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A substantial minority of patients surviving acquired brain injury develop a state of sympathetic 

hyperactivity that may persist for weeks or months, consisting of periodic episodes of increased heart rate 

and blood pressure, sweating, hyperthermia, and motor posturing, often in response to external stimuli. 

The unifying term for the syndrome, Paroxysmal Sympathetic Hyperactivity (PSH), and clear diagnostic 

criteria defined by expert consensus, were only recently established. PSH has predominantly been 

described after traumatic brain injury, where it is associated with worse outcome. The pathophysiology is 

incompletely understood, although most researchers consider it a disconnection phenomenon with 

paroxysms driven by a loss of inhibitory control over excitatory autonomic centers. While therapeutic 

strategies to mitigate the sympathetic outbursts have been proposed, their effects on PSH are incomplete, 

inconsistent, and unpredictable; and influence on outcome unknown. Drug combinations are frequently 

used, and chosen based on local custom, rather than objective evidence.  New rigorous tools may allow a 

better characterization of patients with PSH for future trials of therapy.   
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Introduction 

Excessive sympathetic nervous system activity can develop after severe acquired brain injury, with about 

80% of cases occurring after traumatic brain injury (TBI). This condition can present dramatically,1 with 

paroxysmal tachycardia, arterial hypertension, tachypnea, hyperthermia, and decerebrate posturing, 

precipitated by afferent stimulation. It was first described in TBI by Wilder Penfield 2, and the assumption 

of an epileptic etiology gave the syndrome its first name, ‘mesencephalic seizures’. In over 350 

subsequently published cases up to 20103 in the critical care and rehabilitation literature, the same 

syndrome had over 31 different labels, some more descriptive (e.g. ‘dysautonomia’, ‘autonomic storms’, 

or ‘sympathetic storms’), some referring to an assumed (epileptic) mechanism (e.g. ‘autonomic seizures’), 

or to the site of damage (e.g. ‘hypothalamic storms’). 3–6  This lack of a clear terminology and definition 

were probably both cause and consequence of the under-recognition of this syndrome, despite its 

relatively high incidence after severe brain damage 7,8, the significant association with morbidity 9–12, and 

its high health care and societal costs 7.  It might also explain the slow progress in understanding its 

pathophysiology, further compounded by a failure to distinguish between mixed 

parasympathetic/sympathetic,13 and pure sympathetic hyperactivity, with conflation of both in a single 

diagnosis for many decades.3 Although conclusive evidence of the absence of parasympathetic 

involvement is unavailable, the current consensus is that autonomic hyperactivity in this syndrome only 

concerns the sympathetic division.3,12,14  

In 2010 the term ‘paroxysmal sympathetic hyperactivity’ (PSH), introduced in 2007 by Alejandro Rabinstein 

12, was adopted as the single unifying term for this condition 3. Four years later, in 2014, 60 years after the 

first published case, an expert group 15 established a rigorous conceptual definition and diagnostic criteria. 

These criteria should provide a foundation for more systematic research on this clinical syndrome and its 

management.  

 

Several different classes of agents, acting at a range of molecular targets have been used in PSH, with 

varying success in each case.  The syndrome of PSH is likely to be mechanistically heterogeneous, and 

identifying the dominant pathophysiology that is responsible for the clinical picture in any given patient 

could allow more rational matching of patients to therapies, and move towards precision medicine in PSH. 

The recent development of clear diagnostic criteria for the condition has provided the essential first step 

in such an exercise, since it clearly defines the initial population of patients who might be the subject of 

such therapeutic stratification.   
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The purpose of this Series paper is to provide an overview of the existing literature on PSH, its causes, 

consequences, pathophysiology, and diagnosis; and to discuss the current evidence on therapeutic 

options. Although the dominant underlying aetiology in PSH is TBI, insights obtained from patients with 

other aetiologies of disease who satisfy the criteria for PSH show substantial commonalities in 

pathophysiology and therapy response, and therefore PSH of all causes is covered here.  

 

Definition and diagnostic criteria  

Between 1993 and 2008, 9 sets of diagnostic criteria for this syndrome were published,9,10,12,16–21 which 

differed with regards to timing of occurrence or assessments relative to the injury, the number of clinical 

features required, and the degree of deviation from normal of clinical parameters (heart rate, blood 

pressure, temperature, etc.).22  An international consensus process in 201415 addressed confusion 

regarding nomenclature, produced diagnostic criteria, developed a diagnostic tool, and reached 

agreement on the adoption of the term ‘Paroxysmal Sympathetic Hyperactivity (PSH)’ as a label for this 

condition, which was further defined as:  

 

“A syndrome, recognized in a subgroup of survivors of severe acquired brain injury, of 

simultaneous, paroxysmal transient increases in sympathetic (elevated heart rate, blood pressure, 

respiratory rate, temperature, sweating) and motor (posturing) activity.”  

