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Proscription supports robust perceptual integration
by suppression in human visual cortex
Reuben Rideaux1 & Andrew E. Welchman 1

Perception relies on integrating information within and between the senses, but how does the

brain decide which pieces of information should be integrated and which kept separate? Here

we demonstrate how proscription can be used to solve this problem: certain neurons respond

best to unrealistic combinations of features to provide ‘what not’ information that drives

suppression of unlikely perceptual interpretations. First, we present a model that captures

both improved perception when signals are consistent (and thus should be integrated) and

robust estimation when signals are conflicting. Second, we test for signatures of proscription

in the human brain. We show that concentrations of inhibitory neurotransmitter GABA in a

brain region intricately involved in integrating cues (V3B/KO) correlate with robust inte-

gration. Finally, we show that perturbing excitation/inhibition impairs integration. These

results highlight the role of proscription in robust perception and demonstrate the functional

purpose of ‘what not’ sensors in supporting sensory estimation.
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Our impression of the surrounding world is built upon
fragmentary sensory information that is always incom-
plete and often ambiguous. To achieve perception, the

brain combines a range of signals subject to different constraints.
For instance, judging the shape of a nearby object may rely on
fusing information from different visual cues (e.g., perspective,
shading, and texture) and modalities (e.g., size from vision and
touch)1. By integrating signals, observers resolve ambiguities and
judgments become more precise2.

Understanding of integration has generally focused on the
performance benefits that result from combination3. In particular,
psychophysical work has shown that participants’ precision
improves near-optimally when integrating cues, closely matching
the expectations of maximum likelihood estimation4. However, if
cues originate from different objects, or specify different things, it
no longer makes sense to integrate them. A new pair of glasses,
for example, can suddenly mean that trusted cues (such as
binocular disparity and texture) specify conflicting shapes5. If the
brain nevertheless persisted in averaging the information toge-
ther, observers could perceive something incompatible with either
cue, leading to errors (e.g., reaching to the wrong location). This
process of dealing with conflicting signals and deciding whether
or not to integrate them has been described as one of causal
inference6, and presenting such stimuli provides an ideal testbed
for probing the mechanisms that underlie perceptual integration.
Behavioural evidence7 suggests that integration degrades grace-
fully under cue conflict8. However, we have little understanding
of how this is achieved by the human brain: neither in theory nor
in practice.

Here we develop and test a biologically inspired model of
integration that captures improved performance when informa-
tion is consistent, yet, unlike previous models, shows robust
behaviour in the face of conflict. We propose a role for pro-
scription in optimal sensory encoding and suggest that it makes
sense for the brain to employ ‘what not’ detectors, i.e., neurons
selective for stimuli that do not correspond to real objects. These
units facilitate robust sensory estimation by driving suppression
of unlikely interpretations of the local environment. We have
recently provided evidence for this principle in encoding bino-
cular disparity9; here we demonstrate its utility in a new model
that combines different depth cues for robust shape perception.

The central premise of our model is that the brain uses what
not detectors that respond best to discrepancies between two
cues. These responses are useful because they increase suppres-
sion of certain perceptual interpretations. To test for neurobio-
logical correlates of this process, we examined the relationship
between suppressive processing in the human brain and per-
ceptual integration. We focused on a region of the dorsal visual
cortex (area V3B/KO) that is intricately involved in integrating
three-dimensional (3D) cues to object shape10–13. Under the
proscriptive model, we hypothesised that suppressive processing
in this region is associated with robust integration.

We indexed suppression using non-invasive magnetic reso-
nance spectroscopy (MRS) measures of the inhibitory neuro-
transmitter γ-aminobutyric acid (GABA)14–16. We tested whether
robust integration relates to GABA concentration around V3B/
KO. We then used transcranial direct current stimulation (tDCS)
to perturb the excitatory/inhibitory balance of underlying cortical
tissue. We tested whether disrupting processing in this way would
lead to reduced perceptual integration. We show that GABA
concentrations around area V3B/KO correlate strongly with
robust perceptual cue integration, and that tDCS applied over
V3B/KO leads to impaired integration.

In line with the proscriptive model, our empirical results
demonstrate the critical role of suppressive signals in shaping
integration of 3D cues to object perception. Using detectors that

respond to unrealistic combinations of features makes sense
theoretically and has correlates with suppressive processing in the
human brain. Finally, we show that the proscriptive framework
provides a natural link to phenomena of rivalry and perceptual
bistability12,17–19. Studies of alternating perceptual states have
provided a useful tool to access conscious experience, but have
been long divorced from models of routine perceptual processing.
Our work shows that such phenomena reflect the operation of a
generalized mechanism for sensory processing that exploits what
not signals to effect perception.

Results
Robust integration of depth cues. Human perception is typically
robust in the face of discrepant information. To understand how
this could be achieved by the brain, it is useful to start by thinking
about the space of possible viewed stimuli defined by combina-
tions of two 3D-shape cues (binocular disparity Sδ and texture Sχ,
Fig. 1a). Any stimuli falling along the positive diagonal in this
space specify exactly the same shape from the two cues—i.e., the
information is congruent (Sδ= Sχ). Similar to previous
work7,20–22, we can independently manipulate the cues to explore
the effects on perception: moving away from the positive diagonal
increases the degree of incongruence between the cues. By sys-
tematically manipulating incongruence, Girshick and Banks7

found that perception is initially biased away from the more
reliable of the two cues, but then returns to the more reliable cue
as conflict increases (Fig. 1b, c).

This graceful behaviour is also found for changes in the
variability associated with participants’ judgments: with no
conflict, the reliability increases above that of either component
in line with the optimal integration of the signals3. As conflict
increases, however, reliability falls and then recovers to that
associated with the more reliable component (Fig. 1d), where this
relationship can be described using a second-order Gaussian
derivative function. If the conflict between cues increases still
further, there can be complete scission, and eventually rivalry
between alternative perceptual interpretations22,23. How is this
behaviour implemented by the brain?

The standard mechanistic account of perceptual integration is
described as a process of maximum likelihood estimation8,24.
This model uses information provided by the cues optimally, such
that judgments are more reliable than is possible on the basis of
either cue alone (Fig. 1b). A biologically plausible model of
integration25 can capture the improved performance associated
with combined cues using a population of neurons. However,
neither model captures the robustness of human perceptual
performance (Fig. 1c, d, pink and green lines). Here we propose a
model that shows improved reliability when signals are
consistent, but down-weights the influence of the less reliable
cue in cases of incongruence.

Derivation of the proscriptive integration model. To implement
a biologically plausible model of robust cue integration, we con-
sider the estimation of surface slant—a key percetual quantity
that underlies multiple behaviours—using binocular disparity and
texture depth cues. In a significant departure from previous
work25, we use model neurons (‘units’) that respond best to
incongruent cues (Sδ ≠ Sχ) to incorporate suppressive computa-
tions into the model. This allows the model to produce robust
perceptual estimates that exceed single cues for congruent
information, but revert to the most reliable source of information
in the face of discrepancy.

The front end of the model consists of a bank of filters that
encode the slant of the surface from a single cue: one set for
disparity and another for texture. A layer of combination units
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then integrates signals from the two cues (Fig. 2a). It is
noteworthy that the majority of the combination units are
incongruent, i.e., best stimulated by a discrepancy between the
information provided by each cue. Although this may appear
counterintuitive, there is evidence that such neurons exist in the
primate brain26, although the functional significance of these
units has hitherto been opaque.

Based on empirical evidence27, we assume that combination
units perform a sum of their inputs that increases monotonically,
but sublinearly, with stimulus intensity (Fig. 2b). This non-
linearity models sublinear response functions of the combination
units, which could be mediated by means of synaptic depression
or normalization28. We generated responses for each unit
independently according to a Poisson distribution with a mean
firing rate given by the tuning curves (see the ‘Proscriptive
integration model’ section in Methods).

