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Constant-pressure nested sampling with atomistic dynamics
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The nested sampling algorithm has been shown to be a general method for calculating the pressure-temperature-
composition phase diagrams of materials. While the previous implementation used single-particle Monte Carlo
moves, these are inefficient for condensed systems with general interactions where single-particle moves cannot
be evaluated faster than the energy of the whole system. Here we enhance the method by using all-particle
moves: either Galilean Monte Carlo or the total enthalpy Hamiltonian Monte Carlo algorithm, introduced in this
paper. We show that these algorithms enable the determination of phase transition temperatures with equivalent
accuracy to the previous method at 1/N of the cost for an N -particle system with general interactions, or at
equal cost when single-particle moves can be done in 1/N of the cost of a full N -particle energy evaluation.
We demonstrate this speed-up for the freezing and condensation transitions of the Lennard-Jones system and
show the utility of the algorithms by calculating the order-disorder phase transition of a binary Lennard-Jones
model alloy, the eutectic of copper-gold, the density anomaly of water, and the condensation and solidification of
bead-spring polymers. The nested sampling method with all three algorithms is implemented in the PYMATNEST

software.
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I. INTRODUCTION

The ability to predict the behavior of materials under
a variety of conditions is important in both academic and
industrial settings. In principle, statistical mechanics enables
the prediction of the properties of materials in thermodynamic
equilibrium from the microscopic interaction of atoms. Com-
puter simulation is the tool for using numerical statistical
mechanics in practice, and a wide variety of models and ap-
proximations are used for atomic interactions, all the way from
the electronic Schrödinger equation to simple hard spheres.
The equilibrium pressure-temperature phase diagram for a
given composition is one of the most fundamental properties
of a material, and forms the basis for making, changing,
designing, or in general, just thinking about the material.

The common approach is to use different computational
methods for resolving each of the transitions between the
phases, or for comparing the stability of particular com-
binations of phases. This requires the prior knowledge of
a list of proposed phases or crystal structures at each set
of thermodynamic parameters. In a previous paper [1] we
introduced a nested sampling (NS) algorithm [2,3] that enables
the automated calculation of complete pressure-temperature-
composition phase diagrams. The nested sampling algorithm
constitutes a single method for resolving all phase transitions
automatically in the sense that no prior knowledge of the
phases is required.

The algorithm in Ref. [1] used Gibbs sampling, i.e., single-
particle Monte Carlo (SP-MC) moves, to explore configuration
space. For some interactions, which we term separable, the
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energy change of an N -particle system due to the displacement
of a single particle can be calculated in 1/N times the cost of
evaluating the energy of the whole system. Thus, for separable
interactions, the cost of an N -particle sweep is equal to the
cost of a single full-system energy/force evaluation. For these
cases Gibbs sampling is efficient. However, interactions in
general are not separable, and if a single-particle move is
just as costly as a full-system evaluation, a sweep that moves
every particle costs N times more than a single full-system
energy/force calculation. All-particle MC moves can be used
in principle, but it is well known that making such moves in
random directions leads to very slow exploration in condensed
phases (liquids, solids), because maintaining a finite MC
acceptance rate requires that the displacement of each atom
become smaller as the system size increases [4].

Here we replace Gibbs sampling by either one of two
algorithms that use efficient all-particle moves inspired by the
Hamiltonian Monte Carlo (HMC) method [5]. The purpose
of this paper is to show how these algorithms can be utilized
efficiently in the case of nested sampling. One is a total en-
thalpy HMC (TE-HMC) introduced in this paper, which takes
advantage of standard molecular dynamics (MD) implemented
in many simulation packages. The other is Galilean Monte
Carlo (GMC) [6,7], which is not as widely available, but does
not suffer from the breakdown of ergodicity that the TE-HMC
algorithm may experience for systems with a large number of
particles. We compare the efficiency of these two methods with
that of Gibbs sampling, and find that they require comparable
numbers of whole-system energy/force evaluations, leading to
a factor of 1/N reduction in computational time for general
inter-particle interactions.

The GMC and TE-HMC algorithms use interparticle force
information to move all particles coherently along “soft”
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degrees of freedom, and therefore explore faster than simple
diffusion, at least over short time scales. Effectively, short
trajectories are all-particle MC move proposals with large step
lengths that still lead to reasonable MC acceptance probabili-
ties. Over the time scale of an entire Markov chain Monte Carlo
(MCMC) walk, the motion is still diffusive, but the short-time
coherence helps GMC and TE-HMC explore configuration
space much faster than randomly oriented all-particle moves.
Using GMC or TE-HMC enables the simulation of a wide
range of phase transitions in atomistic and particle systems
with NS, including chemical ordering in binary Lennard-Jones
(LJ), the eutectic of copper-gold alloys, freezing of water, and
the transitions of a coarse-grained bead-spring polymer model.
Parallel implementations of both algorithms are available in the
PYMATNEST PYTHON software package [8], using the LAMMPS

package [9] for the dynamics.

II. THE NESTED SAMPLING METHOD

The nested sampling algorithm with constant pressure
and flexible boundary conditions (i.e., with variable periodic
cell shape and volume) calculates the cumulative density of
states, χ (H̃ ), at fixed pressure P , where H̃ = U + PV is the
configurational enthalpy, U (r) is the potential energy function,
and V is the volume of the system. From the cumulative density
of states, one can calculate the partition function and heat
capacity as explicit functions of temperature. Nested sampling
also returns a series of atomic configurations, from which
one may compute ensemble averages of observables and free
energy landscapes [1].

