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Abstract
Hyperspectral imaging is a cutting-edge type of remote sensing used for 
mapping vegetation properties, rock minerals and other materials. A major 
drawback of hyperspectral imaging devices is their intrinsic low spatial 
resolution. In this paper, we propose a method for increasing the spatial 
resolution of a hyperspectral image by fusing it with an image of higher 
spatial resolution that was obtained with a different imaging modality. This 
is accomplished by solving a variational problem in which the regularization 
functional is the directional total variation. To accommodate for possible 
mis-registrations between the two images, we consider a non-convex blind 
super-resolution problem where both a fused image and the corresponding 
convolution kernel are estimated. Using this approach, our model can realign 
the given images if needed. Our experimental results indicate that the non-
convexity is negligible in practice and that reliable solutions can be computed 
using a variety of different optimization algorithms. Numerical results on 
real remote sensing data from plant sciences and urban monitoring show the 
potential of the proposed method and suggests that it is robust with respect 
to the regularization parameters, mis-registration and the shape of the kernel.
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1.  Introduction

Hyperspectral imaging is an earth observation technique that measures the energy of light 
reflected off the earth’s surface within many narrow spectral bands, from which reflectance 
curves can be calculated. The shape of these reflectance curves provides information about the 
chemical and physical properties of materials such as minerals in rocks, vegetation, synthetic 
materials and water, which allows these materials to be classified and mapped remotely (see 
[1, 2], for instance).

Usually, hyperspectral images of the earth are being recorded by imaging devices that are 
mounted on planes or satellites. In either case, the speed of the carrier and narrowness of the 
spectral bands result in limited energy reaching the sensor for each spectral band. Therefore, most 
hyperspectral cameras have an intrinsic trade-off between spatial and spectral resolution [3, 4]. 
A standard approach to overcoming this trade-off is to record a second image with low spectral 
but high spatial resolution (e.g. a photograph or a laser scan) [5] and to fuse these data together 
in order to create an image that has the high spectral resolution of the hyperspectral image and 
the high spatial resolution of the photograph [3–13]. These techniques have become known as 
pansharpening or image fusion. The problem is illustrated by three example data sets in figure 1.

Most image fusion techniques are based on certain assumptions regarding the data and the 
corresponding imaging devices. First, it is often assumed that the image of high spatial resolu-
tion is a linear combination of the spectral channels with known weights [4]. Second, the loss 
of resolution is usually modeled as a linear operator which consists of a subsampled convolu-
tion with known kernel (point spread function). While both assumptions may be justified in 
some applications, it may be difficult to measure or estimate the weights and the convolution 
kernel in a practical situation.

Instead of having accurate descriptions or measurements about the system response of 
our cameras [4, 6, 12], we make use of the fact that both images are acquired from the same 
scenery. While the actual image intensities will depend on the wavelengths that are being 
recorded and are therefore dissimilar, the geometric structure of those images is likely to 
be very similar as they are both taken from the same terrain [6, 7, 9, 12]. This approach has 
been studied extensively in the context of medical imaging where traditionally an anatomical 
imaging modality with high spatial resolution is used to aid the reconstruction of a functional 
imaging modality, see e.g. [14–20].

Note that the hyperspectral data image and the high-resolution photograph usually undergo 
a georectification procedure which aligns them using a digital elevation map of the study area. 
However, this adjustment is often imprecise, particularly in topographically complex regions, 
so further steps are required to co-register the images precisely [21]. Moreover, having a good 
description of the point spread function of the system is very unnatural. Thus, we take a blind 
approach and estimate the point spread function within our reconstruction and thereby learn 
this information from the recorded data. This approach is intrinsically related to blind deconvo-
lution [22–25]. Figure 2 shows an example of blind versus non-blind image fusion applied to 
the real remote sensing data with unknown blurring kernel. It can be seen that the shape of the 
kernel that is estimated during the reconstruction clearly differs from the fixed kernel. Equally 
important is the translation of the estimated kernel, which can compensate for shifts between 
the given image pair. To the best of our knowledge this is the first contribution where structural 
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side information / anatomical priors are combined with registration which removes the unnatu-
ral assumption of perfectly registered images that is usually made, see [14–20], for instance.

2.  Mathematical model and notation

In this work we consider the problem of simultaneous image fusion and blind image deconvo-
lution which can be cast as the optimization problem

(u∗, k∗) ∈ arg min
(u,k)∈U×K

{
1
2
‖Aku − f‖2 +Ru(u) +Rk(k)

}
� (1)

where the forward operator Ak is a sampled blur with kernel k. Thus, it relates an image 
u ∈ U := Rm of size m = (m1, m2) to blurred and subsampled data f ∈ Rn, n = (n1, n2). Note 
that we used multi-index notation which means Rm = Rm1×m2, for instance. Here, we con-
sider the case of super-resolution n  <  m (true if and only if n1 < m1 and n2 < m2). The data 
discrepancy is measured in terms of the Euclidean / Frobenius norm ‖x‖2 :=

∑
i x2

i  and the 
optimal solution is regularized through the penalty functionals Ru and Rk.

