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Abstract 

The effective ground thermal conductivity and borehole thermal resistance constitute information needed to design a 

ground-source heat pump (GSHP). In situ thermal response tests (TRTs) are considered reliable to obtain these 

parameters, but interpreting TRT data by a deterministic approach may result in significant uncertainties in the estimates. 

In light of the impact of the two parameters on GSHP applications, the quantification of uncertainties is necessary. For 

this purpose, in this study, we develop a stochastic method based on Bayesian inference to estimate the two parameters 

and associated uncertainties. Numerically generated noisy TRT data and reference sandbox TRT data were used to verify 

the proposed method. The posterior probability density functions obtained were used to extract the point estimates of the 

parameters and their credible intervals. Following its verification, the proposed method was applied to in situ TRT data, 

and the relationship between test time and estimation accuracy was examined. The minimum TRT time of 36 h 

recommended by ASHRAE produced an uncertainty of ~±21% for effective thermal conductivity. However, the 

uncertainty of estimation decreased exponentially with increasing TRT time, and was ±8.3% after a TRT time of 54 h, 

lower than the generally acceptable range of uncertainty of ±10%. Based on the obtained results, a minimum TRT time of 

50 h is suggested and that of 72 h is expected to produce sufficiently accurate estimates for most cases. 

Keywords: Ground-source heat pump (GSHP), Thermal response test (TRT), Minimum TRT time, Bayesian inference, 

Uncertainty assessment, Parameter estimation 

Nomenclature 

 : specific heat (J/(kg∙K)) 

 : volumetric heat capacity (J/(m
3
∙K)) 

  : lower bound of 95% credible interval 

   : upper bound of 95% credible interval 

 : error  

 : expectation  

Ei: exponential integral 

    : objective function 

 : mean temperature determined from forward model (°C) 

 : length of BHE (m) 

 : Indicator function 

    : global solar irradiance (W/m
2
) 

 : gradient of semi-log plot  

 : number of time steps or measured data 

 : probability distribution  

 : parameter  

  : estimated parameter  

 : heat rate per unit length of BHE (W/m) 

  : averaged heat rate per unit length of BHE (W/m) 

  : n-th quartile  
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  : source term (W/m
3
) 

 : drawn random number  

  : radius of borehole (m) 

  : error ratio between measurement and forward model value 

  : borehole thermal resistance (m∙K/W) 

  : random number generator with normally distributed results  

 : time or elapsed time after heat injection (s) 

 : temperature (°C) 

  : mean of inlet and outlet temperatures (°C) 

   : dry bulb temperature (°C)   

    : unknown true mean temperature (°C) 

 : uncertainty (%) 

 : measured temperature used for inference (°C) 

 : variance 

  : volumetric flow rate (m
3
/s) 

 

Subscripts 

 : clean data without error   

  : inlet 

 : noisy data  

   : outlet 

 : soil or ground 

 : initial 

 

Superscripts 

 : iteration step of sampling  

 : measured data number  

 : total number of data elements (time steps)  

 

 

Greek letters 

 : thermal diffusivity (m
2
/s) 

  : acceptance ratio 

 : thermal conductivity (W/(m∙K)) 

    : effective thermal conductivity (W/(m∙K)) 

 : density (kg/m
3
) 

 : Euler–Mascheroni constant 

 : standard deviation 

 : normal distribution 

 : parameter space 

 : uniform distribution 

 

Acronyms, abbreviations 

CI: credible interval 

MAP: maximum a posteriori 

MCMC: Monte Carlo Markov Chain 

PDF: probability density function 

PM: posterior mean 

PPDF: posterior probability density function 

 

(All bold characters in the manuscript denote a vector or matrix.)  
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1. Introduction 

The ground has a much higher heat capacity than the air, and maintains a stable temperature. A ground-source heat 

pump (GSHP) that utilizes the ground as its heat source/sink can therefore be expected to perform better than an air-

source heat pump. The ground heat exchanger (GHE) is a key component that affects the performance of a GSHP. Of the 

various types of GHEs, the most common is the vertical closed-loop GHE, the so-called borehole heat exchanger (BHE). 

In the design of a BHE, it is necessary to know the thermal conductivity of the ground and the thermal resistance of the 

borehole. Because the ground is a composite medium with highly site-specific thermal properties, it is difficult to 

establish the spatial distributions of the thermal properties. Consequently, the spatially averaged nearby thermal 

properties are estimated by in situ thermal response tests (TRTs) [1]. While a TRT test is expensive, it is recommended 

for any large installations because the parameters derived from it play a significant role in designing GSHP systems. 

Bernier [2] conducted an uncertainty analysis using the ASHRAE design method [3,4]. Among related parameters, the 

ground thermal conductivity had the most significant impact on the design length of the BHE. Assuming that the other 

parameters are accurately known, an uncertainty of ±10% in thermal conductivity led to a ±7.1% uncertainty in the 

length of the BHE. Robert and Gosselin [5] discussed the impact of ground thermal conductivity on initial and operation 

costs. They claimed that determining precise ground thermal conductivity via TRT is economically important, especially 

when the borefield is large.  

To determine the values of ground thermal conductivity and borehole resistance from in situ TRT data, several inverse 

modeling techniques have been tested since Mogensen [6] first proposed the TRT estimation method. Research on the 

performance and accuracy of suitable inverse modeling techniques has been prolific because incorrect estimates of 

ground thermal conductivity and borehole resistance can increase the initial cost of the GSHP system or the probability of 

failure. The most well-known and frequently used is linear regression [7,8], which utilizes a simplified infinite line 

source (ILS) model (exponential integral approximated ILS model) [9,10]. Other parametric estimation techniques have 

been developed, and involve the combined use of a numerical or an analytical temperature response model and an 

optimization algorithm. One such method that has been employed in many studies [1,11–15] utilizes the Nelder–Mead 

simplex algorithm [16]. This is a heuristic optimization method. Gradient-based optimization methods have also been 

used in some previous studies. For example, Li and Lai [17] used the Levenberg–Marquardt method [18–20], Choi and 

Ooka [21] used the quasi-Newton method [22–25], and Bozzoli et al. [26] used the Gauss linearization method [27]. All 

these methods yield deterministic point estimates of ground thermal conductivity and thermal resistance of the borehole 

by minimizing the least squares norm. In this paper, we propose that the uncertainty quantification of parameters can 

improve their reliability and, thus, reduce initial cost and operational risks.  

The causes of uncertainty in TRTs can be divided into two major categories. The first consists of errors due to 

contextual disturbances that occur during TRTs, and the second category consists of measurement errors, such as the 

intrinsic random error and the systematic error of utilized sensors. Considering that TRTs are conducted in outdoor 

environments, which cannot be completely controlled, the first error is a significant factor. Indeed, TRTs are vulnerable to 

large contextual uncertainties compared with fully controlled laboratory experiments. The effects of experimental 

disturbances on TRTs have been investigated by many researchers. For example, the effects of instability in voltage 

supply from the power grid or the power generator, and the resultant violation of the constant heating rate assumption of 

the ILS model have been examined [28–32], as well as those of heat exchange between an aboveground TRT setup and 

the outdoor environment [29,33–38]. If these experimental disturbances are not properly considered in the inverse model 

used for parameter estimation, the resultant inconsistencies can cause errors in the solution of the inverse problem 

[21,38]. With regard to measurement error, it is common to all types of measurements and can be reduced in this case by 

increasing the accuracy of the sensors used. 

Given the importance of these estimations in GSHP applications, it is useful to quantify errors arising from contextual 

and measurement-related uncertainties, and propagate them as uncertainties in the estimated parameters. Regarding the 

uncertainty assessment of measurements and estimations, the ISO’s Guide to the Expression of Uncertainty in 

Measurement (GUM) [39], which is based on classical frequentist statistics, is representative. In GUM, the sensitivity 

coefficients of all errors are first separately evaluated, as are their covariances (if necessary). The errors are then 

propagated to the parameters of interest. Through this process, it is possible to quantify the magnitudes of uncertainties in 

the estimated parameters. GUM-based uncertainty assessments have been conducted in many GSHP studies [40–47]. 

Although GUM seems relatively easy to implement, the requisite explicit specification of all major and minor sources 

of uncertainties in experimental conditions is subjective and error-prone. Moreover, there is no established method to 

quantify contextual uncertainties in GUM. Furthermore, as is the case with most frequentist techniques, one needs a 
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relatively large volume of TRT test data to ensure reliable results, which can be expensive and time consuming. Finally, 

when more than two parameters need to be simultaneously estimated—as is the case in a TRT, which requires the 

estimation of effective thermal conductivity and borehole thermal resistance—quantification of the uncertainties 

considering the correlation of the parameters becomes challenging.  

To overcome the limitations of conventional deterministic estimation methods and the GUM, we propose a Bayesian 

inference approach to the problem of quantifying uncertainties in parameters inferred from a TRT test. There has been a 

recent increase in the use of Bayesian inference techniques for solutions to inverse problems in heat transfer [48–54]. 