 

The Expert Group selected 11 of 16 previously reviewed features22 as pathognomonic of PSH 

(Supplementary Table 1), and proposed a clinical scoring system - the PSH assessment measure (PSH-AM) 

(Table 1) - as an aid to diagnostic consistency. The PSH-AM consisted of two separate constructs: first, the 

clinical feature scale (CFS), to score the presence and severity of excess adrenergic and motor activity; and 

second, the diagnosis likelihood tool (DLT), to score the likelihood of the presence of PSH. A paediatric 

adaptation of the CFS has also been proposed (Supplementary Table 2).23  While useful, a definition by 

consensus still has limitations, and a clear link with pathophysiology, the independent contribution of PSH 

to clinical outcomes, and a more precise definition of the duration of a paroxysm, are currently lacking.  
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A. 

Clinical Feature Scale score:    0       1      2    3 

Heart rate (per min) <100 100–119 120–139 >140 
Respiratory rate (per min) <18 18–23 24–29 >30 
Systolic blood pressure (mmHg) <140 140–159 160–179 >180 
Temperature (0C) <37·0 37·0–37·9 38·0–38·9 >39·0 
Sweating Absent Mild Moderate Severe 
Posturing during episodes Absent Mild Moderate Severe 

 

B. 

Diagnosis Likelihood Tool: one point per feature present 

Antecedent acquired brain injury 
Clinical features occur simultaneously 
Episodes are paroxysmal in nature 
Sympathetic over-reactivity to normally non-painful stimuli 
Absence of parasympathetic features during episodes 
Features persist >3 consecutive days 
Features persist >2 weeks post-brain injury 
>2 episodes daily 
Absence of other presumed causes of features 
Features persist despite treatment of alternative differential diagnoses 
Medication administered to decrease sympathetic features 

 
C. 

Interpretation of scores  

 CSF subtotal=sum of CSF scores for each of the six features (0–3 points for individual features; 
maximum subtotal=18); CSF subtotal severity scores: 0=nil; 1–6=mild; 7–12=moderate; >13=severe    

 DLT subtotal=sum of points for each feature present (one point per feature; maximum subtotal=11) 

 PSH–AM=CFS subtotal + DLT subtotal; PSH–AM <8=PSH unlikely; 8–16=PSH possible; >17=PSH 
probable 

Figure 2. The Paroxysmal Sympathetic Hyperactivity–Assessment Measure  

The Paroxysmal Sympathetic Hyperactivity–Assessment Measure (PSH–AM) is calculated using two 
constructs—the Clinical Feature Scale (CFS), which measures the intensity of the cardinal features 
identified as crucial to PSH, and the Diagnosis Likelihood Tool (DLT), based on the presence of contextual 
attributes (identified by expert consensus), which indicates the likelihood that the observed features are 
due to PSH. The combined CFS and DLT scores provide the PSH–AM score, which is an estimate of the 
probability of a diagnosis of PSH. Adapted from Baguley et al,15 by permission of Mary Ann Liebert, Inc. 
 

 
PSH has been described at all stages following brain injury - from early critical care through to the 

rehabilitation phase. Patients are often sedated acutely to minimize secondary brain injury, and classical 

features of PSH may not be manifest until sedation has been weaned. Despite this, the diagnosis may  be 

made as early as within the first week post-TBI, even while patients remain sedated.24 While patients may 

exhibit features of PSH in the absence of provocation, it is far more common for these to be provoked by 
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non-noxious stimuli, or present as a pathologically prolonged physiological responses to noxious stimuli, 

which in the absence of PSH might only result in short lived responses in heart rate and blood pressure.   

The duration of the paroxysmal phase is variable, ranging from less than 2 weeks to many months, after 

which the syndrome may “burn out”, leaving, in many cases, residual dystonia and spasticity.18 It remains 

unclear whether the residual spasticity is truly part of the sequelae of PSH, or simply the consequence of 

injury to supraspinal motor tracts, which happens to coincide with PSH as both are seen more commonly 

in more severe injury.  It is certainly possible for PSH to resolve without residual spasticity. 