Since—up to now—the ingredients of our model are only vaguely defined, the remainder 
of this section is devoted to an detailed explanation of the operators and regularization func-
tionals involved.

Figure 1.  Three example data for image fusion in remote sensing. They each consist of 
a hyperspectral image (small image, only one channel shown) and an image of higher 
spatial resolution (large image). The goal is to create an image that has both high spatial 
and high spectral resolution.

Figure 2.  Comparison of non-blind versus blind image fusion. From left to right: 
hyperspectral image (one channel, four times enlarged), result of non-blind and blind 
image fusion together with the kernels that are used or estimated, respectively. The 
plotted kernels are of size 41 × 41 and have been enlarged for better visibility. The 
dotted green lines highlight the center of mass of the obtained kernel and indicate the 
amount of translational displacement between the fused images.
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2.1. The forward operator

The forward operator Ak := S ◦ B ◦ Ck is the composition of three operators: Ck represents 
a convolution with a kernel k, B performs boundary treatment and S is a sampling operator.

The convolution operator Ck : U → U with kernel k ∈ K := Rr, r := (r1, r2) is defined by

Cku := Jk ∗ u� (2)

where * is the cyclic convolution of images in U = Rm . Since the kernel k is generally assumed 
to have smaller support than the image u, i.e. r  <  m, we introduced the embedding operator 
J : K → U  which embeds the ‘small’ convolution kernel k ∈ K into the image space U  by 
padding it with zeros. By assuming periodic boundary conditions on u and Jk, the convolution 
can be efficiently computed via the discrete Fourier transform F, i.e. Cku = F−1 (FJk � Fu) 
where � denotes the Hadamard product (pointwise multiplication). With a slight abuse of 
notation, we can exploit the symmetry of the convolution to infer

Cku = Jk ∗ u = u ∗ Jk = CuJk ,� (3)

and thus

Aku = AuJk ,� (4)

which will prove helpful later-on.
While periodic boundary conditions are computationally useful, any kind of boundary 

treatment is artificial and may result in artifacts. For instance, boundary artifacts are expected 
in the boundary region with margins l := (r − 1)/2 where r is the diameter of the convolution 
kernel. To avoid these artefacts, we follow the boundary-layer approach (see [26] and refer-
ences therein; also described by Almeida and Figueiredo in [27]) and introduce a boundary 
clipping (margin deletion) operator B : U → Rm−2l,

(Bu)i := ui+l� (5)

that maps a large image u to a meaningful image Bu ∈ Rm−2l which is independent of the 
type of boundary conditions used for the precedent convolution. Thus, after computation of an 
optimal solution u∗ of (1) we only use the meaningful part Bu∗.

Finally, the third component of our forward operator is the sampling S : Rm−2l → Rn 
which mimics an integration sensor of size s × s, i.e.

(Su)i :=
1
s2

∑
j∈∆i

uj� (6)

where the detector indices are given by the set ∆i := { j = ( j1, j2) | i � j < i + s}, which con-
tains s2 elements. Consequently, for a kernel of odd dimensions the relation m  −  2l  =  sn con-
nects the sizes of kernel, image and data.

Let us now turn to the regularization and prior knowledge on the image u and the kernel k.

2.2.  Regularization functionals

2.2.1.  Image regularization.  A popular prior to regularize images is the total variation [28] 
as it allows the recovery of smooth images whilst preserving edges. It is defined as the global 
1-norm of the discretized gradient

TV(u) :=
∑

i

‖∇ui‖ .� (7)

L Bungert et alInverse Problems 34 (2018) 044003
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Due to the periodic boundary conditions needed for the forward operator, the discretized gra-
dient (with forward differences) ∇u ∈ U2 of an image u ∈ U is

(∇ui)j := umod(i+ej,m) − ui , j ∈ {1, 2},� (8)

where e1  =  (1,0) and e2  =  (0,1) are the standard unit vectors in R2.
In the task at hand, the high-resolution photograph can be viewed as a source of additional 

a priori knowledge about the sought solution. As both the hyperspectral data and the high-
resolution photograph depict the same scenery, it is reasonable to assume that they show the 
similar geometrical structures albeit having very different intensities. However, the TV func-
tional (7) is not able to incorporate this kind of additional prior information. Instead, we will 
apply the so-called directional TV (dTV), which can fuse the structural information of a high-
resolution image with the intensities of a low-resolution channel of a hyperspectral image. 
Figure 3 provides a visual comparison of reconstructions obtained from applying the TV and 
the dTV functional, respectively.