The key idea of nested sampling is that it constructs a
series of decreasing enthalpy levels {H̃ sup

i }, each of which
bounds from above a volume of configuration space χi , with
the property that χi is approximately a constant factor smaller
than the volume χi−1 of the level above. The constant-pressure
partition function and its approximation in nested sampling are
then given by

�(N,P,β) = βP

N !

(
2πm

βh2

)3N/2 ∫ ∞

−∞
dH̃

∂χ

∂H̃
e−βH̃ (1)

≈ βP

N !

(
2πm

βh2

)3N/2 ∑
i

(χi−1 − χi)e
−βH̃

sup
i . (2)

Here N is the number of particles of mass m,h is Planck’s
constant, and ∂χ/∂H̃ is the density of enthalpy states.

To calculate the absolute value of the partition function
(2), we must possess the absolute values of the configuration
space volumes {χi}. The volumes {χi} are specified in NS as
a decreasing geometric progression, starting from χ0, which
is the total (finite) volume of the configuration space. The
configuration space must therefore be compact. In order to
ensure that we are sampling from a compact configuration
space, the simulation cell volume V is restricted to be less
than a maximum value V0, chosen to be sufficiently large as
to correspond to an almost ideal gas. The total configuration
space volume is therefore χ0 = V N+1

0 /(N + 1). Restricting
the sampling to V < V0 allows a good approximation of the
partition function provided kBT � PV0 [1].

The simulation cell is periodic, and is represented by h,
a 3 × 3 matrix of lattice vectors that relates the Cartesian

positions of the particles r to the fractional coordinates s
by r = hs. The volume of the simulation cell is V = det h,
and h0 = hV −1/3 is the image of the unit cell normalized
to unit volume. The NS algorithm maintains a pool of K

configurations drawn from

Prob(s,h0,V |V0,H̃
sup,d0)

∝ V Nδ(det h0 − 1)�(H̃ sup − H̃ )�(V0 − V )
3N∏
i=1

�(si)�(1 − si) �

(
d0 − min

j �=k

[
1

hj

0 × hk
0

])
, (3)

where � is the Heaviside step function, hi
0 are columns of

h0, and H̃ sup is a maximum configurational enthalpy. Thus,
fractional particle coordinates s are uniformly distributed on
(0,1)3N,H̃ is restricted to be smaller than H̃ sup, and V is
restricted to be smaller than V0. The last term in Eq. (3) restricts
the simulation cell from becoming too thin (controlled by the
parameter d0), thus avoiding unphysical correlations between
interacting periodic images [1]. For simple fluids of 64 atoms,
d0 should be set no smaller than 0.65, while simulations with
larger numbers of atoms can tolerate smaller values of d0 [1]
(see Appendix E). The probability distribution (3) corresponds
to a uniform distribution over the Cartesian particle coordinates
r, subject to the constraints above.

The simulation is initialized by drawing K configurations
from distribution (3), with H̃ sup = ∞. After initialization,
the NS algorithm performs the following loop, starting with
i = 1:

(1) From the set of K configurations, record the Kr � 1
samples with the highest configurational enthalpy, {H̃ }i . Use
the lowest enthalpy from that set, min{H̃ }i , as the new enthalpy
limit: H̃ sup ← min{H̃ }i . The volume of configuration space
with enthalpy equal to or less than H̃ sup is χi ≈ χ0[(K − Kr +
1)/(K + 1)]i .

(2) Remove the Kr samples with enthalpies {H̃ }i from
the pool of samples and generate Kr new configurations
from the distribution (3), using the updated value of H̃ sup.
This is achieved by first choosing Kr random configurations
from the pool of remaining samples, creating clones of those
configurations, and evolving the cloned configurations using a
MCMC algorithm that converges to the distribution (3).

(3) Set i ← i + 1, and return to step 1 unless a stopping
criterion is met (see Appendix A).

The required values of K and the MCMC walk length, L,
depend on the system being studied. This behavior is described
in Refs. [1–3,10]. In addition, increasing Kr allows for greater
parallelization of the NS algorithm; however, increasing Kr−1

K

also leads to greater error in the estimates of {χi}, so care
should be taken not to make Kr−1

K
too large (see Appendix B).

Thermodynamic expectation values and free energy land-
scapes can be computed using the samples recorded during step
1 of the NS algorithm [1]. Representative configurations can be
sampled at any temperature simply by choosing configurations
at random, according to their thermalized probabilities

pi(β) = (χi−1 − χi)e−βH̃i∑
i (χi−1 − χi)e−βH̃i

. (4)
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Examining a small number of configurations chosen in this
way is often sufficient to understand which phase occurs at
each temperature. This method was used to choose the atomic
configurations shown in Sec. IV.

III. MARKOV CHAIN MONTE CARLO ALGORITHMS

To decorrelate the cloned configurations in step 2 of the
NS algorithm we use a MCMC algorithm that converges to
the distribution (3) by applying two kinds of steps: cell steps,
including changes to volume and shape, and particle steps,
including continuous motion in space and (for multicomponent
systems) coordinate swaps between particles of different types.