This has been facilitated by improved computational capabilities and numerical sampling techniques, such as the Markov 

chain Monte Carlo (MCMC) technique [49]. Bayesian approaches to uncertainty analysis leverage purely statistical 

information relating to uncertain parameters (derived from measurements) with expert knowledge. Bayesian inverse 

modeling consists of (1) assimilating prior expert knowledge concerning the uncertainty of the targeted parameters—

creating “a priori” or “prior” distributions of uncertainty, and (2) drawing inferences about these parameters by 

combining prior knowledge with observations—using Bayes’ formula to obtain the updated “a posteriori” or “posterior” 

distributions. When observations (e.g., statistical data) are plentiful, prior expert knowledge is not of great importance. In 

contrast, when observations are scarce, the quality of prior knowledge can have a significant impact on uncertainty 

analysis. This can be important when the duration of the TRT test is short. Bayesian inverse techniques have been shown 

to account for all relevant sources of uncertainty in prior knowledge and data, which can be efficiently and accurately 

reflected in the outcomes in the form of posterior probability density functions (PPDFs). The PPDF of the parameters 

provides information relating to parameter uncertainties that is difficult to directly obtain by classical deterministic 

approaches [55].  

This paper tests the efficiency of a Bayesian approach to infer parameters from a TRT test and quantify uncertainties in 

the parameter values. A second objective is to examine the influence of the TRT test period on the reduction of 

uncertainties in the inferred parameters. Indeed, the optimal duration of a TRT test has been the subject of many studies. 

Although the ASHRAE Handbook [4] recommends a test period of 36–48 h, significantly different minimum durations 

have been proposed by researchers, such as 12–20 h [28], 30 h [57], 36–48 h [29], 50 h [59,60], 53 h [61], and 60 h 

[34,62].   

For the major objective stated above, we employ a model based on a finite element method (FEM) to numerically 

generate 72 h of TRT data, from which actual measurement data are then mimicked by applying random error arising 

from sensors. Based on this mimicked noisy data, Bayesian inference is used to infer the PPDF of each parameter. The 

inferred values are compared with reference values, which are the estimated parameter values using numerical TRT data 

without random error. Moreover, the developed Bayesian inference framework was applied to sandbox reference TRT 

data [63] for additional verification.  

For the second objective, we used in situ TRTs for up to 96 h. A total of 11 time periods were considered using various 

test durations between 36 and 96 h, in steps of six hours, to examine the relationship between the test duration and the 

range of uncertainty of the parameters. The 72 h of numerically generated TRT data were also analyzed in the same way 

to compare the magnitudes of uncertainty in the experimental data, including the measurement and the contextual error, 

and in numerical data, for only the measurement error. Based on the results, the advantages of stochastic estimation over 

conventional deterministic estimation are discussed. 

 

2. Generating TRT data and forward model  

2.1 Numerical generation of TRT data 

TRT data was numerically generated using the FEM. The geometrical dimensions of the BHE and the thermal 

properties of each of its components are presented in Table 1. The dimensions of the calculation domain were 15 × 15 × 

80 m (length × width × depth). It was assumed that the borehole contained a single U-tube of length 50 m, and that the 

geometry of the BHE was fully discretized. The numerical model considered only thermal conduction, with the exception 

of fluid flow through the U-tube, simplified as a one-dimensional (1D) flow on the basis of the law of Hagen–Poiseuille 

flow [64–66], to reduce the computation time needed to solve the Navier–Stokes equation. The 1D flow element was 

located at the center of the pipe. For the remaining area inside the pipe, pseudo-fluid elements with very high anisotropic 

thermal conductivity (1000 W/(m∙K) along the x and y directions and 0 W/(m∙K) along the z direction) and low thermal 

capacity (1 J/m
3
K) were used for radial heat transfer between the linear element and the pipe element. The details of this 

modeling method can be found in Ref. [38]. All thermal properties were assumed to be isotropic, homogeneous, and 

constant. The governing equation of the numerical model is as follows: 
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      (1) 

 

Table 1. Thermal properties and geometrical dimensions of the BHE used for the numerical TRT. 

 

Component Parameter [units] Value 

Linear flow element 

(Water) 

Thermal conductivity [W/(m∙K)] 0.6 

Volumetric thermal capacity [MJ/(m
3
∙K)] 4.2 

Pseudo-fluid in U-tube Thermal conductivity [W/(m∙K)] 1000 

Volumetric thermal capacity [MJ/(m
3
∙K)] 1×10

-6
 

U-tube  

(High-density polyethylene) 

Outer diameter [mm] 34 

Inner diameter [mm] 27 

Shank spacing [mm] 50 

Thermal conductivity [W/(m∙K)] 0.38 

Volumetric thermal capacity [MJ/(m
3
∙K)] 1.8 

Borehole  Borehole depth [m] 50 

Borehole diameter [mm] 165 

Grout Thermal conductivity [W/(m∙K)] 1.4 

Volumetric thermal capacity [MJ/(m
3
∙K)] 2.0 

Ground Thermal conductivity [W/(m∙K)] 1.8 

Volumetric thermal capacity [MJ/(m
3
∙K)] 2.5 

 

The heat injection rate and flow rate were set to 2.5 kW (50 W/m) and 15 L/min, respectively. An initial ground 

temperature of 17 °C was assigned to the entire calculation domain. An adiabatic boundary condition was assigned to the 

top and lateral surfaces of the calculation domain, while a 17 °C Dirichlet boundary condition was assigned to the bottom 

surface. A time-varying Dirichlet boundary condition was applied to the inlet of the U-tube based on the outlet 

temperature of the previous time step, the heat injection rate, and the flow rate. The simulation was conducted for 72 h 

using time steps of 6 min. The data obtained were thinned out at one-hour intervals and used for parameter estimation. 

Numerical data without random error are referred to hereinafter as clean data. 

Measured data are generally affected by the intrinsic random error of the measurement sensor. To take this error into 

consideration, we applied a typical random sensor error to the numerically generated temperature and flow rate data. For 

temperatures measured using a Pt-100 (Class A) sensor, the general random error is ±(0.15 + 0.002· ) [°C]. In addition, 

considering that the random errors of sensors generally follow a normal distribution, the random error was mimicked in 

this study using a random number generator    with outputs that follow the standard normal distribution. The obtained 

noisy temperature    was given by 

 

                               (2) 

 

The noisy inlet and outlet temperatures of BHE are denoted by       and       , respectively, and their mean values 

are denoted by    . When data     are used to infer parameters, we use a notation   to indicate them (  is one     at a 

certain elapsed time). 

In the case of the flow rate, it was assumed to be measured by an electromagnetic flow meter, which has a random 

error of ±0.6%. In contrast to the temperature, the instantaneous measured value of which is used for the estimation, the 

flow rate is relatively constant during a TRT, and an average value determined from multiple independent measurements 

can thus be adopted. Assuming that the measurement was conducted at 30-s intervals and that TRT data obtained at 1-h 

intervals were used for the parameter estimation, an accuracy of ±           can be expected based on the central 

limit theorem. The measured flow rate     was thus obtained as 

 

                                  (3) 

 

Based on these measurement datasets containing random sensor errors, the heat injection rate per unit length of the 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

6 

BHE was determined using the following equation: 

 

                                    (4) 

 

The numerically generated data for temperature response (inlet, outlet, and mean) and the volumetric flow rate for 72 h 

are shown in Fig. 1. The dotted lines represent the noisy temperatures and the solid black line represents the mean 

temperature without random error.  

 

 
Fig. 1. Numerically generated temperature and flow rate data (     : noisy inlet temperature,       : noisy outlet 

temperature,      : noisy mean temperature,    : clean mean temperature (data without noise),    : noisy volumetric 

flow rate).  

 

2.2 Forward model  

A physical model is required to infer the ground thermal conductivity and borehole resistance from temperature and 

flow rate measurements. Such a model is referred to as a forward model or direct model and its calculation is regarded as 

a forward problem. The classical infinite line source model [9,10] was used as the forward model in this study. This well-

known analytical model is obtained using a 1D heat equation with a boundary condition consisting of a constant heat flux 

from the heat source in the homogeneous medium. The mean fluid temperature (arithmetic mean of the inlet and outlet 

fluid temperatures) obtained by the ILS model is given by 

 

  
  

      
   

    
 

       
          (5) 

 

Here,   is the mean fluid temperature,    is the averaged heat rate during the TRT (calculated using Eq. (4)),      is 

the effective thermal conductivity,    is the volumetric thermal capacity of the ground,   is the time duration of the 

TRT,    is the borehole thermal resistance, and    is the initial ground temperature.  

The most common deterministic estimation method utilizes a simplified ILS model, which is an approximation of the 

exponential integral in Eq.(5). The exponential integral can be described as the sum of the terms of an infinite series, 

although only the first two terms are considered in its practical application. A detailed description of this simplification 

can be found in Refs. [7,8]. The simplified ILS model is expressed as follows: 

 

  
  

           
 

    
  

      
    

     

    
              

(6) 

 

The effective thermal conductivity can be estimated using the linear relationship between the temperature response and 

the logarithmic time. That is, if the gradient   is obtained by ordinary least squares, the effective thermal conductivity 
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can be determined using  

 

     
  

   
 (7) 

 

The estimation procedure based on Eqs. (6) and (7) is here referred to as the conventional or deterministic estimation 

method.  