Definition (Directional total variation [18]).  Let ξ ∈ U2, ‖ξi‖ � γ < 1 be a vector-field 
that determines directions and denote by P ∈ U2×2, Pi := I − ξi ⊗ ξi an associated matrix-
field where I is the 2 × 2 identity matrix and ⊗ marks the outer product of vectors. Then the 
directional total variation dTV : U → R is defined as as

dTV(u) :=
∑

i

‖Pi∇ui‖ .� (9)

Note that due to the linearity of Pi the directional total variation is convex. Let us shortly 
comment on the interpretation of the directional total variation. The vector-field ξ allows the 
definition of directions that should be less penalized and therefore get promoted. It is easy to 
see that the quantity Pi∇ui can be expanded as

Pi∇ui = ∇ui − 〈ξi,∇ui〉ξi� (10)

where 〈·, ·〉 denotes the inner product on R2. This expression reduces to (1 − ‖ξi‖2)∇ui in 
regions where ∇ui is collinear to ξi, and to ∇ui where ∇ui is orthogonal to ξi. Thus, gradients 
that are aligned / collinear ξi are favored as long as ‖ξi‖ > 0. In the extreme case ‖ξi‖ = 1, 
aligned gradients are not penalized any more. It is important to note, that this prior does not 
enforce gradients in the direction of ξi, as a gradient in the direction of ξi is never ‘cheaper’ 
than a zero gradient.

The uniform upper bound γ < 1 ensures that the directional total variation is equivalent to 
the total variation in a semi-norm sense, i.e.

Figure 3.  Comparison of total variation (TV) versus directional total variation (dTV) 
regularization for image fusion. From left to right: hyperspectral image (one channel, 
four times enlarged), results of TV and dTV together with the estimated kernels.

L Bungert et alInverse Problems 34 (2018) 044003
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(1 − γ2)TV(u) � dTV(u) � TV(u) .� (11)

Similar versions of the directional total variation have been used before [17, 19, 29] and it 
is related to other anisotropic priors [14, 30, 31] and the notion of parallel level sets [32–34]. 
Note that the directional total variation generalizes the usual total variation (7) for ξ = 0 
and other versions of the directional total variation [35, 36] where the direction ξ is constant 
and not depending in the pixel location i. With the isotropic choice Pi = wiI, 0 � wi � 1 it 
reduces to weighted total variation [18, 29, 37–39].

Having this definition of the directional total variation at hand, the question is how to define 
the vector-field ξ ∈ U2. As we want to favor images having a similar structure as the high-
resolution photograph, we let v ∈ U  denote a gray-scale image which is generated from the 
color high-resolution image and define the vector-field

ξi := γ
∇vi

‖∇vi‖ε
,� (12)

where ‖x‖ε :=
√

‖x‖2 + ε2 and the scaling γ ∈ [0, 1) ensures that ‖ξi‖ � γ . The parameter 
ε > 0 guarantees that the vector-field ξ is well-defined, even if ∇vi = 0. Moreover, it allows 
to control which gradient magnitudes ‖∇vi‖ should be considered meaningful and which are 
merely due to noise. Thus, both parameters ε and γ in general will depend on the given side 
information v but can be chosen without considering a particular data set f. Note that in prac-
tice, one chooses γ very close or even equal to 1 (see [18] for the latter) such that the side 
information image has sufficiently much influence. Extensive studies of this parameter are 
performed in [36] where the authors obtain their best results for small values of a := 1 − γ2. 
An example photograph, its gray scale version and the corresponding vector-field are shown 
in figure 4.

In addition to the structural a priori knowledge given by the photograph and encoded in 
the directional total variation, it is reasonable to assume that the solution we are looking for is 
non-negative. Thus, the regularization functional for the image becomes

Ru := λudTV + ı[0,∞)m� (13)

where the characteristic function of the non-negative quadrant is defined as

ı[0,∞)m(u) :=
{

0 if u ∈ [0,∞)m

∞ else
.� (14)

Figure 4.  Side information for directional total variation. The side information is given 
as an RGB image (left) and converted into gray scales (center) from which a vector-field 
may be computed (right), e.g. with (12) (shown for γ = 1, ε = 0.3). The close-ups show 
that the vector-field does not only carry detailed information about edge locations but 
also about edge directions.

L Bungert et alInverse Problems 34 (2018) 044003
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The regularization parameter for the image λu > 0 controls the trade-off between regularity 
and data fidelity.

2.3.  Kernel regularization

Similarly as for the image u, it is reasonable to assume that the kernel is non-negative and 
regular. Motion blurs that arise from ideal diffraction-free lenses have typically a compactly 
supported kernel with sharp cut-off boundaries [26, p 234]. Thus, the desired regularity of the 
kernel may be achieved by utilizing the total variation. Of course, other smoothness priors 
such as the H1-semi-norm or total generalized variation [40] are possible, too, and will be 
subject of future work. In addition, blind deconvolution has the intrinsic non-uniqueness in 
the problem formulation that does not allow to estimate the correct global scaling factors for 
both the kernel and the image. To circumvent this issue, a common choice (e.g. [24–26, 41]) 
is to normalize the kernel with respect to the 1-norm. Thus, together with the non-negativity, 
we assume that the kernel is in the unit simplex

S :=

{
k ∈ K : ki � 0,

∑
i

ki = 1

}
.� (15)

Letting ıS denote the characteristic function of the unit simplex, defined analogously to (14), 
the regularization functional for the kernel becomes

Rk := λkTV + ıS� (16)

where we again can trade-off regularity and data fidelity by the regularization parameter 
λk > 0 which in general needs to be chosen differently than the regularization parameter for 
the image λu.