Following single-cue input, combination units are read out by a
layer of output units, where readout weights are defined by a
cosine function. Simulating a range of cue conflicts produces a
pattern of robust estimates consistent with empirical observa-
tions7 (Fig. 2c). In particular, when cues are consistent, or nearly
so, the model predicts performance that is better (i.e., higher
reliability) than either cue alone, with a maximum reliability
equal to the quadratic sum of the component cues, in line with
optimal estimation for consistent cues1,4. As incongruence
increases, the reliability falls below that of the more reliable cue
(χ) and bias increases above zero. However, increasing incon-
gruence still further produces a robust reversion to χ in terms of
both estimator bias and reliability.

To illustrate the model computations, consider a stimulus that
indicates incongruent slants from the two cues (Fig. 2d). We

express the initial activity in the combination layer as their
summed responses in disparity–texture space. Values along the
diagonal represent the activity of congruent units and values off
the diagonal represent the activity of incongruent units. By
multiplying this activity by a cosine weight matrix, a map of
activity is produced, which shows the influence of each unit on
the final output. The sum of activity along the diagonal yields the
final slant estimate. After converting activity to firing rate by
thresholding negative values to zero, estimator reliability is
derived from the height of the peak29. We quantify bias as the
difference in slant angle between the final estimate and the more
reliable of the two cues. The input cue reliability is derived from
the height of the peak produced in the absence of additional cues.

The critical feature of the model is the form of the readout
weights, which we implement as a basic cosine function. The only
additional parameter models tonic inhibition within the model,
which we assumed to be 5% below equilibrium30–32. The
intutition behind the model is that when two cues are present a
maximum likelihood process indicates that the best evidence for
an estimate is in between the two cues. However, the location
where the evidence is strongest is not always a realistic
interpretation, i.e., when cues are conflicting. Thus, as conflict
between cues increases, activation in the cosinusoidal weight
matrix turns from positive to negative, penalizing the midpoint
between cue estimates. By penalizing the midpoint in cases of
conflict, the evidence now maximally supports the estimate of the
more reliable cue.

Behavioural measures of robust perception. To test the pre-
dictions of our model, we assessed how sensitive participants were
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Fig. 1 Illustrations of cue incongruence and the performance of previous models relative to psychophysical data. a The space of possible slants depicted by
texture and disparity cues. To illustrate cue integration we provide a cartoon of the slant of 3D surfaces defined by congruent (top) and incongruent
(bottom) cues for viewing through red–cyan anaglyph glasses. Sensory estimates are modelled as Gaussian distributions. For congruent cues (top row),
fusion (purple curve) produces a more reliable estimate (i.e., lower variance) than for either component (orange, blue curves). For incongruent cues
(bottom row), accuracy is maintained by down-weighting the influence of the less reliable cue. b Illustration of the bias (offset in the mean) and reliability
(inverse of the variance) parameters used to describe the data. c, d Behavioural measures extracted from Girshick and Banks7 showing c perceived slant
(quantified by bias away from the more reliable cue) and d reliability as a function of cue conflict. Pink and green curves indicate the predictions made by
the maximum likelihood model and the Normalization model25, respectively
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in discriminating the slant of a viewed object (Fig. 3a, b), mea-
suring the just noticeable difference (j.n.d.) threshold between
two stimuli to provide a measure of perceptual reliability. We
manipulated the stimuli such that they differed in only one cue
(i.e., single-cue changes in disparity or texture), or the slant
specified by the texture and disparity cues was consistent, or
inconsistent. To maximize the chances of observing robust

behaviour, we designed the incongruent stimuli such that the
texture cue (mean sensitivity, 0.35) was approximately twice as
reliable as the disparity cue (mean sensitivity, 0.16).

As expected, when participants viewed stimuli with congruent
cues, behavioural sensitivity was significantly higher than for the
single-cue conditions (disparity, t17= 3.85, P= 0.001, Cohen’s
d= 0.91; texture, t17= 2.54, P= 0.02, Cohen’s d= 0.60; Fig. 3c).
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However, given that the three models we compare are inseparable
for congruent stimuli, the important comparison is the case when
participants viewed incongruent-cue stimuli. We found that
performance was significantly worse than for single-cue slant
defined by texture (t14= 2.16, P= 0.048, Cohen’s d= 0.51), but
significantly better than that for single-cue slant defined by
disparity (t14= 3.58, P= 0.003, Cohen’s d= 0.84). This shows
that the presence of the less reliable cue impaired the participants’
perceptual estimates, but that the falloff in performance was not
completely catastrophic in that it remained above that of the less
reliable cue. A possible concern might be that the texture cue was
perceived at a smaller slant than specified33, resulting in the
congruent-cue stimuli being perceived as incongruent, and vice
versa. However, the sensitivity in these conditions, relative to that
for single cues, confirms that this was not the case. That is,
congruent-cue sensitivity is higher than that for either single cue
and incongruent-cue sensitivity is not, as would be expected if the
cues that comprise the stimuli in these conditions were congruent
and incongruent, respectively. Further, observers’ estimates were
significantly biased towards the slant defined by the texture cue in
the incongruent condition (t17= 29.03, P= 5.4e–16, Cohen’s d=
6.84), consistent with robust estimation for incongruent cues.
Using the sensitivities measured for single cues, we generated
predictions for sensitivity in the incongruent-cue condition based
on (i) the maximum likelihood model, (ii) Ohshiro et al.25

normalization model and (iii) our proscriptive integration model.
Comparing Bayes factor scores, we found that the proscriptive
integration model best accounted for incongruent-cue sensitivity,

14.2 times better than the maximum likelihood model and 4.3e5

times better than the normalization model (Fig. 3c).

Relating perceptual judgments to suppressive processing. The
proscriptive integration model posits a central role for suppres-
sion to infer the probable structure of the local environment. To
demonstrate this, we simulated performance in response to single,
congruent and incongruent stimuli, while varying the magnitude
of the model’s negative (i.e., suppressive) readout weights (Fig. 4,
left). We found no relationship between suppression and the
model’s sensitivity to single or congruent cues (n= 100, single/
congruent: Pearson’s r= 0.14, P= 0.16). However, for incon-
gruent stimuli, there was a strong positive correlation between the
model’s suppressive weights and sensitivity (n= 100, Pearson’s r
= 0.78, P= 1.1e−21). (This pattern of results persisted under
changes in the simulation parameters, Supplementary Figure 1).

Experimentally, we reasoned that differences between human
observers in their sensitivity to incongruent cues might relate to
differences in suppressive tone within the cortex. In particular, we
employed MRS that has previously been used to link neurochem-
istry to visual processing14,16. We tested for correlations between
(at rest) concentrations of the main inhibitory neurotransmitter
(GABA) within the participants’ brains and robust perceptual
judgements measured using psychophysics.

We considered three regions of interest in the participants’
brains. Our primary interest was in an MRS voxel centred on area
V3B/KO of the human brain as previous functional magnetic
resonance imaging (fMRI) work demonstrated that this area is
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intricately involved in cue integration10–13. In addition, we
measured control voxels in the visual (V1) and motor (M1)
cortices. We anticipated that greater potential for suppression (as
indexed by overall GABA levels) would be associated with robust
perceptual judgments for regions of the cortex associated with cue
integration. Consistent with this prediction, we found a
significant positive correlation between GABA concentration in
the voxel centred on V3B/KO and perceptual sensitivity to
incongruent stimuli (n= 18, Pearson’s r= 0.75, P= 3.8e–4;
CI95%= [0.40, 0.91]; confidence intervals are corrected for
multiple comparisons; Fig. 4, top right).