Epidemiology  

A review of all 349 published PSH cases prior to 20103 found that about 80 % followed TBI, 10% postanoxic 

brain injury, 5% stroke, and the remaining 5% occurred in association with hydrocephalus, tumor, 

hypoglycemia, infections or unspecified causes. This high prevalence of TBI-related cases is not completely 

explained by the high absolute incidence of TBI, and may be intrinsically higher when compared to other 

causes of brain injury. One series of consecutive febrile neurocritical care patients reported an incidence 

of 33% post-TBI, compared to 6% after other causes of brain injury.12 Regardless of underlying diagnosis, 

reported incidence rates in other studies, from several countries, range from 8% to 33%.7,9,12,16,25,26 The 

rates of PSH may be changing over time.  A recent Italian survey of 333 patients in a vegetative state after 

massive brain injury21,27 described a decreasing incidence of PSH over time, falling from 32% (for TBI) and 

16% (for other aetiologies) between 1998-2005, to 18% and 7% between 2006-2010. Further studies are 

needed to confirm this trend, and to determine its causes. The literature on PSH in paediatrics is limited, 

but broadly similar.  In a large paediatric case series4,  (n=249), the incidence after TBI was 10%, and  31% 

after cardiac arrest. More recently, Pozzi28 performed a retrospective analysis of all 407 children, admitted 

to their neurorehabilitation unit after discharge from an ICU following acute brain injury, between 2001 

and 2011, and was able to identify 26 cases of PSH, of which 12 after TBI, 9 post-anoxic, and 5  due to other 

causes. One smaller study suggests that PSH is twice as frequent in severe hypoxic injury compared to TBI 

in children17. An even higher incidence of 41% was found in series of 72 children with encephalitis and 

meningo-encephalitis 29.  

 

This wide range in reported incidence underlines the difficulties in estimating the true incidence of PSH. 

Factors that explain large between-study differences include: study design (a subset of severe brain injury 

versus consecutive cases), unit admission criteria, type and severity of brain injury, the choice of diagnostic 

criteria, competing events such as non-survival, and publication bias. The difference in incidence is 

influenced by the timing of assessment,7 with 24% of subjects meeting criteria at day 7 post injury, 
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decreasing to 8% at two weeks, in one study. Furthermore, the perceived incidence in subacute units is 

often higher than in ICU, possibly due to ‘clustering’ effects of patients with more severe injuries being 

preferentially admitted for rehabilitation. In addition, stopping powerful analgesics, mainly opioids, upon 

transfer from the ICU to the rehabilitation center, might unmask PSH symptoms.   

Impact on outcome 

The higher likelihood of PSH after more severe and more diffuse brain injuries with an inherent association 

with worse hospital or long-term clinical outcomes makes the assessment of the independent contribution 

of PSH to this outcome a challenge. Before 1999, reports on the outcome of PSH patients were scarce. In 

a large multicenter study of TBI patients in 1993, autonomic hyperactivity was not an independent risk 

factor for mortality or poor clinical outcome,16 but a subsequent study reported longer hospital stay and 

worse clinical outcome in PSH patients compared to matched controls,18 corroborated in a subsequent 

case series from the same centre.7 In a dedicated institute for patients in a vegetative state, a diagnosis of 

‘dysautonomia’ was associated with a worse Glasgow Outcome Scale (GOS) in both TBI and non-TBI 

patients in two studies separated by 5 years.21,27 A similar association with prolonged hospitalization and 

worse clinical outcome was described in a Chinese study,26 but other studies reported less consistent 

impact on hospitalization outcomes, such as duration of mechanical ventilation, or ICU, hospital, or 

rehabilitation length of stay (LoS); and no  effect on long-term neurological outcome 8,9,30,31. The results of 

these studies are summarized in Table 2.  

Between-study discrepancies may reflect the methodological issues mentioned above, inherent to case 

series. In addition, common outcome measures (such as GOS or Functional Independence Measure (FIM)) 

may be too insensitive to assess subtle differences in neurological status at the worse end of the outcome 

scale. Further, the impact of PSH may reflect a spectrum, with a shorter duration syndrome (which may 

be driven by sedative and opioid withdrawal) not affecting outcome, while longer persistence of the 

syndrome being associated with significant negative consequences for recovery. 24   Available data do not 

allow us to address this hypothesis, or determine whether differences in patient management modulate 

the relationship between PSH and outcome.  Notwithstanding these uncertainties, the overall clinical 

impression is that PSH is an independent risk for poorer neurological outcome. 
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Table 1: Outcomes of patients with and without PSH 

Study details 
(1) 

Duration of 
mechanical 
ventilation 

(2) 

ICU/Hospital 
Length of Stay 

(2) 

Rehabilitation 
Length of Stay 

(2) 

Proportion of 
patients with 
tracheostomy 

(3) 

Incidence 
of 

infections 
(3) 

GOS (4) FIM (4) 

Baguley, TBI 
(35/70)18 NA Longer/Longer Longer NA = Worse Worse 

Fernandez-
Ortega, TBI 
(11/37)9 

Longer Longer / NA NA Higher Higher = NA 

Dolce, 
Vegetative, 
mixed (333)21 

NA Longer/Longer NA NA NA Worse NA 

Hendricks, 
TBI30 Longer NA NA NA Higher = NA 

Lv, TBI 
(16/87)26 = Longer/Longer NA Higher Higher Worse NA 

Fernandez-
Ortega, TBI 
(18/179)8 

Longer Longer/Longer NA Higher Higher = NA 

Laxe, TBI 
(13/39)31 NA NA / Longer Longer NA NA = = 

Hinson, 
TBI(16/102)34 NA = / NA NA NA NA = NA 

Pozzi, mixed 
pediatric 
(26/407)28 

NA NA NA Higher NA NA (5) NA (5) 