The cell steps include volume steps that ensure Prob(V ) ∝
V N , and shearing and stretching steps that lead to Prob(h0) ∝
δ(det h0 − 1)�(d0 − mini �=j [ 1

hi
0×hj

0

]), as required by the target

distribution [1]. The following subsections introduce the
algorithms for moving the configuration in the space of the
atomic coordinates.

A. Galilean Monte Carlo

In GMC [6,7] one defines an infinite square-well potential
function H̃GMC,

H̃GMC(s,V ,h0) =
{

0, H̃ < H̃ sup,

∞, H̃ � H̃ sup,
(5)

which is equal to the logarithm of the desired probability
distribution: uniform over the allowed region, H̃ < H̃ sup, and
zero elsewhere. Note that we have omitted the constraints
on V and h0 from (5) since we use GMC to explore only
the atomic coordinates. Having defined H̃GMC, one samples
the fractional atomic coordinates s uniformly by performing
standard Hamiltonian Monte Carlo sampling [5] on the
function H̃GMC. We follow the GMC approach proposed by
Betancourt [7], which uses a fixed number of force evaluations
and therefore helps the load balance when parallelizing the
algorithm (see Appendix B). Our implementation, expressed
for practical convenience of implementation in Cartesian
coordinates r rather than fractional coordinates s, is as follows.

At the start of each atomic GMC trajectory, save the initial
atomic coordinates r0. Generate a velocity v chosen uniformly
from the surface of a 3N -dimensional hypersphere of radius
1. Repeat the following loop L times:

(1) Propagate the atomic coordinates r in the direction of
v for one step of length dt . The atomic coordinates are now r∗.

(2) If H̃ � H̃ sup, attempt to redirect the trajectory back into
the allowed region by reflecting velocities from the current
position, by v ← v − 2(v · n̂)n̂, where n̂ = −∇rH̃ /|∇rH̃ |.
Following velocity reflection, propagation continues from r∗.

Finally, if at the end of the trajectory H̃ � H̃ sup, reject the
trajectory and return to the initial atomic coordinates r0. Note
that the reflection in step 2 does not occur at the exact boundary
H̃ = H̃ sup, and this is essential to maintain detailed balance.
The acceptance rate of the GMC step is controlled by adjusting
dt . There are similarities between GMC and the “hit and run”
algorithm for sampling convex volumes [11], and it remains
to be seen whether the clear advantages over Gibbs sampling
have common underlying reasons [12].

B. Total enthalpy Hamiltonian Monte Carlo

One disadvantage of GMC is that when the boundary
of the allowed region of configuration space H̃ < H̃ sup is
complicated, attempts to reflect the sampler back into the
allowed region fail frequently, and reflection further into
the disallowed region often leads to rejection of the entire
trajectory, thus overall driving down the optimal step size.
Hamiltonian (constant-energy) molecular dynamics, on the
other hand, can generate nearly constant total energy trajecto-
ries using comparatively large step sizes, and use the exchange
of energy between potential and kinetic degrees of freedom to
smooth the “reflections” from high potential energy regions.
In TE-HMC we take advantage of this behavior by using short
MD trajectories to evolve the atomic coordinates.

Hamiltonian dynamics couples the evolution of the atomic
momenta and coordinates, and in TE-HMC we explicitly
sample the total phase space of the atoms (s,V ,h0,p), where
p denotes the Cartesian momenta. In contrast, in SP-MC
and GMC one samples only the atomic configuration space
(s,V ,h0).

In step 1 of each NS iteration the Kr samples with highest
total enthalpy H = (H̃ + Ek), where Ek(p) is the kinetic
energy, are identified as the next set of recorded samples.
Next, the total enthalpy limit is updated H sup ← min{H }i ,
and in step 2 Kr new samples are generated from the joint
probability distribution

Prob
(
s,h0,V ,p|V0,H

sup,d0,E
0
k

)
∝ V Nδ(det h0 − 1)�(H sup − H )�(V0 − V )

�
(
E0

k − Ek(p)
) 3N∏

i=1

�(si)�(1 − si)

�

(
d0 − min

j �=k

[
1

hj

0 × hk
0

])
. (6)

Distribution (6) invokes the same constraints on V,h0 as
distribution (3), but restricts H < H sup and specifies that the
momenta are uniformly distributed in the region

Ek(p) < E0
k . (7)

Using both maximum volume and kinetic energy values V0

and E0
k ensures that the phase space we sample is compact,

the necessity of which is explained in Sec. II. In particular, V0

and E0
k enforce compactness of the sampled configuration and

momentum spaces, respectively.
We initialize exactly as described in Sec. II, except that we

now assign each sample momenta chosen uniformly at random
from the region (7). This is achieved using Algorithm 2 given
in Appendix C. We choose E0

k = 3
2PV0 as for an ideal gas, so

that, again, we obtain a good approximation of the partition
function provided kBT � PV0. Probability distribution (6)
corresponds to a uniform distribution over the phase space
coordinates of the system (s,p), subject to the above con-
straints. [Recall that, in contrast, probability distribution (3) in
Sec. II corresponds to a uniform distribution over the particle
coordinates s alone, subject to similar constraints.]

Since in TE-HMC we explicitly sample both coordinates
and momenta, the nested sampling approximation to the
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partition function becomes

�(N,P,β) ≈ βP

N !h3N

∑
i

(	i−1 − 	i)e
−βHi , (8)

where Hi is the total enthalpy of the ith nested sampling level,
and 	i is the volume of phase space with total enthalpy less
than or equal to Hi at pressure P .

