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Abstract

Spectroscopic observations of some metal-rich white dwarfs (WDs), believed to be polluted by planetary material,
reveal the presence of compact gaseous metallic disks orbiting them. The observed variability of asymmetric,
double-peaked emission-line profiles in about half of such systems could be interpreted as the signature of
precession of an eccentric gaseous debris disk. The variability timescales—from decades down to 1.4 year
(recently inferred for the debris disk around HE 1349–2305)—are in rough agreement with the rate of general
relativistic (GR) precession in the test-particle limit. However, it has not been demonstrated that this mechanism
can drive such a fast, coherent precession of a radially extended (out to R1 ) gaseous disk mediated by internal
stresses (pressure). Here, we use the linear theory of eccentricity evolution in hydrodynamic disks to determine
several key properties of eccentric modes in gaseous debris disks around WDs. We find a critical dependence of
both the precession period and radial eccentricity distribution of the modes on the inner disk radius, rin. For small
inner radii,  ( – )r R0.2 0.4in , the modes are GR-driven, with periods of ≈1–10 year. For  ( – )r R0.2 0.4in , the
modes are pressure dominated, with periods of ≈3–20 year. Correspondence between the variability periods and
inferred inner radii of the observed disks is in general agreement with this trend. In particular, the short period of
HE 1349–2305 is consistent with its small rin. Circum-WD debris disks may thus serve as natural laboratories for
studying the evolution of eccentric gaseous disks.

Key words: accretion, accretion disks – hydrodynamics – relativistic processes – white dwarfs

1. Introduction

Tens of percent of white dwarfs (WDs) show signs of metal
pollution (Farihi 2016), which is generally believed to be
caused by the accretion of high-Z material originating from
circum-WD planetary systems (Debes & Sigurdsson 2002;
Jura 2003). A number of such WDs exhibit infrared (IR)
excesses (Jura 2003; Jura et al. 2007; Farihi 2016), revealing
the presence of compact ( R ), warm (T∼500–2000K), and
dense disks orbiting these stellar remnants. Moreover, eight
metal-rich WDs with IR excesses also show double-peaked
metal emission lines, indicative of high metallicity compact
gaseous disks in Keplerian rotation around them (Gänsicke
et al. 2006, 2007, 2008; Gänsicke 2011; Farihi et al. 2012;
Melis et al. 2012). Three of these systems exhibit roughly
periodic time variability3 of the emission-line profiles of the Ca
II triplet, with periods of one to several decades (Wilson
et al. 2015; Manser et al. 2016a, 2016b). Additionally, the gas
disk around WD 1145+017 (Xu et al. 2016), which is also
orbited by transiting, disintegrating planetesimals (Vanderburg
et al. 2015), shows periodic variability of absorption lines (due
to Ni II, Mg I, and Fe II) with a period of 5.3 years (Redfield
et al. 2017; Cauley et al. 2018); properties of circum-WD disks
showing quasi-periodic variability are summarized in Table 1.

Manser et al. (2016b) suggested that emission-line variability
is the signature of an eccentric, precessing gas disk, and that the
variability periods are broadly consistent with the general
relativistic (GR) precession of a test particle with a semimajor
axis comparable to the stellocentric radii from which gas
emission is detected. However, real gaseous disks are fluid

entities, meaning that understanding their precession requires a
full hydrodynamic treatment.
Recently, Dennihy et al. (2018) reported rapid variability of

the Ca II triplet emission from HE 1349–2305 with a period of
1.4 years, an order of magnitude shorter than in other WD
debris disks. This variability has been reported to be
inconsistent with GR precession, due to the large disparity
(factor of ≈50) between the GR precession rate at the inner and
outer disk edges (0.2 and R1 ).
In this paper, we use the linear theory for the evolution of

eccentric disks (Ogilvie 2001; Teyssandier & Ogilvie 2016) to
model the hydrodynamic behavior of eccentric gaseous debris
disks orbiting WDs. In general, an eccentric disk can be
described by a series of global modes, each with a corresp-
onding radial eccentricity profile and coherent precession
frequency that we compute in this work. We demonstrate that
the location of the inner edge of the disk plays a critical role in
setting the global disk precession period and can explain the
range of observed variability periods. We also show that the
rapid variability of HE 1349–2305 is consistent with its small
inner radius.

2. Eccentric Disk Dynamics

Thin fluid disks can, in general, be eccentric, and may
precess due to external forces or internal stresses (e.g.,
Ogilvie 2001; Statler 2001). Our goal is to understand the
precession periods of eccentric WD debris disks and to
determine whether they can be identified with the observed
periods of variability. We therefore do not attempt to address
the process by which these disks become eccentric, or how the
eccentricity is maintained over long (relative to the precession
period) timescales (if it is, in fact, maintained over such
timescales). Rather, we simply assume that the disk has
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3 Wilson et al. (2014) reported variation of the strength of the lines in SDSS
J1617+1620, culminating in their disappearance.
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somehow acquired a significant eccentricity (see Section 4 for a
more detailed discussion), and seek to understand its
subsequent behavior.

