy Netw. (IPSN), Chicago,
IL, USA, Apr. 2011, pp. 1–6.

[106] Y. Tahir, S. Yang, and J. McCann, ‘‘BRPL: Backpressure RPL for high-
throughput andmobile IoTs,’’ IEEETrans.Mobile Comput., vol. 17, no. 1,
pp. 29–43, Jan. 2017.

[107] H. Al-Kashoash, M. Hafeez, and A. Kemp, ‘‘Congestion control for
6LoWPAN networks: A game theoretic framework,’’ IEEE Internet
Things J., vol. 4, no. 3, pp. 760–771, Jun. 2017.

[108] Y. Al-Nidawi, N. Salman, and A. H. Kemp, ‘‘Mesh-under cluster-based
routing protocol for IEEE 802.15.4 sensor network,’’ in Proc. 20th Eur.
Wireless Conf., Barcelona, Spain, Jun. 2014, pp. 1–7.

[109] A. Hassan, S. Alshomrani, A. Altalhi, and S. Ahsan, ‘‘Improved rout-
ing metrics for energy constrained interconnected devices in low-power
and lossy networks,’’ J. Commun. Netw., vol. 18, no. 3, pp. 327–332,
Jun. 2016.

[110] The uIP TCP/IP Stack. Accessed: Jan. 5, 2018. [Online]. Available:
http://contiki.sourceforge.net/docs/2.6/a01793.html

[111] Packet Protocols, TEP Core Working Group. Accessed: Jul. 30, 2017.
[Online]. Available: http://www.tinyos.net/tinyos-2.x/doc/html/
tep116.html

[112] TinyOS Tutorials. Accessed: Jul. 30, 2017. [Online]. Available:
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_Tutorials#
Network_Protocols

[113] TinyOS Network Protocols. Accessed: Jul. 30, 2017. [Online]. Available:
http://tinyos.stanford.edu/tinyos-wiki/index.php/Network_Protocols

[114] J. Polastre, J. Hill, and D. Culler, ‘‘Versatile low power media access
for wireless sensor networks,’’ in Proc. 2nd Int. Conf. Embedded
Netw. Sensor Syst. (ACM SenSys), Baltimore, MD, USA, Nov. 2004,
pp. 95–107.

[115] D. van den Akker and C. Blondia, ‘‘MultiMAC: AmultipleMAC network
stack architecture for TinyOS,’’ in Proc. 2nd Int. Conf. Comput. Commun.
Netw. (ICCCN), Munich, Germany Aug. 2012, pp. 1–5.

[116] BLIP Tutorial. Accessed: Jun. 30, 2017. [Online]. Available:
http://tinyos.stanford.edu/tinyos-wiki/index.php/BLIP_Tutorial

[117] H.-S. Kim, H. Kim, J. Paek, and S. Bahk, ‘‘Load balancing under heavy
traffic in RPL routing protocol for low power and lossy networks,’’ IEEE
Trans. Mobile Comput., vol. 16, no. 4, pp. 964–979, Apr. 2017.

[118] J. Carnley, B. Sun, and S. K. Makki, ‘‘TORP: TinyOS opportunistic
routing protocol for wireless sensor networks,’’ in Proc. IEEE Con-
sum. Commun. Netw. Conf. (CCNC), Las Vegas, NV, USA, Jan. 2011,
pp. 111–115.

[119] C. Hou, K. W. Tang, and E. Noel, ‘‘Implementation and analysis of the
LEACH protocol on the TinyOS platform,’’ in Proc. IEEE Int. Conf. ICT
Converg. (ICTC), Jeju, South Korea, Oct. 2013, pp. 918–923.

[120] J. Hill, R. Szewczyk, A.Woo, S. Hollar, D. Culler, and K. Pister, ‘‘System
architecture directions for networked sensors,’’ in Proc. 9th Int. Conf.
Archit. Support Program. Lang. Oper. Syst., Cambridge, MA, USA,
Nov. 2000, pp. 93–104.