In order to ensure the sampler spends approximately an
equal amount of computer time exploring each degree of
freedom, we set all the masses to be equal: mi = m ∀ i. We then
recover the correct partition function (8) by multiplication:

�(N,P,β) ≈
(

N∏
i=1

mi

m

) 3
2

�NS(N,P,β), (9)

where �NS is equal to the right-hand side of (8), calculated
with equal particle masses. For equal particle masses, we find
	0 in Eq. (8) to be given by

	0 = V N+1
0

N + 1

2
(
2πmE0

k

) 3N
2

3N	
(

3N
2

) , (10)

where 	( 3N
2 ) is the gamma function evaluated at 3N

2 .
In TE-HMC, the atomic coordinates r and momenta p are

evolved according to the following Hamiltonian Monte Carlo
sequence. The move begins with the initial Cartesian phase
space coordinates (r(0),p(0)), which are in the allowed region,
H < H sup:

(1) Randomize the momenta, either partially or com-
pletely, to pick new momenta satisfying Ek(p) <

min[E0
k ,H

sup − H̃ ], as in Eq. (6). This momentum random-
ization takes us to the coordinates (r(0),p(1)).

(2) Starting from (r(0),p(1)), integrate Newton’s equations
of motion for the coordinates (r,p) over a fixed number of time
steps. At the end of this trajectory the phase space coordinates
are (r(1),p(2)).

(3) Reverse the momenta p(3) = −p(2); the trajectory and
this reversal taken together, (r(0),p(1)) → (r(1),p(3)), are a
reversible MC proposal, which ensures that the move satisfies
detailed balance.

(4) Calculate the new total enthalpy Htrial =
H (r(1),V ,h0,p(3)). If Htrial < H sup and Ek(p(3)) < E0

k

then accept the new coordinates (r(1),p(3)); otherwise return

to the starting coordinates (r(0),p(0)). The coordinates are now
(r∗,p∗).

(5) Reverse the momenta again. The final, resulting coor-
dinates are (r∗,−p∗).

A great advantage of the TE-HMC algorithm is that numeri-
cal integration of Newton’s equations of motion approximately
conserves the total enthalpy along the trajectory such that the
value only fluctuates by a small amount. Consequently, the trial
coordinates (r(1),p(3)) nearly always satisfy Htrial < H sup. Thus
if partial momentum randomization is used, better preserving
the direction of motion of the particles, one obtains excellent
continuation between successive short TE-HMC trajectories.
Pseudocode for the TE-HMC move introduced above is given
in Appendix C. In particular, Algorithm 3 introduces the
parameter γ , which controls the extent to which the direction
of motion of the particles is randomized when using partial
momentum randomization.

C. Wider application of NS with TE-HMC

The TE-HMC method can be used in applications of NS as
a general method for Bayesian computation [2,3], by setting
m = 1, equating H̃ (r) = − ln Prob(r) where Prob(r) is the
Bayesian likelihood of the parameters r, and specifying a
suitably large value for the maximum kinetic energy, E0

k . The
Bayesian evidence is approximated by

Z ≈
∑

i

(	i−1 − 	i)e
−Hi

in which 	0 is given by

	0 = 2E0
k

d
2

3N	
(

d
2

)
where 	( d

2 ) is the gamma function evaluated at d
2 , and d

denotes the dimension of the parameter space: the phase space
{r,p} has 2d dimensions. Throughout this paragraph we have
assumed that the prior over r is uniform. For continuous
problems it is always possible to use coordinates in which
this is the case.

A total energy HMC algorithm, suitable for performing
constant volume NS calculations, is obtained by replacing βP

with 1 in Eq. (8) then setting the pressure P = 0 throughout
the TE-HMC algorithm. Cell volume MC moves should not
be performed, while cell stretch and cell shear moves may

TABLE I. Parameters for NS runs: pressure P , number of particles N , number of configurations K , number of configurations removed
per iteration Kr , walk length (all-particle energy/force calls) L, step ratios (particle : cell volume : cell shear : cell stretch [: swap]), minimum
temperature Tmin, and number of NS iterations niter. Each particle step consisted of 8 N -particle energy/force evaluations: 8 all-particle sweeps
for SP-MC, or a single 8 step trajectory for GMC and TE-HMC.

P N K Kr L step ratios Tmin niter/106

mono LJ walk length 3.162 × 10−2ε/σ 3 64 2304 1 80–2560 1:16:8:8 0.43 ε 2
binary LJ order-disorder 3.162 × 10−2ε/σ 3 64 4608 2 1536 1:16:8:8:8 0.043 ε 3
Cu, Au 0.1 GPa 64 2304 1 768 1:16:8:8:8 600 K 2
CuxAu1−x , x = [0.25,0.5,0.75] 0.1 GPa 64 4608 2 768 1:16:8:8:8 600 K 2
mW water 1.6 MPa 64 1920 1 3168 3:8:4:4 150 K 2
single-chain polymer const. V 15 2304 1 5120 1:0:0:0 0.01 ε 1
multichain polymer cluster const. V 8 × 15 4608 1 5120 1:0:0:0 0.3 ε 8
multichain polymer 2.3 × 10−3ε/σ 3 8 × 15 4608 1 5120 1:4:4:4 1.2 ε 3
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optionally be included or left off. Momenta are initialized as
for total enthalpy HMC, with E0

k = 3N
2 kBT0 where T0 is a high

temperature which corresponds to the ideal gas. In total energy
HMC one must replace Eq. (10) with

	0 = V N
2
(
2πmE0

k

) 3N
2

3N	
(

3N
2

) . (11)

This total energy HMC algorithm was used to perform the
constant volume calculations reported in Sec. IV C 4.

