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Abstract. We present and analyse three online algorithms for learningin discrete Hidden Markov
Models (HMMs) and compare them with the Baldi-Chauvin Algorithm. Using the Kullback-Leibler
divergence as a measure of generalisation error we draw learning curves in simplified situations.
The performance for learning drifting concepts of one of thepresented algorithms is analysed
and compared with the Baldi-Chauvin algorithm in the same situations. A brief discussion about
learning and symmetry breaking based on our results is also presented.
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INTRODUCTION

Hidden Markov Models(HMMs) [1, 2] are extensively studied machine learning models
for time series with several applications in fields like speech recognition [2], bioinfor-
matics [3, 4] and LDPC codes [5]. They consist of a Markov chain of non-observable
hidden statesqt ∈ S, t = 1, ...,T , S = {s1, s2, ..., sn}, with initial probability vector
πi = P(q1 = si) and transition matrixAij(t) = P(qt+1 = sj |qt = si), i, j = 1, ..,n. At
discrete timest, eachqt emits anobserved stateyt ∈ O, O = {o1, ...,om}, with emis-
sion probability matrixBiα(t) = P(yt = oα|qt = si), i= 1, ...,n, α = 1, ...,m, which are
the actual observations of the time series represented, from time t = 1 to t = T , by the
observed sequenceyT1 = {y1,y2, ...,yT }. The qt’s form the so calledhidden sequence
qT1 = {q1, q2, ..., qT }. The probability of observing a sequenceyT1 givenω ≡ (π,A,B) is

P(yT1 |ω) =
∑

qT
1

P(y1)P(y1|q1)
T
∏

t=2

P(qt+1|qt)P(yt|qt). (1)

In the learning process, the HMM is fed with a series and adapts its parameters to
produce similar ones. Data feeding can range fromoffline(all data is fed and parameters
calculated all at once) toonline(data is fed by parts and partial calculations are made).

We study a scenario with data generated by a HMM of unknown parameters, an ex-
tension of the student-teacher scenario from neural networks. The performance, as a
function of the number of observations, is given by howfar, measured by a suitable cri-
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terion, is the student from the teacher. Here we use the naturally arisingKullback-Leibler
(KL) divergencethat, although not accessible in practice since it needs knowledge of the
teacher, is an extension of the idea of generalisation errorbeing very informative.

We propose three algorithms and compare them with theBaldi-Chauvin Algorithm
(BC) [6]: theBaum-Welch Online Algorithm(BWO), an adaptation of the offlineBaum-
Welch Reestimation Formulas(BW) [1] and, starting from a Bayesian formulation, an
approximation namedBayesian Online Algorithm(BOnA), that can be simplified again
without noticeable lost of performance to aMean Posterior Algorithm(MPA). BOnA
and MPA, inspired by Amari [7] and Opper [8], are essentiallymean field methods [9]
in which a manifold of prior tractable distributions is introduced and the new datum
leads, through Bayes theorem, to a non-tractable posterior. The key step is to take as the
new prior, not the posterior, but the closest distribution (in some sense) in the manifold.

The paper is organised as follows: first, BWO is introduced and analysed. Next, we
derive BOnA for HMMs and, from it, MPA. We compare MPA and BC for drifting con-
cepts. Then, we discuss learning and symmetry breaking and end with our conclusions.

BAUM-WELCH ONLINE ALGORITHM

The Baum-Welch Online Algorithm(BWO) is an online adaptation of BW where in
each iteration of BW,y becomesyp, thep-th observed sequence. Multiplying the BW
increment by a learning rateηBW we get the update equations forω

ω̂p+1 = ω̂p+ηBW ∆̂ωp, (2)

with ∆̂ωp the BW variations foryp. The complexity of BWO is polynomial inn andT .
In figure 1, the HMM learns sequences generated by a teacher with n= 2,m= 3 and

T = 2 for differentηBW . Initial students have matrices with all entries set to the same
value, what we call asymmetric initial student. We took averages over 500 random
teachers and distances are given by the KL-divergence between two HMMsω1 andω2

dKL(ω1,ω2)≡
∑

yT
1

P(yT1 |ω1) ln

[

P(yT1 |ω1)

P(yT1 |ω2)

]

. (3)

We see that after a certain number of sequences the HMM stops learning, which is
particular to the symmetric initial student and disappearsfor a non-symmetric one.