Mathew, TBI 
(29/343)53 NA = / Longer NA NA NA Worse NA 

 
Table 1 legend:  
Symbols:  = :  no statistical difference; NA : not assessed; 
(1) Study details: First author, type of brain injury, (number of patients with PSH/total number of patients studied).  
(2) ‘Longer’ refers to a longer duration of mechanical ventilation or a longer length of stay, of PSH patients in 
comparison with non-PSH patients.  
(3) ‘Higher’ refers to a higher proportion of patients with tracheostomy or a higher incidence of infections, of PSH 
patients in comparison with non-PSH patients.  
(4) GOS: Glasgow outcome scale; FIM: Functional Independence Measure; ‘Worse’ refers to worse performance on 
these outcome scales, of PSH patients in comparison with non-PSH patients.  
(5) Although the pediatric case series by Pozzi et al28 did not report GOS or FIM, there was a higher incidence of 
permanent vegetative state as well as a higher mortality during follow-up.  

Pathophysiology 

Initially proposed epileptogenic mechanisms 2,13 for PSH have not found experimental support. Current 

hypotheses propose that combinations of diffuse and/or focal injury ‘disconnect’ one or more cerebral 

centres from caudal excitatory centres. 32,33,34 An initial synthesis of this hypothesis postulated a simple 
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disconnection of cortical inhibitory centres (such as the insula and cingulate cortex) with hypothalamic, 

diencephalic and brainstem centres responsible for supraspinal control of sympathetic tone.32  While this 

scheme explained aspects of PSH (such as dystonia), it failed to provide a complete explanation of all of its 

features32.  A more recent proposal, the Excitatory: Inhibitory Ratio (EIR) model33,34 proposes a two-stage 

process with the loss of descending inhibition allowing excitatory spinal circuits to develop (figure 1).  

 

 

 

Figure 2.  Excitatory-inhibitory ratio model for pathogenesis of PSH.   

In normal circumstances, various cortical, hypothalamic, thalamic, and other subcortical inputs modulate 
activity within brain stem centres (the periaqueductal grey (PAG) is shown here as one of the key brainstem 
hubs in this process). In turn, these brainstem nuclei provide inhibitory drive to spinal reflex arcs, thereby 
maintaining balance between inhibitory and excitatory interneuron influences on motor and sympathetic 
efferents, and allow normal sensory stimuli to be perceived as non-noxious. In the EIR model of PSH, 
disconnection of descending inhibition produces maladaptive dendritic arborisation and spinal circuit 
excitation, with non-noxious stimuli triggering increased motor and sympathetic output (spinally) and 
potentially becoming perceived as noxious (centrally).33,56 
 

Paroxysms then settle with recovery of the inhibitory drivers.  This model also explains the pathologically 

increased and prolonged response to stimuli that are either non-nociceptive (movement) or only minimally 

nociceptive (such as tracheal suction), as an allodynic response, reminiscent of the phenomena seen in 
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chronic pain syndromes.55 Non-PSH literature suggests a putative role for the periaqueductal grey matter 

as a central inhibitory driver,56 with midbrain lesions implicated in the functional/structural disconnection 

underlying the more severe end of the severity spectrum. It also explains some outcome differences, as 

patients with more rapid recovery of supraspinal inhibition are likely to have shorter duration PSH and 

have less brainstem involvement overall. 

 

Several attempts have been made to determine the location of structural lesions that increase the 

likelihood of developing PSH, but the data from clinical imaging are equivocal. In TBI, PSH has been variably 

associated with diffuse axonal injury (DAI) and younger age,18 and less consistently with greater focal 

parenchymal lesion burden on CT imaging,7,8  Patients with midbrain and pontine lesions are at greater 

risk of PSH,26 but incidence is also increased with lesions in the periventricular white matter, corpus 

callosum, and deep gray nuclei. Most recently, an analysis of diffusion tensor magnetic resonance imaging 

in 102 patients, 16 of whom had PSH,34 showed an association of PSH with lesions in the corpus callosum 

and posterior limb of the internal capsule. Given that the associations with PSH in these studies are all 

with markers of more severe and/or diffuse injury, it remains unlikely that any one of these lesions 

specifically drives PSH, and more likely that the development of PSH is associated with the overall burden 

of injury. These findings support the suggestion32 that PSH is a complex disconnection syndrome, with a 

contributory role for learned allodynic hyperresponsiveness (Figure 1).  