IV. RESULTS

A. Parameters and implementation

Here we present tests of the performance of the constant-
pressure NS sampling method with the different particle
motion algorithms. The single-particle MC moves (SP-MC)
are grouped into sweeps over the system moving each particle
in random order. When the potential is separable, for example
the LJ model in the examples below, the cost of an entire
N -particle sweep is equal to a single full-system energy/force
evaluation. When discussing walk lengths below we there-
fore consider an N -particle sweep equivalent to a single
energy/force evaluation in other moves (GMC or TE-HMC
for particle positions, as well as cell moves). For interactions
of more general form that are not separable, the sweep would
be N times slower than an energy/force evaluation.

Step sizes for all types of MCMC moves are automatically
adjusted during the NS iteration process using pilot walks
(which are not included in the NS configuration evolution) so
as to reach acceptance rates of 0.5–0.95 for TE-HMC MD
trajectories, and 0.25–0.75 for all other moves (cell steps,
single-particle SP-MC steps, GMC trajectories). The essential
NS parameters for all systems presented here are listed in
Table I, and input files are provided in the Supplemental
Material (SM) [13]. Each particle step consisted of 8 N -
particle energy/force evaluations: 8 all-particle sweeps for
SP-MC, or a single 8-step trajectory for GMC and TE-
HMC. For multicomponent systems 8 swap steps were done
in addition [1]. For TE-HMC partial randomization of the
velocity direction was done as in Algorithm 3 with γ = 0.3,
except for the polymer system which used γ = 0.1.

B. Efficiency of the SP-MC, GMC, and TE-HMC algorithms

As a basic test of the effectiveness of the three atomic
motion algorithms, SP-MC, GMC, and TE-HMC, we apply
the NS method to a periodic Lennard-Jones system with
interactions truncated and shifted to zero at a cutoff distance
of 3σ (see Appendix D 1). We choose a pressure above the
triple point but below the critical point, where this system has
two phase transitions: condensation from the gas to the liquid,
and freezing from the liquid to the crystalline solid. Figure 1
compares the performance of the SP-MC, GMC, and TE-HMC
algorithms for resolving the heat capacity peaks associated
with these transitions. The cost of each GMC time step is
similar to that in TE-HMC, and from Fig. 1 we see that the con-
vergence of all three methods is similar for the condensation
transition. However, TE-HMC is significantly more efficient
than GMC for accurately resolving the freezing transition.

(e)
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FIG. 1. Heat capacity curves Cp(T ), peak positions, and peak
scatter calculated using NS for 64 LJ particles at pressure Pσ 3/ε =
3.162 × 10−2. Panel (a): Example Cp(T ) curve for 10 independent
runs with SP-MC moves and L = 1280 energy evaluations. Panels
(b)–(e): Convergence of the condensation [(b), (c)] and freezing [(d),
(e)] transition peak temperatures as a function of walk length. For each
transition, the upper panel [(b), (d)] shows the mean peak position
(error bars indicate ± one standard deviation from 10 independent
runs), and the lower panel [(c), (e)] shows the root mean squared
scatter in transition temperature values.

From Fig. 1 we can see that, for equivalent accuracy,
the number of all-particle sweeps required by the SP-MC
algorithm is similar to the number of time steps required by
the TE-HMC and GMC algorithms. For separable potentials
such as LJ, an all-particle sweep takes roughly the same time
as the full energy/force evaluation used in a time step of GMC
or TE-HMC. Therefore, for a nonseparable potential, GMC
and TE-HMC are N times faster than the SP-MC algorithm.

The transition temperatures for the shorter, underconverged
walks are systematically lower than the fully converged value.
This underestimation is unsurprising: if too few steps are taken
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FIG. 2. Heat capacity as a function of temperature for a LJ binary
alloy at equal composition for five independent NS runs. The three
peaks correspond to condensation, freezing, and chemical ordering,
from high T to low T .

at each iteration, then the sampler requires more iterations to
find the low-temperature phase. Since subsequent NS itera-
tions correspond to lower entropies and lower temperatures,
finding the structure at a later iteration corresponds to an
underestimated transition temperature. The root mean square
(rms) scatter in peak positions shown in Fig. 1 does not go
to zero for any of the methods, even with the longest walks
used (L = 2560 energy/force evaluations): for infinite walk
lengths, the accuracy is limited by the number of walkers, K ,
and the number removed at each iteration, Kr .

C. Example applications

In this section we demonstrate the utility of NS by applying
it to study four diverse systems: the order-disorder transition
of a binary LJ alloy, the eutectic of a copper-gold alloy, the
density anomaly of water which forms open crystal structures,
and the phase behavior of a bead-spring polymer model. In all
four cases we use TE-HMC to explore the position degrees
of freedom since it is most efficient for this range of system
sizes, as discussed below in Sec. IV D. All simulations with
the exception of the binary LJ were carried out with the
LAMMPS package [9].

1. Order-disorder transition

In addition to the condensation, freezing, and martensitic
transitions that have previously been simulated using NS
[1], multicomponent solids also show transitions related to
chemical ordering. Here we use NS to simulate the order-
disorder transition of a model binary LJ alloy. The potential
energy function used, which favors the mixing of atoms, is
given in Appendix D 2.

