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We present numerical simulations of diffusio-osmotic flow, i.e. the fluid flow generated by a
concentration gradient along a solid-fluid interface. In our study, we compare a number of distinct
approaches that have been proposed for computing such flows and compare them with a reference
calculation based on direct, non-equilibrium Molecular Dynamics simulations. As alternatives, we
consider schemes that compute diffusio-osmotic flow from the gradient of the chemical potentials of
the constituent species and from the gradient of the component of the pressure tensor parallel to
the interface. We find that the approach based on treating chemical potential gradients as external
forces acting on various species agrees with the direct simulations, thereby supporting the approach
of Marbach et al. (J Chem Phys 146, 194701 (2017)). In contrast, an approach based on computing
the gradients of the microscopic pressure tensor does not reproduce the direct non-equilibrium
results.

INTRODUCTION

Flow in macroscopic channels is driven by pressure
gradients or body forces, such as gravity. In contrast,
flow in nano-structured materials (e.g. nano-channels),
is usually dominated by phoretic effects, where transport
is caused by thermodynamic gradients acting near inter-
faces. The key point to note is that the gradients respon-
sible for phoretic flow (e.g. electrical fields, concentration
gradients or thermal gradients), cannot cause bulk flow:
they only act in narrow interfacial layers where the fluid
experiences surface-specific interactions [1–3]. In view
of the increasing importance of micro- and nano-fluidic
devices and self-propelling particles (see, e.g. [4–16]) it
becomes important to be able to predict the strength
of phoretic flow phenomena based on knowledge of the
microscopic interactions between the atoms or molecules
in the system. In the present paper, we focus on the
numerical prediction of diffusio-osmosis, where a chem-
ical potential gradient along a solid surface drives the
flow [2, 17–23]. Traditionally, such flows have been de-
scribed using a continuum picture, where the material
properties were characterised by (local) thermodynamic
quantities and the flow was computed, assuming that the
(Navier-)Stokes equation holds near the surface [1, 8, 24].
Such a macroscopic perspective is appropriate in systems
where the fluid-interface interaction acts over a range
that is much larger than a typical molecular size, as is the
case for electro-osmosis of dilute electrolytes. However,
as most inter-molecular forces have a range comparable
to a molecular diameter, the continuum picture is not
expected to hold for most diffusio-osmotic phenomena.

In what follows, we focus on a situation where the
surface-fluid interaction is short-ranged. Specifically, we
consider MD simulations of diffusio-osmosis of a neutral

solvent containing a neutral solute, near a crystalline
solid surface that is, on average, flat.

Thus, to determine the flow velocity, it is critical to
accurately calculate the surface force induced by the con-
centration gradient. The flow can then be obtained from
MD simulations by applying the force to fluid particles.
In order to validate our method, we developed an in-
genious non-equilibrium simulation technique to directly
compute the flow.

THERMODYNAMIC GRADIENTS

We first consider an atomically flat wall at z(x, y) ≤ 0,
in contact with a fluid mixture in the region z > 0. The
fluid contains a majority component (A: ‘solvent’) and a
minority component (B: ‘solute’). The fluid, as a whole,
is maintained at constant bulk pressure and constant
temperature. When a concentration gradient in B (and,
via the Gibbs-Duhem relation, also in A) is imposed on
the fluid along x, flow occurs due to a pressure gradi-
ent at the interface. As the concentration gradients in A
and B are not independent, we will focus on the phoretic
effect of the concentration gradient of B. It should be
borne in mind that this effect, includes the effect of the
concentration gradient in A. The most intuitive (but, as
we will show, incorrect) method to obtain the force act-
ing on fluid particles near an interface is to calculate the
force due to the pressure gradient acting on a small vol-
ume element, and then obtain the force per particle by
dividing the force per volume by the local number den-
sity. The transverse component of the pressure tensor at
z (pxx(z)) depends on x only through its dependence on
the spatial variation of the bulk concentration (ρB) or,
equivalently, of the chemical potential (µB) of the species
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subject to a concentration gradient:

fV (z) = −∂p
xx(z)