Although the ILS model assumes a homogeneous ground, the thermal properties of a BHE and filling material differ 

from those of the ground. Additionally, the borehole thermal resistance    in Eq. (5), a representation of the thermal 

resistance between the borehole wall and the fluid, is based on the assumption of a steady state. The early temperature 

response is thus not reliable, and the temperature response data for the elapsed time from 14 h onward was used for the 

present estimation.  

 

2.3 Deterministic estimation 

Based on the generated clean and noisy data, the simplified ILS model was used for deterministic estimations (i.e., 

using the gradient of the temperature versus the logarithmic time, represented by Eqs. (6) and (7). The behaviors of the 

sequential estimations from 15 h onward (e.g., the estimation at 15 h used data from 14 h to 15 h, and the estimation at 60 

h used data from 14 h to 60 h) are shown in Fig. 2 and the final estimated values are presented in Table 2. As shown in 

Fig. 2, the estimations based on noisy data exhibited significant instability whereas those based on clean data were stable, 

and gradually converge to a      value of 1.78 W/(m∙K). Because the thermal conductivity of the grout and the pipe 

were set to 1.4 W/(m∙K) and 0.38 W/(m∙K), respectively, their effect reduced the estimation of      to lower than 1.8 

W/(m∙K), which was the value set for ground thermal conductivity in the numerical FEM (Table 1). 

Parameter estimates derived from an actual TRT are likely to be more unstable than those in Fig. 2 owing to the effects 

of other disturbances, such as heat exchange between the aboveground TRT circuit and the outdoor environment, and 

instability in the supply voltage. This is examined in Section 5. The estimated      and    values after a test lasting 72 

h were, respectively, 1.78 W/(m∙K) and 0.162 m∙K/W based on clean data, and 1.802 W/(m∙K) and 0.169 m∙K/W based 

on noisy data. These are regarded as reference values for comparison with the results of the stochastic approach.  

 

 
Fig. 2. Sequential estimations based on clean and noisy data.  

 

 

3. Parameter estimation using Bayesian inference   

The Bayesian inference approach can be used to solve an inverse problem by formulating a probabilistic description of 

the uncertainties of the unknown parameters and the measured data. The Bayesian approach presents the initially 

available information (or expert judgment) about the unknown parameters and their uncertainties in the form of a prior 

probability density function. By combining this function with a likelihood function, the posterior probability density 

function (PPDF) can be obtained. 
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3.1 Definition of parameter space  

The parameters of interest of a TRT are the effective thermal conductivity      and borehole thermal resistance   . 

The parameter vector   is defined as follows:  

 

            (8) 

 

In the likelihood function, which is described in detail later in Section 3.3, it is necessary to quantify the difference 

between the modeled temperature   and the measured temperature  . Thus, we define a parameter   , which is a 

measure of the error ratio between   and   normalized by the difference between   and the initial ground 

temperature   .   

 

    
   

    
  (9) 

 

It should be noted that    does not represent the deviation from the unknown true temperature, but is an indication of 

the error between the measured temperature subject to the measurement error and the modeled temperature, which does 

not precisely reproduce the actual physical phenomenon. Because of the limited or lack of information about   , we 

consider it as a hyperparameter and infer it along with the parameter vector  . 

 

3.2 Bayes’ theorem  

A primary interest of Bayesian inference is the determination of the PPDFs, which are the conditional probability 

distributions of the parameters of given measurement data  . The PPDFs are specifically defined using Bayes’ theorem, 

based on which the conditional probability of the parameter vector   and    is also expressed as follows for a given 

measurement data  : 

 

          
                

    
 (10) 

 

where           denotes the posterior distribution given the measurement data  ,           denotes the likelihood of 

  and    for a given  ,         denotes the prior of the uncertain parameters, and      denotes the evidence.  

Although the evidence      is very difficult to determine, it is known to be constant. Therefore, Eq. (10) can be 

rewritten as the following proportional expression without the denominator of the right-hand side:  

 

                           (11) 

 

3.3 Likelihood  

As noted earlier, both the measured and modeled temperatures are subject to uncertainties. The measurement error    

originates from the intrinsic error of the sensors, while the model error    is due to errors in the model (because the 

model is an approximation of the true physical phenomenon). If the unknown true temperature is denoted by     , the 

measured and modeled temperatures can be expressed as Eqs. (12) and (13), respectively. 

 

       
    

  (12) 

       
    

  (13) 

 

where the superscript   describes the time step.  

The measurement and model errors were assumed to be independent to each other and follow a normal distribution 

with a mean zero and variances of    
  

 
   

  and    
  

 
   

 , respectively. Under these assumptions, the likelihood 

functions with respect to the measured temperature and true temperature are expressed as Eq. (14) and Eq. (15), 
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respectively.  

 

           
 

     
  
     

        
   

   
  

 

 

   

 (14) 

           
 

     
  

     
     

        
 

   
  

 

 

   

 (15) 

 

where   is the total number of time steps. 

Based on the two predefined likelihood functions, the likelihood        can be expressed as follows: 

 

                               

∞

 ∞

 (16) 

 

Equation (16) describes the marginalization of the likelihood with respect to the unknown     . By substituting Eqs. 

(14) and (15) into Eq. (16), the following marginalized likelihood function is obtained:  

 

        
 

      
    

   

 

   

      
 

 
 

          
 

  
    

  

 

   

  (17) 

 

The mathematical derivation of Eq. (17) from Eq. (16) is presented in Appendix A. 

If the measurement and model errors and the measured and modeled temperatures on the right-hand side of Eq. (17) 

are known, the likelihood        can be calculated. The measurement and model errors in Eq. (17) are difficult to 

quantify. We set the sum of the two variances as a hyperparameter to be estimated by introducing the new variable   , 

the error ratio, as described in Section 3.1.1. The sum of the two variances can be defined as follows:  

 

  
    

     
  

 
    

  
 
      

      
  (18) 

 

By substituting Eq. (18) into Eq. (17), the likelihood function can be rewritten as follows: 

 

          
 

  
 
     

 

 
 

          
 

     
      

 

 

   

  (19) 

 

3.4 Prior probability of parameters 

In Bayesian inference, priors play an important role in constraining the parameters within plausible bounds. The prior 

distributions of the uncertain parameters     ,   , and    can be set in many ways. For example, the range of      

can be bound based on the drill log of the borehole or the results of previous TRTs conducted near the site. The plausible 

range of    can be estimated using various analytical models. Reviews and information about the accuracies of many 

   models can be found in Refs. [67–70]. Once the TRT data are obtained, the estimations obtained by a conventional 

deterministic approach can also be used to predict the likely location of the mode of the prior probability density function. 

Regarding the error ratio   , it is known to be positive definite, and its upper bound can be set to an arbitrarily large 

value, such as 0.2. We thus set the ranges of the parameters as follows, and an indicator function   was used to represent 

the bounds of the parameter space: 

 

               

             
(20) 
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The choice of a prior is very application-specific. Once the lower and upper limits are set based on available 

information or within a sufficiently large range, the prior distribution of each parameter must then be defined. However, 

in the absence of sufficient information on the distribution, it is difficult to be certain about the shape of the prior 

probability distribution. Given our carefully assigned (and narrow) plausible bounds on uncertain parameters, it is 

rational to consider the priors as uniformly distributed in the parameter space  . 

 

                          (21) 

 

3.5 Posterior evaluation using Markov chain Monte Carlo method 

Because we set the priors to be uniformly distributed within their given ranges, the posterior only depended on the 

likelihood. The bounds of the parameter space were considered in the calculation of the posterior using the indicator 

function  . The final form of the posterior probability including the indicator function can be expressed as follows: 

 

                                              

                              
 

  
 
     

 

 
 

          
 

     
      

 

 

   

  
(22) 

 

After defining the prior and likelihood functions, the PPDF of each parameter can be computed. The PPDF can be 

obtained by analytical integration. It is, however, necessary to define the exact form of the probability distribution of 

each variable that often cannot be definitively determined. Even if it is defined, evaluating the distribution will still be 

numerically very complex. The use of a numerical method such as the MCMC method to evaluate the PPDF is a more 

flexible and realistic approach. The MCMC method is well-established and several versions can be found in [71,72]. The 

Metropolis–Hastings algorithm [73–75] was used to evaluate the PPDFs in the present study.  
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Fig. 3. Flowchart of the Metropolis–Hastings algorithm. 