[121] A. Hauck and P. Sollberger, ‘‘Babel multi-hop routing for TinyOS low-
power devices,’’ in Proc. 5th Int. Conf. Mobility Ubiquitous Comput.,
Syst., Services Technol., Lisbon, Portugal, Nov. 2011, pp. 111–114.

[122] S. Khan, S. Basharat, M. S. H. Khiyal, and S. A. Khan, ‘‘Investigating
energy consumption of localized and non localized ad hoc routing pro-
tocols in TinyOS,’’ in Proc. IEEE Multitopic Conf. (INMIC), Islamabad,
Pakistan, Dec. 2006, pp. 355–358.

[123] A. Ludovici, P. Moreno, and A. Calveras, ‘‘TinyCoAP: A novel
constrained application protocol (CoAP) implementation for embed-
ding RESTful Web services in wireless sensor networks based on
TinyOS,’’ J. Sens. Actuator Netw., vol. 2, no. 2, pp. 288–315,
May 2013.

[124] Y. G. Iyer, S. Gandham, and S. Venkatesan, ‘‘STCP: A generic transport
layer protocol for wireless sensor networks,’’ in Proc. IEEE Int. Conf.
Comput. Commun. Netw. (ICCCN), San Diego, CA, USA, Oct. 2005,
pp. 17–19.

[125] S. Shekhar, R. Mishra, R. K. Ghosh, and R. K. Shyamasundar, ‘‘Post-
order based routing & transport protocol for wireless sensor networks,’’
Pervas. Mobile Comput., vol. 11, pp. 229–243, Apr. 2014.

[126] T. Le, W. Hu, P. Corke, and S. Jha, ‘‘ERTP: Energy-efficient and
reliable transport protocol for data streaming in wireless sensor net-
works,’’ Comput. Commun., vol. 32, nos. 7–10, pp. 1154–1171,
May 2009.

[127] J. Paek and R. Govindan, ‘‘RCRT: Rate-controlled reliable transport
protocol for wireless sensor networks,’’ ACM Trans. Sensor Netw., vol. 7,
no. 3, pp. 1–20, Oct. 2010.

[128] FreeRTOS+TCP. Accessed: Jul. 30, 2017. [Online]. Available:
http://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.
html

[129] lwIP—A Lightweight TCP/IP Stack. Accessed: Jan. 5, 2018. [Online].
Available: https://savannah.nongnu.org/projects/lwip/

[130] IoT-Lab Libraries. Accessed: Jan. 5, 2018. [Online]. Available:
https://github.com/iot-lab/iot-lab/wiki/Libraries

[131] A. Schoofs, M. Aoun, P. van der Stok, J. Catalano, R. S. Oliver, and
G. Fohler, ‘‘A framework for time-controlled and portable WSN appli-
cations,’’ in Sensor Applications, Experimentation, and Logistics (Lec-
ture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering). Berlin, Germany: Springer, 2010,
pp. 126–144.

[132] NanoStack Manual. Accessed: Jan. 5, 2018. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.1353&rep
=rep1&type=pdf

[133] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt, ‘‘Enabling large-scale
storage in sensor networks with the Coffee file system,’’ in Proc. Int.
Conf. Inf. Process. Sensor Netw., San Francisco, CA, USA, Aug. 2009,
pp. 349–360.

[134] Interoperable Sensor Networks: Contiki and TinyOS, Edosoft Factory,
Las Palmas, Spain, Aug. 2012.

[135] FreeRTOS+FAT: DOS Compatible Embedded FAT File
System. Accessed: Jan. 5, 2018. [Online]. Available: http://
www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_FAT/index.html

[136] L. A. Jenß, ‘‘Design and implementation of a data storage abstraction
layer for the Internet of Things,’’ M.S. thesis, Faculty Eng. Comput.
Sci., Dept. Comput. Sci., Hamburg Univ. Appl. Sci., Hamburg, Germany,
Jan. 2017.

[137] P. Levis and D. Gay, TinyOS Programming. Cambridge, U.K.: Cambridge
Univ. Press, Jun. 2009.

