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FRET-enhanced photostability allows improved
single-molecule tracking of proteins and protein
complexes in live mammalian cells
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A major challenge in single-molecule imaging is tracking the dynamics of proteins or com-

plexes for long periods of time in the dense environments found in living cells. Here, we

introduce the concept of using FRET to enhance the photophysical properties of photo-

modulatable (PM) fluorophores commonly used in such studies. By developing novel single-

molecule FRET pairs, consisting of a PM donor fluorophore (either mEos3.2 or PA-JF549) next

to a photostable acceptor dye JF646, we demonstrate that FRET competes with normal

photobleaching kinetic pathways to increase the photostability of both donor fluorophores.

This effect was further enhanced using a triplet-state quencher. Our approach allows us to

significantly improve single-molecule tracking of chromatin-binding proteins in live mam-

malian cells. In addition, it provides a novel way to track the localization and dynamics of

protein complexes by labeling one protein with the PM donor and its interaction partner with

the acceptor dye.
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S ingle-molecule fluorescence imaging approaches have
allowed one to study the localization and dynamics of single
proteins in live mammalian cells, shedding light on cellular

processes such as how proteins bind to chromatin to regulate
gene transcription1–7. Obtaining long trajectories is extremely
informative as it allows the detection of rare events, such as
transitions of a single molecule between different types of
motion8. However, this is often limited by the photostability of
fluorophores. Another challenge has been to distinguish whether
a protein is moving alone or as part of a particular protein
complex. The photon-limited localization precision of two color
coincident detection experiments often prevents one from
determining whether two proteins really are part of the same
complex or simply localized in proximity to each other. Com-
plementation methods have been developed to image single
protein complexes within living cells9–12, but improved approa-
ches are needed to increase the length of time that the molecules
can be tracked. For this reason, methods that allow single-
molecule tracking for extended periods of time in the densely
packed interior of live cells would be very valuable.

Generally, single-molecule tracking requires the point spread
functions of individual fluorophores to be spatially separated
during the imaging process. In the common case of high fluor-
ophore density, this can be achieved either spatially by under-
labeling or temporally as in single-particle tracking (SPT) using
photo-activated localization microscopy (sptPALM)3,6,13. Up to
now, most single-molecule tracking studies have employed con-
ventional organic dyes4,5,7, due to both their relative brightness
and photo-stability compared to fluorescent proteins. Under-
labeling approaches are typically employed4,7, but they only allow
imaging of the dynamics of relatively few molecules in each cell.
In contrast, temporal control to image single molecules in dense
environments, such as the cell nucleus, is greatly facilitated by
using the highly controllable photophysical properties of photo-
modulatable (PM) fluorophores. PM fluorophores exist in either a
fluorescently active (on) or fluorescently inactive (off) state. They
can be categorized into distinct classes: photo-activatable fluor-
ophores can be activated from a non-emissive to an emissive
fluorescent state14, and photo-convertible fluorophores can be
converted from one emissive state to another15,16. Although most
PM fluorophores are still currently fluorescent proteins3 (PM
FPs), cell-permeable, photo-activatable dyes have recently been
developed17. Novel strategies to enhance the photophysical
properties, such as photostability, of PM fluorophores are there-
fore highly desirable.

Here, we introduce the concept of using Förster resonance
energy transfer (FRET)18–22 to regulate the fluorescence proper-
ties of PM fluorophores and then use this approach to extend
their trajectory lengths for studies of both single proteins and
protein complexes in dense environments in live mammalian
cells. We place a photostable organic dye in close spatial proxi-
mity to a PM donor fluorophore (Fig. 1a) and use FRET to non-
radiatively transfer energy from the PM donor fluorophore to the
acceptor dye via dipole–dipole coupling. In so doing, we were able
to modify the excited-state kinetics of the donor PM fluorophore
and selectively tune photophysical properties such as the fluor-
escence lifetime23 and photostability—by providing additional
energetic pathways for return to the ground state instead of
photobleaching. This allowed us to retain the properties of spe-
cific PM fluorophores for single-molecule imaging and to exploit
a known approach for stabilizing dye molecules to improve the
photostability and photon budget of two PM fluorophores,
photo-convertible mEos3.215 and photo-activatable dye PA-
JF54917. We then used this approach to track proteins and com-
plexes for substantially longer in live mammalian cells, by either
labeling a protein with both the PM donor fluorophore and the

acceptor dye, or by labeling one protein with the PM donor and
its interaction partner with the acceptor dye.

Results
mEos3.2–JF646 as a novel single-molecule FRET pair. To
investigate whether FRET can be exploited to modulate the
properties of existing PM fluorophores, we explored a number of
potential donor–acceptor pairs. An optimal FRET pair requires
high donor quantum yield, high acceptor extinction coefficient,
and significant overlap between the donor emission and acceptor
absorption spectra22. In initial experiments, we explored a
number of potential FRET pairs such as PA-EGFP-mCherry and
PS-CFP2-YPet, but these were unsuccessful due to problems of
poor acceptor photostability, folding inefficiencies, tendencies to
multimerize, high levels of pre-conversion, and limited donor
brightness for live-cell single-molecule tracking. These initial
experiments led us to focus on mEos3.215 as the donor fluor-
ophore with organic dyes such as JF646 as the acceptor, which can
be covalently tethered to either the HaloTag24 or SNAP-tag25,26

proteins (Fig. 1b), providing flexibility for different experiments.
mEos3.2 has a high quantum yield (Supplementary Fig. 1a), is
monomeric to prevent aggregation in dense protein environ-
ments15, and is widely used for live-cell single-molecule imaging.
JF646 is photostable, membrane-permeable, has a high extinction
coefficient (Supplementary Fig. 1b, c) and there is good spectral
overlap between its absorption spectrum and the emission spec-
trum of mEos3.2 (Supplementary Fig. 1d).

We created a test system by expressing a mEos3.2-HaloTag
fusion with a short linker between the two proteins (Supplemen-
tary Fig. 2) to ensure that the distance between the donor and
acceptor fluorophores was less than 10 nm for efficient FRET (the
radii of the mEos3.2 and the HaloTag proteins are approximately
1.5 and 2.0 nm, respectively). To confirm FRET, we measured the
fluorescence lifetime of mEos3.2 after photo-conversion, both
with and without bound JF646. For mEos3.2, we found a mean
singlet excited-state lifetime of 3.6 ns (Fig. 1c, Supplementary
Table 2), consistent with previously measured values for red
FPs27. As expected, upon addition of JF646, the mean fluorescence
lifetime of the photo-converted mEos3.2 donor decreased to 1.8
ns (Fig. 1c). The decrease in excited-state lifetime corresponded
to a FRET efficiency of 0.49 ± 0.04 (mean ± s.d.) and a mean
inter-fluorophore distance of 6 ± 1 nm (see Methods). We also
collected bulk fluorescence emission spectra and demonstrated a
decrease in the donor and an increase in the acceptor fluorescence
after taking into account the fluorescence arising from direct
excitation of JF646 at the donor excitation wavelength (Fig. 1d).
To further demonstrate that this was dependent on FRET, we
expressed and purified a second mEos3.2-HaloTag fusion protein
with no linker between the two proteins, and found that the FRET
efficiency increased correspondingly (Supplementary Fig. 2d).
Taken together these data confirm that mEos3.2–JF646 undergoes
FRET after photo-conversion.