 

Several central neurotransmitter systems have been implicated in the maladaptive responses that drive 

PSH, primarily based on efficacy of specific neuromodulatory interventions (see below).  Regardless of 

these central neurotransmitter changes, there is good evidence that PSH is associated with peripheral 

catecholamine (and possibly corticosteroid) release (Figure 2a),14 which may explain the exaggerated 

responses to non-noxious or mildly noxious stimuli observed in PSH (Figure 2b).24  This suggests that 

allodynic hyperresponsiveness develops due to release of higher control, producing ‘sympathetic storms’. 

However, maladaptive spinal cord plasticity is also possible, as seen in the well-researched and related 

disorder of autonomic dysreflexia following high spinal cord injury.57 In PSH, similar spinal cord changes 

appear permanent, with sub-clinical allodynic/sympathetic over responsiveness persisting for at least 5 

years post injury.35  
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Figure 3.  
 
Pathophysiology of PSH  
(A) Median and interquartile range of normalized ratio of marker levels during paroxysms indexed to 
baseline levels. Control medians are blue diamonds and PSH patients are red boxes; all comparisons 
between these two patient groups are highly significant (p < 0.001) for all markers shown. ACTH: 
Adrenocorticotrophic hormone; NE: norepinephrine; E: epinephrine; DA: dopamine. (Replotted using data 
originally published in Reference 1414. (B) Heart rate responses in PSH. Heart rate responses (plotted as 
change from baseline) are shown following stimulation in patients recovering from traumatic brain injury 
who have normal autonomic responses (green), transient sympathetic arousal (blue; which subsides 
rapidly), and paroxysmal sympathetic hyperactivity (red) with persistent increased sympathetic response 
to non-noxious stimuli. Panel B is redrawn from data originally reported in Reference 2424. 



 12 

Therapeutic options 

The three main goals in treatment of PSH are: to avoid the triggers that provoke the paroxysms, to mitigate 

the excessive sympathetic outflow, and to address the impact of PSH on other organ systems through 

supportive therapy. In most cases, the level of evidence for these therapeutic options is low, consisting of 

case reports or small case series, with efficacy reported in terms on anecdotal decreases in sympathetic 

hyperactivity. No randomized clinical trials (RCTs) have been conducted to date. Whether these 

interventions influence the long-term outcome in severely brain injured patients suffering from PSH is 

unclear. 

Treatments aimed at PSH may either be aimed at prevention of paroxysms, or aimed at aborting 

paroxysms that do occur.  A range of pharmacological interventions have been used for both these 

purposes, with incomplete and varying efficacy.  These are summarized in Table 3. Though individual 

agents are thought to have a greater or lesser effect on individual components of the syndrome, this 

demarcation is far from clear cut, and no agent is universally, or even predictably, effective.  In practice, 

most patients require treatment with multiple agents with potentially complementary roles – both in 

terms of different components of the syndrome, but also to combine drugs aimed at preventing and 

treating paroxysms. Individual drugs and drug combinations are typically chosen on the basis of local 

custom, rather than objective evidence. 

The majority (~80%) of PSH paroxysms occur as allodynic responses to external stimuli such as pain, urinary 

retention, or movement in both clinical8 and experimental settings.24 Where triggers can be identified (or 

suspected), it makes sense to attempt to treat or avoid them 36. Opioids, especially morphine, are probably 

the most frequently used, and often first line agents, to suppress the allodynic response in PSH patients.37  

Morphine may also have non-analgesic effects through modulation of central pathways involved in PSH 

paroxysms. Other opioids and routes of administration, such as fentanyl patches, have also been used.38 

In general, the duration of opioid therapy depends on the duration and severity of PSH symptoms, 

balanced against the desire to avoid chronic opioid use, but often extends to the rehabilitation phase. 

Other sedatives, such as midazolam, have also been used in this context.  Although haloperidol has been 

used in the past, there is concern that it may impact adversely on eventual outcome. Gabapentin, often 

used to treat neuropathic pain, has well-documented effects on presynaptic voltage-gated calcium 

channels in the dorsal horn of spinal cord, and has been used in PSH unresponsive to 

metoprolol/bromocriptine.39  



 13 

Alpha-2-adrenergic agents act through central as well as peripheral suppression of adrenergic outflow. In 

addition, they have an imidazole receptor effect. In PSH, clonidine reduces heart rate, blood pressure and 

circulating catecholamines, but appears to be less effective in controlling temperature.  It may be less 

appropriate for paroxysmal symptoms, since it may potentiate hypotension and bradycardia between 

paroxysms, making titration challenging.36 However, clonidine patches can be effective in controlling the 

storms, even late in the course of the patient 40. Dexmedetomidine has also been reported to be effective 

in managing PSH in the ICU 41,42.  