Figure 2 shows the heat capacity curve of this system.
The condensation, freezing, and order-disorder transitions
can be seen as three separate peaks. Chemical ordering of
the alloy can be observed in Figs. 3 and 4 which respectively
show ensemble-averaged radial distribution functions (RDFs)
and typical configurations of the alloy at temperatures
corresponding to the ordered and disordered solids, as well
as the liquid. Both the RDFs (Fig. 3) and the representative
atomic configurations (Fig. 4) show that at T = 0.95,
the system is a liquid, while at T = 0.34 the system is a
chemically disordered close-packed crystal, and at T = 0.17
the crystal is chemically ordered.
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FIG. 3. Ensemble-averaged radial distribution functions from NS
phase diagram of binary LJ at equal composition. Panel (a) is above
the melting point, (b) is between the freezing and chemical ordering
transitions, and (c) is below the chemical ordering transition. Liquid
(a) shows a low first-neighbor peak and minimal other structure.
Disordered solid (b) shows distinct peaks and some chemical ordering
at first neighbors only. Ordered solid (c) shows stronger chemical
ordering, at least out to third neighbors. These RDFs were calculated
using a weighted sum of the RDFs of all configurations output by
NS. The RDF for each configuration was weighted by its Boltzmann
weight (	i−1 − 	i)e−βHi , as in the partition function Eq. (8).

2. Copper-gold eutectic

A eutectic, where the melting point of a multicomponent
alloy is reduced at intermediate compositions due to entropic
effects, is an important example of the interplay between
energy and entropy affecting a phase transition. We used
NS to compute the heat capacity of CuxAu1−x at a pressure
of 0.1 GPa with interactions described by a simple Finnis-
Sinclair-type embedded-atom model (FS-EAM) interparticle
potential [14–16] (see Appendix D 3). In Fig. 5 we show
the heat capacity Cp(T ) for a number of composition values
x at a temperature range near the melting point, and in
Fig. 6 we compare the resulting computed melting points to
experimental results from Ref. [17].

We find that the FS-EAM potential gives a melting temper-
ature Tm ≈ 1300 K for pure Cu and Tm ≈ 1240 K for pure Au.
The computed melting temperature is lower at all intermediate

FIG. 4. Visualizations of typical configurations for the liquid
phase [T = 0.95; (a)], chemically disordered solid [T = 0.34; (b)],
and chemically ordered solid [T = 0.17; (c)].
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FIG. 5. Heat capacity as a function of temperature Cp(T ) of
CuxAu1−x for a range of compositions, from pure Au x = 0 [panel
(a)] to pure Cu x = 1 [panel (e)] in 25% intervals, showing variation
of melting point peak. Each curve corresponds to an independent NS
calculation.

compositions, with a minimum value in the range 1175–
1190 K between 25% and 50% Cu; the computed melting
temperatures at these two compositions are equal to within
the error bars of the calculation. While this FS-EAM potential
underestimates the experimental melting points of the two
endpoints, more severely so for Au (by 8%), nested sampling
shows that it reproduces the qualitative features of a eutectic.
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FIG. 6. Melting point as a function of composition in binary
FS-EAM CuxAu1−x [14–16], calculated using the TE-HMC NS
algorithm. Experimental values taken from [17]. Eutectic suppression
of the melting point is observed at intermediate compositions.
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FIG. 7. Heat capacity Cp (in arbitrary units) and density curves
for 64 mW water particles at a pressure of 1.6 MPa, calculated
using the TE-HMC NS algorithm. The inset shows a visualization
of the hexagonal ice structure found by NS. Dashed lines in the inset
represent the hydrogen-bond network.

3. Density anomaly of water

The mW potential [18] is a coarse-grained model of water,
designed to mimic its hydrogen-bonded structure through a
nonbonding angular term, which biases the model towards
tetrahedral coordination. Despite only having short-range in-
teractions and a single particle representing a water molecule,
it reproduces the energetics, anomalies, liquid, and hexagonal
ice structure of water remarkably well. In order to demonstrate
that NS is capable of finding not just close-packed but also
open structures, we simulated water using the mW potential.
The computed heat capacity and density curves from four
calculations are shown in Fig. 7. As expected, the particles
were observed to form a hexagonal ice structure, also shown
in Fig. 7. By averaging the results from these calculations, we
calculated the freezing temperature to be 274.3 ± 1.0 K, the
density of ice to be 0.9792 ± 0.0005 g/cm3, and the density
of the liquid at 298 K to be 0.9966 ± 0.0004 g/cm3. All
these results are in excellent agreement with values previously
calculated for the mW water model: 274.6 K, 0.978 g/cm3, and
0.997 g/cm3, respectively [18,19]. We found the maximum
density of water to be 0.9992 ± 0.0002 g/cm3 at a temperature
8.1 ± 0.3 K above the freezing temperature.