FRET modulation improves the photophysics of mEos3.2. To
explore the photophysical parameters of the photo-convertible
mEos3.2–JF646 FRET pair for single-molecule fluorescence ima-
ging, we recorded TIRF images of mEos3.2 with and without JF646
after immobilizing the relevant fusion proteins on a surface at low
spatial density (Fig. 1d, Supplementary Fig. 3). The single-
molecule photophysical parameters were then characterized using
Hidden Markov Modeling (see Methods). We determined the
number of photons detected in a single frame, the total number of
emitted photons, the total time mEos3.2 remained in the fluor-
escent on-state, the on-state time for each photoswitching
(blinking) event, and the number of reversible on-state to off-
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state switching events for each molecule (Fig. 2a, Supplementary
Table 3). We also calculated the kon/koff ratio28, a metric of
interest to those carrying out super-resolution experiments
(Supplementary Table 3). Only the emission of mEos3.2 was
characterized, because donor excitation also led to direct excita-
tion of the JF646—resulting in a high pre-conversion background

signal in the JF646 acceptor emission channel (Supplementary
Fig. 2c) that would prevent imaging at high density.

The quantification of these photophysical parameters allowed a
comparison of mEos3.2 with and without JF646. We found that
the mEos3.2 molecules showed a mean increase in total on-state
time of 1.5-fold compared to the unlabeled mEos3.2 molecules
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(Supplementary Table 3). Given the reduction in fluorescence
lifetime, we would theoretically expect a 2-fold increase in total
on-state time29 for mEos3.2. However, the total number of
emitted photons also increased 1.7-fold suggesting that other
factors also play a role in the photophysics of the mEos3.2–JF646
FRET pair.

We hypothesized that transfer of energy to the acceptor JF646
dye reduced the photobleaching rate of the donor fluorophore18.
In an attempt to further control this, we also attempted to reduce
the photobleaching rate of the acceptor JF646 dye arising from
either direct or FRET-based excitation. We therefore investigated
whether Trolox, a triplet-state quencher, known to reduce the
photobleaching of organic dyes in single-molecule and super-
resolution imaging30,31, would indirectly reduce photobleaching
of the mEos3.2 donor fluorophore. Trolox was chosen because of
its suitability for live-cell imaging: it is membrane permeable,
non-cytotoxic, and may even improve cell viability32. We found
that Trolox significantly increased the total number of photons
emitted and the total on-state time before photobleaching of
mEos3.2–JF646 (Supplementary Table 3, Supplementary Movies 1
and 2). We determined the number of reversible on- to off-state
switching events and showed that, under typical imaging

conditions, there was little change in the mean switching event
number of 1.56 for mEos3.2 to 1.74 for mEos3.2–JF646 (Fig. 2b,
Supplementary Table 3). This switching event number was
similar to values reported in previous studies33,34. The improved
photophysical properties of mEos3.2 resulted from an increase
of around 7.2-fold in the on-state time, which represents
the useful time an individual molecule can be tracked
experimentally and thus the likelihood of detecting low-
probability events such as changes in the motion of a molecule
(Fig. 2b, Supplementary Table 3). The >7-fold increase naturally
also occurred for the total on-state time before photobleaching,
which represents the total time a molecule can be imaged.
This increase in total on-state time led to a 4.7-fold increase in the
total photon budget from 20,000 ± 1000 to 94,000 ± 4000 photons
emitted in the presence of JF646 (Fig. 2b, Supplementary Table 3).
The number of emitted photons for mEos3.2 matched well with
a previously measured value of 21,000 photons for EosFP35,
and the value for mEos3.2–JF646 is comparable to that
previously measured for GFP (100,000 photons per molecule)36.
This increase in photon budget was observed despite the
reduction in mEos3.2 intensity (emitted photons in a single
frame) of 39 ± 2 %.
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Fig. 2 Improved photophysics of FRET-enhanced mEos3.2. a A representative trace of mEos3.2–JF646 is shown as a montage of single frames over time.
Photons detected were converted to photons emitted per on frame and summed to determine the total photon emission. The on-state time was calculated
per switching event and summed to generate the total on-state time. The number of switching events was also calculated. b Histograms of total emitted
photons, total on-state time, on-state time (i.e., individual track length), and total number of switching events per molecule, when performing single-
molecule TIRF imaging using either mEos3.2 (filled bars) or the mEos3.2–JF646 FRET pair (open bars) under identical imaging conditions. c The increase in
total on-state time that occurred upon addition of the JF646 dye is shown with a vertical line to illustrate that more than 20% of the mEos3.2–JF646
molecules are still on when 99% of the mEos3.2 molecules are off. d At a single-molecule level, molecules with the longest total on-state times also had
the lowest average intensity (i.e., highest FRET efficiency) measured as emitted photons/frame

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04486-0

4 NATURE COMMUNICATIONS |  (2018) 9:2520 | DOI: 10.1038/s41467-018-04486-0 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


At the single-molecule level, it was clear that many
mEos3.2–JF646 molecules emitted fluorescence for considerably
longer times than others. After 99% of mEos3.2 molecules were
photobleached, more than 20% of mEos3.2–JF646 molecules were
still in the on-state (Fig. 2c). There was considerable variety in the
mean number of photons detected in each frame and those
molecules that showed the highest FRET (lowest donor emission
intensity) also showed the longest total on-state times (Fig. 2d).
This suggested that if the FRET level were consistently higher, it
could have resulted in even greater enhancements of the mEos3.2
on-state time. However, a balance needs to be struck because the
low intensity peaks become increasingly difficult to distinguish
from noise (Supplementary Fig. 3).

FRET enhancement allows the recording of longer trajectories.
To demonstrate that single-molecule FRET can be used to track
proteins in live mammalian cells, we designed two types of
experiments. First, we tagged a single protein with both the donor
PM fluorophore and the acceptor JF646 dye such that every PM
fluorophore detected can undergo FRET (Fig. 3a). Secondly, to
study protein–protein interactions and track protein complexes,

we tagged one protein molecule with the donor PM fluorophore
and another with the acceptor JF646 dye (Fig. 4a). In both types of
experiments, we showed that the photophysical characteristics
improved as observed previously in vitro.

For the first experiment, knock-in cell lines were generated in
which we tagged the chromatin remodeler CHD4 at the C-
terminus with the mEos3.2-HaloTag fusion protein in mouse
embryonic stem (ES) cells37 (Fig. 3b). CHD4 was chosen
because we had previously implemented cell viability assays to
demonstrate that its function was unaffected by the presence of
a tag (CHD4 null cells are not viable). CHD4 regulates ES cell
pluripotency as part of the larger nucleosome remodeling and
deacetylase (NuRD) complex. It also has roles in the DNA
damage response and in cell cycle regulation38. It is widely
distributed at high density throughout the nucleus and we
imaged single mEos3.2-HaloTag-tagged CHD4 molecules, both
with and without JF646, using oblique-angle illumination and
tracked their motion in 2D6,37,39. As rapidly diffusing CHD4
molecules can move out of the narrow depth of focus during 2D
imaging, we focused on detecting the slower moving, pre-
sumably chromatin-bound, CHD4 molecules using a principle
whereby freely diffusing molecules are blurred during a 500 ms
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exposure, but the more immobile chromatin-bound molecules
remain localized40,41. We demonstrated that it was indeed
possible to detect and localize mEos3.2–JF646-tagged CHD4
molecules despite the reduction in mEos3.2 intensity from FRET
in mEos3.2–JF646. The precision at which mEos3.2 was localized
was reduced from 15 to 28 nm in the presence of the JF646, but

was still adequate for single-molecule localization and tracking
(Supplementary Fig. 4).