3.  Algorithms

Given the abstract mathematical model (1) which models the solution that we are after, this 
section  discusses algorithms that will attempt to numerically compute this solution. For a 
concise presentation, we cast problem (1) in the form

(u∗, k∗) ∈ argmin
u,k

Ψ(u, k)� (17)

by defining Ψ(u, k) := D(u, k) +Ru(u) +Rk(k) and abbreviating the data fidelity term in (1) 
by D(u, k) := 1

2‖Aku − f‖2. While the function Ψ is not convex in the joint variable (u, k), it 
is bi-convex, i.e. it is convex in each of the variables u and k. The latter holds true as the regu-
larization functions Ru and Rk are convex and the data fidelity D is bi-convex.

An abstract algorithm for finding solutions of (17) is the proximal alternating minimization 
(PAM) algorithm [42]. Given an image-kernel pair (u, k) and step sizes τu, τk > 0, it computes 
the next iterate (u+, k+) by the update scheme

u+ = argmin
x

{
1
2
‖x − u‖2 + τuΨ(x, k)

}
,� (18a)

k+ = argmin
x

{
1
2
‖x − k‖2 + τkΨ(u+, x)

}
.� (18b)

L Bungert et alInverse Problems 34 (2018) 044003
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Under reasonably mild conditions on the regularity of Ψ (see [42] for more details), PAM 
monotonously decreases the objective and its iterates converge to a critical point of Ψ. As 
the overall problem is non-convex, we cannot hope to find global solutions with this strategy.

3.1.  Proximal alternating linearized minimization (PALM)

In addition, we may exploit the fact that the data term D is continuously differentiable with 
respect to u and k and that it is not very difficult to compute the proximal operators with 
respect to the regularization functionals Ru and Rk. The proximal operator of a functional R 
is defined as the solution operator to a denoising problem with regularization term R

proxR(y) := argmin
x

{
1
2
‖x − y‖2 +R(x)

}
.� (19)

These extra information can be utilized with the proximal alternating linearized minimization 
(PALM) [43]. Linearizing the differentiable part D of the objective function Ψ in the update 
of (18) yields the new update

u+ = proxτuRu

(
u − τu∇uD(u, k)

)
,� (20a)

k+ = proxτkRk

(
k − τk∇kD(u+, k)

)
.� (20b)

It can be interpreted both as a linearized version of PAM and as an alternating form of for-
ward-backward splitting [44, 45]. Note that PALM also monotonously decreases the objective 
and has the same convergence guarantees as long as the step size parameters are well-chosen 
which we will discuss later in this section.

3.2.  Inertial PALM (iPALM)

Local methods for non-convex optimization may lead to critical points that are not global 
minimizers. The authors of [46] proposed an inertial variant of forward-backward splitting 
which next to the gradient direction gives inertia to steer the iterates in the previously chosen 
direction. They empirically showed on a simple two dimensional problem that inertia may 
help to avoid spurious critical points. An inertial version of PALM [41], called iPALM, follows 
the updates

uα = u + α(u − u−) ,� (21a)

u+ = proxτuRu

(
uα − τu∇uD(uα, k)

)
,� (21b)

kα = k + α(k − k−) ,� (21c)

k+ = proxτkRk

(
kα − τk∇kD(u+, kα)

)
,� (21d)

with inertia parameter α ∈ [0, 1). Next to the current iterate (u, k) it also depends on the previ-
ous iterate (u−, k−). We remark that PALM can be recovered by vanishing inertial parameter 
α = 0. Also note that one may define iPALM not with one inertial parameter α but with four 
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different ones [41]. While iPALM is not guaranteed to decrease the objective Ψ, it monoto-
nously decreases a surrogate functional that relates to Ψ [41] and its iterates are guaranteed to 
converge to a critical point of Ψ for well-chosen step size and inertia parameter.