In line with the model predictions (Fig. 4, left), we found that
the relationship between GABA concentrations and behavioural
performance was specific to the incongruent stimuli. That is, we
found no relationship between GABA and slant defined by
disparity, texture, or congruent cues (n= 18, disparity [30°,20°]:
Pearson’s r= 0.03,– 0.3, P= 0.92,0.26; texture [30°,50°]: Pearson’s
r= 0.05,– 0.49, P= 0.85,0.08; congruent: Pearson’s r= 0.10, P=

0.68; Fig. 4, right; Supplementary Figure 2b). Importantly, the
relationship between GABA and behavioural performance was
specific to the V3B/KO region: we found no relationship between
sensitivity and GABA measured over the V1 and M1 control sites
(n= 14, V1: Pearson’s r= 0.40, P= 0.15; n= 18, M1: Pearson’s r
= – 0.21, P= 0.39; Supplementary Figure 2a).

In addition to sensitivity, we also used the measures of bias in
the incongruent-cue simulations to calculate the weights assigned
by the model to each cue. As with sensitivity, suppression in the
model was highly correlated with the weight given to the more
reliable cue (n= 100, Pearson’s r= 0.78, P= 1.7e−21; Supple-
mentary Figure 2c). We found the equivalent relationship
between GABA concentration in humans from a voxel centred
on V3B/KO and the weight (i.e., normalized bias) they assigned
to the more reliable cue (n= 12, Pearson’s r= 0.60, P= 0.04;
Supplementary Figure 2c). Its is noteworthy that the observed
reliable-cue weights (mean= 0.53) were smaller than that
predicted by the model (mean= 0.87; Supplementary Figure 2c).
A plausible explanation for this is that for the incongruent-cue
reference stimulus, the texture cue was more influenced by a
frontoparallel bias, whereas this was not the case for the
congruent-cue test stimuli34. Thus, although the cues were
perceived as incongruent, the magnitude of this difference was
reduced as a result of a small frontoparallel bias acting on the
texture cue.

As GABA concentration is expressed with reference to H2O, a
possible concern might be that the observed correlations with
behavioural performance relate to individual variability in H2O
concentration rather than GABA. However, we found the same
result when GABA was referenced to Creatine (Supplementary
Figure 3a). Although this is reassuring, as an additional check, we
also quantified the concentration of Glx (glutamate and
glutamine) in the spectra and tested whether this correlated with
behaviour when referenced to H2O. We found no evidence of a
relationship between V3B/KO Glx:H2O concentration and robust
behavioural performance (Supplementary Figure 3b), indicating
that individual variability in H2O concentration did not explain
the results. Another possible concern is that the observed
correlations relate to the ratio of grey matter (GM) and white
matter (WM) content in the voxels. However, there was no
relationship between incongruent-cue sensitivity and GM:WM
voxel content (Supplementary Figure 3c), and the relationship
between incongruent-cue sensivity and GABA remained sig-
nificant after controlling for GM:WM voxel content (n= 18,
Pearson’s r= 0.63, P= 0.007).

Perturbing processing to alter perception of combined cues. To
move beyond correlative evidence, we next sought to perturb the
excitatory-inhibitory balance of the cortex, and then measure the
consequences on perceptual judgments. To this end, we applied
tDCS to perturb cortical excitability centred over area V3B/KO in
12 human participants. This technique has previously been
shown to alter overall responsivity of the visual cortex35,36 and
produce systematic effects on visual judgments37. We applied
anodal and cathodal stimulation montages to V3B/KO before
measuring sensitivity to single-, congruent-, and incongruent-cue
stimuli. (Given the complexity of the technique38, we had no a
priori expectation about the effects of tDCS polarity, other than
noting previous work had seen stronger effects of cathodal sti-
mulation in the visual cortex35,39.) To control for placebo effects,
we contrasted the results with sensitivity following sham stimu-
lation. We reasoned that if tDCS is targeting the process of robust
integration (consistent with a V3B/KO locus) single-cue perfor-
mance should be relatively unaffected, as this information is
extracted earlier in the cortical hierarchy to the stage of
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(middle row) or single cues (bottom). The right column shows the results
of MRS measurements that quantified GABA around V3B/KO and related
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with the model simulations, we found a significant positive correlation
between human observers’ GABA concentration in the voxel centred on
V3B/KO and perceptual sensitivity to incongruent-cue stimuli (n= 18,
Pearson’s correlation r= 0.75, P= 3.8e−4, CI95%= [0.40, 0.91];
confidence intervals are corrected for multiple comparisons; top right), but
not to congruent- or single-cue stimuli (n= 18, congruent: Pearson’s r=
0.10, P= 0.68, middle right; disparity: Pearson’s r= 0.03, P= 0.92; texture:
Pearson’s r= 0.05, P= 0.85; bottom right). Asterisks highlight significant
differences P < 0.05. Each datum represents measures from one
participant; bivariate outliers are shown as empty circles
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combination. It should be noted that information from other cues
is also present in the single-cue conditions20,21 (e.g., the random
dots of the sterogram provide a texture cue). However, as this
information is (i) less reliable than the dominant cue (e.g., dots
provide only small texture elements) and (ii) common to the pairs
of stimuli being judged, it is likely to have little influence on
perception. In contrast, combining two reliable cues (in the
combined-cue conditions) results in large perceptual changes, so
disrupting integration in these conditions will produce a larger
effect.

In line with our reasoning, we found that sensitivity in the
disparity- and texture- single-cue conditions was unaffected by
the application of tDCS (disparity anodal: t11= 1.32, P= 0.21;
disparity cathodal: t11= 0.58, P= 0.58; texture anodal: t11= 0.63,
P= 0.54; texture cathodal: t11= 1.08, P= 0.30; Fig. 5a). In the
sham condition, we observed the expected behavioural benefit
from combination: i.e., performance in the congruent-cue
condition was significantly higher than for the single-cue
conditions (disparity, t11= 7.57, P= 1.1e−5, Cohen’s d= 2.18;
texture, t11= 5.67, P= 1.4e−4, Cohen’s d= 1.63).

Importantly, however, the benefit of combining cues in the
congruent- and incongruent-cue conditions was reduced through
the application of tDCS. In particular, we found that cathodal
tDCS reduced sensitivity to both congruent and incongruent cues
(congruent, t11= 5.17, P= 3.0e−4, Cohen’s d= 1.49; incongru-
ent, t11= 2.58, P= 0.02, Cohen’s d= 0.74), whereas lower
performance under anodal stimulation was not statistically
significant (congruent, t11= 1.33, P= 0.21; incongruent, t11=
0.56, P= 0.61; Fig. 5a, b). This indicates that perturbing the
cortical excitability around V3B/KO disrupted observers’ ability
to integrate disparity and texture cues, while leaving sensitivity to
the individual cues unaffected.

tDCS modulates the excitability of neural tissue during
stimulation (online effects) and following the offset of stimulation
(offline effects)35. Although the modulatory effects of on- and
offline tDCS are similar, pharmacological work indicates that the
neurophysiological mechanism that produces this modulation
may be different40. We therefore tested whether cue integration is
also impaired by online tDCS, repeating the experiment in a new
set of participants, and now measuring behavioural performance
during stimulation. We found the same pattern of results:
sensitivity to combined congruent/incongruent cues was sig-
nificantly reduced during cathodal tDCS (congruent, t11= 2.69, P
= 0.02, Cohen’s d= 0.78; incongruent, t11= 2.98, P= 0.01,
Cohen’s d= 0.86; Fig. 5c, d). These results show that cue
integration is impaired by both on- and offline tDCS, and provide
a replication of the main tDCS effects on a second cohort of
participants.

To assess whether tDCS affected observers’ bias, we tested for
differences in the point of subjective equality between stimulation
conditions. We found marginally significant effects (repeated
measures analysis of variance (RM ANOVA), offline: F2,22= 3.22,
P= 0.06; online: F2,22= 2.72, P= 0.09); however, the differences
were small and the opposite direction for on- vs. offline
stimulation. Moreover, the largest difference between on- and
offline stimulation is between the sham conditions that provides
the control baseline (Supplementary Figure 4). We therefore
interpret these results as serendipitous.