4. Molecular solids

Molecular materials are another system where nested sam-
pling can be used to efficiently sample the configuration space.
Both single-molecule systems and multimolecule systems,
such as aggregating proteins or polymer melts, are of interest.
In previous studies Wang-Landau sampling was used to map
the phase behavior of single polymer chains with different
lengths [20,21] and bending stiffnesses [22,23]. Here we
present results for a bead-spring polymer model (see Appendix
D 4) with a harmonic bond and cosine angle potential parame-
terized by stiffnesses kb and ka , respectively, and a nonbonded
LJ interaction with energy ε. This model has been used to
study crystallization in polymers [24], and is similar to the
model used in a previous Wang-Landau study [20].
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FIG. 8. Heat capacity per coarse-grained bead Cp/N or Cv/N

curves for a single bead-spring polymer chain of 15 beads with
monomer density 2.5 × 10−5σ−3 ≈ ( 1

40σ
)
3

[panel (a)], 8 15-bead

chains in a periodic box with monomer density 2 × 10−3σ−3 ≈ ( 1
8σ

)
3

[panel (b)], and 8 15-bead chains in a periodic box with cell moves
and P = 2.3 × 10−3ε/σ 3 [panel (c)]. Both constant-volume systems
use fully flexible (ka = 0) models, while the constant-pressure
system (bottom) has ka = 10ε. Snapshots show example polymer
conformations corresponding to the different phases.

Figure 8 shows heat capacity curves calculated for three
different systems: (i) a single, fully flexible (ka = 0) bead-
spring polymer chain of 15 beads in a constant-volume
periodic box with monomer density 2.5 × 10−5σ−3 ≈ ( 1

40σ
)
3
;

(ii) 8 fully flexible 15-bead chains in a constant-volume
periodic box with monomer density 2 × 10−3σ−3 ≈ ( 1

8σ
)
3
;

(iii) 8 15-bead chains with angle stiffness ka = 10ε at fixed
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FIG. 9. Distribution of configurational enthalpy (excluding ki-
netic energy contribution for TE-HMC) for a 64-atom system [left
column (a), (c)] and 256-atom system [right column (b), (d)] of
monatomic LJ, for a range of NS iterations that spans the highest
weight configurations for the freezing transition at T ∼ 0.65ε. Top
row [(a), (b)] shows GMC results and bottom row [(c), (d)] shows
TE-HMC. Colors indicating iteration, from earliest (highest energy)
to latest (lowest energy) are red, yellow, and blue.

pressure P = 2.3 × 10−3ε/σ 3, and flexible periodic boundary
conditions. The low monomer densities of the constant-volume
systems do not allow for a single chain to interact with itself
through the periodic boundary at the temperatures of interest.
Snapshots of configurations for each system type are also
shown, illustrating the observed phase transitions.

The single chain shows a broad transition below T = 0.5ε,
from an extended state to a collapsed, ordered state, in
agreement with previous results [20]. For short, unentangled
polymer chains nested sampling leads to slightly lower relative
error in the peak height when compared to previous results
at approximately half the computational cost [20,23]. The
constant-volume multichain system has two transitions: first,
chain aggregation occurs at T = 1.4ε, and second, at T =
0.4ε the monomers order, forming a solid cluster with high
symmetry. This is reminiscent of the N = 100 single-chain
transition observed previously [20]. The multichain periodic
system has two transitions, the first at T = 2.05ε from a
polymer gas to a melt, and the second at T = 1.45ε from a
melt to a crystalline solid, in agreement with MD simulations
of polymer crystal nucleation [24].

D. System size dependence of enthalpy distribution

As mentioned in Sec. III A, nested sampling using GMC
creates a series of probability distributions (3) that correspond
to uniform distributions in the Cartesian particle coordinates,
r, such that H̃ (r) < H̃ sup. In this case Prob(H̃ ) is proportional
to the density of states for H̃ , which is strictly unimodal. In
contrast, TE-HMC works by performing nested sampling in
total phase space, and samples from a series of probability
distributions (6) that correspond to uniform distributions in
the phase space coordinates (r,p), with H (r,p) < H sup. In
TE-HMC, the marginal distribution for r is not a uniform dis-
tribution, and for larger system sizes a bimodality is observed
in the probability distribution for H̃ at phase transitions.

Figure 9 compares the observed probability distributions for
H̃ in the region of the freezing transition (for the same pressure
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as the system presented in Sec. IV B) with the TE-HMC and
GMC algorithms, for simulations of 64 particles (as used in the
earlier subsection) and also for 256 particles. Using TE-HMC
for 64 particles Prob(H̃ ) is unimodal and broadens slightly at
the freezing transition, but never becomes bimodal. For the
larger 256-particle system, Prob(H̃ ) becomes bimodal, which
can be clearly seen in the middle curve (yellow).

In order to obtain an accurate estimate of the integrated
density of states, 	(H ), TE-HMC must draw a sample from
the uniform distribution in (r,p), Eq. (6), at each iteration.
NS approaches each transition from above, and if Prob(H̃ )
is bimodal, initially all K configurations will be in the mode
at higher H̃ . To draw a proper sample from Prob(H̃ ) at the
phase transition, the MCMC walk must be long enough that
the configuration can feasibly pass back and forth between the
two modes, traversing the intermediate range of H̃ , several
times. For larger N , as Prob(H̃ ) gets smaller in the region
between the modes, transitions between the two modes will
become less frequent and much longer MCMC trajectories
will be required at iterations close to the phase transition.

We observed in Sec. IV B that, for simulations of 64
particles, TE-HMC is significantly more efficient than GMC
for accurately resolving the freezing transition. However, as
a result of the bimodality in Prob(H̃ ), GMC may become
more efficient than TE-HMC for larger system sizes. In the
future, it would be desirable to develop algorithms which,
like TE-HMC, use atomic forces at every step to expedite
configuration space exploration, yet avoid this bimodality in
Prob(H̃ ) at larger system sizes.