∂ρB

∂ρB
∂x

. (1)

In the case of a sufficiently small concentration gradi-
ent, we can assume local thermodynamic equilibrium
(LTE) – deviations from LTE are expected to be of higher
than linear order in the concentration gradient. Thus,
rather than computing the local pressure tensor in a non-
equilibrium system, we can compute it in equilibrium as a
function of concentration. The pressure gradient is then
computed using

fV (z) = −∂p
xx(z)

∂ρB

∂ρB
∂x

≈ −
pxxρB+∆ρB

(z)− pxxρB−∆ρB
(z)

2∆ρB
· ∇ρB , (2)

where ∆ρB is a small change in the bulk concentration
of species B. Note that we will always assume that the
bulk pressure is constant.

The local pressure tensor at position r is defined as the
ensemble average of the negative of the stress tensor at
r [25–27]. It contains two terms: a kinetic term, arising
from the change in momentum due to particles crossing
the boundaries of an elemental volume at r, and a con-
figurational term, related to the change in momentum
due to intermolecular interactions between the particles.
There is, however, a problem: for inhomogeneous systems
(e.g. fluid near a solid wall), the configurational compo-
nent of the pressure tensor cannot be defined uniquely.
For the computation of surface tension, this ambiguity
has no effect [27, 28], but for the computation of phoretic
flow, the problem does not go away.

In the present work, we explore the predicted phoretic
flow for two different definitions of the local pressure
tensor and use these definitions to compute the trans-
verse pressure (pxx) as a function of z in a series of
slabs parallel to the wall [28]. We employed both the
Irving-Kirkwood definition, in which an intermolecular
force contributes to the local pressure in every slab be-
tween two molecules [26, 29, 30], and the Virial defini-
tion in which an intermolecular force contributes to the
local pressure in the slab(s) where the two molecules are
located [31, 32] (see Ref. [28] for the details of the im-
plementations). As we are interested in computing the
diffusio-osmotic forces on each individual molecule, we
expect the virial expression to yield the real forces where
molecules on average are located; the Irving-Kirkwood
definition [26], on the other hand, would give the forces
acting across artificial planes separating the molecules.
Yet, it should be noted that the normal component of
the virial pressure (pzz) fails to reflect mechanical force
balance normal to the interface and is therefore incor-
rect [28, 32], whereas the Kirkwood normal pressure does

satisfy force balance. In addition, the formulas of Ha-
rasima [33] and the Method of Planes (MOP) [34] are of-
ten used to compute the local pressure tensor. In systems
with planar geometry, the Harasima expression gives the
same value for the normal component (pzz) as the Irving-
Kirkwood definition [35] and the same value for the trans-
verse component (pxx) as the virial expression [36]. The
MOP expression does not contain the transverse compo-
nent (pxx) [34, 35], and is mathematically equivalent to
the Irving-Kirkwood definition for other components [32].

Alternatively, we can use local thermodynamics to
compute the force driving flow. Consider an n-
component fluid mixture at constant temperature, T .
The Gibbs-Duhem relation can be written as V dp =∑n
i=1Nidµi where Ni is the number of particles of species

i in volume V , p the pressure and µi the chemical poten-
tial of species i. Let us denote the number density of
species i in the mixture by ρi. Then, dp =

∑n
i=1 ρidµi.