The population-level neurophysiological impact of tDCS is not
yet understood in sufficient detail to permit its effects to be
accurately simulated within our model. Instead, we took the more
realistic approach of testing how well the model could capture the
tDCS results by using a subset of experimental conditions to fix
the model’s parameters, and then tested for generalization to
other conditions. We first simulated performance in the sham
conditions so that it fit the experimental data (difference between
simulated and experimental data, disparity: t23= 0.70, P= 0.49;
texture: t23=−1.65, P= 0.11; congruent: t23= 0.33, P= 0.74;
incongruent: t23= 0.75, P= 0.46; Fig. 5e, f). Having determined
the main properties of the model, we then introduced two
additional free parameters to capture the effects of tDCS. These
parameters independently multiplied the strength of the positive
and negative weights in the combination layer by a factor between
zero and one, modelling the (at least partially) independent effects
of tDCS on inhibition and excitation41. We fit these parameters
using the tDCS effects measured in the single- and congruent-cue
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Fig. 5 Behavioural and model simulated effects of tDCS on single-(texture/
disparity), congruent- and incongruent-cue conditions. a, b Perceptual
sensitivity for slant defined by a single (texture/disparity), congruent and b
incongruent cues following 20min sham, anodal, and cathodal stimulation
targeting V3B/KO. c, d Same as a and b but during stimulation. RM
ANOVA was used to test for main effects across experimental conditions.
In a there was a significant main effect of stimulus type (F2,22= 23.25, P=
3.7e−6) and a significant interaction (F4,44= 4.40, P= 0.004). In b a
significant main effect of stimulation (F2,22= 4.76, P= 0.02) was followed
by paired t-tests: sham vs. cathodal conditions for congruent (t11= 5.17, P
= 3.0e−4, Cohen’s d= 1.49) and incongruent cues (t11= 2.58, P= 0.02,
Cohen’s d= 0.74). c, d We tested the reproducibility of these effects and
found significant differences between sham vs. cathodal conditions for
congruent (t11= 2.61, P= 0.02, Cohen’s d= 0.75) and incongruent cues
(t11= 2.46, P= 0.03, Cohen’s d= 0.71). Asterisks highlight significant
differences P < 0.05. Semi-transparent black dots indicate individual data
points and error bars indicate SEM. To test whether these effects could be
captured by the model, we first simulated performance in the sham
conditions of the a–d tDCS experiments (e, f, sham conditions). We then
simulated anodal and cathodal stimulation by fitting two additional free
parameters using the tDCS effects measured in the single- and congruent-
cue conditions (e, anodal/cathodal conditions); these parameters model
the effects of tDCS on inhibition and excitation. Finally, we simulated
performance for incongruent cues (based on the fixed parameters) (f,
anodal/cathodal conditions). The model predictions match the mean
experimental data

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03400-y ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1502 | DOI: 10.1038/s41467-018-03400-y |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


conditions (Fig. 5e). Finally, we simulated performance for
incongruent cues (based on the fixed parameters) and compared
the model’s predictions with the empirical data. We found that
the simulated tDCS results fit the observed data well: anodal
effects were meagre, reflecting the nonsignificant changes
observed, whereas cathodal effects were equivalent in direction
and magnitude to those observed (difference between simulated
and experimental effect of cathodal stimulation, congruent: t23=
1.63, P= 0.12; incongruent: t23= 1.90, P= 0.07; Fig. 5f). The
difference between cathodal and anodal stimulation is consistent
with previous work showing that cathodal stimulation has a
greater effect on visual evoked potentials35,39.

We built a number of controls into our tDCS protocol to rule
out alternative interpretations of our findings. First, we used
lateralized stimulus presentation, with some stimuli presented in
the visual hemifield that would be affected by tDCS and others in
the non-stimulated hemifield. We found that the effects of
stimulation over V3B/KO were spatially localized to the visual
hemifield contralateral to target stimulation, that is, there was no
effect of stimulation on performance for stimuli presented
ipsilaterally (RM ANOVA, F1,35= 1.19, P= 0.31; Supplementary
Figure 5a). To assess the regional specificity of the tDCS, we
tested the effects of tDCS using a V1 tDCS montage, and found
no effect of tDCS (i.e., no difference in congruent-cue sensitivity
between sham and cathodal stimulation; t11= 0.20, P= 0.84;
Supplementary Figure 6). This suggests that stimulation over
V3B/KO can produce specific effects on cue integration in line
with previous fMRI work that highlighted the role of this area in
depth cue integration10–13. Another possible concern is that
stimulation could produce a nonspecific effect by reducing
general behavioural performance (e.g., through distraction caused
by skin irritation). Our results made this unlikely as we found that
tDCS had a specific effect on integration conditions and not on
single cues. However, we had included trials in the experimental

design to act as ‘lapse’ tests under the different stimulation
conditions. Specially, we presented some easy trials for which
performance should be close to 100% correct; we found no
evidence for a change in general performance resulting from
stimulation (RM ANOVA, F1,35= 2.40, P= 0.11; Supplementary
Figure 5b), indicating that tDCS effects were task specific. We also
found no effect of stimulation on response times (RM ANOVA,
F2,22= 0.69, P= 0.49; Supplementary Figure 5c). Finally, measur-
ing binocular eye movements during tDCS showed that
stimulation did not disrupt eye movement control (critical for
stereopsis): eye vergence and version was stable and not
systematically affected by stimulation (Supplementary Figure 7).

Modelling perceptual rivalry. Having considered imaging evi-
dence consistent with the proscriptive model, we make a final
observation about its utility for understanding other perceptual
phenomena. If conflicting or ambiguous images are presented to a
viewer, such as in the case of binocular rivalry or viewing a
Neckar cube, viewers typically experience perceptual alternation
over time. Traditionally, the study of such perceptions has been
kept quite separate from models of routine perceptual
processing42,43. By contrast, here show that proscription provides
a natural foundation that accommodates both routine perceptual
estimation and alternating perceptual interpretations.

Up to this point, we have considered robust perception under
conflict when one cue is considerably more reliable than the
other. We now consider the case where cues are in conflict but
equally reliable. In this instance, there is no principled way of
selecting one cue over the other and the result is typically bistable
perception22,23. The proscriptive integration model naturally
accommodates this behaviour: when conflicting cues are
simulated with similar reliability, a bimodal population response
is observed in the output (Fig. 6a, time 0).
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We can model perceptual alternation by assuming a combina-
tion of mutual inhibition and adaptation between the competing,
bimodal representations19,42. The dynamics of adaptation allow
us to simulate the temporal dynamics of perceptual bistability
(Fig. 6b). Specifically, mutual inhibition between neuronal
representations (and internal noise) initially results in the
dominance of one of the cues over the other (Fig. 6a, time 1).
However, through adaptation, the activity of units representing
the dominant representation gradually decays and is followed by
the re-emergence of the non-dominant representation (Fig. 6a,
time 2). This cycle forms the basis of the rate of swapping
between perceptual estimates (Fig. 6b).

Given the mechanism of mutual inhibition and adaptation is
well-established, it is perhaps unsurprising that it can be used to
produce bistability here. However, using this mechanism to
extend the proscriptive integration model, we were able to
capture the behaviour of observers viewing conflicting cues to
slant measured by a previous study23. In particular, we simulated
a range of cue conflicts and assessed the degree of bistability in
the model’s estimates. This allowed us to capture human
psychophysical performance that shows the situations in which
bistability is experienced (Fig. 6c, shaded blue region). The
previous work also reported cases in which participants did not
experience any bistability (Fig. 6d). We captured this within the
model on the basis that such observers ascribe unequal
reliabilities to the presented cues, such that one cue always
dominates.