The structure of an eccentric disk is described by the
eccentricity e(r, t) and argument of pericenter v ( )r t, , which
are combined in the complex disk eccentricity

v=( ) ( ) ( )E r t e i, exp . 1

Ogilvie (2001) developed a disk eccentricity evolution
theory, which has been applied to a variety of astrophysical
systems, including accreting black holes (Ferreira & Ogilvie
2009), Be stars (Ogilvie 2008), and protoplanetary disks with
embedded giant planets (Teyssandier & Ogilvie 2016). In the
framework of this theory, the linear (e=1) equation
describing the evolution of E(r, t) for a non-self-gravitating,
locally isothermal disk is (Teyssandier & Ogilvie 2016)
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where Σ(r) is the disk surface density, cs(r) is the sound speed,
and Ω(r)=(GM*/r

3)1/2 is the Keplerian orbital frequency.
Equation (2) includes the terms (most importantly 6r−2E)

describing the 3D effect related to the variation of the vertical
gravitational force exerted on a fluid element as it moves along an
eccentric orbit (Ogilvie 2008), which has a significant impact on
our results (see Section 4). We have also added the last term
multiplying E on the right-hand side of Equation (2) to describe
GR precession with the frequency (in the limit e = 1)
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where c is the speed of light.
In Equation (2), we neglect terms associated with viscosity,

n a= Wcs
2 (Ogilvie 2001), where α is the dimensionless

effective viscosity (Shakura & Sunyaev 1973). This is justified
because (1) we do not consider excitation/damping of the disk
eccentricity and (2) the characteristic viscous time
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(for  = M M0.6 and the mean molecular weight of the gas
μ=28mp) is significantly longer than the observed variability
periods (or theoretical eccentricity evolution timescale).
The terms inside the brackets multiplying E in Equation (2)

represent different sources of differential precession. All of
them except the last one characterize effects related to the disk

Table 1
Properties of WDs with Time-varying Gaseous Debris Disks

Object HE 1349–2305 SDSS J1228+1040 SDSS J0845+2257 (Ton 345) SDSS J1043+0855 WD 1145+017

Type DA DA DB DA DB
Teff, K 18,000 20,700 19,800 17,900 15,900
Må, M 0.67 0.7 0.68 0.69 0.6

R , R 0.011 0.011 0.011 0.011 0.013
ṀZ , 10

8gs−1 1.3 5.6 160 2.5-12 430

Lines showing variabilitya e e e e a
Gas disk
rin, R 0.2 0.6 0.5 ∼0.3 0.33
rout, Re 1 1.2 1 0.9 0.52
Bcrit

b, G 50 750 2880 150–320 1340
Dust diskc

rin, R 0.15 0.28 0.17 0.23 ∼0.26
rout, Re 0.7 1 0.9 0.49 (?)

Observed precession period, year 1.4±0.2 27±3 10 10 5.3
Theoretical precession periodd, year 2.5 12 10 5.6 5.4
PGR(rin)

e, year 1.6 24 16 4.3 5.3

Referencesf 5, 7, 14 1, 4, 12 3, 4, 6, 8 2, 4, 6, 11 9, 10, 13

Notes.
a Type of spectroscopic lines used to infer variability of the disk in a given object; e: emission lines, a: absorption lines.
b Strength of the WD surface magnetic field necessary to disrupt the gaseous disk accreting at the rate ṀZ at a radius rin (Koenigl 1991).
c Dust disk radii are very uncertain; inner radii are highly degenerate with the disk inclination (Bergfors et al. 2014).
d Precession period of the linear eccentric mode computed in this work for each system. The mode is computed using the spectroscopically inferred rin and rout of the
gas, and assuming a globally isothermal (q = 0) disk with a temperature T=5000K and surface density power-law index p=2. See Figures 1(b) and 2(a) for the
effect of varying the disk temperature and surface density profile. Note that this precession period results from the combined effects of pressure and GR. See Figure 2
(b) for the periods of hypothetical pressure-only modes.
e Period of the GR precession of a test particle on a nearly circular orbit, evaluated at the inner radius of the gaseous disk rin inferred from spectroscopic observations.
f Key to references: (1) Gänsicke et al. 2006; (2) Gänsicke et al. 2007; (3) Gänsicke et al. 2008; (4)Melis et al. 2010; (5)Melis et al. 2012; (6) Brinkworth et al. 2012;
(7) Girven et al. 2012; (8) Wilson et al. 2015; (9) Vanderburg et al. 2015; (10) Xu et al. 2016; (11) Manser et al. 2016a; (12) Manser et al. 2016b; (13) Cauley et al.
2018; (14) Dennihy et al. 2018.
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pressure, which together typically result in prograde preces-
sion.4 The last term describes GR-driven precession, which is
always prograde. As the two types of terms scale differently
with r, there is a critical radius, rcrit, at which they become
comparable in magnitude, which delineates the region in which
GR is dominant (r<rcrit), from the region in which pressure is
dominant (r>rcrit). Assuming the disk surface density and
sound speed are described by
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where Tin and Σin are the gas temperature and surface density5