In accordance with our in vitro experiments, comparison of
mEos3.2- and mEos3.2–JF646-tagged CHD4 molecules also
showed a considerable increase in trajectory length (Fig. 3b).
Both the short and long trajectories of bound CHD4 were mostly
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immobile as expected for chromatin-bound molecules (Fig. 3c
and Supplementary Movie 3). However, the longer trajectories
allowed us to observe that the confined diffusion was interrupted
by periods of rapid linear motion (Fig. 3d and Supplementary
Movie 3). This could be due to movement as a result of ATP-
dependent chromatin remodeling38 or, as reported in previous
studies42,43, large-scale movements of the chromatin itself.
Further work is necessary to understand what underlies the large
movements of some of the CHD4 molecules. These experiments
demonstrated that the mEos3.2–JF646 FRET pair allows tracking
of single chromatin-bound CHD4 molecules throughout the
nucleus for extended periods of time—thereby increasing the
likelihood of detecting low-probability changes in their
movement.

We next tested whether our PM single-molecule FRET pair can
also be used to track protein complexes for longer. We chose to
study CENP-A where two CENP-A/Histone H4 dimers assemble
to form a tetramer within the nucleosome core44. In this complex,
the N-termini of the two CENP-A molecules are close in space
(Fig. 4b) and we have shown in previous work that N-terminal
tagging with FPs does not interfere with CENP-A function34. We
expressed mEos3.2- and HaloTag-tagged CENP-A in mouse ES
cells (Fig. 4c), which led to the formation of CENP-A
nucleosomes containing either two mEos3.2-tagged molecules,
one mEos3.2- and one JF646-tagged molecule, or two JF646-tagged
molecules. The proportion of nucleosomes containing both
mEos3.2- and JF646–tagged CENP-A was also reduced by the
presence of the untagged endogenous protein. To increase the
likelihood of mEos3.2-tagged CENP-A molecules exhibiting
FRET to JF646-tagged molecules, a 5-fold excess of HaloTag-
tagged CENP-A was expressed. When we carried out single-
molecule imaging of mEos3.2-tagged CENP-A in the presence
and absence of JF646–tagged CENP-A (Fig. 4c), we found that
single mEos3.2-tagged CENP-A molecules had decreased inten-
sity, as would be expected for FRET, and longer track lengths in
the presence of JF646-tagged CENP-A (Fig. 4d, Supplementary
Movies 4 and 5). This provided clear evidence of CENP-A/
CENP-A interactions, but to rule out the possibility of artifacts
due to non-specific binding of the JF646 ligand, we also imaged
cells where the JF646 ligand was added in the presence of free
HaloTag enzyme (i.e., where it was not fused to CENP-A). In
those cells, we did not observe increased track lengths for
mEos3.2-tagged CENP-A (Supplementary Fig. 5a, b). As
expected, only a low percentage of mEos3.2-tagged CENP-A
molecules exhibited extended track lengths, but the success of this
experiment demonstrated that it is possible to use mEos3.2–JF646
FRET to track single protein complex molecules.

To further show that FRET between mEos3.2 and the JF646 dye
can be used to track single protein complex molecules, we also
tested whether FRET could be observed between mEos3.2-tagged
CENP-A and the JF646 dye attached to histone H2B via the SNAP
tag (Supplementary Fig. 5c). In the nucleosome structure, the N-
termini of CENP-A and histone H2B molecules are also close in
space and N-terminal tagging of histone H2B with a SNAP tag
has previously been reported to not interfere with its function45.
We expressed both mEos3.2-tagged CENP-A and SNAP-tagged
histone H2B in mouse ES cells (Supplementary Fig. 5d), which led
to the formation of CENP-A nucleosomes with either one or two
mEos3.2-tagged molecules alongside one or two JF646-tagged
histone H2B molecules. In this complex, FRET could occur
between mEos3.2-tagged CENP-A and either the proximal or
distal histone H2B molecules. We observed an increase in the
track length of mEos3.2-tagged CENP-A in the presence of JF646-
tagged histone H2B (Supplementary Fig. 5e), but the increase was
not as pronounced as that observed between CENP-A molecules.
This is consistent with the fact that the average distance between

the N-termini of the CENP-A and histone H2B molecules
(proximal and distal) is greater than that observed between the
two CENP-A molecules within a nucleosome44.

Second FRET pair PA-JF549–JF646 further improves tracking.
To illustrate the generality of our approach, we investigated a
second PM FRET pair by replacing the mEos3.2 photo-
convertible donor fluorophore with the recently characterized
photo-activatable dye PA-JF54917 (Supplementary Fig. 6a). A
similar fusion protein was expressed and purified, but where the
PA-JF549 dye was attached to the SNAP-tag protein (in place of
mEos3.2). PA-JF549 is brighter than mEos3.217, with a higher
quantum yield (Supplementary Fig. 1a) and it too has good
spectral overlap with JF646 (Supplementary Fig. 1e). We con-
firmed FRET by measuring the fluorescence lifetime for PA-JF549.
In the absence of JF646, we found a mean excited-state lifetime of
2.9 ns, but upon addition of JF646 this decreased to 2.1 ns (Sup-
plementary Fig. 6b). This decrease in excited-state lifetime cor-
responded to a FRET efficiency of 0.28 ± 0.05 and a mean inter-
fluorophore distance of 7 ± 3 nm (see Methods). Bulk fluores-
cence emission spectra were also collected to demonstrate a
reciprocal decrease in the donor and increase in the acceptor
fluorescence (Supplementary Fig. 6c). These results confirmed
that PA-JF549–JF646 undergoes FRET after photo-activation.
Further confirmation was achieved by carrying out photophysical
analysis of PA-JF549–JF646 in our optimized Trolox conditions
after immobilizing the relevant fusion proteins on a glass cover-
slip at low spatial density (Supplementary Fig. 7a, b). We
observed a 19 ± 10% reduction in PA-JF549 intensity in the pre-
sence of the JF646 dye, close to the value expected from our FRET
efficiency calculation above. As with mEos3.2, we did not observe
a significant change in the number of switching events (Supple-
mentary Fig. 7c). We observed a 2.3-fold increase in the on-state
time, as well as 2.0- and 1.7-fold increases, respectively, in the
total on-state time and photon budgets of PA-JF549 in the pre-
sence of JF646 (Supplementary Fig. 7). Although there was a lower
relative increase compared to mEos3.2, these data confirm the
generality of our approach for enhancing the photophysical
properties of PM fluorophores.