3.3.  Step sizes and backtracking

The convergence of PALM and iPALM depend on the step size parameters τu, τk . Following 
[41], we choose the step size parameters as

τx :=
1 − α

1 + 2α
2
θLx

, x ∈ {u, k} ,� (22)

where θ > 1 is a global constant and Lx is the local Lipschitz constant of the derivative of the 
data fit D with respect to x. Using the relation (4), its derivatives with respect to the image 
and kernel are

∇uD(u, k) = A∗
k (Aku − f ) ,� (23a)

∇kD(u, k) = J∗A∗
u(AuJk − f )� (23b)

which shows that Lu will depend on k and Lk on u. While it is possible to conservatively 
estimate these constants, standard estimates turn out to be highly pessimistic and one can do 
significantly better by determining Lu and Lk with a backtracking scheme [46, 47]. The actual 
local Lipschitz constants Lu and Lk satisfy the descent inequalities (also called descent lemma) 
[41, 43, 46, 47]

D(u+, k) � D(uα, k) +
〈
∇uD(uα, k), u+ − uα

〉
+

Lu

2
‖u+ − uα‖2 ,� (24a)

D(u+, k+) � D(u+, kα) +
〈
∇kD(u+, kα), k+ − kα

〉
+

Lk

2
‖k+ − kα‖2 .� (24b)

If during the iterations these inequalities are not satisfied, we increase the Lipschitz estimates 
by a constant factor η > 1 and repeat the iteration.

In addition to the descent inequality, an inexact evaluation of the proximal operators (e.g. 
due to finite iterations) may also hinder convergence. Thus, we will evaluate the proximal 
operators to a precision such that the proximal descent inequalities

Ru(u+) � Ru(u) +
〈
∇uD(uα, k), u − u+

〉
+

1
2τu

(
‖u − uα‖2 − ‖u+ − uα‖2) ,

�

(25a)

Rk(k+) � Ru(k) +
〈
∇kD(u+, kα), k − k+

〉
+

1
2τk

(
‖k − kα‖2 − ‖k+ − kα‖2)

�

(25b)

hold. Equations  (24), (25) and the parameters Lu, Lk guarantee the monotonic descent of 
PALM and iPALM with respect to the objective or its surrogate [41, 43].

The pseudo code for PALM and iPALM with this backtracking can be found in  
algorithm 1.
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4.  Numerical setting

4.1.  Data

In this work we use data from two separate data sets. The first data set [48] is from environ
mental remote sensing to study vegetation in the Mediterranean woodlands in Alta Tajo natu-
ral park, northeast of Madrid, Spain [49]. It was acquired in October–November 2014 using an 
AISA Eagle hyperspectral sensor and a Leica RCD105 39 megapixel digital camera mounted 
on a Dornier 228 aircraft. The hyperspectral imagery consisting of 126 spectral bands almost 
equidistantly covering the wavelengths 400 nm–970 nm with a spatial resolution of 1 m  ×  1 
m. The aerial photograph has a resolution of 0.25 m  ×  0.25 m but only captures channels 
corresponding to the visible red, green and blue. We refer to images from this data set as 
environment1, environment2.

Algorithm 1.  PALM / iPALM with backtracking. PALM is recovered by setting the 
inertial parameter α = 0. The parameters L, L, η, θ can all be chosen different for the 
image u and kernel k but for simplicity we chose not to.

Input: initial iterates u, k, inertial parameter α ∈ [0, 1), initial step size parameters Lu, Lk, constant 
for step size θ > 1, bounds for step size parameters 0 < L � L < ∞, backtracking constant η > 1
1: function iPALM
2:    u− ← u, k− ← k
3:    for t = 0, 1, . . . do
4:      % update image u
5:      uα ← u + α(u − u−)

6:      (u+, Lu) ← backtracking(uα,∇uD(uα, k), Lu)

7:      u− ← u, u ← u+

8:      % update kernel k
9:      kα ← k + α(k − k−)
10:      (k+, Lk) ← backtracking(kα,∇kD(u+, kα), Lk)

11:      k− ← k, k ← k+

12:    return (u+, k+)
13: function backtracking(xα, g, L)
14:    while True do
15:      % select step size

16:      τ ← 1−α
1+2α

2
θL

17:      % forward-backward step where the proximal operator
18:      % is approximated by a fixed number of warm-started iterations

19:      x+ ← proxτR(xα − τg)
20:      if Descent inequality (24) does not hold then
21:        % increase Lipschitz constant and try again

22:        L ← min(ηL, L)
23:        continue
24:      if Proximal descent inequality (25) does hold then
25:        % continue to next iteration with larger step size
26:        L ← max(L/η, L)
27:        break
28:   return (x+ ,L)
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The second data set [50, 51] shows an urban area of Vancouver, Canada. It was acquired 
in March–May 2015 by the DEIMOS-2 satellite operating on a mean altitude of 620 km. The 
satellite carried a very highly resolving push-broom camera with one panchromatic channel 
of 1 m  ×  1 m resolution and the four multispectral channels red, green, blue and near-infrared 
with a resolution of 4 m  ×  4 m. Images from this data set are marked urban1, urban2.