at rin (p and q are the constant power-law indices), the critical
radius is given by
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The gaseous component of a typical WD debris disk can
conceivably lie entirely within the pressure-dominated region,
entirely within the GR-dominated region, or span both regions,
depending on its radial extent. The dominant physical
mechanism responsible for the precession of such a disk is
then determined by the details of its structure.

2.1. Normal Modes

We look for the normal mode solutions of Equation (2) of
the form

w=( ) ( ) ( ) ( )E r t E r i t, exp , 9prec

so that the entire disk precesses coherently with an angular
frequency ωprec. Equation (2) then becomes an ordinary
differential equation for E(r):
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We solve the eigenvalue Equation (10), supplied with a choice
of boundary conditions (BCs), using the shooting method. The
solutions constitute a spectrum of eigenvalues ωprec and
associated eigenfunctions E(r), each with a different number
of nodes: radial locations at which =∣ ∣E 0 and ϖ experiences a
180° shift. Note that E(r), which refers to linear mode solution,
is distinct from the physical disk eccentricity e(r), which differs
by an amplitude factor (see Section 3.1).
For the inner and outer BCs, we choose
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The choice of the inner BC is motivated by the observed
emission-line profiles. A disk with a circular inner edge should
produce double-peaked lines, equidistant from the rest-frame
velocity and with equal height. The observed line profiles show
a distinct difference between the maximum redshifted and
blueshifted velocities of the line peaks (as well as different
heights), indicating that the inner edge of the disk has a
significant eccentricity. The zero-gradient BC applied to E at rin
allows the inner disk edge to be eccentric (as opposed to, e.g.,
setting E= 0 at rin). Also, we found the outer BC to be
relatively unimportant in determining the mode properties, so
we simply apply the same BC at rout.
For several reasons, we focus only on the lowest-order

mode, whose eigenfunction has no nodes. First, modeling of
the disk eccentricity distribution for WD 1145+017 by Cauley
et al. (2018) indicates that e varies on a length scale comparable
to the disk radius, which is indicative of a low-order mode.
Second, for higher-order modes, the disk gets divided into
multiple (but smoothly connected) eccentric, anti-aligned sub-
disks. As a result, the systematic difference in orbital velocities
from one side of the disk to the other (for some range of r) is
reduced, suppressing the asymmetry of the double-peaked
emission lines. Third, the lowest-order mode typically has the
longest precession period, in a way setting an upper limit on the
precession period. Finally, the lowest-order mode is typically
the least affected by viscous damping when this effect is
considered (Goodchild & Ogilvie 2006).
We consider a range of values for rin and rout (motivated by

the actual measurements in disk-hosting systems; see Table 1),
inner disk temperature Tin, and for the surface density and
temperature power-law indices p and q. Under the assumption
that the gas disk is fed by the sublimation of a particulate debris
disk (Rafikov 2011a, 2011b) at the sublimation radius ~ R0.2
(Rafikov & Garmilla 2012), one can show that the Σ profile
with p=2 should naturally develop in a globally isothermal
disk outside this radius (Metzger et al. 2012; Rafikov 2016).
However, we also look at profiles with p=1, which have more
mass at large radii. The thermal structure of gaseous circum-
WD disks was computed in Melis et al. (2010), who showed
that around hot WDs, Tin∼104K with q≈0.5–1 may be
typical. However, for completeness, we also consider the
possibility of colder disks and lower q=0.

3. Results

The mode precession frequency, ωprec, and precession
period, p w= ∣ ∣P 2prec prec , are shown in Figure 1 as a function
of inner disk radius rin for a variety of disk models with rout
fixed at R1 . We focus on the case of a globally isothermal

4 Pressure leads to prograde precession because of the significant role of the
term related to the 3D effect described by Ogilvie (2008). If this effect is
neglected, then pressure typically leads to retrograde precession (Goodchild &
Ogilvie 2006).
5 Note that Σin drops out of Equation (2).
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(q= 0) disk, as we found the mode properties to depend only
weakly on the slope of the temperature profile (at least for
0<q<1/2). Note that ωprec is always positive, corresp-
onding to prograde precession, and that Pprec increases with rin,
but much more steeply for rinrcrit than for rinrcrit, where
it becomes almost constant.