To show that the PA-JF549 donor fluorophore can be used for
improved live-cell tracking of protein complexes, we expressed
SNAP-tagged histone H2B alone in mouse ES cells (Fig. 5a). Each
nucleosome contains two histone H2B molecules, hence FRET
can either occur within a nucleosome or between nucleosomes.
However, because the histone H2B molecules are on opposing
sides of the nucleosome, a greater FRET efficiency is observed due
to inter-nucleosomal FRET as opposed to intra-nucleosomal
FRET. As a result, a higher level of FRET was observed when
chromatin was compacted either in regions of heterochromatin or
in cells undergoing mitosis46 (Fig. 5a). We carried out single-
molecule localization and tracking of PA-JF549-tagged H2B, both
with and without JF646-tagged H2B. By adding the PA-JF549
SNAP tag ligand in the presence of a ten-fold excess of JF646
SNAP tag ligand, the likelihood that PA-JF549-tagged H2B
molecules were in close proximity with a neighboring JF646-
tagged H2B was increased. As expected for molecules undergoing
FRET, we observed a decrease in the integrated fluorescence
signal of some of the PA-JF549-tagged H2B molecules (Fig. 5b),
which was also reflected by a modest decrease in the mean
localization precision from 11.9 to 13.3 nm (Supplementary
Fig. 4). In addition to a change in signal intensity, we also
observed a significant increase in the trajectory length of PA-
JF549-H2B in the presence of JF646 (Fig. 5c).

To identify PA-JF549-tagged H2B molecules undergoing FRET,
and thereby only track protein complexes, we filtered trajectories
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by their track length (Fig. 5c). There was a 10% likelihood of
trajectories being longer than 12 s in the presence of JF646, but
only a 1% likelihood in the absence of JF646. When we mapped
the trajectories longer than 12 s onto individual cells, we found
that the long tracks were mostly in cells with greater H2B density
such as those undergoing mitosis (Fig. 5d). In cells with lower
H2B density, long trajectories were localized to regions with a
higher relative density of chromatin (heterochromatin). Studying
these longer trajectories showed that some H2B molecules
underwent periods of confined diffusion followed by sudden
bursts of rapid motion. Our results are consistent with previous
imaging of H2B clusters47 but, as with the results for CHD4, more
work is required to understand the biological implications of
these movements.

Finally, from the observed reduction in intensity of PA-JF549-
tagged H2B molecules in the presence of JF646-tagged H2B, we
determined the FRET efficiency of individual molecules (Supple-
mentary Fig. 8). It is difficult to study FRET efficiency in the
presence of high levels of FRET because the molecules also have
low intensity. This precluded an analysis of mEos3.2–JF646 FRET
efficiency because the dimmer mEos3.2 offers a relatively smaller
dynamic range over which a reduction in intensity can be
measured before the molecule is too dim to be localized for
single-molecule imaging. However, when we carried out an
analysis of FRET efficiency for PA-JF549, using the average
intensity of a trajectory relative to that expected in the absence of
FRET (i.e., in cells without JF646), we observed three dominating
FRET states in most cells, suggesting three different levels of H2B
compaction. It was also clear that H2B/H2B FRET efficiency
increased in cells undergoing mitosis such that only the highest
FRET state could be observed in these cells (Supplementary
Fig. 8). Similar results have previously been reported using
FLIM46.

Discussion
We describe here a novel approach for tracking single proteins
and protein complexes in live cells for extended periods of time.
By placing an organic acceptor dye in close spatial proximity to a
PM fluorophore, we have developed novel single-molecule FRET
pairs that exploit the well-studied and useful characteristics of
mEos3.2 and PA-JF549. The design of these FRET pairs has also
allowed us to utilize existing tools (such as a triplet-state
quencher) to enhance the photostability of the solvent-
accessible JF646 acceptor dye, and thus impart changes to the
photostability of the donor PM fluorophores.

Although much is known about externally modifying the
photophysical properties of organic dye molecules for single-
molecule imaging30,31,48,49, there are currently few ways of
altering those of PM FPs, almost certainly due to the relative
inaccessibility of the chromophore in the interior of the β-barrel
of the protein50,51. Since most PM fluorophores are currently still
fluorescent proteins, our approach offers a way to positively
modify them while preserving their specific properties of photo-
activation/conversion. Here, we have demonstrated a novel
approach for increasing the track length and photon budget of
PM FPs. These improvements result from the selective control of
excited-state kinetics; when an electron in the PM FP is excited,
multiple kinetic pathways become active—i.e., fluorescence,
conversion into long/short dark states, and photobleaching50.
However, in the presence of FRET, energy transfer to the acceptor
fluorophore is favored. At this point, there are again multiple
pathways for return to the ground state. Previous studies
have shown that photobleaching of mEos3.2 mainly occurs
through a mechanism that is likely to involve the triplet state52.
We therefore anticipate that mEos3.2 photobleaching (in the

mEos3.2–JF646 FRET pair) is reduced by energy transfer from
the mEos3.2 excited state to JF646 via FRET, which thereby
reduces the probability of formation of the mEos3.2 triplet state.
Similar mechanisms have previously been suggested53. The
exposure of the acceptor to the solvent also means that the
FRET system can now be manipulated using approaches that
modify the properties of the acceptor. Here, we used Trolox to
quench the triplet state of JF64630, which in turn keeps the
FRET pathway active and thereby increases the photostability of
the PM donor. For mEos3.2, this resulted in a 7-fold increase in
on-state time, and a 4.7-fold increase in photon budget. Our
approach of using a solvent-accessible FRET acceptor dye to
positively modify the photophysical properties of the chromo-
phore within FPs should be useful for modifying the properties of
other PM FPs.

To demonstrate that our FRET approach has broad applic-
ability, we extended it to improve the photophysical properties of
the recently characterized photo-activatable dye PA-JF54917.
Although the photobleaching mechanism of PA-JF549 is less well
understood, we expect that similar mechanisms may operate.
There was less of a comparative improvement in the photon
budget of PA-JF549, but because PA-JF549 can emit more photons
in a given time period than mEos3.2, it is likely to be useful when
studying the dynamics of molecules that must be localized at high
precision or to determine FRET efficiencies.

Recent work has illustrated the power of sptPALM to study the
interactions of nuclear proteins and protein complexes with
chromatin4,7. In the presence of Trolox, we have shown that our
mEos3.2–JF646 and PA-JF549–JF646 FRET pairs can be used to
improve such studies by increasing the mEos3.2 and PA-JF549
trajectory lengths on both single proteins and protein complexes
in live mammalian cells. When tracking protein complexes a tag
needs to be added to each protein (as in previous FRET
approaches), but when tracking single proteins our approach uses
a larger tag than either mEos3.2 or HaloTag alone, which may not
always be suitable. Of course, our approach also leads to a
decrease in intensity of the PM fluorophore and it is therefore not
appropriate in situations where localization precision is key. In
these situations, using either the mEos3.2 or PA-JF549 dye alone
would be preferable. As in conventional sptPALM, where lower
excitation powers are often used to increase the trajectory length
at the expense of localization precision, our method trades-off
localization precision for a more extended trajectory length. For
example, when using the motion blurring experiments to either
estimate the time a protein binds to chromatin or to study its
motion on chromatin, a high localization precision is less
important as long as there is sufficient signal-to-noise for detec-
tion and tracking. Notably, however, in contrast to conventional
sptPALM where a doubling of trajectory length is achieved by
halving the power density, and hence intensity, of the molecule,
with FRET we observe a 7-fold increase in mEos3.2 on-state time
with a halving of its intensity as a result of altering the standard
photobleaching pathways of the PM donor.