Denoting the variation of the parameters in BC by∆, in BW by ∆̂, in BWO by ∆̃,
and withγt(i)≡ P(qt = si|y

p,ωp), we have to first order inλ

∆πi =
ληBC

n
∆̂πi =

λ

n

ηBC

ηBW

∆̃πi, (4)

∆Aij =
ληBC

n

[

T−1
∑

t=1

γt(i)

]

∆̂Aij =
λ

n

ηBC

ηBW

[

T−1
∑

t=1

γt(i)

]

∆̃Aij ,

∆Biα =
ληBC

n

[

T
∑

t=1

γt(i)

]

∆̂Biα =
λ

n

ηBC

ηBW

[

T
∑

t=1

γt(i)

]

∆̃Biα.
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FIGURE 1. Log-log curves of BWO for three differentηBW indicated next to the curves.

For ηBW ≈ ληBC/n and smallλ, variations in BC are proportional to those in BWO,
but with different effective learning rates for each matrixdepending onyp. Simulations
show that actual values are of the same order of approximatedones.

THE BAYESIAN ONLINE ALGORITHM

The Bayesian Online Algorithm (BOnA) [8] uses Bayesian inference to adjustω in the
HMM using a data setDP = {y1, ...,yP}. For each data, the prior distribution is updated
by Bayes’ theorem. This update takes a prior from a parametric family and transforms it
in a posterior which in general has no longer the same parametric form. The strategy used
by BOnA is then to project the posterior back into the initialparametric family. In order
to achieve this, we minimise the KL-divergence between the posterior and a distribution
in the parametric family. This minimisation will enable us to find the parameters of the
closest parametric distribution by which we will approximate our posterior. The student
HMM ω parameters in each step of the learning process are estimated as the means of
the each projected distribution.

For a parametric family that has the formP (x)∝ e−
P

iλifi(x), which can be obtained
by the MaxEnt principle where we constrain the averages overP (x) of arbitrary func-
tions fi(x), minimising the KL-divergence turns out to be equivalent toequating the
averages< fi(x) > overP (x) to the average of these functions over the unprojected
posterior (our posterior distribution just after the Bayesian update for the next data).

For HMMs, the vectorπ and eachi-th rowAi of A andBi of B are different discrete
distributions which we assume independent in order to writethe factorized distribution

P(ω|u)≡P(π|ρ)

n
∏

i=1

P(Ai|ai)P(Bi|bi), (5)

whereu= (ρ,a,b) represents the parameters of the distributions.
As each factor is a distribution over probabilities, the natural choice are the Dirichlet

distributions, which for aN-dimensional variablex is

D(x|u) =
Γ(u0)

∏N

i=1Γ(ui)

N
∏

i=1

xui−1
i , (6)



whereu0 =
∑

iui andΓ is the analytical continuation of the factorial to real numbers.
These can be obtained from MaxEnt withfi(x) = lnxi [13]:

∫

dµD(x) lnxi = αi, dµ≡ δ

(

∑

i

xi−1

)

∏

i

θ(xi)dxi. (7)

The function to be extremized is

L=

∫

dµD lnD+λ

(
∫

dµD−1

)

+
∑

i

λi

(
∫

dµD lnxi−αi

)

, (8)

and withδL/δD = 0 we get the Dirichlet with normalisationeλ+1 andui = 1−λi.
Each factor distribution is separately projected by equating the average of the loga-

rithms in the original posteriorQ and in the projected distributions

ψ(ρi)−ψ

(

∑

j

ρj

)

= 〈lnπi〉Q ≡ µi(ρ), (9)

ψ(aij)−ψ

(

∑

k

aik

)

= 〈lnAij〉Q ≡ µij(a),

ψ(biα)−ψ

(

∑

β

biβ

)

= 〈lnBiα〉Q ≡ µiα(b),

whereψ(x) = d lnΓ(x)/dx is the digamma function. We call a set ofN equations

ψ(xi)−ψ

(

∑

j

xj

)

= µi, (10)

with i= 1, ...N adigamma systemin the variablesxi with coefficientsµi.
Let us callP p(ω) the projected distribution after observation ofyp, andQp+1(ω) the

posterior distribution (not projected yet) afteryp+1. By Bayes’ theorem,

Qp+1(ω)∝ P p(ω)
∑

qp+1

P(yp+1, qp+1|ω). (11)

The calculation ofµ’s in (9) leads to averages over Dirichlets of the form [10]

µi =

〈[

∏

j

x
rj
j

]

lnxi

〉

=
Γ(u0)
∏

j Γ(uj)

∏

j Γ(uj + rj)

Γ(u0+ r0)
[ψ(ui+ ri)−ψ(u0+ r0)]. (12)

To solve (10), we solve forxi, sum overi with x0 ≡
∑

ixi and find numerically, by
iterating from an arbitrary initial point, the fixed points of the one-dimensional map

xn+1
0 =

∑

i

ψ−1[µi+ψ(x
n
0 )], (13)
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FIGURE 2. Comparison in log-log scale of MPA (dashed line) and BOnA (circles).

where we found a unique solution except forµi ≈ 0, which is rare in most applications.
BOnA has a common problem of Bayesian algorithms: the sum over hidden vari-

ables makes the complexity scales exponentially inT . Also, the calculation of several
digamma functions is very time consuming. In the following,we develop an approxi-
mation that runs faster, although still with exponential complexity in T . This is not a
problem for we can makeT constant and the algorithm will scale polynomially inn.