A concentration gradient of component i along x will lead
to a chemical potential gradient ∂µi/∂x. As the pressure
remains constant in the bulk, Gibbs-Duhem relation re-
duces to 0 =

∑n
i=1 ρ

bulk
i (x) (∂µi/∂x). At a position z

near the interface, a pressure gradient remains, giving a
force per unit volume

fV (z) =

(
−∂p(z, x)

∂x

)
=

n∑
i=1

(
ρi(z, x)− ρbulk

i (x)
)(
−∂µi
∂x

)
. (3)

We can interpret (−∂µi/∂x) as the force per-particle act-
ing on the particles of species i. This expression is conve-
nient, because the imposed chemical potential gradients
are constant throughout the system. In the bulk, the
composition is such that the forces balance (the bulk
pressure equilibrates rapidly). Upon approaching the
wall, the concentration of different components changes,
leading to non-zero net forces. In other words, particles
of a given species experience the same force regardless
of their distance from the interface. The force acting on
species i is then

fi =

(
−∂µ

bulk
i

∂x

)
=

(
−∂µ

bulk
i

∂ρi

)
P

· ∇ρi. (4)

We now have two approaches (Eq. 2 and 3) for computing
the force driving diffusio-osmotic flow. Eq. 2 is a mechan-
ical expression while Eq. 3 is thermodynamic. Of course,
in steady state, these forces are exactly balanced by the
force due to the gradient in the shear stress in the mov-
ing fluid. To test which, if either, of these microscopic
expressions is correct, we performed MD simulations on
the simple model system mentioned above.
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FIG. 1. (a) Simulation box used to compute the force and
flow profiles via the forces obtained from Eq. 2 and Eq. 4.
(b) Simulation box used in the direct non-equilibrium MD
simulations with explicitly imposed concentration gradients.
The blue particles represent the solvent (A), the green par-
ticles represent the solute (B), the red and yellow particles
represent the solid particles in the top wall, and the black
and silver particles represent the solid particles in the bottom
wall.

MOLECULAR DYNAMICS SIMULATIONS

We performed MD simulations of a fluid mixture com-
posed of solvent (A) + solute (B) particles, confined be-
tween two parallel solid walls (Fig. 1). All particles have
the same molecular diameter σ. In what follows, we use
σ as our unit of length. Interactions between these parti-
cles are given by a Lennard-Jones potential truncated
and shifted at 4σ, Uαβ(r) = 4εαβ

[
(σ/r)12 − (σ/r)6

]
(α, β ∈ {A,B, top,bottom}), with ε interaction energy.
To narrow our exploration, we focused on the ideal solu-
tion composed of identical solvent and solute particles in
the bulk, but different values of ε with the bottom wall.
We chose εAA = εBB = εAB = εA,top = εB,top ≡ 1.0ε and
εB,bottom = 2εA,bottom = 1.1ε. Thus, the pressure differ-
ence only appears in the fluid near the bottom wall when
a concentration gradient is imposed. In the remainder of
this paper, we use ε as our unit of energy and the mass
m of the fluid particles as our unit of mass.

All simulations were carried out using the LAMMPS
package [37] in an isothermal, isobaric (NP zzT ) ensem-
ble. The top wall was used as a barostat and was other-
wise free to move in the horizontal and vertical direction.
A constant external force along z was exerted on the top
wall to maintain the bulk pressure at a value pex = 0.012.
Periodic boundary conditions were imposed in the x and
y directions. The solid walls were composed of solid par-
ticles placed on a FCC lattice with lattice spacing of 1.64
and each particle was connected to its nearest neighbours
via stiff harmonic bonds with spring constants 2500ε/σ2

equilibrium length 1.64/
√

2σ. During the simulations,
the layer of solid particles in the bottom wall furthest
removed from the interface was rigidly anchored. The
velocity-Verlet algorithm with a time step of 0.001 was
used to integrate the equations of motion, and a Nosé-

FIG. 2. (a) The solute mole fraction profile along z from an
equilibrium simulation at ρB = 0.04. (b) The bulk concen-
tration profiles in the non-equilibrium simulations. (c) The
average density profiles in the diffusio-osmosis region in the
direct non-equilibrium simulation at ∇ρB = 0.0025, and the
density profiles from the equilibrium simulation at ρB = 0.02.

Hoover thermostat with a time constant of 0.1 was used
to maintain the temperature at T = 0.846. The ther-
mostat acted on the peculiar velocities, i.e. the particle
velocities minus the local streaming velocity. All simu-
lations were run for 2 × 108 − 4 × 108 steps to obtain
sufficient statistics.