Next to the already described real data sets we simulated an environmental data set where 
we know the ground truth image and kernel. We test two different kernels, one which is disk-
shaped and one which is an off-centered Gaussian and refer to the corresponding data sets 
as groundtruth_disk and groundtruth_Gaussian. The red channel of an RGB 
image is convolved with these two kernels, subsampled by a factor of s  =  4 and Gaussian 
noise of variance 0.001 is added. The data is shown at the top left of figures 12 and 13. For 
the data set groundtruth_Gaussian we use the RGB image itself as side information 
and for groundtruth_disk we use a shifted version of it. This situation occurs frequently 
in applications since usually data and side information are acquired by different imaging 
devices which can lead to a relative translation between the observed images. Note that we 
used replicated instead of periodic boundary conditions for the convolution in order to avoid 
inverse crime. As the ground truth is known in these cases, we evaluate the result in terms of 
the structural similarity index (SSIM) [52] and the Haar wavelet-based perceptual similarity 
index (HPSI) [53]. As compared to measures like the peak-signal-to-noise ratio (PSNR) or the 
mean squared error (MSE), the SSIM and the HPSI aim at reproducing how image similarity 
is perceived by human viewers. The SSIM is one of the most widely used image similarity 
measures and obtained by comparing local statistical parameters such as local means and local 
variances. The HPSI is based on a simple discrete Haar wavelet transform and incorporates 
basic assumptions about the human visual system. The HPSI was recently shown to yield 
state-of-the-art correlations with human opinion scores on large benchmarking databases of 
differently distorted images.

Figure 5.  Iterates of PALM for data set groundtruth_disk with λu = 0.1, λk = 10 
with objective function values Ψ and similarity to ground truth.

L Bungert et alInverse Problems 34 (2018) 044003



12

In all numerical experiments the data f are scaled to [0, 1].

4.2.  Visualization

Throughout the results, the data and reconstructed images are shown with MATLAB’s 
‘parula’ colormap where yellow represents values � 1 and dark blue corresponds to values 
� 0, respectively. The kernels are visualized with gray scales where black corresponds to the 
smallest value and white to the largest. In addition, we draw a red hair cross on the center, i.e. 
the pixel with indices l  +  1, where l denotes the radius of the kernel. The kernel’s centroid 

Figure 7.  Algorithm statistics over the course of the iterations for the same setting as 
figure 5. The relative objective function values (top left) show that all algorithms have 
about the same speed on this example. The objective function values (top center) and its 
summands (bottom) indicate that also all algorithms converge to the same critical point. 
Overall, the plots show that more inertia leads to slower convergence.

Figure 6.  Reconstructions by three different algorithms—PAM and iPALM with 
inertial parameters α = 0.2 and α = 0.5—after thousands of iterations for the same 
setting as figure 5. The visual impression of the images and kernels and the objective 
values indicate that all algorithms converge to a similar critical point.
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∑
i iki is visualized by a green hair cross in order to visualize the off-set between data and side 

information.

4.3.  Algorithms

The numerical results will be computed with the algorithms PALM, iPALM and PAM. For 
PAM, the inner problems require solving a deconvolution problem with convex regulariza-
tion which is implemented with ADMM [54–56] following a similar strategy as in [18].  
All three—PALM, iPALM and PAM—require the computation of proximal operators for the 
total variation and directional total variation under a convex constraint. These are implemented 
with a finite number of warm started fast gradient projection/FISTA [47, 57] iterations. Within 

these, projections onto the constraint sets are computed by proxı[0,∞)m (u) = max(0, u) (to be 
understood componentwise) and the fast algorithm of [58] for the projection onto the unit sim-
plex. A MATLAB implementation of the algorithms and the data itself can be found at [59].

Figure 9.  Reconstructions by PAM and iPALM with inertial parameters α = 0.2 and 
α = 0.5 for the setting of figure 8. Visually, the images and kernels and quantitatively, 
the objective function values indicate that all algorithms converge to the same critical 
point.

Figure 8.  Iterates of PALM for the data set environment1 with λu = 1 and λk = 10.
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4.4.  Parameters

The numerical experiments require model parameters and algorithm parameters. For the math-
ematical model, the parameters of the directional total variation are chosen as γ = 0.9995 and 
ε = 0.003 for all experiments, see (12) and figure A1 in the appendix. The low resolution 
images are of size 100 × 100 with an subsampling rate of s  =  4. Since we fix the kernel size 
to be 41 × 41, we will consequently obtain reconstructions of size 440 × 440 where we only 
visualize the meaningful part of size 400 × 400.

Except for the algorithm comparison, we use PALM with 2000 iterations and a step size 
constant θ = 1.1, see (22). The backtracking parameters in algorithm 1 are chosen as η = 2, 
L = 1 and L = 1030.

4.5.  Initialization

Both algorithm 1 and our implementation of PAM require initial guesses for image and kernel. 
While the kernel is initialized with a compactly supported Gaussian kernel, we choose the 
initial image to be Hf , where H : Rn → U  is a right inverse of the operator S ◦ B, i.e. H is an 
upsampling operator (see the top-left images in figures 5 and 8).