A third class of drugs used in the treatment of PSH symptoms are non-selective beta-blocking agents. 

Propranolol is probably the most frequently used beta-blocker for this indication, and has the advantage 

of lipophilicity, which facilitates blood brain barrier penetration and central action. Schroeppel43 

demonstrated that propranolol use was independently associated with lower mortality. Beta-blockers also 

reduce the metabolic rate, which is often elevated.44,45 Cardio-selective beta-blockers such as metoprolol 

are probably less effective; combined alpha- and beta-adrenergic blockade may be better suited to 

controlling paroxysms.46 The ongoing double-blind RCT ‘Decreasing Adrenergic or Sympathetic 

Hyperactivity After Traumatic Brain Injury’ (DASH after TBI), compares combination therapy with 

propranolol and clonidine versus placebo in the ICU.47   

Other modulators of sympathetic paroxysms include the dopaminergic D2-agonist bromocriptine, which is 

variably effective in reducing temperature and sweating.32,36 Baclofen, a GABA-B agonist active at 

inhibitory interneurons in the spinal cord, has been used for refractory cases, and in three small 

prospective observational trial, continuous intrathecal Baclofen (100-200 mcg/day) was able to mitigate 

the course of PSH.48–50 Dantrolene, used in the treatment of malignant hyperthermia, may work in PSH 

through reducing intracellular calcium, with a main effect on posturing.36  A small case series from China 

reported a possible effect of hyperbaric oxygen therapy on paroxysms and posturing in early subacute 

PSH, after limited success with medical management 51. 
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Table 2.  Drugs used for treatment (Rx) and prevention (Px) of PSH 
Class Drug Prophylaxis (Px) or Treatment 

(Rx).    
Dose, route (see notes, below)  

Site of action Clinical features 
targeted 

Evidence of 
efficacy 

Cautionary notes 

Opioids Morphine (or other 
opioids; doses provided 
are for morphine)37 

Fentanyl38 

Rx: 1-10 mg bolus IV. 
Px: IV infusion, titrated to effect 
 
 

Px: Patch: 12-100 mcg/h 

Opioid receptors in brain, 
spinal cord, (+ periphery) 

Most features; 
particularly 
hypertension, 
allodynia, 
tachycardia 

Consistent Respiratory depression, 
tolerance and dose escalation 

Intravenous 
anaesthetics 

Propofol Rx: 10-20 mg bolus IV 
Px: IV infusion; max < 4 mg/kg/h 

GABA-A receptors in brain Most features Consistent Only if mechanically 
ventilated, in acute phase 

β-adrenergic 
blockers 

Propranolol43-45 

 
 
 
Labetalol46 

Px: 20-60 mg 4-6 hourly, PO 
(Rectal administration also 
described) 
 
Px: 100-200 mg 12 hourly, PO 

Non-selective β adrenoceptor 
blocker (central, cardiac, 
peripheral) 
 
β and α adrenoceptors 

Tachycardia, 
hypertension, 
diaphoresis 
May help with 
dystonia  

Consistent 
 
 
 
Limited 

Bradycardia, hypotension, 
bradyarrhythmias, sleep 
disturbances, masked 
hypoglycaemia, especially 
with oral antidiabetics 

 Metoprolol Px: 25 mg 8 hourly, PO Cardioselective  
Β adrenoceptors 

Limited or no 
impact 

Ineffective  

α -2 agonists Clonidine36 Px: 100 mcg 8-12 hourly PO; titrate 
to maximum1200 mcg/day. 
Px: IV infusion, titrate to effect 

α -2 adrenoceptors in brain 
and spinal cord 

Hypertension 
and tachycardia 

Intermediate Hypotension, bradycardia, 
sedation; IV infusions not  a 
long term solution, but 
clonidine patches may be 
useful.40 

 Dexmedetomidine41,42 Px: IV infusion titrate to effect 
0.2-0.7 mcg/kg/h 

    

Neuromodula
tors 

Bromocriptine32,36 Px: 1.25 mg PO 12 hourly;  
max 40 mg/day 

Dopamine D2 receptor 
agonist 

Inconsistent Intermediate Confusion, agitation, 
dyskinesia, nausea, 
hypotension 

 Gabapentin39 Px: 100 mg 8 hourly PO;  
max 4800mg/day 

α2δ presynaptic voltage gated 
Ca++ channels (in brain/spinal 
cord) 

Spasticity, 
allodynic 
responses 

Consistent Well tolerated 

 Baclofen48-50 Px: 5mg 8 hourly PO; max 80 mg/d 
Px: Intrathecal – specialist use only 

GABA-B agonist Spasticity, 
dystonia 

PO: Limited; 
IT: Consistent  

Sedation, withdrawal 
syndrome 
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Notes to Table 2:  

 Drug administration routes are intravenous (IV) or per orally (PO; which includes administration through a nasogastric or other feeding tube).  