The calculation of ∂pxx(z)/∂ρB required several equi-
librium simulations at different uniform bulk concentra-
tions. These simulations could be carried out in a rel-
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atively small simulation box as shown in Figure 1(a).
The box dimensions were Lx = 16.44, Ly = 9.86, and
〈Lz〉 = 29.7 (Lz fluctuates, and depends on the solute
concentration). The system contained 2640 fluid parti-
cles. To compute the composition-dependence of pxx(z),
we performed simulations where we varied the concen-
tration of the solute B, while keeping the total num-
ber of particles fixed. From the numerical estimate of
∂pxx(z)/∂ρB , we computed the corresponding force us-
ing Eq. 2 with ρB = 0.02, ∆ρB = 0.01, and various
∇ρB . We verified that our estimate of the pressure gra-
dient did not depend on the size of ∆ρB . Subsequently,
we converted the force per unit volume to a force per
particle, by dividing by the total number density profile
ρ(z). These per-particle forces were then applied in a
non-equilibrium simulation of the fluid with solute den-
sity ρB to determine the flow profile for a given ∇ρB
[Fig. 1(a)]. Similarly, starting from Eq. 4, we can com-
pute the forces that would result from the gradient of
the chemical potentials. These per-particle forces were
applied to the solute and solvent particles.

To validate our approach, we performed direct non-
equilibrium simulations where a concentration gradient
was explicitly imposed. The boundary driven setup with
two gradients of opposite sign and equivalent magnitude,
which is often employed in non-equilibrium simulations
of concentration and thermal gradients [38, 39], is not
suitable here because the diffusio-osmotic flow in one di-
rection will be canceled by flow in the opposite direction.
In order to obtain a steady flow that can be compared
with that from simulations in which the surface forces
are applied, we developed a new method. Figure 1(b)
shows the simulation box in which the fluid mixture has
a constant bulk concentration gradient along x. Direct
non-equilibrium simulations were carried out to measure
the flow profile at different values of∇ρB . In this case, we
employed boxes that contain several regions: two source
regions with the width of 4σ, a diffusio-osmosis region
with various widths, and a transition region of width
∼ 8σ between the two source regions. During the simula-
tions, every 500 steps, the identities of the fluid particles
in these source regions were reset to maintain constant
concentrations and a steady gradient along x. In the low
concentration source region, ρB = 0 so that all fluid par-
ticles were reset to the solvent type. In the high concen-
tration source region, ρB = 0.04. As the concentration
varies only close to the wall, the fraction of selected par-
ticles reset to the solute type in each slab parallel to the
wall is equal to the local solute mole fraction calculated
via an equilibrium simulation at ρB = 0.04 [Fig.2(a)]. In
the transition region, we set εA,bottom = εB,bottom = 0.55
to prevent diffusio-osmosis in this region. A steady flow
can be achieved using the following approach: During
all simulations, the bottom wall is fixed by freezing par-
ticles in the last layer of the bottom wall. As the top
wall is free, it moves at the same velocity as the bulk

fluid. We tracked the position of the top wall (i.e. the
position of yellow particles in the top wall) and redefined
the position of source regions each time the identities of
fluid particles are reset to ensure that the fluid flow does
not eliminate the steady concentration gradient between
two source regions. The concentration gradient along x
depends on the box size. In this work, the box size is
Lx = 36.2, 52.6, and 92.1, Ly = 9.86, and 〈Lz〉 = 29.7
for three independent simulations. The box dimensions
correspond to 5808, 8448, and 14784 fluid particles, re-
spectively.

Figure 2(b) shows the bulk concentration gradient
along x for the non-equilibrium simulations. The figure
shows that the concentration profile is linear between the
limiting values imposed in the source regions. The con-
centration gradients in the three independent simulations
were∇ρB = 0.0025, 0.0010 and 0.0005, respectively. Fig-
ure 2(c) shows the density profiles for each component
along z from the simulation of ∇ρB = 0.0025. As the av-
erage bulk concentration is 0.02, the density profiles from
the equilibrium simulation at ρB = 0.02 were also plot-
ted for comparison. The results show good agreement
for the local densities from the two simulations, indicat-
ing that in the non-equilibrium simulation, fluid states
are still close to equilibrium, validating the assumptions
underlying our calculation of the surface force via Eqs. 1
and 3.