For rinrcrit, the modes are GR dominated, with periods of
≈1–10years. In this regime, Pprec is about twice as large as
PGR(rin), the GR precession period of a nearly circular test
particle at rin. For very small rin ( R0.15 ), a lower disk
temperature results in a smaller Pprec [closer to PGR(rin)] for a
given rin, since hotter disks transition to the pressure-dominated
regime at smaller rin (see Equation (8)). Colder disks are
therefore forced to precess at a rate closer to the fast v̇ ( )rGR in ,
suggesting that  ( )P P rprec GR in in the limit c 0s .

For rinrcrit, the modes are pressure dominated and have
periods of ≈3–20years [notice that Pprec<PGR(rin) in this
regime]. Periods in this range arise for purely pressure-
dominated disks, when the effect of GR is ignored. This is
illustrated in Figure 2(b), where Pprec is calculated by dropping
the GR precession term in Equation (10). Note a very weak
dependence of the precession period on rin in the case of pure
pressure modes.

The correspondence of Pprec with PGR(rin) for small rin and
with the pressure-driven precession period for large rin is not
sensitive to the outer disk radius. Figure 2(a) demonstrates this
by showing that the Pprec(rin) profile for narrow disks with
rout=2 rin is not very different from Figure 1(b), nor is the
qualitative Pprec(rin) behavior sensitive to the disk surface-
density profile (see Figures 1(b), 2(a)); in particular, whether
the disk mass is concentrated at the outer edge (for p= 1) or is
evenly spread in rlog (as for p= 2).
In Figure 3, we show the radial eccentricity profiles of the

modes E(r) computed for disks with different inner radii rin
(and different temperatures). For the BCs (11), the maximum
eccentricity always occurs at rin, and E(r) decreases with r. For
sufficiently small rin ( R0.3 ), in the GR-dominated regime, E
(r) sharply decreases near the inner edge of the disk, by at least
an e-fold between rin and 2rin. The eccentricity varies much
more slowly with r when precession is dominated by pressure,
for  r R0.4in . Also, the steepness of the E(r) profile
decreases for hotter disks, and is only weakly dependent on
the slope of the surface density profile.

3.1. Mode Amplitude

Equations (2) and (10) are linear in E, thus they cannot
predict the amplitude of the mode; they yield only the radial
profile of E. In real disks, the mode amplitude is ultimately
determined by the balance of eccentricity excitation and
damping, which we do not address. Nevertheless, we can still
come up with an upper limit on the mode amplitude, which in

Figure 1. Mode precession frequency, ωprec (panel (a)), and precession period,
p w= ∣ ∣P 2prec prec (panel (b)), as a function of the inner disk radius rin, for disk

models with different values for the (radially constant, q = 0) gas temperature
T and surface density power-law index p. The outer disk radius rout is fixed at

R1 and the WD mass is M0.6 . For reference, the dotted-dashed curves
indicate the GR precession frequency and period for a nearly circular test
particle at rin. The orange symbols indicate the inferred rin and Pprec of the
observed variable debris disks. Uncertainties in the measured precession
periods are shown where available (a 30% uncertainty has been adopted in the
case of WD 1145+017), and lower limits are shown for cases in which a
definite period has not yet been determined (see Table 1).

Figure 2. Mode precession period (as in Figure 2(b)) for the case of a narrow
disk with rout=2 rin (panel (a)), and for a disk with = r R1out , but ignoring
the effect of GR, so that the modes are purely pressure-dominated (panel (b)).
In panel (a), the inferred rin and Pprec of the observed variable debris disks are
also shown.
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some cases can be more restrictive than the obvious
condition e<1.

Indeed, to be physically realizable, the eccentricity profile
must satisfy6

+ <( ) ( ) ( )e a
de a

d aln
1, 12

otherwise adjacent orbits would cross one another (Ogilvie
2001; Statler 2001). This requires e to be less than the limiting
eccentricity,

< = +
-

( ) ( ) ( )e e r
d e r

d r
1

ln

ln
, 13lim

1

for all r.
The physical eccentricity profile of the disk is given by the

linear mode eigenfunction E(r) obtained from Equation (10)
scaled by an amplitude eamp:

=( ) ∣ ( )∣ ( )e r e
E r

E
, 14amp

max

where Emax is the maximum value of ∣ ( )∣E r , which in our case
occurs at r=rin; see Figure 3 [thus, e(rin)=eamp]. The
maximum mode amplitude for which orbit crossing is

guaranteed to be avoided is then

=
⎡
⎣⎢

⎤
⎦⎥( )

∣ ( )∣
( )e e r

E

E r
min , 15amp,max lim

max

where we minimize over the full radial extent of the disk and
use E(r) and Emax from our linear mode calculation.
The results of such a calculation are shown in Figure 4. The

limitation (Equation (12)) turns out to be only weakly
restrictive when the BCs (Equation (11)) are used; the mode
can in principle take on any amplitude (less than unity) unless

 ( – )r R0.15 0.2in , in which case Equation (15) is modestly
restrictive, requiring eamp0.6 for » r R0.1in . This ampl-
itude is large compared to observationally inferred values of
e≈0.02 for SDSS 1228 (Gänsicke et al. 2006), and
e≈0.25–0.30 for WD 1145 (Cauley et al. 2018). If we were
to choose E(rin)=0 as our inner BC instead, then the
maximum mode amplitudes would be about three times smaller
(note, however, that such a BC is disfavored by observations;
see Section 2.1).