5.  Numerical results

5.1.  Comparison of algorithms

Before we focus on the actual image fusion reconstructions, we compare the algorithms 
PALM, iPALM and PAM on two different data sets. The results are shown in figures 5, 6 and 
7 for the data set groundtruth_disk and in figures 8, 9 and 10 for environment1. 

Figure 10.  Algorithm statistics for PALM and iPALM with a variety of inertial 
parameters for the same setting as figure 8. The objective function values (top center) 
and its summands (bottom) indicate that all algorithms converge to the same critical 
point. The relative objective function values (top left) show that for this example a 
higher inertial parameter leads to faster convergence.

L Bungert et alInverse Problems 34 (2018) 044003



15

Please refer to the captions of each figure for some detailed observations. We would like to 
highlight two important observations. First, both examples show that all three algorithms 
converge to practically the same critical point and that a visually pleasing reconstruction is 
already obtained after about 500 iterations. Thus, even though problem (1) is non-convex, the 
algorithm itself does not seem to have much influence on the final reconstructions. Second, 
the examples show that inertia may slow the convergence down as for groundtruth_disk 
or may make it faster as for environment1. Other results—which are not shown here for 
brevity—indicate that this is correlated with the regularization parameter λu. For large values, 
e.g. λu � 1, we found that inertia consistently sped up convergence while for smaller values, 
e.g. λu � 0.1 we found that it was always slowing down the convergence. Thus, for simplic-
ity and due to the lack of supporting examples that would justify other decisions, all further 
reconstructions are performed by PALM.

5.2.  Simulated data

This section is dedicated to simulated data where the ground truth image is known. Figure 11 
shows the similarity indices SSIM and HPSI of the reconstructed images when varying the 
image and kernel regularization parameters λu and λk . The results show that the proposed 

Figure 11.  Similarity measures SSIM and HPSI for different values of the 
regularization parameters λu and λk . Top: data set groundtruth_disk with shifted 
side information. Bottom: data set groundtruth_Gaussian. Yellow corresponds 
to high and blue to low similarity. All four plots indicate that the reconstructions are not 
very sensitive with respect to the kernel regularization.
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Figure 12.  Reconstructions for groundtruth_disk with shifted side information. 
Top: low resolution data and side information. Bottom: reconstruction with varying 
image kernel regularization and image regularization chosen as λu = 0.1. SSIM and 
HPSI are given in percentages and higher values indicating better performance.

Figure 13.  Reconstructions for groundtruth_Gaussian. Top: low resolution 
data and side information. Bottom: reconstruction for varying image regularization and 
kernel regularization being chosen as λk = 10. SSIM and HPSI are given in percentages 
and higher values indicating better performance.
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model is stable with respect to the choice of parameters as long as the image regularization 
λu is not too small. It is remarkable that the success of the model depends only mildly on the 
choice of λk  and a vanishing kernel regularization λk = 0 has only modest impact. However, 
it can also be seen that best reconstructions are obtained for non-zero λk  which indicates that 
a mild kernel regularization should be performed.

In figure 12 we show reconstruction results for the groundtruth_disk test case where 
we fix the image regularizing parameter λu = 0.1 and vary the kernel regularization λk . Note 
that we complicated the situation by using a side information which is shifted by several 
pixels and, thus, not aligned to the data. The proposed approach is well-fit to deal with this 

Figure 14.  Varying both regularization parameters for environment1 which 
corresponds to a near-infrared channel with wavelength of around 900 nm. Too small 
image regularization λu leads to point artefacts and too large λu to a loss of contrast 
and wrong estimation of the kernel. While no kernel regularization does not seem to 
have negative effects on the reconstruction, too large kernel regularization changes the 
image contrast.
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problem since blind deconvolution can implicitly perform rigid registration of data and side 
information by producing a blurring kernel that compensates for the translation by having an 
off-centered centroid. The results show that our method is able to compensate for unaligned 
side information images and can achieve very good results, nevertheless. The influence of the 
amount of kernel regularization is noticeably small although over-regularization clearly leads 
to different contrasts in the reconstructed image. Note that the barycentric translations of the 
kernels in figure 12 correspond exactly—up to pixel accuracy—to the number of pixels that 
the shifted side information deviates from the un-shifted one.

Figure 13 shows in a similar way the reconstruction results for the test case 
groundtruth_Gaussian, using the un-shifted side information. In contrast to the pre-
vious example, here we fix the parameter λk = 10 and vary λu instead. Here, the effects of 
different regularization strengths are considerably larger; particularly, in the case λu = 0.01 

Figure 15.  Results for urban1 (near-infrared) for varying image and kernel 
regularization. Over- and under-regularization have similar effects like in figure  14. 
However, due to a lower noise level of the data, the parameters can be chosen smaller.
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Figure 16.  Reconstructions of several channels corresponding to different wavelengths 
given in nanometer (nm) of environment2. The regularization parameters for 
this experiment were chosen constant across the channels as λu = 1 and λk = 1. For 
visualization, reconstructed images are scaled back to their physical range. Note that 
despite the reconstruction being performed channel-by-channel, all kernels have about 
the same shape and the same shift.