[138] A Tutorial for Programming in TinyOS. Accessed:
Jan. 5, 2018. [Online]. Available: http://www.ece.rochester.edu/
projects/wcng/code/Tutorial/TinyOs_Tutorial.pdf

[139] H. Dai, M. Neufeld, and R. Han, ‘‘ELF: An efficient log-structured flash
file system for micro sensor nodes,’’ in Proc. 2nd Int. Conf. Embedded
Netw. Sensor Syst., Baltimore, MD, USA, Nov. 2004, pp. 176–187.

[140] Y. B. Zikria, F. Ishmanov, M. K. Afzal, S. W. Kim, S. Y. Nam,
and H. J. Yu, ‘‘Opportunistic channel selection MAC protocol for
cognitive radio ad hoc sensor networks in the Internet of Things,’’
Sustain. Comput., Inform. Syst., Jan. 2018. [Online]. Available:
https://doi.org/10.1016/j.suscom.2017.07.003

[141] RIOT: The Friendly Operating System for the Internet of Things.
Accessed: Feb. 15, 2018. [Online]. Available: https://riot-os.org/

[142] Mbed. Accessed: Feb. 15, 2018. [Online]. Available:
https://www.mbed.com/en/

[143] Zephyr Project. Accessed: Feb. 15, 2018. [Online]. Available:
https://www.zephyrproject.org/

8480 VOLUME 6, 2018



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

ARSLAN MUSADDIQ received the B.S. degree in
electrical engineering (telecommunication) from
Bahria University, Islamabad, Pakistan, in 2011,
and the M.S. degree in communication and net-
work engineering from University Putra Malaysia
in 2015. He is currently pursuing the Ph.D. degree
with the Department of Information and Com-
munication Engineering, College of Engineering,
Yeungnam University, Gyeongsan, South Korea.
His research interests include wireless networking,

Internet of Things, wireless resource management, routing protocols and
ad hoc networks. He was a recipient of the Outstanding Dissertation (M.S.
level) Award at the IEEEMalaysia Communication Society and theVehicular
Technology Society Joint Chapter in 2015.

YOUSAF BIN ZIKRIA received the B.S. degree
in computer engineering from the University of
Arid Agriculture Rawalpindi, Rawalpindi, Pak-
istan, in 2005, the M.S. degree in computer engi-
neering from the Comsats Institute of Information
Technology, Islamabad, Pakistan, in 2007, and the
Ph.D. degree from the Department of Information
and Communication Engineering, Yeungnam Uni-
versity, Gyeongsan, South Korea, in 2016. He was
a Research Officer with Horizon Technology Pvt.

Ltd., Pakistan, from 2007 to 2011. He was with King Khalid University,
Saudi Arabia, as a Lecturer, from 2011 to 2012. He is currently a Post-
Doctoral Fellow with the Department of Information and Communication
Engineering, College of Engineering, YeungnamUniversity. He has authored
over 10 years of experience in research, academia, and industry in the field
of information and communication engineering, and computer science. His
research interests include IoT, 5G, wireless communications and networks,
opportunistic communications, wireless sensor networks, routing protocols,
cognitive radio ad hoc networks, cognitive radio ad hoc sensor networks,
transport protocols, VANETS, embedded system, and information security.
He was a recipient of the Excellent Paper Award at the ICIDB 2016 Con-
ference and a fully funded scholarship for Masters and Ph.D. He held the
prestigious CISA, JNCIS-SEC, JNCIS-ER, JNCIA-ER, JNCIA-EX, and
Advance Routing Switching and WAN Technologies certifications. He is
the Editor FT/SI on Unlocking 5G Spectrum Potential for Intelligent IoT:
Opportunities, Challenges and Solutions for IEEE Communications Maga-
zine, Internet of Things(IoT): Operating System, Applications and Protocols
Design, and Validation Techniques for Future Generation Computer Systems
(FGCS) (Elsevier), and 5G Mobile Services and Scenarios: Challenges
and Solutions for MDPI Sustainability. He is also serving as a Reviewer
of the IEEE COMMUNICATIONS, SURVEYS AND TUTORIALS, the IEEE SENSORS

LETTERS, the IEEEACCESS, the IEEE IT PROFESSIONAL, FGCS (Elsevier),Com-
puter Standards and Interfaces (Elsevier), The Journal of Supercomputing
(Springer), the International Journal of Distributed Sensor Networks (Sage),
and KSII Transactions on Internet and Information Systems.