4. Discussion

The most important result of our calculations is finding that
the inner disk radius, rin, plays a decisive role in setting the
global precession period of the disk, Pprec. If the inner edge of
the disk is inside the GR-dominated region (see Equation (7)),
with rin(0.2–0.4) Re, then we find Pprec≈1–10 years,
about twice as large as PGR(rin), the GR precession period of
a test particle at rin, with shorter periods corresponding to
smaller inner radii. For larger rin, the precession is dominated
by pressure, with a period primarily determined by the

Figure 3. Mode eccentricity profile (normalized to unity) for several different
inner disk radii and temperatures, for disks with rout=2 rin (panel (a)) and
with rout=1Re (panel (b)). All models shown have a surface density power-
law index p=2.

Figure 4. Maximum mode amplitude, eamp,max, (see Equation (15)) as a
function of rin for a variety of disk models, for the case of a narrow disk with
rout=2 rin (panel (a)) and an extended disk with = r R1out (panel (b)).

6 Formally, the eccentricity profile is a function of semimajor axis a. In the
linear framework for which the modes are computed, a and r are interchange-
able. For non-small eccentricity, e(r) should be thought of as being
representative of e(a).
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temperature and surface density profile of the disk. The
resulting Pprec≈3–20years is only weakly dependent on rin.
Note that periods less than a few years are only possible for

 r R0.3in , and result from GR-dominated modes.
Looking at the properties of the systems listed in Table 1

(also see Figures 1(b) and 2(a)), we see that HE 1349–2305,
which has the shortest variability period (1.4 years), indeed has
the smallest » r R0.2in inferred from the shape of its
emission-line profiles. Our calculations give a Pprec about
twice as large for the observed value of rin, and require a
slightly smaller rin (» R0.15 ) to reproduce the observed
period. However, we caution that due to the simplified model
(isothermal disk with sharply truncated power-law surface-
density profile) used in our calculations, discrepancies at this
level should not be considered too seriously.

The variability periods of SDSS J1043+0855 and WD 1145
+017 are consistent with their slightly larger values of rin
(» R0.3 ), which point toward precession periods of
Pprec≈3–10years, resulting from modes roughly equally
affected by pressure and GR. The large values of rin inferred for
SDSS J1228+1040 and J0845+2257 ( – R0.5 0.6 ) are also
consistent with their longer periods (20 year), resulting from
pressure-dominated modes. See Table 1 for a more detailed
comparison of the observed precession periods and our
computed mode precession periods for each system.

It is important to emphasize that our calculations do require
the disk to have a relatively sharp inner edge at rin: if the disk
were to extend smoothly all the way to the WD, our
calculations would predict much faster GR-dominated preces-
sion than found observationally. The existence of an inner edge
requires a physical mechanism responsible for truncating the
disk at rin. If rin is set by magnetospheric truncation, then the
precession rate should be closely linked to the accretion rate ṀZ
and the WD magnetic field. Table 1 provides estimates of the
surface field Bcrit necessary for disrupting the gaseous debris
disk (and creating a magnetospheric cavity) at the inner radius
rin (Koenigl 1991), provided that the WD accretes at the rate
ṀZ . In the case of SDSS J1043-0855, the resultant field
strength (≈1.3 kG) is below the current upper limit Bå<3 kG
established in Farihi et al. (2018).

The determination of rin is not trivial. For an eccentric disk,
the model inferring the innermost semimajor axis must involve
some information about the disk eccentricity at the inner edge,
which is not easy to obtain observationally.7 For example, the
early, low-quality spectral data for SDSS J1043+0855
indicated an extremely small size of the inner cavity of the
gaseous disk, rin≈12 Rå (Melis et al. 2010). However,
subsequent higher-quality data (Manser et al. 2016a) suggests
that the emission-line splitting is, in fact, smaller than adopted
in Melis et al. (2010), and the disk is more edge-on, all
resulting in larger rin, which we estimate to be about R0.3 .