Our approach now allows us to record longer trajectories to
detect rare transitions between constrained and rapid linear
motion and we observed such transitions for both bound CHD4
and histone H2B molecules in nucleosomes. Previous evidence
for directed movement of histone H2B involved reconstructing
the average positions of H2B clusters using a sliding window that
combined the localizations of several H2B molecules within a
cluster47, but here we are able to directly study single molecules.
In our current experiments, we have focused on studying rela-
tively stable chromatin binding, but future studies using a 3D
microscope will be able to take advantage of the longer track
lengths for studying transitions between bound and freely dif-
fusing molecules.
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We anticipate that our FRET pairs will prove particularly
useful for understanding the dynamics of single protein complex
molecules. Here, we studied the formation of specific protein
complexes in the nucleus and the cell cycle stages at which they
form. However, the approach may now be used to study how
dynamics or residence times of specific protein complexes differ
from those of the isolated protein or other complexes containing
the same protein. Although multi-color co-localization approa-
ches have been developed3,54, they are difficult to implement
where there is either a high density of the individual proteins or
other complexes containing the same proteins, as occurs with
CENP-A at centromeres in eukaryotic cell nuclei. Com-
plementation methods (utilizing a split version of mEos3.210) are
also adversely affected by densely packed environments because
the split proteins can themselves facilitate interactions between
the tagged proteins. More importantly, complementation
approaches do not provide a means to increase the track lengths
of protein complexes, one of the major appeals of our approach.
Finally, we envisage that imaging the acceptor fluorophore of
FRET pairs may prove useful as a biosensor in the detection of
protein–protein interactions using stochastic optical fluctuation
imaging9.

Methods
Protein structure analysis. Data from published crystal structures were analyzed
using the UCSF Chimera package55. The Chimera software was also used to
generate figures for this paper. A list of the protein structures analyzed are as
follows: mEos3.2 (PDB ID: 3P8U)56, HaloTag (PDB ID: 4KAA)57, SNAP tag (PDB
ID: 3KZZ)58, and the CENP-A nucleosome (PDB ID: 3AN2)44.

Expression of mEos3.2-HaloTag and HaloTag-SNAP-tag proteins. A mEos3.2-
HaloTag construct was cloned from plasmids containing mEos3.259 and HaloTag
(Promega), fused via a short linker (Leu-Glu-Gly-Ser), and inserted into an EcoRI/
HindIII digested pET30a expression vector using an In-Fusion HD cloning kit
(Clontech). A HaloTag-SNAP construct was cloned in the same way. Site-directed
mutagenesis of the mEos3.2-HaloTag vector was then carried out to generate the
fusion construct with a different linker length (ΔARRELEGSE).

His-tagged mEos3.2-HaloTag and HaloTag-SNAP constructs were expressed in
E. coli BL21(DE3)pLysS cells by growing a liter of cells from a 50-ml starter culture
to an OD600 nm of 0.7–1.0 in LB media containing 35 µg/ml kanamycin and 34 µg/
ml chloramphenicol before inducing expression using 1 mM IPTG (Melford
Laboratories Ltd) for 4 h at 25 °C. Cells were pelleted and stored at −20 °C. For
protein purification, cells were thawed rapidly at 37 °C and resuspended in three
volumes of lysis buffer (50 mM Hepes pH 7.5, 300 mM NaCl, 5% glycerol and
protease inhibitor cocktail (Roche)) per volume of pellet. The cell resuspension was
then sonicated for 13 min at 33% amplitude (5 s on and 10 s off) using a Sonic
Dismembrator (Model 505, Fisher Scientific), the cell debris was pelleted and the
protein lysate collected and filtered through a 0.45-µm filter.

The fusion proteins were first purified by nickel affinity chromatography. The
protein lysate was resuspended in 5 ml of 50% Ni-nitrilotriacetic acid (Ni-NTA)
bead slurry (Qiagen), which had been pre-equilibrated in buffer (50 mM NaH2PO4,
300 mM NaCl, pH 8.0), and was rotated overnight at 4 °C. The fusion protein was
purified using a 20-ml gravity column (Bio-Rad), washed in three column volumes
of wash buffer (50 mM NaH2PO4, 300 mM NaCl, 5 mM imidazole, pH 8.0) and
finally eluted into 10 ml of elution buffer (50 mM NaH2PO4, 1 M NaCl, 250 mM
imidazole, pH 8.0). Protein was then dialyzed (into 50 mM NaH2PO4, 1 M NaCl,
pH 8.0) to remove imidazole using a Vivaspin 500 with a molecular weight cutoff
(MWCO) of 5 kDa (Sartorius Stedim Biotech). The fusion protein was then further
purified by gel filtration in a buffer consisting of 50 mM NaH2PO4 and 1M NaCl
(75 mL Sephadex200 column, GE Healthcare). Mass spectrometry was carried out
to verify the mass of the protein (65096.8 Da) and amino acid analysis was used to
determine its concentration. The protein was stored in 500 µl aliquots of 1 mg/ml at
−80 °C and re-purified using size exclusion chromatography prior to dye labeling.
The fusion proteins (5–10 µM) were labeled with the HaloTag-dye or SNAP tag-
dye ligands by reacting them at an equi-molar ratio at room temperature for 1 h
before purifying using an Illustra Nap-5 gravity column (GE Healthcare). Labeling
was confirmed to be close to 100% by mass spectrometry.

The HaloTag or SNAP-tag PA-JF549 and JF646 dyes were a kind gift from Luke
D. Lavis (HHMI)60.

Bulk fluorescence spectra characterization. Bulk fluorescence spectra were
obtained with mEos3.2 or PA-JF549 with or without the JF646 dye (15–25 µM) using
a fluorescence spectrophotometer (Cary Eclipse). The sample was placed in a
quartz cuvette (Hellma Analytics, 3×3 mm). To determine the actual FRET

efficiency of the mEos3.2-HaloTag proteins with the different dyes, emission
spectra were collected after exciting at 532 nm and detecting fluorescence over a
range of wavelengths (550–800 nm). FRET efficiency (E) was calculated using the
standard equation (Eq. 1):

E ¼ 1� ID′
ID

;

where ID is the fluorescence intensity of the donor fluorophore alone (mEos3.2)
and ID′is the fluorescence intensity of the donor in the presence of the acceptor
(mEos3.2–JF646).