 

The flowchart of the Metropolis–Hastings sampling algorithm is shown in Fig. 3. For brevity, we here define a new 

parameter vector         . Firstly, the  -th sampling iteration is denoted by     . The sampling begins with an 

arbitrary initial parameter     . From the initial parameter, a candidate parameter    for the next sampling is decided 

using a normal distribution with a mean value of        and variance of 7% of       . This variance of 7% was 

determined by trial and error to prevent the parameter search from being stuck at a local point or yielding a large 

correlation among the drawn samples. A new parameter state    is then obtained based on the given state        as 

follows: 

                         
 
  (23) 

 

 When a candidate parameter    is outside the parameter space, the indicator function   becomes zero, and the 

sampled parameter of the given step is thus abandoned. The parameter of the previous step is then used in the next 

iteration,              If the candidate parameter    is within the parameter space, the temperature   would be 

calculated using two parameter vectors        and    to evaluate the following acceptance ratio:  

 

         
         

             
  (24) 

 

If    = 1,    is accepted. Otherwise (if     ), a random number   is generated from a uniform distribution 

within the interval (0,1). Subsequently, by comparing    and  ,    is accepted or rejected based on the following 

criterion:  

 

      
         

             
  (25) 
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By iterating this process, samples of the estimated parameters are obtained. If a sufficiently large number of samples is 

obtained, the numerical evaluation of PPDF can be achieved based on the law of large numbers. The sampling was 

repeated 5×10
5
 times in this study. However, because the early iteration steps are significantly dependent on the initial 

values, the first 1×10
5 
samples were neglected, with the subsequent 4×10

5
 samples used to evaluate the PPDF. 

Based on the obtained PPDFs, the point estimates and their credible intervals can be obtained. We used the posterior 

mean (PM) or maximum a posteriori (MAP) estimator to obtain a point estimate from the PPDF as follows:  

 

            (26) 

 

            
 

       (27) 

 

Further, the percent uncertainty of a parameter,   [%], can be determined from the lower and upper bounds of the 95% 

credible interval, and the PM of PPDF is denoted by    ,    , and     , respectively, as follows: 

 

  
            

    
      (28) 

 

4. Bayesian inference using numerically generated data   

To generate the PPDFs of the parameters, 5×10
5
 samplings were conducted using the Metropolis–Hastings algorithm. 

As in the deterministic estimation, the TRT data for 14–72 h were used to calculate the posterior distribution. The 

deterministic estimations based on the noisy data, namely 1.802 W/(m∙K) and 0.169 m∙K/W (Fig. 2), were used for the 

first iteration of the MCMC sampling. As noted earlier, because the sampling results of the initial iterations were 

significantly affected by the values of the initial parameter, the first 1×10
5
 results were not considered. The remaining 

4×10
5
 sampling results for     ,   , and    are shown in Fig. 4. The red dashed-dotted lines in the figure represent the 

reference values of the respective parameters, which were deterministically obtained using clean data (Fig. 2).  

For each of      and   , the sampling results fluctuate around the reference value. In the case of   , the generated 

samples exhibit prominent peaks only in the upper region, and they are always higher than 0.9%. 
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Fig. 4. Sampling results of the different parameters: (a) effective thermal conductivity (reference value = 1.78 

W/(m∙K)), (b) borehole thermal resistance (reference value = 0.162 m∙K/W), and (c) error ratio. 

 

The PPDFs and box plots of      and   obtained from the considered 4×10
5
 sampling datasets are shown in Fig. 5, 

while those of the error ratio    are shown in Fig. 6. The PPDFs of      and    have a normal distribution and strong 

unimodality with a short symmetric tail. In contrast, the PPDF of    is slightly skewed (relatively longer tail in the upper 

region), similar to a Gamma distribution. From the sampling results and PPDFs, we speculate that the normalized error 

between the measured data and forward model temperatures is always larger than ~0.85%, mostly within 1.0–1.4%, 

although it sometimes increased to 1.9% (   values greater than 1.5% were considered outliers and are not shown in Fig. 

6). This relatively large error may occur when the random errors of the inlet and outlet temperature sensors are in the 

same direction (e.g., either positive or negative errors in both the inlet and outlet sensors, respectively). It should be noted 

that the ratio    is an indication of the discrepancy between the measured temperature and the temperature estimated by 

the forward model, and not the uncertainty in the estimated parameter vector  .   
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Fig. 5. Normalized probability density functions (PDFs) and box plots: (a) PDF of     , (b) box plot of     , (c) PDF 

of   , and (d) box plot of   . The lower and upper ends of a box represent the first and third quartiles, respectively, 

while the red band inside the box denotes the median. The left and right ends of a whisker represent    1.5(     ) 

and    1.5(     ), respectively. The outliers are not shown in the box plots. 

 

 
Fig. 6 (a) Normalized probability density function and (b) box plot of   . 

 

Based on the PPDFs, the point estimates were obtained using the PM and MAP estimators, as well as the 95% credible 

intervals. The results are presented in Table 2. For comparison, the table also includes the point estimates obtained by the 

deterministic approach. Because the PPDFs of      and    are unimodal and almost symmetric, there are little 

differences between the results of the PM and MAP. The estimated      is slightly smaller than the reference value of 

1.78 W/(m∙K), while the estimated    is larger than the corresponding reference value of 0.162 m∙K/W. The 

uncertainties of      and    based on the 95% credible interval and the PM are 5.4% and 3.7%, respectively. The point 

estimate and 95% credible interval of    afford good insight into the relative deviation between the measured 

temperature and that estimated by the forward model.  
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Table 2. Estimations obtained by the deterministic method and Bayesian inference (PM: posterior mean, MAP: 

maximum a posteriori, CI: credible interval.) 

Parameter [unit] Deterministic 

(clean data) 

Deterministic 

(noisy data) 

Bayesian PM Bayesian MAP 95% CI  

Effective thermal 

conductivity [W/(m∙K)] 

1.780 1.802 1.770 1.772 1.678–1.861 

Borehole thermal 

resistance [m∙K/W] 

0.162 0.169 0.164 0.165 0.158–0.170 

Error ratio [%] N/A N/A 1.15 1.14 0.96–1.40 

 

Using the 95% CI of the parameters and the points estimated from the PM, the temperature response was reproduced 

by the forward model, as shown in Fig. 7. Because the temperature data from 14 h onward was used for the estimation, 

only the temperatures for 14–72 h are plotted. The temperature response obtained from the PM can be observed to pass 

through the center of the fluctuating measured temperature. Additionally, the temperature range for the 95% CI encloses 

all the fluctuating temperature data. This indicates that the fluctuation of the temperature response due to random errors 

and the resulting uncertainties of the parameters are all considered within the 95% CI estimated by the Bayesian 

inference. 

 

 
Fig. 7. Noisy temperature response data used for Bayesian inference, temperature response modeled using point 

estimates based on the posterior mean, and upper and lower bounds of the temperature modeled using the 95% credible 

intervals of the estimates. 

 

Another advantage of the Bayesian approach is its ability to yield a joint distribution when two or more parameters are 

simultaneously estimated. The joint distribution of the PPDFs of      and    shown in Fig. 5 was created as shown in 

Fig. 8. From the joint distribution, the correlation of the two parameters can be determined, as well as the area where the 

most reliable pairs of parameters exist. A positive correlation between the two parameters is evident from the figure, and 

the yellow area defines the most reliable pairs of      and   . These advantages of the stochastic estimation method 

can be exploited to account for the risk arising from incorrect TRT estimation in the design of the GSHP. 

Using the reference sandbox TRT dataset [63], additional verification of proposed method was conducted, and is 

provided in Appendix B.  
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Fig. 8. Joint distribution of the effective thermal conductivity and borehole thermal resistance. 

 

 

5. Application to in situ TRT data: relationship between TRT duration and estimation uncertainty  

The Bayesian inference approach validated in Section 4 was applied to in situ TRT data. Based on the estimations 

obtained using the in situ TRT data, two things could be clarified. Firstly, the amount of uncertainty that exists when 

using in situ TRT data can be determined. This includes the uncertainty caused by many other disturbance factors apart 

from the random error of the sensors, such as heat exchange between the outdoor environment, the aboveground TRT 

setup, and voltage fluctuation. Secondly, the variation of the estimation uncertainty with the TRT duration can be 

determined.  

The TRT data was obtained using the experimental setup described in Ref. [76]. The geometry of the BHE was the 

same as that of the numerical model (see Table 1). The BHE was a 50-m long single U-tube, and was inserted into a 

borehole of diameter 165 mm. The annulus was grouted using Portland cement mixed with silica sand. The ground 

formation at the site mainly consisted of fine sand. The TRT was conducted for 96 h. The experimental conditions are 

listed in Table 3. The temperature response and heat injection rate are shown in Fig. 9 (a), while the dry-bulb temperature 

and global horizontal irradiance are shown in Fig. 9 (b).  

The uncertainties of the installed Pt-100 sensor and flowmeter, as provided by the manufacturers, were respectively 

±(0.15 + (0.002· )) [°C] and ±        , which are the same as the random errors applied to the numerical TRT data. 

However, because the sensors were well calibrated, the actual random errors were much smaller than the specifications. 