Furthermore, the existing determinations of rin are based on
the premise that the truncation radius of the disk surface-
density profile corresponds to the innermost location where the
observed emission lines are produced. This is not necessarily
true, as the radial span of the emission region can be
determined, e.g., by the excitation conditions of the line-
emitting species, rather than by the distribution of Σ. It is also
not clear what role the underlying dust disk plays in setting rin,

as ultimately it is the sublimation of the solid debris disk
particles that likely feeds the gaseous, line-emitting disk
(Rafikov 2011a, 2011b; Metzger et al. 2012; Rafikov &
Garmilla 2012).
An eccentric, precessing disk scenario is not unique in its

ability to produce periodic time-variabile emission-line profiles,
although its ability to reproduce variability on the observed
timescales is promising. Testing the eccentric disk hypothesis
would require self-consistent modeling of the emission from an
eccentric disk (e.g., Statler 2001; Regály et al. 2011). It is
important to emphasize that, in addition to determining the
period of variability, our calculations also naturally provide the
radial eccentricity profile of the disk (Figure 3). Any eccentric,
rigidly precessing disk model used to reproduce the observed
line profiles (Cauley et al. 2018) should agree with these mode
profiles. For example, the disk eccentricity should be largest
near the inner edge and decrease with radius.8 Further, if rin is
small ( R0.3 ), the eccentricity should sharply decrease near
the inner edge (cf. Cauley et al. 2018), while for larger rin, the
disk can be more uniformly eccentric. If rin is sufficiently small,
our calculations also impose an upper limit on the disk
eccentricity to avoid orbit crossings (see Figure 4).
It is important to note that the qualitative behavior of Pprec is

significantly affected by the inclusion of the 3D contribution in
the eccentricity evolution Equation (2). This term arises due to
the variations of the vertical gravitational force along an
eccentric orbit (Ogilvie 2008), an effect omitted in Goodchild
& Ogilvie (2006). If this term is neglected, pressure-dominated
modes become retrograde (ωprec<0), while its inclusion
results in prograde modes (ωprec>0). If the pressure-
dominated modes were retrograde, then ωprec would cross zero
and change sign near rcrit (as the GR-dominated modes are
prograde), leading to a very small w∣ ∣prec , and therefore a very
large Pprec (100 year). However, when the 3D effect is
properly included, ωprec is always positive, and the very long
periods associated with a zero-crossing of ωprec are excluded.
We therefore find that the longest possible precession periods
are ≈20years, implying that all gaseous debris disks should
display signs of variability over years to decades (provided they
are eccentric).
In this work, we do not address the origin of the disk

eccentricity, i.e., the physical mechanism behind its excitation,
damping, and saturation. Because WD debris disks are believed
to be formed by the disruption of planetoids on nearly parabolic
orbits, the disk eccentricity could be an artifact of the
disruption. However, this “primordial” eccentricity would be
viscously damped in several 10–100 s of years, depending on
the value of the viscous α parameter (see Equation (4)). Given
that more than 50% of known gaseous debris disks show
variability likely related to their non-zero eccentricity, it is
unlikely that the disk eccentricity is a transient phenomenon.
This suggests that some eccentricity excitation mechanism

must continually operate, so that the eccentricity is maintained
by a balance between excitation and damping. One natural
source of the eccentricity driving could be the interaction of the
inner disk edge with the (inclined dipole) magnetic field of the
WD that is responsible for the disk truncation.9 Other possible
mechanisms could include viscous overstability (Kato 1978;

7 Such detailed fitting was attempted in Cauley et al. (2018), and we adopt
their estimates of the minimum disk periastron and eccentricity to infer the
innermost semimajor axis, which we associate with rin.

8 This is in part a consequence of the free inner boundary condition (Equation
(11)) we have adopted, which allows the inner disk edge to be eccentric, in
accordance with the observed emission-line profiles.
9 We defer exploration of this possibility to future work.
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Lyubarskij et al. 1994), or nontrivial aerodynamic coupling
with the underlying particulate debris disk (Rafikov 2011b;
Metzger et al. 2012).

We thank Gordon Ogilvie, Boris Gänsicke, Jay Farihi, and
Amy Bonsor for helpful comments and suggestions. Financial
support for this study has been provided by NSF via grant
AST-1409524 and NASA via grant 15-XRP15-2-0139.

ORCID iDs

Ryan Miranda https://orcid.org/0000-0002-2804-3657
Roman R. Rafikov https://orcid.org/0000-0002-0012-1609

References

Bergfors, C., Farihi, J., Dufour, P., & Rocchetto, M. 2014, MNRAS, 444, 2147
Brinkworth, C. S., Gänsicke, B. T., Girven, J. M., et al. 2012, ApJ, 750, 86
Cauley, P. W., Farihi, J., Redfield, S., et al. 2018, ApJL, 852, L22
Debes, J. H., & Sigurdsson, S. 2002, ApJ, 572, 556
Dennihy, E., Clemens, J. C., Dunlap, B. H., et al. 2018, ApJ, 854, 40
Farihi, J. 2016, NewAR, 71, 9
Farihi, J., Fossati, L., Wheatley, P. J., et al. 2018, MNRAS, 474, 947
Farihi, J., Gänsicke, B. T., Steele, P. R., et al. 2012, MNRAS, 421, 1635
Ferreira, B. T., & Ogilvie, G. I. 2009, MNRAS, 392, 428
Gänsicke, B. T. 2011, in AIP Conf. Ser. 1331, Planetary Systems Beyond the Main