RESULTS AND DISCUSSION

In order to calculate the surface force at ρB = 0.02
via Eq. 2, we computed the pressure-tensor profile at
ρB = 0.01 and ρB = 0.03. Figures 3(a) and (b) show the
pressure profiles along z near the wall at ρB = 0.01 us-
ing the Irving-Kirkwood and virial definitions. In the
bulk, where fluid is homogeneous and far away from
the wall, all definitions lead to the same value since
pzz = pxx = pex = 0.012. Upon approaching the wall,
pzz from the Irving-Kirkwood definition is, as expected,
equivalent to the bulk pressure, reflecting mechanical
equilibrium along z [Fig. 3 (a)], while the virial expression
for pzz is not constant [Fig. 3 (b)]. For pxx, the differ-
ent expressions for pressure result in different, oscillating
profiles near the wall.

The chemical potential for component i is given by
µi = µ0

i+kBT ln ρbulki +µexci , with kB the Boltzmann con-
stant. µ0

i denotes a (constant) reference value and µexci

denotes the excess chemical potential due to intermolec-
ular interactions. Because the bulk solutions are ideal,
µexci does not depend on the concentration of B. Thus, at
ρB = 0.02, with ρbulkA = 0.74 and ρbulkB = 0.02 [Fig. 2(b)],
if ∇ρB = 1.0, we obtain fA = 1.14 and fB = −41.75.

We can now compare the force profile from the pres-
sure gradients with those from the chemical potential
gradients. Figure 3(c) shows the average per-particle
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FIG. 3. (a) The Irving-Kirkwood pressure profiles at ρB =
0.01. (b) The virial pressure profiles at ρB = 0.01. (c) The
average per-particle force profiles at ρB = 0.02 and ∇ρB =
1.0.

force acting on the fluid particles at ρB = 0.02 and
∇ρB = 1.0 for all of the methods. For the chemi-
cal potential method, the average per-particle force is
fave(z) = [ρA(z)fA + ρB(z)fB ]/ρ(z). As shown in the
figure, the two expressions for the surface force (Eq. 1
and 3) produce significantly different results near the in-
terface. Unsurprisingly, the forces calculated from the
chemical potential gradients (Eq. 3) are concentrated
where there is an excess of solute [Fig. 2(b)]. However,
the forces calculated via the local pressure tensors i.e.
the Irving-Kirkwood and virial definitions (Eq. 1), ex-

tend over larger distances and fluctuate strongly.

The fact that pressure tensor and chemical poten-
tial routes yield different force profiles implies that they
would predict different flow profiles. At most, one of
these can be correct. To test whether the computed
flow profiles are correct, we applied the force profiles
that we computed to the fluid mixture at ρB = 0.02
and measured the flow velocity as a function of z for
fixed ∇ρB . Figure 4(a) shows the predicted velocity pro-
files at ∇ρB = 0.0025. We see that the velocity pro-
files from different methods are significantly different.
To validate the chemical potential and pressure-gradient
calculations, the velocity profile at the same ∇ρB was
also computed directly in a non-equilibrium simulation
[Fig. 1(b)]. The result is shown in Fig. 4(b). We see that
the velocity profile that follows from the direct simulation
differs markedly from the one obtained from the pressure
gradients. However, it agrees quite well with the pre-
dictions based on the chemical-potential gradients. The
latter agreement was also observed for two other concen-
tration gradients (∇ρB = 0.0010 and 0.0005) [Fig. 4(b)
and (c)]. These results support the approach used by
Marbach et al. to compute osmotic and diffusio-osmotic
flow at high solute concentrations [21, 22].