As can be seen from the temperature response in Fig. 9 (a), the random errors are not evident compared with the case of 

the numerical data in Fig. 1; rather, the effect of the heat exchange between the aboveground setup and the external 

environment is more prominent. As was shown in Refs. [37,38], the disturbed heat exchange rate between the TRT setup 

and the external environment is the most sensitive to radiant heat transfer, for which reason the largest disturbed heat 

exchange rate occurs in summer. Because the TRT was conducted in summer when the global solar irradiance is close to 

1000 W/m
2 
(Fig. 9 (b)), the effect of the disturbed heat exchange rate was evident from the measured temperature 

response and heat exchange rate (Fig. 9 (a)) 
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Table 3. Experimental conditions of the in situ TRT. (  : average heat rate,  : standard deviation,   : volumetric flow 

rate,   : initial ground temperature.)  

Start time  Duration 

[h] 
   

[W/m] 

  of    

[W/m] ([W]) 
   

[L/min] 

   

[°C] 

23:00, July 9, 2015  96 46.00 1.36 (68) 20.13 17.27 

 

 

 
Fig. 9. In situ thermal response test results and weather data: (a) temperature response and heat injection rate, and (b) 

dry-bulb temperature     and global solar irradiance     ).   

 

 
Fig. 10. Sequential estimations obtained using the simplified infinite line source model. 

 

Fig. 10 shows the results of the sequential estimations (deterministic estimations) using the simplified ILS model. The 

mean temperature data for elapsed time from 14 h onward was used for the estimation. Compared with sequential 

estimation using numerical TRT data shown in Fig. 2, the estimation fluctuated at a larger amplitude. Moreover, rather 
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than high-frequency oscillation caused by the random error of sensors, a low-frequency oscillation with a daily cycle was 

evident. The estimated      and    simultaneously fluctuated with a positive correlation, as observed in the joint 

distribution (Fig. 8).  

As different estimation behaviors by the in situ and the numerical TRT data (i.e., data containing the combination of 

measurement and contextual errors, and those containing only the measurement) were observed, we wanted to quantify 

the difference in uncertainty as outdoor disturbance was added to the measurement error. In addition to examining the 

influence of outdoor disturbance on the parameters, as described in Section 1, the main objective of this exercise was to 

determine the appropriate minimum duration of the TRT. Beginning with the minimum TRT time of 36 h recommended 

by ASHRAE (i.e., using data for 14–36 h), the end time was increased in steps of six hours. A total of 11 and seven cases 

of estimations for the in situ TRT and the numerical TRT (used in Section 4), respectively, were thus considered, as 

reported in Table 4 and Table 5. Using the results of in situ TRT data, we propose an optimum minimum duration of TRT 

based on two criteria: (a) whether the posterior mean was within a 95% CI range using all data (96 h and 72 h for in situ 

TRT and numerical TRT, respectively), and (b) the reduction of the range of uncertainty around the mean value.  

It should be noted that the comparison between Table 4 and Table 5 is meaningful only for the magnitude of 

uncertainty because the TRT conditions were different between them. Therefore, the results using numerical TRT data 

were only used to compare the magnitudes of uncertainty subjected to different sources of error.  

With the aid of the Metropolis–Hastings algorithm, 5×10
5 
samplings were used to draw the PPDFs, having omitted the 

first 1×10
5 
samplings. From the PPDFs of      and   , the posterior mean, 95% credible interval, and percentage 

uncertainty were extracted (see Table 4 and Table 5). In the calculation of percentage uncertainty, the denominator in Eq. 

(28) was fixed to the PM for a duration of 96 h (case E96) and 72 h (case N72) for in situ TRT and numerical TRT, 

respectively. The box plots for      and    using the experimental data are shown in Fig. 11.  

It is generally known that reliability of estimates increases as TRT time increases. Therefore, we set the 95% CI of 

     and    in case E96, namely,      = 1.86–1.99 W/(m K) and    = 0.144–0.152 m K/W, respectively, as plausible 

ranges of estimation and used them as a standard for comparison.   

 

 
Fig. 11. Box plots of the estimated effective thermal conductivity and borehole thermal resistance using in situ TRT 
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data. 

 

Table 4. Variations of the posterior mean, 95% credible interval, and estimation uncertainties with the TRT duration (in 

situ TRT data). 

Case Test duration 

of data [h] 

Effective thermal conductivity Borehole thermal resistance 

PM 

[W/(m∙K)] 

95% CI 

[W/(m∙K)] 

 

Uncertainty 

[%] 

PM 

[m∙K/W] 

95% CI 

[m∙K/W] 

 

Uncertainty 

[%] 

E36 14–36 2.42 2.10–2.90 20.7 0.167 0.157–0.181 8.0 

E42 14–42 1.93 1.70–2.21 13.3 0.150 0.138–0.162 7.9 

E48 14–48 1.90 1.73–2.12 10.0 0.149 0.140–0.159 6.3 

E54 14–54 1.95 1.80–2.12 8.3 0.151 0.144–0.159 5.2 

E60 14–60 1.97 1.84–2.11 7.0 0.152 0.146–0.159 4.5 

E66 14–66 1.90 1.79–2.02 5.9 0.148 0.142–0.154 4.1 

E72 14–72 1.90 1.80–2.00 5.2 0.147 0.142–0.153 3.7 

E78 14–78 1.94 1.85–2.03 4.6 0.149 0.145–0.154 3.2 

E84 14–84 1.95 1.87–2.03 4.1 0.150 0.146–0.154 2.9 

E90 14–90 1.93 1.86–2.00 3.7 0.148 0.144–0.152 2.8 

E96 14–96 1.92 1.86–1.99 3.4 0.148 0.144–0.152 2.6 

 

Table 5. Variations in the posterior mean, 95% credible interval, and estimation uncertainties with the TRT duration 

(numerical TRT data). 

Case Test duration 

of data [h] 

Effective thermal conductivity Borehole thermal resistance 

PM 

[W/(m∙K)] 

95% CI 

[W/(m∙K)] 

 

Uncertainty 

[%] 

PM 

[m∙K/W] 

95% CI 

[m∙K/W] 

 

Uncertainty 

[%] 

N36 14–36 1.92 2.25–1.67 16.2 0.174 0.163–0.188 7.6 

N42 14–42 1.81 1.63–2.03 11.1 0.169 0.160–0.180 6.0 

N48 14–48 1.78 1.65–1.96 8.7 0.169 0.161–0.177 5.0 

N54 14–54 1.79 1.66–1.91 7.2 0.168 0.161–0.176 4.3 

N60 14–60 1.77 1.66–1.89 6.3 0.168 0.161–0.174 4.0 

N66 14–66 1.75 1.66–1.86 5.6 0.166 0.160–0.172 3.7 

N72 14–72 1.77 1.68–1.86 5.1 0.164 0.158–0.170 3.7 

 

As shown in Table 4, the PMs and the 95% CI of      and    for case E36, which had the shortest TRT time, had 

completely deviating values from those of other cases, where the values were outside the plausible ranges. E36 had the 

largest uncertainty of      and   , which were 20.7% and 8.0%, respectively. The relatively low uncertainty of    

compared with that of      owed to the higher sensitivity of    to temperature response in the general time frame of 

TRTs with a duration of less than 100 h, especially during the early period in the first 50 h. The variations in the transient 

sensitivity coefficients of the two parameters are discussed in detail in Ref. [76].  

From E42 onward, the point estimates based on the PM were within the plausible estimation ranges, but uncertainty 

remained high. In case E48, although the uncertainty of      was still higher than 10%, it was approximately 50% less 

than that of E36. As can be observed from Fig. 11 and Fig. 12, the estimation uncertainty decreased exponentially as TRT 

time increased. This was consistent with the results in Ref. [76], where a statistical analysis of 36 cases of numerical 

TRTs was conducted by considering the disturbance of an aboveground TRT setup. From case E54 (test duration of 54 h) 

onward, the uncertainty of      was below 10%, dropping to below 5% for case E78, and further to ~3.5% for case E96. 

The uncertainty of    also decreased exponentially with increasing test duration, falling to ~2.6% for case E96. 
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Fig. 12. Uncertainty comparison between in situ and numerical TRT data (subscript     represents in situ TRT data, 

and     represents numerically generated TRT data). 

 

Fig. 12 shows the variation in estimated uncertainties using experimental and numerical TRT data with time (Table 4 

and Table 5). Overall, the estimated uncertainties using experimental data were larger than those using numerical data. In 

particular, when the TRT time was short, the difference tended to be large, and gradually decreases with time. Therefore, 

the contextual disturbances (i.e., disturbance from the outdoor environment, voltage fluctuation, etc.) were found to have 

a greater impact on the estimation when the TRT time was shorter. This is a natural consequence, considering that the 

relative temperature perturbation is more sensitive to the same magnitude of disturbance when fluid temperature is lower.  