Discussion
To understand the structure of the surrounding world, the brain
integrates information from a range of sensory cues. Integration
can improve perceptual estimates; however, it needs to be sensi-
tive to the context: in some cases it is better to down-weight some
signals.This process of deciding whether or not to integrate cues
has been described as one of causal inference6, that is, inferring
whether multiple sensory signals were produced by the same or
different sources. Here we demonstrate a principled way in which
this can be done. In particular, we develop a model whose central
premise is that certain sensory signals are used proscriptively to
drive suppression of particular interpretations and thereby facil-
itate robust integration. We demonstrate that proscription drives
both (a) robust integration and (b) perceptual rivalry. Further, we
provide evidence for neural correlates of proscription in the
human brain. In particular, we find that (i) GABA measured in a
brain region intricately involved in cue fusion (V3B/KO) is
strongly correlated with robust perceptual integration and (ii)
perturbing the excitatory/inhibitory balance with tDCS impairs
perceptual integration.

Our prosrciptive model demonstrates why it makes sense for
the brain to employ what not detectors that respond best to sti-
muli that do not correspond to the features of real objects. By so
doing, these detectors drive suppression of unlikely interpreta-
tions of the local environment. Although this may appear coun-
terintuitive, there is evidence that what not neurons exist in the
primate brain, although their functional purpose was previously
unclear.

Previous electrophysiological recordings have shown that
although certain neurons are tuned to the same information
specified by two cues (congruent neurons), many others respond
best when there is a large conflict between the information pro-
vided by two cues (incongruent neurons)26,44,45. Why should the
brain develop such neurons? One possibility is that they are used
as a veto46. Here we demonstrate that incongruent signals provide
a key means of supporting robust integration: a single model
explains cases when cues are combined to boost performance,

when discrepant signals are down-weighted and cases of complete
scission.

Our formulation also provides an architecture for processes of
recalibration that are likely to constitute an important facet of
perceptual integration. In particular, a change in the observer’s
state, such as wearing a new pair of glasses, or sustaining an
injury, can necessitate that the information provided by two cues
is recalibrated. A neural architecture that is specialized only for
congruent signals requires a recalibration of the individual sen-
sory estimates. However, within our model, recalibration could be
achieved by simply changing the phase of the readout weight
matrix (see Parise and Ernst47 for a similar example).

For simplicity, in this study we have only considered the
inclination of a surface away from frontoparallel (slant), whereas
real-world surfaces are typically parameterized as the combina-
tion of slant and tilt (orientation of the surface in the image
plane). Extending our model to accomodate both slant and tilt
should be feasible within the suggested architecture, simply
necessitating an increase in the number of units to accommodate
joint encoding of slant and tilt48.

A central premise of the model is that incongruent neurons are
used proscriptively to drive suppression of unlikely perceptual
interpretations. In support of this, we identify neural correlates of
suppression that predict robust perceptual behaviour. Specifically,
we find baseline inhibitory neurotransmitter GABA concentra-
tion is correlated with robust perceptual estimates. Moreover, we
find that the GABA associations were regionally specific to cor-
tical areas associated with depth cue integration (V3B/KO); we
find no correlation between robust perception and GABA mea-
sured at control regions (V1 and M1).

The application of MRS in humans has started to provide new
insight into perceptual and cognitive processes14,16; however, a
known limitation of the technique is its spatial resolution.
Although we centred data acquisition on particular brain regions
(e.g., V3B/KO), the size of the voxels necessary for the technique
(3 × 3 × 2 cm) inevitably means that we sampled from neigh-
bouring regions of the cortex (e.g., V3A, V3, and V7). With this
in mind, we selected the locations of our control sites to
demonstrate a level of regional specificity. Moreover, extensive
fMRI work has identified V3B/KO as a locus for depth cue
integration10–13, supporting the interpretation that GABA mea-
sured in this area was the primary contributor to the relationship
with robust integration.

Another limitation of MRS is that it measures total con-
centration of neurochemicals within a localized region and can-
not distinguish between intracellular and extracellular pools of
GABA. This is relevant, because these pools are thought to have
different roles in neuronal function. Here we show that the
suppressive gain of the network is correlated with robust per-
ception, suggesting that the relationship between MRS-measured
GABA and robust perceptual behaviour is, at least partially,
correlated with intracellular vesicular GABA, which drives neu-
rotransmission49. However, the tonic cortical inhibition incor-
porated within the proscriptive integration model, which is
maintained by extracellular GABA50, also facilitates robust esti-
mates. Thus, the correlation between MRS-measured GABA and
robust perception may also be driven by extracellular GABA.

Our results show that GABA is linked to the robust selection
that occurs when two cues are in conflict and one is perceived as
more reliable. We also show that the proscriptive model can
reproduce behaviour when conflicting-cue stimuli are presented
that result in perceptual rivalry22,23. We therefore envisage robust
selection and perceptual rivalry as falling on a continuum of
degrees of cue conflict, which is moderated by the relative relia-
bility between cues. Within this framework, it makes sense that
GABA concentrations have been linked to the perception of
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bistable stimuli. Specifically, the rate of swapping between bistable
stimuli is correlated with GABA concentration in human visual
cortex16,51. Moreover, previous theoretical and empirical work
indicates that incongruent neurons may have a key role in per-
ceptual rivalry19,52. Here we propose proscription as a common
mechanism (operating across a range of cue conflicts) to support
robust integration by driving suppression of unlikely interpreta-
tions of the local environment.

Having discovered suppressive correlates of robust perceptual
integration, we perturbed the cortical excitability around V3B/KO
using tDCS. We found that following cathodal stimulation, esti-
mates produced by both congruent and incongruent cues were
impaired, whereas anodal stimulation produced a smaller, non-
significant effect. We also demonstrate that these effects replicate
in an independent sample of participants. Importantly, we
showed that these effects were specific to the process of inte-
grating cues rather than the processing of single cues per se. We
could capture this behaviour within the proscriptive integration
model by fitting two free parameters that attenuated the strength
of positive/negative lateral connections within the combination
layer to the results for congruent and single cues, and then using
these (now fixed) parameters to predict the effect of stimulation
on incongruent-cue estimates.

Recent meta-analyses have questioned the reliability of certain
tDCS findings. However, tDCS has been shown to reliably change
GABA concentrations41,53, modulate visual evoked potentials35,36

and affect visual perception37. The replication of the basic effect
in an independent sample of participants is thus important in
providing reassurance about the reliability of the findings we
report. A principle limitation of tDCS is that its effects are spa-
tially imprecise54. To address this limitation, we combined MRI
functional localization of V3B/KO, neuronavigation and electric-
field simulations to produce a tDCS montage that would most
effectively target V3B/KO. Further, we repeated the experiment
with a montage targeting V1 and found no effect.

The interaction between the current flow induced by tDCS and
the unique morphology of the brain means that the effects of
stimulation, even directly under the electrode, are too complex to
characterize as either purely increasing or decreasing excitation38.
With this in mind, here we used tDCS to perturb the balance of
excitation and inhibition around V3B/KO, and designed our
experiment with a range of controls that allowed us to make
precise interpretations of the results. Interestingly, we found no
evidence of polarity-specific directional effects, i.e., modulation in
one direction for anodal and another for cathodal35, yet our
results are consistent with evidence that cathodal stimulation is
more effective than anodal in modulating the excitability of the
visual cortex35,39 and may suggest that the morphology of the
visual cortex is more amenable to the current produced by
cathodal stimulation.

Together, our modelling and empirical results point to a cen-
tral role for proscription in driving robust perceptual integration.
Using neurons that respond to unrealistic combinations of fea-
tures to drive robust perception makes sense theoretically and has
correlates with suppressive processing in the human brain. This
suggests a generalized mechanism for sensory processing that
exploits what not information to facilitate perception and pro-
vides a natural foundation to explain phenomena associated with
rivalry and perceptual bistability.