The distance r between the donor mEos3.2 or PA-JF549 and acceptor JF646
fluorophores was calculated using the equation for FRET efficiency (E) given
below61 (Eq. 2):

E ¼ 1

1þ ðr=R0Þ6
:

R0 was calculated to be 6.01 nm for mEos3.2–JF646 and 5.81 nm for PAJF549–JF646
from the following equation (Eq. 3):

R6
0 ¼

9ln10
128π5NA

κ2QD

n4
J;

where NA is Avogadro’s number, κ2 is the dipole orientation factor (23 for freely
rotating donor and acceptor fluorophores), QDis the quantum yield of the donor
mEos3.2 or PA-JF549 fluorophores (0.55 and 0.88, respectively), n is the refractive
index of the medium (1.33), and J is the spectral overlap integral between the
donors mEos3.2 or PA-JF549 and acceptor JF646 spectra calculated over different
wavelengths λ using the extinction coefficient ϵA of the acceptor JF646 dye (max
value of 152,000M−1 cm−1) (Eq. 4):

J ¼
Z

f DðλÞϵAðλÞλ4dλ:

Fluorescence lifetime imaging. Time-Correlated Single Photon Counting
(TCSPC) measurements were performed on a Leica SP8 STED 3× system addi-
tionally equipped with Single Molecule Detection (SMD) software (SymPhoTime
version 5.3.2.2) and hardware (PicoHarp 300; PHR 800) from PicoQuant. Fluor-
escence excitation in this system was with a pulsed (80MHz) tuneable white light
laser (WLL; Super-K; NKT Photonics) while fluorescence detection was with an
internal hybrid single-molecule detector (Leica HyD SMD). Donor excitation was
performed at a wavelength of 561 nm with a detection band of 570-620 nm and
using a 20 × 0.75 NA water-immersion objective (HC PL APO CS2) with a zoom
factor of 1× and a scan speed of 400 Hz, and with a frame accumulation of 25
images. Photo-activation/conversion was achieved using the 405 nm laser for 1 min
at activation powers of 1.75 kW/cm2 at the focal plane of the objective prior to the
lifetime measurement. An increase in donor emission occurred post-activation/
conversion as expected. FLIM measurements were performed in triplicate pre- and
post-activation/conversion on purified protein in 50 mM NaH2PO4, 1 M NaCl, pH
8.0 in 8-well glass bottom μ-Slides (iBidi). Protein was attached to the coverslip by
incubating with poly-L-lysine (Sigma Aldrich) for 30 min and then with 5–10 µM
protein for 10 min. Buffer was replaced to remove floating protein and then
imaging of the attached protein carried out by focusing on the coverslip. Attach-
ment was validated by imaging to ensure that photo-converted molecules did not
diffuse away over time.

Post-activation/conversion TCSPC decay data were analyzed using
SymPhoTime software (version 2.1) from Picoquant. In this analysis, we analyzed
the tail of the cumulative TCSPC decay data from all pixels in the image with a
minimum number of 50 photons and with a raw time range of 1.5 ns ≤ τ ≤ 7.0 ns.
The decay curve was fit to a sum of exponential tail decay curves defined by (Eq. 5):

IðtÞ ¼ IBkgdþ
X
i

αie
�t=τi

where IBkgd is an intensity offset for the background counts, and αi and τ i are the
amplitude and lifetime values for the ith exponential where we compared the fits
for 1 ≤ i ≤ 3 (i.e., mono-, bi-, and tri-exponential fits). We subsequently determined
the relative likelihood for each model for each dataset by use of the Bayesian
Information Criterion (BIC)62,63. In short, using this approach, we calculated the
BIC for each model from (Eq. 6)

BIC ¼ ln½n�ðpþ 1Þ þ n ln
2πRSS

n

� �
þ 1

� �
;

where n is the number of data points, p is the number of free parameters for the fit,
and RSS is the residual sum of squares of the fit. We subsequently determined the
relative likelihood for each model for each dataset from (Equation 7):

Relative Likelihood ¼ Exp
BICMinðmodelÞ�BICðmodelÞ

2

� �
:
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The data for both mEos3.2 with and without JF646 and PA-JF549 with and without
JF646 can be described by two lifetimes. We determined the FRET efficiency (E)
using the average fluorescence lifetimes (Eq. 8):

E ¼ 1� τDA
τD

;

where τD is the amplitude weighted average fluorescence lifetime of the donor
fluorophore alone (mEos3.2 or PA-JF549) and where τDA is the amplitude weighted
average fluorescence lifetime of the donor in the presence of the acceptor
(mEos3.2–JF646 or PA-JF549–JF646).

Microscope setup. Two bespoke microscope setups were used in this work both of
which are described below. A table detailing specific parameters used for each
experiment can be found in the supplementary information.

Microscope 1: An IX71 Olympus inverted microscope was used with circularly
polarized laser beams aligned and focused at the back aperture of an Olympus 1.49
NA 60× oil objective (Plan Apochromat 60× NA 1.49, Olympus APON
60XOTIRF). Continuous wavelength diode laser light sources used include a 561
nm (Cobolt, Jive 200, 200 mW) and a 405-nm laser (Oxxius, LaserBoxx 405, 100
mW). Total internal reflection was achieved by aligning the laser off axis such that
the emergent beam at the sample interface was near-collimated and incident at an
angle greater than the critical angle θc ~ 67° for a glass/water interface for TIRF
imaging and slightly less than θc for oblique-angle illumination imaging. This
generated a ~50-μm diameter excitation footprint. For TIRF, the power density at
the coverslip for the 561 nm laser was calculated to be approximately 0.4 kW/cm2

measured with the laser beam in epi-illumination. For oblique-angle illumination,
the power of the collimated beams at the back aperture of the microscope was 10
kW/cm2 and 10–100W/cm2 for the 561 nm and 405 nm laser beams, respectively.
The lasers were reflected by dichroic mirrors, which also separated collected
fluorescence emission from the TIR beam (Semrock, Di01- R405/488/561/635).
The fluorescence emission was collected through the same objective and then
further filtered using a combination of long-pass and band-pass filters (BLP01-
561R and FF01-587/35 for 561 nm excitation). The emission signal was expanded
through a 2.5× achromatic beam expander (Olympus, PE 2.5× 125) and finally
projected onto an EMCCD (Photometrics, Evolve 512) with an electron
multiplication gain of 250 ADU/photon operating in a frame transfer mode. The
instrument was automated using the open-source software micro-manager (https://
www.micro-manager.org) and the data displayed using the ImageJ software64,65.

Microscope 2: An IX73 Olympus inverted microscope was used with circularly
polarized laser beams aligned and focused at the back aperture of an Olympus 1.40
NA 100× oil objective (Universal Plan Super Apochromat, 100×, NA 1.40,
UPLSAPO100XO/1.4). Continuous wavelength diode laser light sources used
include a 641-nm (Coherent, CUBE 640–100 C, 100 mW), a 561-nm (Cobolt, Jive
200, 200 mW), and a 405-nm laser (Stradus, Toptica, 405–100, 100 mW). TIRF and
oblique-angle illumination imaging were performed with identical dichroic mirrors
and emission filters. The emission signal was projected onto an EMCCD
(Photometrics, Evolve 512 Delta) with an electron multiplication gain of 250 ADU/
photon operating in a frame transfer mode. The instrument was automated using
the open-source software micro-manager (https://www.micro-manager.org) and
the data displayed using the ImageJ software64,65.