MEAN POSTERIOR APPROXIMATION

The Mean Posterior Approximation (MPA) is a simplification of BOnA inspired in
its results for Gaussians, where we match first and second moments of posterior and
projected distributions. Noting it, instead of minimisingdKL we match the mean and
one of the variances of posterior and projected distributions as an approximation, which
gives, with hatted variables for reestimated values [10]

ρ̂i = 〈πi〉Q
〈π1〉Q−〈π2

1〉Q

〈π2
1〉Q−〈π1〉

2
Q

, (14)

âij = 〈aij〉Q
〈ai1〉Q−〈a2i1〉Q

〈a2i1〉Q−〈ai1〉
2
Q

,

b̂iα = 〈biα〉Q
〈bi1〉Q−〈b2i1〉Q

〈b2i1〉Q−〈bi1〉
2
Q

,

with complexity again of ordernT , but with heavily reduced real computational time
making it better for practical applications.

Figure 2 compares MPA and BOnA. The initial difference decreases in time and both
come closer relatively fast. We usedn = 2, m = 3 andT = 2 and averaged over 150
random teachers with symmetric initial students. The computational time for BOnA was
340min, and for MPA, 5s in a 1GHz processor. Figure 3a compares MPA to BC and
figure 3b to BWO. In both cases MPA has better generalisation.We usedn = 2,m= 3,
T = 2, symmetric initial students and averaged over 500 random teachers.
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FIGURE 3. a) Comparison between MPA (dashed) and BC (continuous). Values ofλ are indicated next
to the curves.ηBC = 0.5. b) Comparison between MPA (dashed) and BWO (continuous). Values ofηBW

are indicated next to the curves. Both scales are log-log.
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FIGURE 4. Drifting concepts. Continuous lines correspond to MPA and dashed lines to BC. a) Abrupt
changes at 500 sequences interval. b) Small random changes at each new sequence.

LEARNING DRIFTING CONCEPTS

We tested BC and MPA for changing teachers. In figure 4a, it changes at random after
each 500 sequences (λ = 0.01, ηBC = 10.0). In figure 4b, each time a sequence is
observed, a small random quantity is added to the teacher. Both haven = 2, m = 3
and are averaged over 200 runs.

Figure 4b shows that BC adapts better, but is notfully adaptive and we do not know
how to modify it. MPA instead derives from Bayesian principles and we can guess the
problem by analogy with similar Bayesian algorithms [12]: variances decrease in the
process as in the perceptron, where they are the learning rates, explaining the memory
effect difficulting the learning after changes. Although not proved yet, we expect the
same relationship in MPA, which can be used to improve performance.

LEARNING AND SYMMETRY BREAKING

Learning from symmetric initial students requires that theparameters separate from each
other in some point, which depends on the algorithm and is an important feature inonline
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FIGURE 5. KL-divergence and student’s parameters for a) BC and b) MPA.

algorithms [11], breaking the symmetry with a sharp decrease in the generalisation error.
Instead of taking averages to smooth abrupt changes, here wedraw curves for only

one teacher, rendering them visible. Flat lines before a symmetry breaking are called
plateauxand occur when it is difficult to break the symmetry.

Figure 5a shows BC (λ= 0.01, ηBC = 1.0) with two abrupt changes: in the beginning
and after 1000 sequences.π andA only break the symmetry in the second point, andB
in both. Figure 5b shows that in MPA the second change is stronger and the symmetry
breaking affects bothB andA. Figure 6 shows BWO withηBW = 0.01 where onlyB is
affected. The more symmetries are broken, the best the generalisation of the algorithm.

In all simulations we setn= 2,m= 3 andT = 2 with a teacher HMM given by

π =

(

1
0

)

, A =

(

0 1
1 0

)

, B =

(

1 0 0
0 0 1

)

. (15)

CONCLUSIONS

We proposed and analysed three learning algorithms for HMMs: Baum-Welch On-
line (BWO), Bayesian Online Algorithm (BOnA) and Mean Posterior Approximation
(MPA). We showed the superior performance of MPA for static teachers, but the Baldi-
Chauvin (BC) algorithm is better for drifting concepts, although the Bayesian nature of
MPA suggests how to fix it. The results seem to be confirmed by initial tests on real data.

The importance of symmetry breaking in learning processes is presented here in a
brief discussion where the phenomenon is shown to occur in our models.
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FIGURE 6. KL-divergence and student’s parameters for BWO.
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