Interestingly, the estimation uncertainties for case E72 are very close to those of N72. This is despite other disturbance 

factors such as the heat exchange in the aboveground setup and the output fluctuation of the heater being considered in 

the experiments, in addition to the random error of the sensors. To explain this similarity, we refer to Ref. [37], in which 

the magnitude of the disturbed heat exchange rate in the aboveground TRT setup was numerically analyzed. In this 

previous work, a heat gain rate (heat transfer rate from the outdoor environment to the circulating fluid) of approximately 

80 W was determined for a dry-bulb temperature of 34 °C, global solar irradiance of 1000 W/m
2
, wind speed of 0.5 m/s, 

BHE outlet temperature of 30 °C, and connection circuit length of 2 m (from the BHE to the TRT apparatus). These 

conditions are very close to the weather conditions during the TRT data shown in Fig. 9. In the case of nighttime, because 

the temperature of the circulating fluid is higher than the outdoor temperature (Fig. 9), heat is released from the fluid to 

the atmosphere. This diurnal change under outdoor conditions produces a low-frequency periodicity in  . The heat rate 

  is also affected by the fluctuation of the supply voltage and the random errors of the sensors. The fluctuation of the 

supply voltage and the random errors of the sensors generate high-frequency noise, as shown in Fig. 9 (a). The standard 

deviation   of   obtained from the experimental results is 68 W (1.36 W/m in Table 3). For a confidence interval of 2 , 

which covers the 95.45% data range of  , the standard deviation is 136 W. This amplitude of 136 W produces a 

temperature fluctuation of ~0.1 °C for an average flow rate of 20.13 L/min (Table 3). This temperature fluctuation 

amplitude is close to that of the numerical TRT data, confirming the reasonableness of the comparable experimentally 

and numerically determined uncertainties for a test duration of 72 h.     

To summarize, there are several opinions regarding the minimum TRT duration from a deterministic point of view, but 

the absolute true parameter values cannot be determined for an in situ TRT. The minimum TRT time should therefore be 

examined with the objective of minimizing the uncertainties. The results for case E54 are within an uncertainty range of 

±8.3%, which is better than the generally acceptable uncertainty range of ±10%. Therefore, based on the experimental 

data of this study, we recommend a minimum TRT duration of 50 h. Of course, depending on the TRT setup and 

conditions, the uncertainty range for this minimum test duration may vary from those of the present experiment. Various 

conditions should therefore be considered for the minimum duration of the TRT. Ideally, Bayesian inference must be 

carried out in a real-time manner until uncertainties in parameter estimates falls within an acceptable range of uncertainty. 

By doing so, TRTs can be conducted in a time- and cost-effective manner without losing confidence in the estimated 

parameters. The proposed estimation method can facilitate the design of reliable ground heat exchangers with reduced 

operational risks.  
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6. Conclusions 

In this study, we developed a stochastic parameter estimation method based on Bayes’ theorem. The use of the 

conventional deterministic estimation method could lead to erroneous design. The Bayesian inference approach proposed 

in this paper not only produces the point estimates, but also the credible intervals of the parameters. This promises to 

facilitate the design of reliable ground heat exchangers with reduced operational risks. To verify the proposed method by 

comparison of its results with known true values, numerical TRT data was generated using the FEM, and additive random 

sensor errors were applied to the data. Using the Metropolis-Hastings sampling algorithm, the PPDFs of the effective 

thermal conductivity, borehole thermal resistance, and error ratio between the measured and modeled temperatures were 

derived. From the PPDFs, the point estimates and their 95% credible intervals were extracted. The point estimates were 

found to be very close to the set values of the numerical model. The joint distribution of the effective thermal 

conductivity and borehole thermal resistance was also derived, and could be used for intuitive determination of the 

correlation between the two parameters for their simultaneous estimation and assessment of the uncertainty range.  

In addition, to examine the relationship between the TRT time and the estimation uncertainty, the proposed stochastic 

estimation method was applied to in situ TRT data. The results obtained using the minimum test time of 36 h 

recommended by ASHRAE was found to significantly deviate from the plausible parameter range, with the estimation 

uncertainty of the effective thermal conductivity being ~21%. The uncertainty was, however, found to decrease 

exponentially with increasing test time, with the estimation uncertainty of the effective thermal conductivity dropping to 

below 10% for a test time of ~50 h. Based on the observations, we suggest a minimum TRT time of 50 h. A longer TRT 

duration would increase the estimation accuracy, and considering the exponential decrease of the uncertainty with the 

TRT time, 72 h is expected to produce sufficiently accurate estimates for most cases. 

Although, we mentioned the minimum TRT time of 50 h based on this study, fixing a standard duration of TRT time is 

not reasonable because (1) the configurations of the ground heat exchanger are different in each TRT, (2) the intensity of 

the contextual disturbance during a TRT is different, and (3) the parameter estimation methods are different. The propose 

method allows experimenters to stop a TRT with rational basis for estimation accuracy and uncertainty. The advantages 

of developed method will be maximized if real-time estimates during a TRT are conducted at regular intervals until 

uncertainty ranges are within acceptable limits.  

Although this study proposed a methodology for the estimation of TRT-related parameters, it is based on the 

assumption that all measurement and model errors are random. This is a reasonable assumption for this study because our 

numerical problem is exceptionally well defined, and our measurement data is synthetically generated. However, in a real 

TRT setup, errors arising from systematic bias in model and measurements must also be included. To do so, one must 

apply expert judgement on prior estimates of systematic errors, including their structure and magnitude. Although such 

systematic errors can be partially considered by the confidence interval of the estimated parameter, without an explicit 

consideration, there is a high possibility of overfitting the problem, especially when the physical model cannot represent 

the temperature response adequately. Future work must extend this framework to quantify them explicitly. Doing so can 

significantly optimize the duration of the TRT test by reducing uncertainties in estimated parameters.  

 

 

Acknowledgments 

This work was supported by the Japan Society for the Promotion of Science (JSPS) (KAKENHI, grant numbers 

26709041 and P16074). 

 

References 

[1] Lee CK. Effects of multiple ground layers on thermal response test analysis and ground-source heat 

pump simulation. Applied Energy 2011;88:4405–10. doi:10.1016/j.apenergy.2011.05.023. 

[2] Bernier M. Uncertainty in the design length calculation for vertical ground heat exchangers. 

ASHRAE Transactions 2002;108:939–44. 

[3] Kavanaugh SP, Rafferty KD. Ground-source heat pumps: Design of geothermal systems for 

commercial and institutional buildings. Atlanta: ASHRAE; 1997. 

[4] ASHRAE. ASHRAE Handbook - HVAC Applications, Chapter 34. Atlanta, GA: American Society 

of Heating, Refrigerating and Air-Conditioning Engineers Inc.; 2015. 

[5] Robert F, Gosselin L. New methodology to design ground coupled heat pump systems based on total 

cost minimization. Applied Thermal Engineering 2014;62:481–91. doi:10.1016/j.applthermaleng.2013.08.003. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

22 

[6] Mogensen P. Fluid to duct wall heat transfer in duct system heat storages. Proceedings of 

International Conference on Subsurface Heat Storage in Theory and Practice, Stockholm, Sweden: Swedish 

Council for Building Research; 1983, p. 652–7. 

[7] Eklöf C, Gehlin S. TED—a mobile equipment for thermal response tests. Lulea University of 

Technology, 1996. 

[8] Gehlin S. Thermal response test: method development and evaluation. Lulea University of 

Technology, 2002. 

[9] Ingersoll LR, Zobel OJ, Ingersoll AC. Heat conduction with engineering, geological, and other 

applications. Madison: University of Wisconsin Press; 1954. 

[10] Carslaw HS, Jaeger JC. Conduction of Heat in Solids. 2nd ed. UK: Oxford University Press; 1959. 

[11] Fujii H, Okubo H, Nishi K, Itoi R, Ohyama K, Shibata K. An improved thermal response test for U-

tube ground heat exchanger based on optical fiber thermometers. Geothermics 2009;38:399–406. 

doi:10.1016/j.geothermics.2009.06.002. 

[12] Austin WAI. Development of an in situ system for measuring ground thermal properties. Oklahoma 

State University, 1998. 

[13] Chiasson AD, O’Connell A. New analytical solution for sizing vertical borehole ground heat 

exchangers in environments with significant groundwater flow: Parameter estimation from thermal response test 

data. HVAC&R Research 2011;17:1000–11. doi:10.1080/10789669.2011.609926. 

[14] Wagner V, Blum P, Kübert M, Bayer P. Analytical approach to groundwater-influenced thermal 

response tests of grouted borehole heat exchangers. Geothermics 2013;46:22–31. 

doi:10.1016/j.geothermics.2012.10.005. 

[15] Yu X, Zhang Y, Deng N, Wang J, Zhang D, Wang J. Thermal response test and numerical analysis 

based on two models for ground-source heat pump system. Energy and Buildings 2013;66:657–66. 

doi:10.1016/j.enbuild.2013.07.074. 

[16] Nelder JA, Mead R. A simplex method for function minimization. The Computer Journal 

1965;7:308–13. doi:10.1093/comjnl/7.4.308. 

[17] Li M, Lai ACK. Parameter estimation of in situ thermal response tests for borehole ground heat 

exchangers. International Journal of Heat and Mass Transfer 2012;55:2615–24. 

doi:http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.12.033. 