We also compared the slip velocity (i.e. the veloc-
ity of the bulk fluid with respect to the wall, vs) ob-
tained from different methods. The results are shown
in Fig. 4(d). We see that prediction of vs based on
the chemical-potential gradients is in excellent agreement
with those obtained from direct simulations.The Irving-
Kirkwood and virial definitions lead to essentially the
same value of vs here, while yielding significantly dif-
ferent velocity profiles. In a similar way, they predict
the same surface tension but different local pressure pro-
files. Nevertheless, vs predicted by pressure gradients is
significantly different from that obtained in the direct
non-equilibrium simulations.

The failure of mechanical expressions near the interface
is consistent with our recent calculations on the solutal
Marangoni effect [40] and thermo-osmosis [41]. There-
fore, it is not entirely surprising that the method also
fails here. Yet, where the present result differs from our
earlier studies is that the pressure gradient method also
predicts an incorrect value of the bulk velocity [Fig. 4(d)].
More interestingly, Besides, the flow velocity profile com-
puted with the (presumably correct) chemical-potential-
gradient method shows an overshoot near the wall (the
effect is clearest for larger solute concentrations). This
observation is interesting because if the flow profile could
be computed from the force profile using the Stokes equa-
tion (i.e. assuming a position independent viscosity) then
an overshoot is not possible if the force always has the
same sign (as it does – see Fig. 3(c), green dotted curve).

To understand the failure of the pressure-gradient ap-
proach, it is useful to revisit the thermodynamic descrip-
tion of diffusio-osmotic transport. On a macroscopic
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FIG. 4. (a) The flow velocity profiles at ρB = 0.02 and ∇ρB = 0.0025 from the simulations with applying the surface forces
computed from different methods. (b) The flow velocity profiles measured from the direct non-equilibrium simulations. (c) The
flow velocity profiles obtained from the simulations where the surface forces computed from the chemical potential gradients
are applied. (d) The slip velocity at different concentration gradients from different methods.

level, it is the gradient in the surface free-energy density
γ (which for fluid-fluid interfaces is equal to the surface
tension) that determines the flow: in the case of fluid
interfaces, this is the well-known Marangoni effect [42].

If we consider the variation of γ with the chemical po-
tential of the species in a binary mixture, we can write(

∂γ

∂x

)
P,T

=

(
∂γ

∂µB

)(
∂µB
∂x

)
+

(
∂γ

∂µA

)(
∂µA
∂x

)
= −

[
ΓB

(
∂µB
∂x

)
+ ΓA

(
∂µA
∂x

)]
(5)

where Γi (i= A or B) is the Gibbs adsorption of species i
at the interface. It is clear that this thermodynamic ex-
pression immediately yields a relation between the driv-
ing force of the Marangoni flow and the chemical poten-
tial gradients, which is in agreement with our observa-
tion that the microscopic expression [Eq. (3)] couples the
chemical potential gradient to the local excess density of
the corresponding species.

For a liquid-liquid (or a liquid-flat wall) interface, we
can use the Kirkwood and Buff expression to relate the
surface tension to the pressure tensor

γ =

∫ ∞
−∞

p− pxx(z) dz (6)

where p is the hydrostatic pressure. Differentiating
Eq. (6) at constant pressure and temperature gives(

∂γ

∂x

)
P,T

= −
∫ ∞
−∞

(
∂pxx(z)

∂x

)
dz. (7)

And hence, the driving force for flow is, in that case, re-
lated to the gradient of the pressure tensor. Yet, when
the solid surface is not flat, but atomistically structured,
Eq. (6) no longer holds. The latter integral would yield
the surface stress. The gradient of the surface stress is
not the driving force for particle transport, and hence
for structured walls, we should not expect to obtain the
driving force for diffusio-osmotic flows from stress gradi-
ents.