Methods
Participants. Observers were recruited from the University of Cambridge and had
normal or corrected-to-normal vision, and were screened for stereo deficits. A
priori sample sizes were established using effect sizes from previous MRS14 and
tDCS35 studies to achieve 90% power. Twenty observers participated in the MRS
experiment; however, two were not included in the analysis: one withdrew mid-

scan and a hardware fault stopped acquisition mid-scan for the other. Eighteen
subjects (15 male; 17 right-handed; 25.1 ± 3.1 years) completed MRS for V3B/
KO and M1, of whom 15 also returned for the (control) V1 scan. Twelve observers
participated in each of the 5 tDCS experiments, for a total of 34 different observers
(19 male; 31 right-handed; 24 ± 3.6 years). Experiments were approved by the
University of Cambridge ethics committee; all observers provided written informed
consent.

Apparatus and stimuli. Stimuli were generated in MATLAB (The MathWorks,
Inc., Matick, MA) using Psychophysics Toolbox extensions55,56. Binocular pre-
sentation was achieved using a pair of Samsung 2233RZ LCD monitors (120 Hz,
1680 × 1050) viewed through mirrors in a Wheatstone stereoscope configuration.
The viewing distance was 50 cm and participants’ head position was stabilized
using an eye mask, head rest and chin rest. Eye movement was recorded binocu-
larly at 1 kHz using an EyeLink 1000 (SR Research Ltd, Ontario, Canada).

Stimuli were virtual planes slanted about the horizontal axis (Fig. 3a). Two cues
to slant were independently manipulated: texture and disparity. The texture cue
was generated by Voronoi tessellation of a regular grid of points (1° ± 0.1° point
spacing) randomly jittered in two dimensions by up to 0.3°21,57. Each texture patch
had on average 64 texture elements (textels); however, the actual number of textels
varied between trials depending on their size. Each textel was randomly assigned a
grey level and shrunk about its centroid by 20%, creating the appearance of ‘cracks’
between textels. The width of these cracks also varied as a function of surface slant,
thus providing additional texture information. Texture surfaces were mapped onto
a vertical virtual surface and rotated about the horizontal axis by the specific
texture-defined angle, before a perspective projection consistent with the physical
viewing geometry was applied. To isolate the disparity cue, a random-dot stimulus
was generated using the same parameters as in the texture stimuli, i.e., an average
of 64 dots with randomized grey level assignment. In the single-cue disparity and
two-cue conditions, binocular disparity was calculated from the cyclopean view and
applied to each vertex/dot based on the specific disparity-defined slant angle.

Surfaces were presented unilaterally (80% left and 20% right of fixation) inside a
half-circle aperture (radius 6°) and a cosine edge profile to blur the appearance of
depth edges. Stimuli were presented on mid-grey background, surrounded by a grid
of black and white squares (75% density) designed to provide an unambiguous
background reference. In the stereoscopic conditions, observers could theoretically
discriminate surface slant based only on the difference in depth at the top/bottom
of a pair of stimuli. Similarly, in the texture-only condition, observers could make
judgements based on the difference in textel density at the top/bottom of a pair of
stimuli. To minimize the availability of these cues, disparity-defined position was
randomized by shifting the surface relative to the fixation plane (0° disparity) to
between ± 10% of the total surface depth. Texture-defined position in depth—
which corresponded to average textel size—was randomized for each stimulus
presentation by increasing point spacing in the initial grid of points by ± 10%21.

We presented four cue conditions: 2× single-cue (texture and disparity) and 2×
two-cue conditions (congruent and incongruent). Stimuli in the single-cue texture
condition were presented monocularly (right eye), whereas all other stimuli were
presented binocularly.

Procedure. Observers performed a two-interval forced-choice discrimination task
in which the reference and test stimuli were presented in randomized order
(Fig. 3b). Each stimulus was presented for 500 ms with an inter-stimulus interval of
300 ms. Following the offset of the second stimulus, observers were prompted to
indicate which stimulus was more slanted (using a keypress) by the fixation cross
changing from white to black. No duration limit was enforced for responses, but
observers were encouraged to respond quickly. Following a response, the fixation
cross was changed back to white and a fixation period of 500 ms preceded the onset
of the next trial. A method of constant stimuli procedure was used to control the
difference in slant between the reference and test stimuli. The MATLAB toolbox
Psignifit58 (http://psignifit.sourceforge.net/) was used to fit psychometric functions
to the data. Sensitivity to slant was derived from the slope of the psychometric
function and the point of subjective equality (PSE) from the threshold.

In the congruent-cue condition, reference stimuli consisted of consistent texture
and disparity slant (Sδ= Sχ= 40°). It is noteworthy that we chose this slant angle,
as observers sensitivity to disparity and texture cues was similar (at larger angles,
observers become relatively more sensitive to the texture cue59). Ensuring similar
cue reliabilities (i.e., a 1:1 reliability ratio) gave us the greatest potential to detect the
improved performance associated with combination. Specifically, the maximum
possible benefit for combining independent cues is a factor of √2 for the case when
the two cues have equal reliability; this benefit is smaller when the two cues differ in
reliability.

As we were testing the robustness of observers’ perception, we designed the
stimulus in the incongruent-cue condition such that one cue was more reliable than
the other. To achieve this, we took advantage of the fact that sensitivity to texture-
defined slant increases with slant angle59. This allowed us to manipulate cue
reliability, without changing aspects of the stimuli other than slant (i.e., we did not
need to add noise or manipulate contrast, which might complicate comparisons
between conditions). Specifically, for the incongruent condition, we combined a
smaller disparity slant (Sδ= 20°) with a larger texture slant (Sχ= 50°), yielding a
stimulus whose component cue elements differed in reliability (approximately 2:1
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ratio). We chose a 2:1 reliability ratio for the incongruent case, as this (i) could be
achieved while holding all other stimulus parameters constant between congruent
and incongruent conditions (except slant angle), and (ii) was predicted by the
model to produce robust behaviour. In addition to the combined conditions,
single-cue conditions were included, for each of the slant angles used in the
combined stimuli (i.e., Sδ= [40°,20°], Sχ= [40°,50°]). We also included a test
stimulus with 0° texture and disparity slant. This was intended to be easily
discriminable from the reference stimuli and thus provide a generalized measure of
psychophysical performance by capturing the lapse rate of the observers. In
addition, we presented six trials with reference stimuli selected at random at the
start of each block to refresh observers’ familiarity with the task. Observers were
regularly prompted to maintain fixation throughout the experiment.

In the congruent- and single-cue conditions, the test stimuli were defined by
congruent and single cues, within a range ±20° of the reference stimulus (40°) over
eight evenly spaced steps, i.e., ± [20.0,14.3,8.5,2.8]. For the incongruent-cue
condition, the test stimuli were defined by congruent cues, within a range of ± 25°
of the midpoint between the slants defined by the incongruent cues of the reference
stimulus (35°) over eight evenly spaced steps, i.e., ± [25.0,17.8,10.7,3.6]. For
participants who showed high precision in the incongruent condition during the
initial familiarization stage, this range was adjusted to ± 14° to more closely assess
their sensitivity. As an incongruent test stimulus was compared against consistent-
cue reference stimuli, the PSE in the incongruent condition provides an assessment
of the perceived shape of the incongruent stimulus in terms of congruent stimuli.

Before brain imaging/stimulation experiments, participants performed a
familiarization session in the laboratory. This was used to introduce participants to
viewing the stimuli in the stereoscope and ensure they could perform the slant
discrimination task.

For the MRS experiment, participants took part in two further sessions. One
session was used to acquire MRS measurements inside the MRI scanner while the
participants were at rest (i.e., no active task was performed). The other session
measured psychophysical performance on the slant discrimination task under the
different experimental conditions. The two sessions were separated by 24–48 h and
the order of sessions was counterbalanced across participants. For each condition,
observers underwent two blocks of 214 trials. Condition order was randomized.