Figure 17.  Reconstruction of the multispectral data set urban2. The regularization 
parameters were chosen the same for all channels as λu = 0.01 and λk = 1. Kernels 
are being estimated consistently over the range of the channels up to an accuracy of 
one pixel. The resulting RGB and false color images have well-defined boundaries and 
show no color smearing. (NIR  =  near-infrared)
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the shift between data and side information—which was induced by convolving with the off-
centered kernel—is not fully detected. Consequently, the resulting similarity values, being not 
translationally invariant, are relatively poor. In the opposite scenario of over-regularizing the 
image, small structures in the image are not captured well.

5.3.  Hyperspectral data

In this section  we apply our method to real data and—similarly to the previous section—
investigate the effects of varying image and kernel regularization. To this end, we apply our 
method to one channel of the hyperspectral environmental and of the multispectral urban data 
set. Figures 14 and 15 show data, side information, and the corresponding reconstruction results 
for different values of the regularization parameters. Since no ground truth solutions are known 
in this case, we rely on our visual impression to choose a set of parameters. Figure 14, which 
corresponds to near-infrared light, suggests that a good compromise among data fidelity and 
regularization is achieved for λu = λk = 1. However, even if no TV regularity of the kernel is 
required, that is in the case λk = 0, the resulting images do hardly differ. Bearing in mind the 
results of figure 12, we will regularize the kernel slightly in the sequel. The situation is similar in 
figure 15, which also corresponds to near-infrared light. However, a smaller image regularization 
parameter, e.g. λu = 0.01, seems necessary in order to avoid over-smoothing.

Finally, we apply the proposed strategy to several hyperspectral channels of the data set 
environment2, using the same parameters for the reconstruction of each channel. Here, 
we scaled the reconstructed images back to their physical range to allow inter-channel com-
parisons. Figure 16 shows the reconstruction of six hyperspectral channels ranging from blue 
to near-infrared light. Note that the resulting kernels only change slightly with respect to the 
channel. We would like to point out that we were able to use the same set of parameters, namely 
λu = λk = 1, for all channels. In figure 17 we show the reconstruction of all channels of the 
multispectral urban data set urban2 using λu = 0.01 and λk = 1. Additionally, we visualized 
the results by re-combining the four channels into an RGB and a false color image which has 
the channels near-infrared, red and green. We would like to highlight that the kernels are con-
sistently estimated up to a pixel accuracy and that no color smearing is visible in the RGB and 
false color images despite the fact that all channels have been processed independently.

6.  Conclusions and outlook

We have presented a novel model for simultaneous image fusion and blind deblurring of 
hyperspectral images based on the directional total variation. We showed that this approach 
yields sharp images for both environmental and urban data sets that are either acquired by a 
plane or by a satellite. In addition, the numerical comparison of different algorithms showed 
that—despite the non-convexity of the problem—the computed solutions are stable with 
respect to the algorithms. The implicitly included registration by estimating the kernel yields 
further robustness to imperfections in the image acquisitions. Thus, the proposed approach is 
appealing for automated processing of large data sets.

Future work will be devoted to multiple directions. First, the proposed approach is channel-
by-channel, which makes it computationally appealing. However, a coupling of the spectral 
channels via their kernel and/or via spectral fingerprint preservation may yield further improve-
ments. Second, higher order regularization such as the total generalized variation [40] has been 
proven useful for natural images. This naturally leads to the directional total generalized varia-
tion which combines higher order smoothness with structural a priori knowledge as presented in 
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this work, thereby generalizing the definition of [36]. Similarly, other kernel regularization func-
tionals such as the total generalized variation or the H1-semi-norm will be considered in future 
investigations to better model the smoothness of the kernel. Finally, it is currently not clear how 
the computational cost of the proposed method depends on the size of the considered data. In 
particular, it is difficult to predict to which degree larger images also require a higher number of 
iterations during optimization for the method to yield satisfactory results. However, due to the 
fact that our approach mostly depends on operations that are of a local nature, it should be highly 
suitable for parallelization. The development and analysis of implementations that utilize the 
benefits of distributed computing architectures is also a topic for future research.
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γ = 0.995 γ = 0.9995 γ = 0.1

γ = 0.995 γ = 0.9995 γ = 1

Figure A1.  Reconstructions for varying vector field parameters γ. Top: results 
for groundtruth_disk with λu = 0.1 and λk = 10. Bottom: results for 
environment1 with λu = 1, λk = 1.
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Appendix

We test the influence of parameter γ in (12) on a simulated and a real data set. Figure A1 
shows the corresponding reconstruction results for γ ∈ {0.995, 0.9995, 1} where the middle 
value is used in all other numerical experiments in this work. Note that the results for γ = 1 
suffer from stronger point artifacts whereas those for γ = 0.995 do not capture local structures 
well enough.
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