Drug doses and impressions of efficacy are indicative, based on past publications (cited in the text36-51), and are largely covered in five 

reviews on the subject. 3, 36,54, 58 

 The dose ranges listed in the table cover the entire range that have been reported in the literature.  These data are provided as a record of 

what has been published, rather than as a recommendation for treatment.  Please ensure that the dosage and route of administration of 

drugs used in patients take account of individual circumstances and good clinical practice.   

 Evidence of efficacy is described as Consistent (benefit in many/most of the publications reviewed); Intermediate (where there is equivocal 

impression of benefit in the literature), Limited (when the data are limited and inconclusive, but show some benefit), or Ineffective (when 

the literature shows no benefit).   

 These judgements are necessarily subjective – a formal meta-analysis is not possible as the literature is very heterogeneous and poorly 

documented.  Not all published case reports are included, but drug classes, and specific agents, that have been commonly tried for PSH are 

covered in this table.  

 Combinations of drugs are commonly employed in clinical practice – combining interventions for both prevention and treatment of 

paroxysms, and using drugs in different therapeutic classes with different mechanisms.  These drugs and drug combinations are based on 

local custom, rather than objective evidence. 

 

 

Benzodiazepi
nes 

Diazepam,  
Lorazepam 
Midazolam 
 
Clonazepam 

Rx: 1-10 mg IV boluses 
Rx: 1-4 mg IV boluses 
Rx: 1-2 mg IV bolus 
 
Px: 0.5 – 8 mg/d PO in divided 
doses 

Central benzodiazepine 
receptor on GABA complex 
(brain and spinal cord) 

Agitation, 
hypertension, 
tachycardia, 
posturing 

Intermediate  
 
 
 
Intermediate 

Sedation; IV boluses with 
caution in subjects without 
secure artifical airway 

Sarcolemmal 
Ca++ release 
blocker 

Dantrolene36 Rx: 0.5 -2 mg/kg IV 6-12 hourly;  
maximum 10 mg/kg/day 

Blocks sarcolemmal Ca++ 
release in muscle 

Posturing and 
muscular spasm 

Intermediate Hepatotoxicity, respiratory 
depression 
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Supportive therapy to deal with the consequences of PSH is extremely important. Physiotherapy, paying 

attention to positioning of the patients to prevent contractures, and managing temperature are crucial. 

Nutritional management deserves special attention: dramatic increases in resting energy expenditure 

(REE), up to threefold baseline, have been reported during paroxysms,11 and some PSH patients admitted 

to rehabilitation units show significant weight loss of up to 25-29% following ICU management.52 Indirect 

calorimetry can guide calorie intake in proportion to increased REE. PSH increases the relative risk (RR) of 

heterotopic ossification (RR= 59.6, 95% CI=8.4–422),10 and this diagnosis should be considered in all 

patients with hot or painful joints.  

Conclusions and research agenda 

PSH is an intriguing clinical syndrome, that occurs after severe acquired brain injury of multiple etiologies, 

but most prevalent after TBI and hypoxic brain injury. Recent initiatives to define PSH with clinical criteria 

are the first steps in a longer journey to study the causes, consequences, and potential therapies for this 

condition. Potential therapeutic agents may suppress manifestations of PSH, but no prospective RCTs have 

been published regarding the potential benefits, risks, or outcome impacts of such intervention.  

The advances in clinical tools for diagnosis characterization of PSH are based on a wide clinical consensus, 

and involve most active investigators in the field.  However, linking these clinical features to lesion location 

and severity, and to clear neuropathology, remains challenging, in large part due to variable 

pathophysiology (and hence) treatment response.  Stratifying the syndrome into mechanistically 

homogeneous subgroups with common pathophysiology, diagnostic features, therapy response and 

outcome is essential if we are to pursue precision medicine approaches to its management.  However, 

accumulating the large cohorts of patients to allow such stratification is challenging.  Despite recent 

diagnostic criteria, the description of patients seems to be varied and inconsistent, especially in terms of 

imaging findings, therapies and outcome.  The use of common data elements for such description, 

borrowed from acute TBI research, and modified if needed, may represent one means of addressing this 

issue.  This approach would also allow us to define assessment tools and timings for defining early and late 

outcome, thus enabling a more rigorous epidemiological assessment of the incidence of PSH and its impact 

on outcome.  Finally, there is a need for pragmatic, but well conducted clinical trials of therapies, either 

individually, or in sequence (in an escalation pattern) to confirm or refute the putative benefit reported in 

case series or small trials.  Such studies will demand multicenter recruitment, which could make use of 

existing collaborative research networks that focus on PSH. 
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Search strategy and selection criteria 

This manuscript builds on an exhaustive review undertaken by the same group of authors in 2010.1 We conducted a 

search on MEDLINE (January 1st, 1946 to June 21st, 2017) using the following terms: 