OLIVER HAHM received the Diploma degree in
computer science from the Freie Universität Berlin
in 2007 and the Ph.D. degree from the École Poly-
technique, Paris, France, in 2016. He was a Soft-
ware Engineer with ScatterWeb GmbH, a startup
for wireless sensor network applications, from
2007 to 2009. He was with the Faculty of Math-
ematics and Computer Science, Freie Universität
Berlin, as a Research Assistant until 2012, where
he was responsible for the G-LAB Project. From

2012 to 2017, he was with Inria, as a Researcher. He is currently an
Embedded Software Engineer with Zühlke Engineering GmbH, Eschborn,
Germany. His research is focused on operating systems for the Internet
of Things, embedded network stacks, information-centric networking, and
standardization efforts in the area of low-power and lossy networks. He is a
Co-Founder and one of the core developers and maintainers of the RIOT
operating system. He served as a reviewer for various IEEE and ACM
conferences and journal and has been member for multiple IEEE, ACM, and
EAI conferences. He currently serves as a Guest Editor for a Special Issue
of the Future Generation Computer Systems (Elsevier) journal on Internet
of Things (IoT): Operating System, Applications and Protocols Design, and
Validation Techniques.

HEEJUNG YU received the B.S. degree in radio
science and engineering from Korea University,
Seoul, South Korea, in 1999, and the M.S. and
Ph.D. degrees in electrical engineering from the
Korea Advanced Institute of Science and Tech-
nology, Daejeon, South Korea, in 2001 and 2011,
respectively. From 2001 to 2012, he was with
the Electronics and Telecommunications Research
Institute, Daejeon. Since 2012, he has been with
the Department of Information and Communica-

tion Engineering, Yeungnam University, Gyeongsan, South Korea. He has
participated in the IEEE 802.11 standardization, where he hasmade technical
contributions since 2003. He have actively participated in the IEEE 802.11ah
standardization, which is a potential wireless communication standard for
Internet of Things (IoT). He was the Vice Chair of the 5G convergent service
working group in 5G Forum Korea from 2016 to 2017, where he is currently
involved in developing the service scenarios and their function requirement
for 5G wireless technology and networks. His research interests include sta-
tistical signal processing, communication theory and 5G networks including
IoT. He was a recipient of the Bronze Prize at the 17th Humantech Paper
Contest and the Best Paper Award in the 21st Joint Conference on Commu-
nications and Information and the 2017 Winter Conference of the Korean
Institute of Communications and Information Science (KICS) in 2011 and
2017, respectively. He was also a recipient of the Contribution Award in 5G
Forum, South Korea, in 2017. He has been a Guest Editor of Special issue
on Internet of Things (IoT): Operating System, Applications and Protocols
Design, and Validation Techniques of Future Generation Computer Systems
in 2017 and a main Guest Editor of Special issue on Automotive functional
safety of Information & Communications Magazine published by KICS
in 2017.

VOLUME 6, 2018 8481



A. Musaddiq et al.: Survey on Resource Management in IoT OSs

ALI KASHIF BASHIR (M’15–SM’16) received
the Ph.D. degree in computer science and engi-
neering from Korea University, South Korea.
He held appointments with Osaka University,
Japan, the Nara National College of Technology,
Japan, the National Fusion Research Institute,
South Korea, Southern Power Co., Ltd., South
Korea, and the Seoul Metropolitan Government,
South Korea. He is currently an Associate Profes-
sor with the Faculty of Science and Technology,