For the tDCS experiments, participants took part in three experimental sessions
(sham, anodal or cathodal). Each session was separated by at least 36 h and the
order of sessions was counterbalanced across participants. During the initial
familiarization session, reference stimuli for the ipsilateral control trials were drawn
at random from the pool of reference slants used in the main experiment. During
stimulation sessions, the control reference slant was set to that which individual
observers could discriminate at 80% performance. Calibration of the eye tracker
was performed immediately before the onset of each block in tDCS sessions.
Condition order was counterbalanced across simulation sessions and subjects.

Magnetic resonance spectroscopy. Magnetic resonance scanning was conducted
on a 3T Siemens Prisma equipped with a 32-channel head coil. Anatomical T1-
weighted images were acquired for spectroscopic voxel placement with an ‘MP-
RAGE’ sequence. For detection of GABA, spectra were acquired using a
macromolecule-suppressed MEGA-PRESS sequence: echo time= 68 ms, repetition
time= 3000 ms; 256 transients of 2048 data points were acquired in 13 min
experiment time; a 14.28 ms Gaussian editing pulse was applied at 1.9 (ON) and 7.5
(OFF) p.p.m.; water unsuppressed 16 transients. Water suppression was achieved
using variable power with optimized relaxation delays and outer volume sup-
pression. Automated shimming followed by manual shimming was conducted to
achieve approximately 12 Hz water linewidth.

Spectra were acquired from three locations; a target (V3B/KO) and two control
(V1 and M1) voxels (30 × 30 × 20mm) (Supplementary Figure 8a). The V3B/KO
voxel was positioned in the right hemisphere, adjacent to the median line, and
rotated in the sagittal and axial planes so as to align with the posterior surface of
the brain, while preventing protrusion from the occipital lobe and limiting
inclusion of the ventricles. The V1 voxel was placed medially in the occipital lobe,
the lower face aligned with the cerebellar tentorium and positioned so to avoid
including the sagittal sinus and to ensure it remained within the occipital lobe. The
M1 voxel was defined in the axial plane as being centred on the ‘hand knob’ area of
the precentral gyrus and aligned to the upper surface of the brain in the sagittal and
coronal planes. These locations are commonly used for defining corresponding
target and control voxels in studies linking GABA to cognitive processes15,60.

Spectral quantification was conducted with GANNET 2.061 (Baltimore, MD,
USA), a MATLAB toolbox designed for analysis of GABA MEGA-PRESS spectra,
modified to fit a double-Gaussian to the GABA peak. Individual spectra were
frequency and phase corrected before subtracting ‘ON’ and ‘OFF’, resulting in the
edited spectrum (Supplementary Figure 8b). The edited GABA peak was modelled
off a double-Gaussian (Supplementary Figure 8c) and values of GABA relative to
water (GABA/H2O; modelled as a mixed Gaussian–Lorentzian) in institutional
units were produced. The fitting residual for water and GABA were divided by the
amplitude of their fitted peaks to produce normalized measures of uncertainty. The
quadratic of these was calculated to produce a combined measure of uncertainty for
each measurement62,63. This combined fitting residual was relatively low across all
participants for all voxel locations, from 3.8% to 9.4% (mean: 6.6% ± 0.2%).

To ensure that variation in GABA concentrations between subjects was not due
to differences in overall structural composition within the spectroscopy voxels, we

performed a segmentation of voxel content into GM, WM and cerebrospinal fluid
(CSF). This was then used to apply a CSF correction64 to the GABA/H2O
measurements with the following equation:

Ctisscorr ¼ Cmeas

fGM þ fWM
ð1Þ

where Ctisscorr and Cmeas are the CSF-corrected and -uncorrected GABA
concentrations, respectively, and fGM and fWM are the proportion of GM and WM
within the voxel. Segmentation was performed using the Statistical Parametric
Mapping toolbox for MATLAB (SPM12, http://www.fil.ion.ucl.ac.uk/spm/). The
DICOM of the voxel location was used as a mask to calculate the volume of each
tissue type (GM, WM and CSF) for both visual and sensorimotor voxels.

Transcranial direct current stimulation. Direct current stimulation was applied
using a pair of conductive rubber electrodes (3 × 3 cm stimulating electrode, 5 × 5
cm reference electrode) held in saline-soaked synthetic sponges and delivered by a
battery-driven constant current stimulator (neuroConn, Ilmenau, Germany). For
seven participants, functional anatomical scans were used to identify areas V3B/KO
in the right hemisphere and then neuronavigational equipment (Brainsight 2,
Montreal, Canada) was used to locate the closest point to the centre of mass of this
region on subjects’ scalp (Supplementary Figure 9a). The visual cortex electrode
was then placed at this location. For the remaining subjects, the average location of
this point, relative to positions of the international 10–20 electroencephalography
system, was used to place the visual cortex electrode. For all subjects, the reference
electrode was placed at position Cz. In the anodal and cathodal conditions, the
tDCS current (1 mA) ramped up and down (20 s) before and after continuous
application for 20 min. In the sham condition, the current was ramped up then
immediately ramped down.

For participants with V3B/KO anatomically localized, FreeSurfer (https://surfer.
nmr.mgh.harvard.edu) was used to reconstruct head models from anatomical scans
and SimNIBS (http://simnibs.de) used to simulate electric field density resulting
from stimulation (Supplementary Figure 9b-d). Simulations indicated that current
density was largely unilaterally localized and peaked around V3B/KO.

Proscriptive integration model. Each primary input (unimodal unit) to the model
is specified by its intensity (A) and its slant angle in radians (θ). The slant receptive
field for each primary unit was modelled as a one-dimensional von Mises dis-
tribution

fcueðθcueÞ ¼ Acue � exp kcue cos π � θcue pref
� �� �� � ð2Þ

where θcue_pref indicates cue slant preference. Arbitrarily, θcue_pref takes n= 37
evenly distributed values between � π

2 and
π
2, and the receptive field size, kcue, was

chosen to be 2; producing a slant tuning bandwidth of approximately 10 degrees.
The response of each primary unit was assumed to scale linearly with cue intensity,
Acue.

Combination units in the model were generated by drawing input from all
possible pairs of unimodal units, as denoted a subscript (δ or χ), such that there are
37 × 37= 1396 combination units. Based on previous empirical evidence27 we
assume that combination units perform a summation of their inputs that increases
monotonically, but sublinearly, with stimulus intensity

E θδ ; θχ
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fδ θδð Þ þ fχðθχÞ

q
ð3Þ

where E(θδ,θχ) denotes the activity of the combination unit with disparity slant
preference θδ and texture slant preference θχ. The nonlinearity models sublinear
response functions of the combination units, which could be mediated by means of
synaptic depression or normalization28.

The activity of combination units is then passed to a one-dimensional layer of
output units. Output units receive input from combination units along the
incongruent unimodal preference diagonal with readout weights defined by a
cosine, which peaks at unimodal cue preference

Fi ¼
Xπ

4

j¼�π
4

E θi�j; θiþj
� � � cos 4 � j½ � � cð Þ ð4Þ

where Fi denotes the response of the output unit and c denotes a temperature offset
that models inhibitory dominance of sensory responses30. This offset was assumed
to be 0.05 for all simulations.

Activity was converted to firing rate by thresholding negative activity values to
zero. The height and position of the peak(s) were used to assess estimate reliability
and (slant) position29. Unimodal responses, for comparison, were generated by
setting one of the cue intensities to zero.