 

(PSH OR diencephalic epilepsy OR storm OR paroxysmal sympathetic hyperactivity OR dysautonomia) 

AND (diagnosis OR definition OR treatment OR pathophysiology OR outcome) AND (brain injury OR 

stroke OR cardiac arrest OR head injury OR traumatic brain injury OR subarachnoid haemorrhage OR 

intracerebral haemorrhage) NOT (tumors OR neoplasms OR Parkinson's OR familial) 

This search yielded 975 hits, titles of which were manually searched for relevance to our review topic. The abstracts 

of the resulting 67 manuscripts were reviewed in addition to 115 manuscripts that had been identified during our 

search in 2010 (with considerable overlap between the two).  The abstracts of these manuscripts and manuscripts 

selected for review of full text by one or more of the authors, and papers selected for inclusion in this review.  No 

attempt was made to undertake a fully systematic and inclusive review. 
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Supplementary Table 1. Clinical items contributing to a diagnosis of PSH 

1. Antecedent acquired brain injury 

2. Simultaneity of clinical features 
3. Clinical features are paroxysmal in nature 

4. Sympathetic over reactivity to normally non-painful stimuli 

5. Absence of intra-paroxysmal parasympathetic features during episodes 
6. Medication is administered to decrease sympathetic features 

7. Lack of alternative explanations 

8. Features persist despite treatment of alternative differential diagnosis 
9. Features persist ≥ 3 consecutive days 

10. Features persist ≥ 2 weeks post-injury 

11. (Frequency of ≥ 2 episodes per day) 
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Supplementary Table 2: The Paroxysmal Sympathetic Hyperactivity Assessment Measure  

Component Score    0       1      2    3 Allocated 
score 

C
lin

ic
al

 
Fe

at
u

re
 

Sc
al

e
 (

C
FS

) 

Heart rate (per min) <100 100-119 120-139 >140  

Respiratory rate (per min) <18 18-23 24-29 > 30  

Systolic blood pressure (mmHg) <140 140-159 160-179 >180  

Temperature (0C) <37.0 37.0-37.9 38.0-38.9 >39.0  

Sweating Absent Mild Moderate Severe  

Posturing during episodes Absent Mild Moderate Severe  

CFS subtotal (Severity: 0 = Nil; 1-6 = Mild; 7-12 = Moderate; > 13 = Severe)  

   

D
ia

gn
o

si
s 

Li
ke

lih
o

o
d

 T
o

o
l  

(D
LT

) 

Antecedent acquired brain injury  

Clinical features occur simultaneously  

Episodes are paroxysmal in nature  

Sympathetic over-reactivity to normally non-painful stimuli  

Absence of parasympathetic features during episodes  

Features persist > 3 consecutive days  

Features persist > 2 weeks post-brain injury  

> 2 episodes daily  

Absence of other presumed causes of features  

Features persist despite treatment of alternative differential diagnoses  

Medication administered to decrease sympathetic features  

DLT Subtotal (Score 1 point for each feature present)  

  

PSH-Assessment Measure (PSH-AM = CFS subtotal + DLT subtotal)  

 

Interpretation of PSH-AM 
(CFS subtotal + DLT subtotal)  

Score PSH diagnosis 

<8 Unlikely 

8-16 Possible 

> 17 Probable 
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Supplementary Table 3: Pediatric Paroxysmal Sympathetic Hyperactivity Scoring Reference 

Score 0 1 2 3 

1-4 years 

Heart rate (per minute) <110 110-124 125-139 >140 
Respiratory rate (per minute) <30 30-34 35-39 >40 

Systolic blood pressure (mmHg) <100 100-109 110-119 >120 

Diastolic blood pressure (mmHg) <65 65-72 73-79 >80 
Temperature (°C) <37.0 37.0-37.9 38-38.9 >39.0 

Sweating Normal Increased sweating Localized diaphoresis 
Generalized 

diaphoresis 

Muscle tone increase Absent Mild increase Neat increase 
Generalized spasticity 

or opisthotons 

5-15 years 

Heart rate (per minute) <100 100-119 120-139 >140 

Respiratory rate (per minute) <25 25-29 30-34 >35 

Systolic blood pressure (mmHg) <120 120-129 130-139 >140 
Diastolic blood pressure (mmHg) <75 75-82 83-89 > 90 

Temperature (°C) <37.0 37.0-37.9 38-38.9 >39.0 

Sweating Normal Increased sweating Localized diaphoresis 
Generalized 
diaphoresis 

Muscle tone increase Absent Mild increase Neat increase 
Generalized spasticity 

or opisthotons 

This table is reconstructed based on data from Pozzi et al, Journal of Neurotrauma 2014; 31: 1897–98 

 

 