TIRF characterization of mEos3.2-HaloTag-dyes. Borosilicate glass coverslips
(VWR Int, 22 × 22 mm) were cleaned to remove any fluorescent residues in an
argon plasma cleaner (Harrick plasma) for 1 h. Frame-seal incubation chambers
(Bio-rad) were attached to the coverslip and 50 µl of 0.1% poly-L-lysine (Sigma
Aldrich) added to the center of the chamber for 30 min; 50 µl of 10 nM protein was
then added to the poly-L-lysine-coated coverslip for 10–15 min. The sample was
washed three times with 50 µl of filtered (0.2 µm syringe filter, Whatman,
6780–1302) MilliQ water and fluorescence images collected as movies of 500
images at 500 ms exposures. Photo-conversion was achieved as a single pulse in the
first frame of each movie.

Analysis of photophysical parameters. The experiment was replicated in the
laboratory twice on Microscope 1 and twice on Microscope 2. Although all
experiments showed similar results, we chose to analyze datasets from Microscope
1 recorded on the same day to reduce systematic errors arising from subtly dif-
ferent microscope alignments. We analyzed movies collected on the same day from
Microscope 1 in which we tracked 455 and 454 single mEos3.2 and mEos3.2–JF646
molecules without Trolox, 990 and 1568 single mEos3.2 and mEos3.2–JF646
molecules with 2 mM Trolox. Given that 20% of single mEos3.2–JF646 molecules
were in the on-state considerably longer than single mEos3.2 molecules, this is an
appropriate sample size to demonstrate the change we observe. All histograms were
generated using the Origin package (OriginLab, Northampton, MA).

A brief description of the software used for data analysis is described here. A
maximum-intensity projection of the first two images after photo-conversion was
used as the basis for detecting single molecules. A Laplacian-of-gaussian filter was
applied to the projection, and local maxima found. Scripts for this are available at
https://github.com/TheLaueLab/blob-detection, and for all remaining steps at
https://github.com/TheLaueLab/blink-analysis. A region centered on each peak

with a threshold value of >600 ADU was extracted from each image. This region
consisted of a 7-by-7 pixel signal region, and a surrounding 2-pixel wide
background region. Individual frames were simplified to 1D traces by subtracting
the mean per-frame background from the corresponding frame, and then taking
the mean of all pixels in that frame. A hidden Markov model (using the hmmlearn
python package from https://github.com/hmmlearn/hmmlearn) was set up with
four states: two on-states, one off-state, and one bleached state. Transitions were
equally likely between all on and off states, and 1/10th as likely from any on state to
the bleached state (transitioning away from the bleached state was impossible). The
states were initialized with a mean of 300 ADU for the on-states and 0 for the off
and bleached states, with a prior weight of 1e3 assigned to the state means. The
model was trained on all traces from a particular fluorophore, and the same trained
model was used to categorize all traces.

The total on-state time of each molecule was calculated by counting the number
of images in an on-state. A blink was defined as a run of consecutive on images; the
mean run length multiplied by the exposure time is the on-state time, and the
number of runs detected for a particular molecule is the number of switching
events. The off-rate was the number of blinks divided by the total on-state time,
and the on-rate was the number of blinks divided by the total off-state time
(excluding the last run of off-frames if it continued to the end of the video).

Finally, the total photon emission was calculated for each on image, subtracting
the mean of the background region from the signal region. In order to calculate the
number of emitted photons per molecule, the total camera gain in units of analog-
to-digital units (ADU)/photon was determined by (Eq. 9)

Gtotal ¼
1

Gcamera
´GEM ´QE;

where Gcamera is the signal amplification inherent in the EMCCD in units of ADU/
electron, GEM is the ratio of the charge on the camera with and without gain, and
QE is the quantum efficiency—the ability of the camera to produce a charge as a
result of an incident photon with units of electrons/photon. Gtotal is 33.1 ADU/
photon and 35.7 ADU/photon for Microscopes 1 and 2, respectively.

The measured signal (I) in units of electrons was converted to emitted photons
(n) as follows (Eq. 10):

n ¼ I
Gtotal ´TE

:

TE is defined as the transmission efficiency of all optical components in the
emission path of the instrument and can be described by (Eq. 11)

TE ¼ ηcoll ´T ´ ηEMCCD;

where ηcoll is the collection efficiency of the objective, T is the transmission of the
internal optical components of the microscope, and ηEMCCD is the quantum
efficiency of the EMCCD66.

Mammalian cell culture and cell line generation. ES cells were cultured in
standard serum and mouse leukemia inhibitory factor (mLIF) conditions: Glasgow
minimum essential medium (Sigma-Aldrich G5154) containing 100 mM 2-
mercaptoethanol (Life tech, cat. 21985023), 1× Minimum Essential Media, non-
essential amino acids (Sigma-Aldrich, M7145), 2 mM L-glutamine (Life tech, cat.
25030024), 1 mM sodium pyruvate (Sigma-Aldrich, S8636-100ML), 10% fetal
bovine serum (HyClone FBS, Lot nr SZB20006, GE Healthcare Austria
SV30180.03), and 10 ng/ml mLIF (provided by the Biochemistry Department,
University of Cambridge). They were passaged every 2 days by washing in PBS
(Sigma-Aldrich, D8537), adding Trypsin-EDTA 0.25% (Life tech, cat. 25200072) to
detach the cells, and then washing in media before re-plating in fresh media. To
help the cells attach to the surface, plates were incubated for 15 min at room
temperature in PBS containing 0.1% gelatin (Sigma Aldrich, G1890). The back-
ground E14tg2a ES cell lines (available from Sigma Aldrich, 08021401) were
characterized by qPCR, RNA-seq, ChIP-seq, and potency assays, and they were
routinely screened for mycoplasma contamination and tested negative.

ES cells expressing mouse CHD4 tagged at the C-terminus with the mEos3.2-
HaloTag were generated as by CRISPR/Cas9 based knock-in of a cassette containing
mEos3.2-HaloTag and a puromycin selection gene into one CHD4 allele of the ES
cells37. The puromycin cassette was then removed using Dre recombinase to
generate the CHD4 allele with a C-terminal mEos3.2-HaloTag fusion. Since
knockout of CHD4 is lethal, we used cell viability assays to verify that the function
of the tagged CHD4 was unaffected. The E14tg2a ES cell line67 expressing mEos3.2-
tagged CENP-A has previously been described59 but briefly, was generated by
transfecting a plasmid expressing the tagged protein, followed by selection in 500
µg/ml geneticin (Life tech, cat. 10131019). After 2 weeks of geneticin selection, cells
were sorted using a MoFlo flow sorter (Beckman Coulter) to ensure that they were
labeled with the mEos3.2 fluorophore (excitation at 488 nm, emission at 515 nm).
To test for single-molecule FRET between mEos3.2 or PA-JF549 and JF646 on
different proteins, vectors expressing HaloTag-tagged and SNAP-tagged CENP-A
were generated by inserting the HaloTag or SNAP tag sequence into the NcoI/XhoI
site of the mEos3.2-tagged CENP-A vector described above59. The HaloTag protein
alone was also expressed in the same vector as a control. The vector expressing
SNAP-tagged histone H2B has previously been described45.
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Mammalian live-cell and fixed cell single-molecule imaging. ES cells expressing
mEos3.2-HaloTag-tagged CHD4 were passaged 2 days before imaging onto 35 mm
glass bottom dishes No 1.0 (MatTek Corporation P35G-1.0-14-C Case) in phenol
red-free serum and mLIF conditions. Just before imaging, if necessary, cells were
labeled with 5 µM HaloTag-JF646 ligand for at least 15 min, followed by two washes
in PBS and a 30-min incubation at 37 °C in media, before imaging the cells in fresh
phenol red-free serum and LIF conditions containing 5 mM Trolox. In vivo
fluorescence images were collected as movies of 10,000 frames at 500 ms exposure.
Continuous photo-conversion was achieved using the 405 nm laser at low activa-
tion powers of ~10W/cm2.