For the simulation of Fig. 2c, cue intensities of Aδ= 1 and Aχ= 8 were used to
achieve a 1:3 ratio of sensitivity to match previous work7. For the simulations in
Fig. 4, stimulus intensities of Aδ=Aχ= 1 (single and congruent) and Aδ= 1, Aχ=
4 (incongruent) were used to match the sensitivity ratios engineered for the
behavioural stimuli (1:1, congruent; 1:2, incongruent). To simulate variable
suppression, an additional parameter (β) was used to attenuate the negative
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readout weights. For each simulation, β was set to a value drawn at random from a
Gaussian distribution (mean= 0.75, σ= 0.1). To simulate individual variability in
sensitivity to cues, cue intensity was drawn from a Gaussian distribution (mean=
A, σ= 0.1).To compare between simulations, we calculated the reliability of the
single/combined cue signals relative to one another. For the simulation of
Supplementary Figure 1, we systematically varied the variability of the cue
intensities from σ= [0,0.25].

In the tDCS experiments, we observed that sensitivity for congruent cues in the
sham conditions was significantly higher than the maximum bound for fusion (that
is, the quadratic sum; offline, t11= 4.3, P= 0.001, online, t11= 3.7, P= 0.003). This
is likely to be because disparity and texture were not fully isolated in the single-cue
conditions, and that these ‘latent’ cues acted to reduce sensitivity to the ‘single’ cue
(see Ban et al.10 for a discussion of this issue). Thus, to simulate the effects of tDCS
with the model (Fig. 5e, f), we first simulated performance in the sham conditions
by including a latent cue in single-cue simulations. The intensity of the latent cue
was fit using the relative difference between single- and congruent-cue sensitivity
(Fig. 5a, c) and held constant for both single-cue simulations. Having fit the model
to behaviour in the sham condition, we simulated tDCS by varying two partially
free parameters, which independently varied the strength of the positive and
negative cosinusoidal readout weights by a factor between zero and one. These
parameters model the effects of tDCS on GABAergic (inhibitory) and
glutamatergic (excitatory) neurotransmission. We first used the data from the
congruent-cue conditions (Fig. 5a, c) to fit these parameters. We then applied these
now fixed parameters to the simulation of performance in the incongruent
conditions to test their generalizability (Fig. 5b, d).

To simulate perceptual rivalry, the response of the output units Xi is driven by
activity of constant strength Fi from the combination layer and produces mutual
inhibition (γ) through lateral connections with weights defined by a half-wave
rectified cosine function. The dynamics of the output units are further defined by
slow adaptation (α) and stochastic variability (σ)

τ
dXi

dt
¼ Fi � 1þ Aið ÞXi þWð0; σÞ � γ

XN
j¼1

S Xj
� �

cos π � θj � θi
� �� �

þ ð5Þ

where S[Xi] denotes a sigmoidal transformation (using a Naka-Rushton function)
of the activity of Xi,W corresponds to Gaussian noise and Aθ represents adaptation

τA
dAi

dt
¼ �Ai þ αS½Xi� ð6Þ

For the simulation in Fig. 6a, b, cue intensities of Aδ= 1 and Aχ= 1 were used
to produce the constant activity in the combination layer F(θ). Timescales of τ= 1
and τA= 125 were used to define the temporal dynamics of inhibition and
adaptation γ= α= 7, and the SD of noise was assumed to be σ= 0.005.

Maximum likelihood predictions in Figs. 1c, d and 3c were simulated using the
following equations:

σδχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2δσ
2
χ

σ2δ þ σ2χ

� �
vuut ð7Þ

and

Sδχ ¼ wδSδ þ wχSχ ð8Þ

where

wδ ¼ rδ
rδ þ rχ

; wχ ¼
rχ

rδ þ rχ
ð9Þ

Here, σ denotes SD of the estimate, S denotes slant angle, r indicates reliability
and w denotes weight. Bias is produced by taking the difference between the
combined slant estimate (Sδχ) and the more reliable single cue slant estimate. SD
(σ) is converted to sensitivity with the following equation:

s ¼ σ�1

ffiffiffi
2

p ð10Þ

To simulate the normalization model predictions in Figs. 1c, d and 3c, we
reproduced the model from ref. 25 and the same method of behavioural decoding
used in our model to convert firing rate to bias and reliability.

Data re-analysis. The psychophysical data in Figs. 1c, d, 2c and 6c, d were
obtained by extracting the data points from the published papers7,23 using Web-
PlotDigitalizer (http://arohatgi.info/WebPlotDigitizer). The reliability data in
Figs. 1c,d and 2c were originally reported normalized to the optimal j.n.d. based on
the Gaussian-likelihood model. We transformed this into values relative to single-
cue reliability. Similarly, bias was reported as the cue combination direction; this
was transformed into bias relative to the more reliable cue. Following this, both bias

and reliability data were screened for outliers, binned, averaged and mirror
interpolated to show both directions of increasing cue conflict. To screen outliers,
we normalized the data using a log transform, removed data points > 3 SD from the
mean, then transformed the data back; 1 point was removed from the reliability
dataset and 2 from bias. Reliability performance at low cue conflict (bin 1)
exceeded quadratic summation predictions of cue fusion based on single-cue
reliability (t83= 5.6, P < 0.001). This is thought to reflect the influence of latent cues
present in single-cue stimuli that lead to underestimation of single-cue sensitivity12.
Thus, to account for this phenomenon, we transformed the reliability data by
setting the quadratic prediction as the maximum value of averaged data points.

The bistability data in Fig. 6c, d were originally reported as dual estimates for
two slant (perspective/disparity) cues comprising an incongruent stimulus. We
transformed these data into a measure of bistability by taking the difference
between corresponding estimates. When cues are fused, there will be no difference;
however, as bistability ensues, the difference will increase as the observer gains
access to each cue.

Significance testing. To test the significance of behaviour data, we used the
repeated measures ANOVA and t-test; all tests were two-sided. We first used RM
ANOVAs to test for main effects and interactions, we then followed up with t-tests
as appropriate to determine the precise relationship between conditions. For
control/replication experiments, t-tests were used to test a priori comparisons. The
normality and sphericity assumption was tested with the Shapiro–Wilk test of
normality and the Mauchly’s test of sphericity. For the majority of comparisons, no
evidence was found for violation of the assumption of normality or sphericity. For
comparisons where normality was violated (n= 2), we applied a transformation to
the data to normalize the distribution, then re-tested. For all comparisons, the same
pattern of results was found following normalization; thus, for simplicity, we
reported the non-transformed comparisons. For comparisons where spherecity was
violated (n= 2), we used the Greenhouse–Giesser corrected F-value. To compare
the fit of models to behaviour data (Fig. 3c), Bayes factor scores were calculated
from t-values and reported as odds ratios65.

To determine the significance of relationships between brain metabolites and
behavioural performance we used the Pearson’s correlation, implemented with a
correlation analysis MATLAB toolbox66 (https://sourceforge.net/projects/
robustcorrtool/). The normality assumption was tested with the Henze-Zirkler test
of normality; no evidence was found for assumption violation of the data. The
boxplot rule, which relies on the interquartile range67,68, was used to reject
bivariate outliers; outliers are shown in figures.

Eye tracking data screening. Before analysis, eye movement data were screened to
remove noisy and/or spurious recordings. Owing to the bespoke experimental
setup (i.e., recording eye position from behind one-way mirrors in a haploscope)
and the time-sensitive nature of brain stimulation (i.e., leaving insufficient time to
redo or restart blocks), the eye tracker would occasionally fail to track participants’
eyes for an entire block. Of the 28 blocks (19%) that were omitted from the
analysis, 27 had < 1% of data collected. We omitted the remaining block because of
(physiologically unlikely) variability in eye position signals that indicated noisy
tracking performance. Finally, before averaging trials, we removed points exceeding
the radius of the stimulus (4.5°).

Data availability. The simulation results shown in Figs. 1–6 were generated by
code written in MATLAB. The scripts used to implement simulations, and the
behavioural and MRS data are available on at https://doi.org/10.17863/CAM.20826.
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