[18] More JJ. The Levenberg-Marquardt algorithm: Implementation and theory. Lecture Notes in 

Mathematics 1978;630:105–16. doi:10.1007/BFb0067700. 

[19] Levenberg K. A Method for the Solution of Certain Non-linear Problems in Least Squares. Quarterly 

of Applied Mathematics 1944;2:164–8. 

[20] Marquardt DW. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the 

Society for Industrial and Applied Mathematics 1963;11:431–41. doi:10.1137/0111030. 

[21] Choi W, Ooka R. Interpretation of disturbed data in thermal response tests using the infinite line 

source model and numerical parameter estimation method. Applied Energy 2015;148:476–88. 

doi:10.1016/j.apenergy.2015.03.097. 

[22] Broyden CG. . The convergence of a class of double-rank minimization algorithms 1: General 

considerations. IMA Journal of Applied Mathematics 1970;6:76–90. doi:10.1093/imamat/6.1.76. 

[23] Fletcher R. A new approach to variable metric algorithms. The Computer Journal 1970;13:317–22. 

doi:10.1093/comjnl/13.3.317. 

[24] Goldfarb D. A family of variable-metric methods derived by variational means. Mathematics of 

Computation 1970;24:23–6. doi:10.1090/S0025-5718-1970-0258249-6. 

[25] Shanno DF. Conditioning of quasi-Newton methods for function minimization. Mathematics of 

Computation 1970;24:647–56. doi:10.1090/S0025-5718-1970-0274029-X. 

[26] Bozzoli F, Pagliarini G, Rainieri S, Schiavi L. Estimation of soil and grout thermal properties 

through a TSPEP (two-step parameter estimation procedure) applied to TRT (thermal response test) data. Energy 

2011;36:839–46. doi:10.1016/j.energy.2010.12.031. 

[27] Beck J, Arnold KJ. Parameter estimation in engineering and science. New York: Wiley Interscience; 

1977. 

[28] Shonder JA, Beck J. Field test of a new method for determining soil formation thermal conductivity 

and borehole resistance. ASHRAE Transactions 2000;106:843–50. 

[29] Roth P, Georgiev A, Busso A, Barraza E. First in situ determination of ground and borehole thermal 

properties in Latin America. Renewable Energy 2004;29:1947–63. doi:10.1016/j.renene.2004.02.014. 

[30] Sharqawy MH, Said SA, Mokheimer EM, Habib MA, Badr HM, Al-Shayea NA. First in situ 

determination of the ground thermal conductivity for boreholeheat exchanger applications in Saudi Arabia. 

Renewable Energy 2009;34:2218–23. doi:10.1016/j.renene.2009.03.003. 

[31] Hu P, Meng Q, Sun Q, Zhu N, Guan C. A method and case study of thermal response test with 

unstable heat rate. Energy and Buildings 2012;48:199–205. doi:10.1016/j.enbuild.2012.01.036. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

23 

[32] Zhang C, Song W, Sun S, Peng D. Parameter estimation of in situ thermal response test with unstable 

heat rate. Energy 2015;88:497–505. doi:10.1016/j.energy.2015.05.074. 

[33] Bandos T V, Montero Á, Fernández de Córdoba P, Urchueguía JF. Improving parameter estimates 

obtained from thermal response tests: Effect of ambient air temperature variations. Geothermics 2011;40:136–43. 

doi:10.1016/j.geothermics.2011.02.003. 

[34] Signorelli S, Bassetti S, Pahud D, Kohl T. Numerical evaluation of thermal response tests. 

Geothermics 2007;36:141–66. doi:10.1016/j.geothermics.2006.10.006. 

[35] Borinaga-Treviño R, Norambuena-Contreras J, Castro-Fresno D. How to correct the ambient 

temperature influence on the thermal response test results. Applied Thermal Engineering 2015;82:39–47. 

doi:10.1016/j.applthermaleng.2015.02.050. 

[36] Abdelaziz SL, Olgun CG, Martin JR. Counterbalancing ambient interference on thermal conductivity 

tests for energy piles. Geothermics 2015;56:45–59. doi:10.1016/j.geothermics.2015.03.005. 

[37] Choi W, Ooka R. Effect of disturbance on thermal response test, part 1: Development of disturbance 

analytical model, parametric study, and sensitivity analysis. Renewable Energy 2016;85:306–18. 

doi:10.1016/j.renene.2015.06.042. 

[38] Choi W, Ooka R. Effect of disturbance on thermal response test, part 2: Numerical study of 

applicability and limitation of infinite line source model for interpretation under disturbance from outdoor 

environment. Renewable Energy 2016;85:1090–105. doi:10.1016/j.renene.2015.07.049. 

[39] ISO. Guide to the Expression of Uncertainty in Measurement. Geneva, Switzerland: International 

Organization for Standardization; 1995. 

[40] Sharqawy MH, Mokheimer EM, Habib MA, Badr HM, Said SA, Al-Shayea NA. Energy, exergy and 

uncertainty analyses of the thermal response test for a ground heat exchanger. International Journal of Energy 

Research 2009;33:582–92. doi:10.1002/er.1496. 

[41] Raymond J, Therrien R, Gosselin L, Lefebvre R. A Review of Thermal Response Test Analysis 

Using Pumping Test Concepts. Ground Water 2011;49:932–45. doi:10.1111/j.1745-6584.2010.00791.x. 

[42] Underwood C. Ground source heat pumps: observations from United Kingdom ground thermal 

response tests. Building Services Engineering Research and Technology 2013;34:123–44. 

doi:10.1177/0143624411424467. 

[43] Raymond J, Lamarche L, Malo M. Field demonstration of a first thermal response test with a low 

power source. Applied Energy 2015;147:30–9. doi:10.1016/j.apenergy.2015.01.117. 

[44] Spitler JD, Javed S, Ramstad RK. Natural convection in groundwater-filled boreholes used as ground 

heat exchangers. Applied Energy 2016;164:352–65. doi:10.1016/j.apenergy.2015.11.041. 

[45] Cimmino M, Bernier M. Experimental determination of the g-functions of a small-scale geothermal 

borehole. Geothermics 2015;56:60–71. doi:10.1016/j.geothermics.2015.03.006. 

[46] Witte HJL. Error analysis of thermal response tests. Applied Energy 2013;109:302–11. 

doi:10.1016/j.apenergy.2012.11.060. 

[47] Shang Y, Dong M, Li S. Intermittent experimental study of a vertical ground source heat pump 

system. Applied Energy 2014;136:628–35. doi:10.1016/j.apenergy.2014.09.072. 

[48] Wang J, Zabaras N. Hierarchical Bayesian models for inverse problems in heat conduction. Inverse 

Problems 2005;21:183–206. doi:10.1088/0266-5611/21/1/012. 

[49] Parthasarathy S, Balaji C. Estimation of parameters in multi-mode heat transfer problems using 

Bayesian inference - Effect of noise and a priori. International Journal of Heat and Mass Transfer 2008;51:2313–

34. doi:10.1016/j.ijheatmasstransfer.2007.08.031. 

[50] Gori V, Marincioni V, Biddulph P, Elwell CA. Inferring the thermal resistance and effective thermal 

mass distribution of a wall from in situ measurements to characterise heat transfer at both the interior and exterior 

surfaces. Energy and Buildings 2017;135:398–409. doi:10.1016/j.enbuild.2016.10.043. 

[51] Toivanen JM, Kolehmainen V, Tarvainen T, Orlande HRB, Kaipio JP. Simultaneous estimation of 

spatially distributed thermal conductivity, heat capacity and surface heat transfer coefficient in thermal 

tomography. International Journal of Heat and Mass Transfer 2012;55:7958–68. 

doi:10.1016/j.ijheatmasstransfer.2012.08.024. 

[52] Gnanasekaran N, Balaji C. A Bayesian approach for the simultaneous estimation of surface heat 

transfer coefficient and thermal conductivity from steady state experiments on fins. International Journal of Heat 

and Mass Transfer 2011;54:3060–8. doi:10.1016/j.ijheatmasstransfer.2011.01.028. 

[53] Chakraborty S, Das PK. Application of Bayesian Inference Technique for the reconstruction of an 

isothermal hot spot inside a circular disc from peripheral temperature measurement - A critical assessment. 

International Journal of Heat and Mass Transfer 2015;88:456–69. doi:10.1016/j.ijheatmasstransfer.2015.04.058. 

[54] Li G, Shi J. Applications of Bayesian methods in wind energy conversion systems. Renewable 

Energy 2012;43:1–8. doi:10.1016/j.renene.2011.12.006. 

[55] O’Neill PD. A tutorial introduction to Bayesian inference for stochastic epidemic models using 

Markov chain Monte Carlo methods. Mathematical Biosciences 2002;180:103–14. doi:10.1016/S0025-



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

24 

5564(02)00109-8. 

[56] Smith MD, Perry RL. In situ testing and thermal conductivity testing. Proceedings of the 

Geoexchange Technical Conference and Exposition, Oklahoma State University, Stillwater, Oklahoma: 1999. 