Sequence, ed. S. Schuh, H. Drechsel, & U. Heber (Melville, NY: AIP), 211
Gänsicke, B. T., Koester, D., Marsh, T. R., Rebassa-Mansergas, A., &

Southworth, J. 2008, MNRAS, 391, L103
Gänsicke, B. T., Marsh, T. R., & Southworth, J. 2007, MNRAS, 380, L35

Gänsicke, B. T., Marsh, T. R., Southworth, J., & Rebassa-Mansergas, A. 2006,
Sci, 314, 1908

Girven, J., Brinkworth, C. S., Farihi, J., et al. 2012, ApJ, 749, 154
Goodchild, S., & Ogilvie, G. 2006, MNRAS, 368, 1123
Jura, M. 2003, ApJL, 584, L91
Jura, M., Farihi, J., Zuckerman, B., & Becklin, E. E. 2007, AJ, 133, 1927
Kato, S. 1978, MNRAS, 185, 629
Koenigl, A. 1991, ApJL, 370, L39
Lyubarskij, Y. E., Postnov, K. A., & Prokhorov, M. E. 1994, MNRAS,

266, 583
Manser, C. J., Gänsicke, B. T., Koester, D., Marsh, T. R., & Southworth, J.

2016a, MNRAS, 462, 1461
Manser, C. J., Gänsicke, B. T., Marsh, T. R., et al. 2016b, MNRAS,

455, 4467
Melis, C., Dufour, P., Farihi, J., et al. 2012, ApJL, 751, L4
Melis, C., Jura, M., Albert, L., Klein, B., & Zuckerman, B. 2010, ApJ,

722, 1078
Metzger, B. D., Rafikov, R. R., & Bochkarev, K. V. 2012, MNRAS, 423, 505
Ogilvie, G. I. 2001, MNRAS, 325, 231
Ogilvie, G. I. 2008, MNRAS, 388, 1372
Rafikov, R. R. 2011a, ApJL, 732, L3
Rafikov, R. R. 2011b, MNRAS, 416, L55
Rafikov, R. R. 2016, ApJ, 830, 7
Rafikov, R. R., & Garmilla, J. A. 2012, ApJ, 760, 123
Redfield, S., Farihi, J., Cauley, P. W., et al. 2017, ApJ, 839, 42
Regály, Z., Sándor, Z., Dullemond, C. P., & Kiss, L. L. 2011, A&A, 528, A93
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Statler, T. S. 2001, AJ, 122, 2257
Teyssandier, J., & Ogilvie, G. I. 2016, MNRAS, 458, 3221
Vanderburg, A., Johnson, J. A., Rappaport, S., et al. 2015, Natur, 526, 546
Wilson, D. J., Gänsicke, B. T., Koester, D., et al. 2014, MNRAS, 445, 1878
Wilson, D. J., Gänsicke, B. T., Koester, D., et al. 2015, MNRAS, 451, 3237
Xu, S., Jura, M., Dufour, P., & Zuckerman, B. 2016, ApJL, 816, L22