University of the Faroe Islands, Faroe Islands, Denmark. He is also with
the Advanced Network Architecture Laboratory as a Joint Researcher. He is
also supervising/co-supervising several graduate (M.S. and Ph.D.) students.
His research interests include cloud computing, NFV/SDN, network virtual-
ization, network security, IoT, computer networks, RFID, sensor networks,
wireless networks, and distributed computing. He is an Editorial BoardMem-
ber of journals, such as the IEEEACCESS, the Journal of Sensor Networks, and
the Data Communications. He is serving as the Editor-in-Chief of the IEEE
INTERNET TECHNOLOGY POLICY NEWSLETTER and the IEEE FUTURE DIRECTIONS

NEWSLETTER. He has also served/serving as a guest editor on several special
issues in journals of the IEEE, Elsevier, and Springer. He is actively involved
in organizing workshops and conferences. He has chaired several conference
sessions, gave several invited and keynote talks, and reviewed the technology
leading articles for journals, such as the IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS, IEEE Communication Magazine, the IEEE COMMUNICATION

LETTERS, IEEE INTERNET OF THINGS, and the IEICE Journals, and conferences,
such as the IEEE Infocom, the IEEE ICC, the IEEE Globecom, and the IEEE
Cloud of Things.

SUNG WON KIM received the B.S. and M.S.
degrees from the Department of Control and
Instrumentation Engineering, Seoul National Uni-
versity, South Korea, in 1990 and 1992, respec-
tively, and the Ph.D. degree from the School of
Electrical Engineering and Computer Sciences,
Seoul National University, Korea, in 2002. From
1992 to 2001, he was a Researcher with the
Research and Development Center, LG Electron-
ics, South Korea. From 2001 to 2003, he was

a Researcher with the Research and Development Center, AL Tech,
South Korea. From 2003 to 2005, he was a Post-Doctoral Researcher with
the Department of Electrical and Computer Engineering, University of
Florida, Gainesville, USA. In 2005, he joined the Department of Information
and Communication Engineering, Yeungnam University, Gyeongsan, South
Korea, where he is currently a Professor. His research interests include
resource management, wireless networks, mobile networks, performance
evaluation, and embedded systems.

8482 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORK
	RESOURCE MANAGEMENT CLASSIFICATION
	PROCESS MANAGEMENT
	MEMORY MANAGEMENT
	ENERGY MANAGEMENT
	COMMUNICATION MANAGEMENT
	CONTIKI SUPPORT FOR COMMUNICATION PROTOCOLS
	TINYOS SUPPORT FOR COMMUNICATION PROTOCOLS
	FREERTOS SUPPORT FOR COMMUNICATION PROTOCOLS

	FILE MANAGEMENT
	CONTIKI FILE SYSTEM
	TINYOS FILE SYSTEM
	FREERTOS FILE SYSTEM


	OPEN RESEARCH ISSUES AND RECOMMENDATIONS
	SMALL MEMORY FOOTPRINT
	ENERGY EFFICIENCY
	RELIABILITY OF IoT DEVICES
	REAL-TIME SUPPORT
	SCHEDULING MODEL
	NETWORK BUFFER MANAGEMENT
	PROGRAMMING LANGUAGE
	PROGRAMMING MODEL
	HARDWARE ABSTRACTION LAYER
	REAL-TIME OS ISSUES:
	COEXISTENCE
	CONTIKI PROTOTHREADS
	TinyOS SCHEDULING
	FreeRTOS SCHEDULING
	MEMORY PROTECTION IN CONTIKI
	X-MAC
	ContikiMAC
	TinyOS LPL
	ContikiRPL AND TinyRPL INTEROPERABILITY
	NETWORK AND LINK LAYER INTEROPERABILITY
	MULTIMEDIA IoT DEVICE TRANSPORT PROTOCOL SUPPORT
	CONGESTION CONTROL MECHANISM
	CONTIKI FILE SYSTEM
	TinyOS FILE SYSTEM
	FreeRTOS FILE SYSTEM
	NEW OS CHALLENGES

	CONCLUSION
	REFERENCES
	Biographies
	ARSLAN MUSADDIQ
	YOUSAF BIN ZIKRIA
	OLIVER HAHM
	HEEJUNG YU
	ALI KASHIF BASHIR
	SUNG WON KIM