[57] Gehlin S, Hellström G. Comparison of four models for thermal response test evaluation. ASHRAE 

Transactions 2003;109:131–42. 

[58] Kavanaugh SP, Xie L, Martin C. Investigation of methods for determining soil and rock formation 

thermal properties from short-term field tests. Atlanta, Georgia: 2001. 

[59] Austin WAI, Yavuzturk C, Spitler JD. Development of an in situ system and analysis procedure for 

measuring ground thermal properties. ASHRAE Transactions 2000;106:365–79. 

[60] Javed S. Thermal response testing: Results and experiences from a ground source heat pump test 

facility with multiple boreholes. Proceedings of Clima 2013, Prague, Czech Republic: 2013. 

[61] Liu YD, Beier RA. Required duration for borehole test validated by field data. ASHRAE 

Transactions 2009;115:782–92. 

[62] Gehlin S. Thermal response test: in situ measurements of thermal properties in hard rock. Lulea 

University of Technology, 1998. 

[63] Beier RA, Smith MD, Spitler JD. Reference data sets for vertical borehole ground heat exchanger 

models and thermal response test analysis. Geothermics 2011;40:79–85. doi:10.1016/j.geothermics.2010.12.007. 

[64] Hagen G. Ueber die Bewegung des Wassers in engen cylindrischen Röhren. Annalen Der Physik 

Und Chemie 1839;122:423–42. doi:10.1002/andp.18391220304. 

[65] Poiseuille JLM. Recherches expérimentales sur le mouvement des liquides dans les tubes de très-

petits diamètres. Comptes Rendus, Académie Des Sciences, Paris 1840;11:961–7. 

[66] Poiseuille JLM. Recherches expérimentales sur le mouvement des liquides dans les tubes de très-

petits diamètres. Comptes Rendus, Académie Des Sciences, Paris 1841;12:112–5. 

[67] Lamarche L, Kajl S, Beauchamp B. A review of methods to evaluate borehole thermal resistances in 

geothermal heat-pump systems. Geothermics 2010;39:187–200. doi:10.1016/j.geothermics.2010.03.003. 

[68] Li M, Lai ACK. Review of analytical models for heat transfer by vertical ground heat exchangers 

(GHEs): A perspective of time and space scales. Applied Energy 2015;151:178–91. 

doi:10.1016/j.apenergy.2015.04.070. 

[69] Javed S, Spitler JD. Accuracy of borehole thermal resistance calculation methods for grouted single 

U-tube ground heat exchangers. Applied Energy 2017;187:790–806. doi:10.1016/j.apenergy.2016.11.079. 

[70] Raymond J, Therrien R, Gosselin L. Borehole temperature evolution during thermal response tests. 

Geothermics 2011;40:69–78. doi:10.1016/j.geothermics.2010.12.002. 

[71] Gamerman D, Lopes HF. Markov Chain Monte Carlo-Stochastic Simulation for Bayesian Inference. 

CRC Press; 2006. 

[72] Congdon P. Applied Bayesian hierarchical methods. CRC Press; 2010. 

[73] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of State Calculations 

by Fast Computing Machines. The Journal of Chemical Physics 1953;21:1087–92. doi:10.1063/1.1699114. 

[74] Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. 

Biometrika 1970;57:97–109. doi:10.1093/biomet/57.1.97. 

[75] Chib S, Greenberg E. Understanding the Metropolis-Hastings Algorithm. The American Statistician 

1995;49:327. doi:10.2307/2684568. 

[76] Choi W, Ooka R. Effect of natural convection on thermal response test conducted in saturated porous 

formation: Comparison of gravel-backfilled and cement-grouted borehole heat exchangers. Renewable Energy 

2016;96:891–903. doi:10.1016/j.renene.2016.05.040. 

[77] Beier RA. Transient heat transfer in a U-tube borehole heat exchanger. Applied Thermal Engineering 

2014;62:256–66. doi:10.1016/j.applthermaleng.2013.09.014. 

[78] Beier RA, Smith MD. Minimum duration of in situ tests on vertical boreholes. ASHRAE 

Transactions 2003;109:475–86. 

[79] Shonder JA, Beck J. Determining effective soil formation thermal properties from field data using a 

parameter estimation technique. ASHRAE Transactions 1999;105:458–66. 

 

 

Appendix. A Derivation of likelihood function  

This appendix presents the detailed derivation of the likelihood function in this paper, namely, the derivation of Eq. (17) 

from Eq. (16).  

The likelihood functions with respect to the measured temperature and true temperature are expressed by Eqs. (14) and 

(15), respectively. Substituting these two equations into Eq. (16), the marginal likelihood function can be rewritten as 

follows:  
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By completing the square for     
 , the above equation can be rewritten as follows: 
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As can be seen, only the parts related to     
  remain in the integral. Eq. (A2) can be rewritten as follows:  
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The integral in Eq. (A3) has the form of the general integral of a Gaussian function, which is as follows:  

         
 

 

  

    
 

 
 (A4) 

 

Based on Eq. (A4), Eq. (A3) can be integrated with respect to     
  and simplified as follows:  
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Appendix. B Additional verification of Bayesian inference against reference sandbox TRT data [63] 

Most TRTs are carried out at construction sites, where many experimental conditions cannot be fully controlled. For 

verification purposes, such data cannot be used, which is why we applied Bayesian inference to the numerically 

generated TRT data in Section 4.  

Beier et al. [63] conducted a TRT in a well-controlled laboratory environment to obtain a reference dataset for a model 

validation purpose and this is publicly available. For verification, we applied the developed Bayesian inference to the 

reference TRT data, and the results were compared with the estimated values in Ref. [63].  

The parameters used for the reference sandbox TRT are listed in Table B1. The sandbox TRT was conducted for 52 h 

but the data for last 14 min were missing in Beier et al.’s published data. Therefore, the data from the elapsed time of 10 

h to 51 h were used for the inference. The indicator function   used to restrict the parameter space was set as follows: 

              ,             , and           . The other conditions were identical to those applied to the 

inference using the numerical TRT data. As in Section 4, the number of MCMC was 5×10
5
 and the first 1×10

5
 samples 

were not used to construct PPDFs.  
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Table B1. Parameters for sandbox TRT data  

Component Parameter [units] Value 

Borehole  Borehole depth [m] 18.3 

Borehole diameter [mm] 126 

U-tube  

 

Outer diameter [mm] 33.40 

Inner diameter [mm] 27.33 

Shank spacing [mm] 53 

Thermal conductivity [W/(m∙K)] 0.39 

Volumetric thermal capacity [MJ/(m
3
∙K)] 1.8 

Grout Thermal conductivity [W/(m∙K)] 0.73 

Volumetric thermal capacity [MJ/(m
3
∙K)] 3.8

*
 

Ground Thermal conductivity [W/(m∙K)] 2.82 

Volumetric thermal capacity [MJ/(m
3
∙K)] 3.2

**
 

TRT set values  Average volumetric flow rate [L/min] 11.82 

Average heat injection rate [W] 1056 

Initial ground temperature [°C] 22.0 
*
The value was not provided in Ref. [63], but in Ref. [77], the volumetric thermal capacity of grout was estimated and 

provided. 
 

**
The value was not provided in Ref. [63]. The volumetric thermal capacity of ground specified in the table was 

obtained from personal communication with Prof. Beier.    

 

Using the 4×10
5
 samples, the PPDFs and box plots of      and    were created and are shown in Fig. B1. The 

results of Beier et al.’s work [63], and the PM, MAP, and 95% CI drawn from PPDFs are summarized in Table B2. The 

results from Bayesian inference were close to the estimation results in Ref. [63].   

Using the PM and 95% CI of      and    as inputs to the ILS model, temperature responses were modeled and 

compared with the measured temperature of sandbox TRT data (Fig. B2). The temperature response generated using the 

PM agreed well with the measured temperature. It can be seen that the temperature range generated using the 95% CI 

covers the entire range of the measured temperature. 

 

 
 Fig.B1. Normalized probability density functions (PDFs) and box plots: (a) PDF of     , (b) box plot of     , (c) PDF 

of   , and (d) box plot of   . 
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Table B2. Comparison between the original results [63] and Bayesian inference (PM: posterior mean, MAP: maximum 

a posteriori, CI: credible interval). 

Parameter [unit] 

Effective thermal 

conductivity  

[W/(m∙K)] 

Borehole thermal 

resistance  

[m∙K/W] 

Independent probe 

measurement 
2.82 0.173 

Deterministic 

(ILS model) 
2.91 0.164 

Deterministic 

(Composite model [78]) 
2.94 0.165 

Deterministic 

(1D numerical model [79]) 
2.84 0.187 

Bayesian PM 2.85 0.163 

Bayesian MAP 2.85 0.163 

95% CI  2.80–2.91 0.162–0.165 

 

 
Fig. B2. Sandbox temperature response data used for Bayesian inference, temperature response modeled using point 

estimates based on the posterior mean, and upper and lower bounds of the temperature modeled using the 95% credible 

intervals of the estimates. 
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