For protein complex tracking, ES cells expressing SNAP-tagged histone H2B or
mEos3.2-, HaloTag- and SNAP-tagged CENP-A were generated by transfection of
the appropriate expression vectors. Four microliters of Lipofectamine® 2000 (Life
tech, cat. 11668027), incubated in 100 µl of OPTI-MEM® I Reduced Serum
Medium (Thermo Fisher Scientific, cat. 31985070) for 5 min, was added to
approximately 2–3 µg of expression vectors, also incubated in 100 µl of OPTI-
MEM® for 5 min. The mixture was then incubated further for 15 min before adding
to ES cells that had been passaged at the same time onto the 35 mm glass bottom
dishes. After 2 days, cells were labeled using the appropriate HaloTag ligands as
described above for CHD4. SNAP tag ligands were also labeled similarly but with
an initial incubation of 30 min prior to washes.

FRET was optimized by ensuring an excess of acceptor dye surrounding the
donor mEos3.2 or PA-JF549. For FRET between mEos3.2-tagged CENP-A and
JF646-tagged CENP-A, this was carried out by transfecting 0.4 µg of mEos3.2-
tagged CENP-A or SNAP-tagged CENP-A alongside 2 µg of HaloTag-tagged
CENP-A. For FRET between PA-JF549-tagged and JF646-tagged CENP-A or PA-
JF549-tagged and JF646-tagged H2B, this was achieved by labeling cells post-
transfection with 0.2 µM SNAP-tag PA-JF549 ligand and 2 µM SNAP-tag JF646
ligand. Finally, for CENP-A/H2B FRET, 1 µg of mEos3.2-tagged CENP-A was
transfected alongside 1 µg of SNAP-tagged CENP-A and labeled with 5 µM SNAP-
tag JF646 ligand. Cells expressing the mEos3.2-CENPA, PA-JF549-CENP-A, or PA-
JF549-H2B construct were identified by their ability to photo-activate single
molecules using the 405 nm laser and cells labeled with the HaloTag-JF646 or SNAP
tag JF646 ligands by their localization at centromeric foci or to the nucleus (for
HaloTag-CENP-A or SNAP-tagged H2B, respectively), as determined by imaging
using the 641 nm laser (1 kW/cm2). Fixed and live cell fluorescence images were
collected as movies of 3000 to 5000 frames at 500 ms exposure. Photo-conversion
was achieved using 100 ms exposures of the 405 nm laser every 6 s at low activation
powers of ~10W/cm2. For cell fixation, cells were washed with PBS, fixed at room
temperature in PBS containing 4% formaldehyde for 15 min, washed again in PBS,
and then resuspended in PBS containing 5 mM Trolox.

Mammalian cell image processing and analysis. Live-cell and fixed-cell single-
molecule movies were analyzed using Rapidstorm software that determines single-
molecule localizations from PALM movies68, after using Image’s rolling ball
background correction with a radius of 5 pixels. Only fluorescent puncta less than 5
or 3 pixels wide (for Microscopes 1 and 2, respectively) and with a fixed global
threshold above 25,000 were analyzed. To track single CHD4, CENP-A, or H2B
molecules, we used custom code to connect single-molecule localizations and
extract the length of their trajectories (script can be found at https://github.com/
TheLaueLab/trajectory-analysis). Fluorescent puncta were considered to be the
same molecule if they were within 100 nm between frames because we do not
expect to see diffusion coefficients greater than this for bound H2B/CENP-A/
CHD4. Molecules were still connected if they were not detected for 1 frame to
reduce the likelihood of molecules dropping briefly below the signal-to-noise
threshold. Trajectories smaller than 3 localizations are discarded to reduce the
likelihood of detecting noise. The average intensity of these trajectories was also
extracted for FRET efficiency calculations—we ignore the first and last frames
because the molecule may not have been fluorescing throughout these frames.
Single-molecule images shown in Fig. 4 were generated using Peak Fit such that
localizations represent the precision at which they were localized69. Localization
precision was calculated after the Rapidstorm analysis by fitting a histogram of
nearest neighbor pairwise distances70.

For live-cell tracking of single bound CHD4 molecules, the experiment was
replicated twice on Microscope 1 and once on Microscope 2. We again chose to
analyze datasets from Microscope 1 recorded on the same day to reduce systematic
errors arising from subtly different microscope alignments. We collected 772 and
539 single-molecule trajectories from single-molecule movies of mEos3.2- and
mEos3.2–JF646-tagged CHD4 molecules, respectively (typically two cells were
studied in each movie). Given that 10–30% of single mEos3.2–JF646 molecules were
in the on-state for longer than single mEos3.2 molecules, this is an appropriate
sample size to demonstrate the change we observe.

For the CENP-A protein FRET proximity analysis, more trajectories were
collected because relatively few mEos3.2-tagged molecules were expected to be next
to JF646-tagged molecules. The experiment was replicated once on Microscope 1
and twice on Microscope 2, and we analyzed one of the datasets from Microscope 2
in which we collected 17,953, 17,288, and 21,018 trajectories from single-molecule
movies of mEos3.2-CENP-A, mEos3.2-CENP-A/JF646-CENPA, and mEos3.2-
CENP-A/JF646-H2B, respectively (typically four cells were studied in each movie).
Given that ~0.1–1% of mEos3.2 molecules in the presence of JF646-tagged

molecules were in the on-state for longer than single mEos3.2 molecules, this is an
appropriate sample size to demonstrate the change we observe.

For H2B FRET proximity analysis, the experiment was replicated twice on
Microscope 2, and we analyzed one of the datasets in which we collected 2114
and 3970 trajectories from single-molecule movies of PA-JF549-H2B and PA-JF549-
H2b/JF646-H2B, respectively (typically four cells were studied in each movie).
Given that 10% of PA-JF549 molecules in the presence of JF646-tagged molecules
were in the on-state for longer than 1% of single PA-JF549 molecules, this is an
appropriate sample size to demonstrate the change we observe. Trajectories longer
than 1% of single PA-JF549 molecules were identified and colored in blue. FRET
efficiency was calculated using the average intensity of molecules labeled with
PA-JF549 alone. Density maps of 2-pixels (312 nm) wide were generated to show
the number of molecules found within the region and whether the average track
length was below (yellow) or above 12 s (blue), a 1% confidence interval set such
that there is a 1% likelihood of PA-JF549-tagged molecules having a track length
longer than 12 s.

Data availability. The datasets generated and analyzed during the current study
are available from the authors on request.

Code availability. The software used for in vitro photophysical analysis and live-
cell tracking can be found at https://github.com/TheLaueLab/blink-analysis and
https://github.com/TheLaueLab/trajectory-analysis, respectively. Other softwares
used include the open-source software micro-manager (https://www.micro-
manager.org), ImageJ64,65, Rapidstorm68, and PeakFit69.
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