The previous arguments can be numerically tested
by multiplying the per-particle force profiles shown in
Fig. 3(c) by ρ(z) and integrating from the surface into the
bulk. The surface tension gradient predicted by Eq. (7)
using the virial and Irving-Kirkwood pressure expressions
is 1.07 as opposed to -5.81 predicted by Eq. (5). These
numerical results confirm that for a structured surface,
the stress gradient is not the driving force.

For an ideally flat wall, however, we would expect
Eq. (7) to predict accurately the total driving force. We
investigate the latter case by applying our methods to
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FIG. 5. (a) Density profiles for species A and B at ρB = 0.055.
(b) Virial (V) and Irving-Kirkwood (IK) pressure profiles at
ρB = 0.023 and ρB = 0.083. (c) The average volume force
profiles calculated for ∇ρB = 1.0.

fluid interacting with a surface via specular boundary
conditions. Fluid-fluid interactions remain unchanged,
but fluid-wall interactions are governed by

Ufw(z) = 4εfw
[
(σ/z)12 − (σ/z)6

]
(8)

where εB,w = 2εA,w = 1.1ε. Any type of z-dependent
potential such as the Steele potential [43, 44] can be con-
sidered here. In this system, the wall is simply a flat
surface located at z = 0. Therefore, fluid atoms at a
position z near the surface will experience the same wall
force for all x and y. Changing the wall potential re-

quired increasing the external pressure to pex = 0.122 to
maintain a stable system.

In order to achieve sufficient signal via the pressure
gradient approach, ∆ρB was increased to 0.03 in Eq. (2).
Fig 5(a) and (b) show density and pressure profiles for
fluid interacting with the specular wall. Comparing with
Fig 3(a) and (b), it is clear that removing transverse
force contributions from the wall significantly changes
the behavior of fluid near the interface.

The surface tension gradient can be computed by in-
tegrating the per-volume force profiles shown in Fig 5(c)
from z = 0 to z = 5, beyond which none of the methods
predict any effect. The results were −0.19 ± 0.01 using
Eq. (5), −0.2 ± 0.1 and −0.26 ± 0.1 using the virial
and Irving-Kirkwood expressions in Eq. (7). Clearly, the
forces that follow from the stress gradients are subject to
considerable statistical noise. As a consequence, the only
thing we can say is that there the differences between the
integrated forces are not statistically significant. This ob-
servation is in agreement with our earlier results for the
Marangoni flow near a (flat) liquid-liquid interface [40].

However, as the predicted force profiles are very differ-
ent for the virial and Irving-Kirkwood expressions, and
as both are different from the force-profile obtained from
the chemical potential gradient, we do expect that the
flow profiles that would result from solving the Stokes
equation with non-slip boundary conditions would be dif-
ferent. In that case, only the flow profile resulting from
chemical potential gradients is to be trusted. In view of
the poor statistical accuracy of the computed stress gra-
dients, computing the flow profiles explicitly would have
been meaningless.

We also note that using the Stokes equation would
not be justified near a wall, because the viscosity is not
expected to be constant, due to layering of the fluid
near the wall. The non-uniform viscosity for a simple
Lennard-Jones fluid has been quantified with MD simu-
lations [45, 46]. However, for the current calculations, the
fact that the viscosity is not constant near a wall is not
an issue, because we compute the flow velocity directly,
as in Fig. 4.

The numerical results presented here show that if a
solid surface exerts non-zero transverse stress on the
fluid, standard pressure expressions fail to predict the
surface tension gradient via Eq. (7). Still, we can proceed
further. Following Schofield and Henderson’s analysis of
the microscopic pressure tensor, the difference between
standard and non-standard expressions lies in choosing
the contour along which the intermolecular force is in-
tegrated [47]. Irving and Kirkwood consider a straight
line connecting atom pairs, though this choice is arbi-
trary. Yet, even if we formulated the pressure using a
different contour, the transverse force contributions from
the solid surface would result in incorrect predictions of
the surface tension gradient. Therefore, in the case of
a structured solid surface, any pressure expression will
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microscopically and macroscopically fail to predict the
surface force that drives diffusio-osmotic flow.
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