7

The Astrophysical Journal, 857:135 (7pp), 2018 April 20 Miranda & Rafikov

https://orcid.org/0000-0002-2804-3657
https://orcid.org/0000-0002-2804-3657
https://orcid.org/0000-0002-2804-3657
https://orcid.org/0000-0002-2804-3657
https://orcid.org/0000-0002-2804-3657
https://orcid.org/0000-0002-2804-3657
https://orcid.org/0000-0002-2804-3657
https://orcid.org/0000-0002-2804-3657
https://orcid.org/0000-0002-0012-1609
https://orcid.org/0000-0002-0012-1609
https://orcid.org/0000-0002-0012-1609
https://orcid.org/0000-0002-0012-1609
https://orcid.org/0000-0002-0012-1609
https://orcid.org/0000-0002-0012-1609
https://orcid.org/0000-0002-0012-1609
https://orcid.org/0000-0002-0012-1609
https://doi.org/10.1093/mnras/stu1565
http://adsabs.harvard.edu/abs/2014MNRAS.444.2147B
https://doi.org/10.1088/0004-637X/750/1/86
http://adsabs.harvard.edu/abs/2012ApJ...750...86B
https://doi.org/10.3847/2041-8213/aaa3d9
http://adsabs.harvard.edu/abs/2018ApJ...852L..22C
https://doi.org/10.1086/340291
http://adsabs.harvard.edu/abs/2002ApJ...572..556D
https://doi.org/10.3847/1538-4357/aaa89b
http://adsabs.harvard.edu/abs/2018ApJ...854...40D
https://doi.org/10.1016/j.newar.2016.03.001
http://adsabs.harvard.edu/abs/2016NewAR..71....9F
https://doi.org/10.1093/mnras/stx2664
http://adsabs.harvard.edu/abs/2018MNRAS.474..947F
https://doi.org/10.1111/j.1365-2966.2012.20421.x
http://adsabs.harvard.edu/abs/2012MNRAS.421.1635F
https://doi.org/10.1111/j.1365-2966.2008.14070.x
http://adsabs.harvard.edu/abs/2009MNRAS.392..428F
http://adsabs.harvard.edu/abs/2011AIPC.1331..211G
https://doi.org/10.1111/j.1745-3933.2008.00565.x
http://adsabs.harvard.edu/abs/2008MNRAS.391L.103G
https://doi.org/10.1111/j.1745-3933.2007.00343.x
http://adsabs.harvard.edu/abs/2007MNRAS.380L..35G
https://doi.org/10.1126/science.1135033
http://adsabs.harvard.edu/abs/2006Sci...314.1908G
https://doi.org/10.1088/0004-637X/749/2/154
http://adsabs.harvard.edu/abs/2012ApJ...749..154G
https://doi.org/10.1111/j.1365-2966.2006.10197.x
http://adsabs.harvard.edu/abs/2006MNRAS.368.1123G
https://doi.org/10.1086/374036
http://adsabs.harvard.edu/abs/2003ApJ...584L..91J
https://doi.org/10.1086/512734
http://adsabs.harvard.edu/abs/2007AJ....133.1927J
https://doi.org/10.1093/mnras/185.3.629
http://adsabs.harvard.edu/abs/1978MNRAS.185..629K
https://doi.org/10.1086/185972
http://adsabs.harvard.edu/abs/1991ApJ...370L..39K
https://doi.org/10.1093/mnras/266.3.583
http://adsabs.harvard.edu/abs/1994MNRAS.266..583L
http://adsabs.harvard.edu/abs/1994MNRAS.266..583L
https://doi.org/10.1093/mnras/stw1760
http://adsabs.harvard.edu/abs/2016MNRAS.462.1461M
https://doi.org/10.1093/mnras/stv2603
http://adsabs.harvard.edu/abs/2016MNRAS.455.4467M
http://adsabs.harvard.edu/abs/2016MNRAS.455.4467M
https://doi.org/10.1088/2041-8205/751/1/L4
http://adsabs.harvard.edu/abs/2012ApJ...751L...4M
https://doi.org/10.1088/0004-637X/722/2/1078
http://adsabs.harvard.edu/abs/2010ApJ...722.1078M
http://adsabs.harvard.edu/abs/2010ApJ...722.1078M
https://doi.org/10.1111/j.1365-2966.2012.20895.x
http://adsabs.harvard.edu/abs/2012MNRAS.423..505M
https://doi.org/10.1046/j.1365-8711.2001.04416.x
http://adsabs.harvard.edu/abs/2001MNRAS.325..231O
https://doi.org/10.1111/j.1365-2966.2008.13484.x
http://adsabs.harvard.edu/abs/2008MNRAS.388.1372O
https://doi.org/10.1088/2041-8205/732/1/L3
http://adsabs.harvard.edu/abs/2011ApJ...732L...3R
https://doi.org/10.1111/j.1745-3933.2011.01096.x
http://adsabs.harvard.edu/abs/2011MNRAS.416L..55R
https://doi.org/10.3847/0004-637X/830/1/7
http://adsabs.harvard.edu/abs/2016ApJ...830....7R
https://doi.org/10.1088/0004-637X/760/2/123
http://adsabs.harvard.edu/abs/2012ApJ...760..123R
https://doi.org/10.3847/1538-4357/aa68a0
http://adsabs.harvard.edu/abs/2017ApJ...839...42R
https://doi.org/10.1051/0004-6361/201016152
http://adsabs.harvard.edu/abs/2011A&amp;A...528A..93R
http://adsabs.harvard.edu/abs/1973A&amp;A....24..337S
https://doi.org/10.1086/323713
http://adsabs.harvard.edu/abs/2001AJ....122.2257S
https://doi.org/10.1093/mnras/stw521
http://adsabs.harvard.edu/abs/2016MNRAS.458.3221T
https://doi.org/10.1038/nature15527
http://adsabs.harvard.edu/abs/2015Natur.526..546V
https://doi.org/10.1093/mnras/stu1876
http://adsabs.harvard.edu/abs/2014MNRAS.445.1878W
https://doi.org/10.1093/mnras/stv1201
http://adsabs.harvard.edu/abs/2015MNRAS.451.3237W
https://doi.org/10.3847/0004-637X/819/1/22
http://adsabs.harvard.edu/abs/2016ApJ...816L..22X

	1. Introduction
	2. Eccentric Disk Dynamics
	2.1. Normal Modes

	3. Results
	3.1. Mode Amplitude

	4. Discussion
	References