V. CONCLUSIONS

In this paper we have proposed efficient all-particle moves
using interparticle forces and dynamics for constant-pressure
nested sampling. The TE-HMC, GMC, and SP-MC algorithms
reach the same accuracy using approximately the same number
of full system energy evaluations (TE-HMC and GMC) or
full SP-MC sweeps. For separable potentials, where a single-
particle move can be computed in 1/N the cost of a full
system energy evaluation, this makes the three methods equally
efficient; for nonseparable potentials, where such efficient
single-atom moves are not possible, the TE-HMC and GMC
algorithms are N times faster.

The TE-HMC algorithm uses constant-energy molecular
dynamics, implemented in many software packages, but
requires extending the NS method to sample positions and
momenta, and leads to increasingly bimodal configurational
enthalpy distributions as the system size increases. This
bimodality is likely to make equilibration and sampling
difficult for sufficiently large systems, although this has not
been a practical problem for the 64–120 particle systems
we have considered here. The GMC algorithm, although
somewhat less efficient in this size range, maintains the
unimodal configurational enthalpy distribution of the previous
Gibbs-sampling-based approach, and is therefore not expected
to suffer from a breakdown in ergodicity for larger systems.

We have implemented the constant-pressure NS method
using these algorithms in the PYMATNEST software [8], which
includes a parallel algorithm and a link to the LAMMPS package
which itself has many interparticle potentials available. Using

this implementation we have shown that the constant-pressure
NS method with these algorithms can be used to simulate a
wide range of systems with different interaction potentials and
types of phase transitions: order-disorder transitions in binary
LJ, eutectic composition dependence of the melting point in
Cu-Au, freezing of water which has a density anomaly and an
open crystal structure, and condensation and solidification of
a bead-spring polymer model.
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APPENDIX A: NS STOPPING CRITERIA:
TEMPERATURE ESTIMATES

The simplest criteria for stopping the NS iteration are
to use a fixed number of iterations (i.e., fixed reduction in
entropy) or a fixed potential energy minimum (e.g., close to
the ground state). A more physically appealing criterion takes
advantage of the approximate correspondence between the
downward scan in enthalpy and decreasing temperature. The
estimate we use to terminate the outermost NS iteration loop is
based on the expressions for thermodynamic quantities, such
as the partition function (or enthalpy or heat capacity, which
are its derivatives). We find that the range of iterations that
contribute with significant weight to the ensemble average at
each temperature is sharply peaked. When the contribution
of the current iteration to the partition function at a specified
temperature Tmin is a factor of e10 lower than the maximum
contribution of any previous iteration, we assume that no later
iteration will contribute significantly, and therefore consider
the calculation to be converged for all T � Tmin. We use this
stopping criterion in all simulations reported here. Note that
a monotonic relationship between iteration and temperature is
not always satisfied; near phase transitions the dependence is
more complicated, and setting Tmin too near a phase transition
will lead to unpredictable behavior.

The convergence criterion described above is efficient
enough to evaluate at each iteration for a single choice of
Tmin, but too computationally expensive to use as an estimate
of the “current temperature” during NS iterations, because
it would need to be evaluated for many values of T to find
the lowest. We therefore use an independent estimate of the
temperature to monitor the progress of the NS iterations. This
estimate is based on the rate of decrease of H̃ sup (or H sup)
as a function of iteration number. The iteration number i is
linearly related to the logarithm of configuration space volume
(i.e., microcanonical entropy S), and that rate of decrease is
therefore related to ∂H̃/∂S. The current temperature during
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the NS simulation can be estimated from the finite-difference
expression

T ≈
(

kB

D ln α

H̃ sup(i − D) − H̃ sup(i)

)−1

, (A1)

where D is an interval over which the finite difference is taken
(1000 iterations here), and kB is Boltzmann’s constant. We use
this expression to monitor the progress of the NS iterations,
but not to terminate.

APPENDIX B: PARALLELIZATION

The PYMATNEST software [8], in which these algorithms are
implemented, combines two separate forms of parallelization
which were previously reported separately. In Ref. [1], during
step 2 of the NS algorithm, rather than decorrelating a single
cloned configuration alone using a MCMC walk comprising
L energy evaluations, the authors evolve np configurations
(including the cloned configuration) in parallel using np

processes through L/np MC moves each. Each configuration
is evolved for an average of np iterations before being recorded
and removed. Thus the user specifies the average number of
energy evaluations used to decorrelate a cloned configuration
from its starting coordinates. In Refs. [25,26], on the other
hand, the authors evolve each cloned configuration for exactly
L steps, but they parallelize over np processes by removing
Kr = np > 1 configurations at each NS iteration, resulting in
Kr cloned configurations that can be walked in parallel.

In PYMATNEST, we combine the two formulations by
allowing for Kr > 1 and evolving the Kr cloned configuration
in parallel, but also for the number of parallel tasks np > Kr ,
reducing the walk length required at each iteration. To optimize
load balance, each of the Kr cloned configurations that must
be evolved is assigned to a different parallel task, and all
remaining parallel tasks (which would otherwise be idle if
np > Kr ) walk Ke = np − Kr additional randomly chosen
configurations.

From the probabilities for a configuration to be removed
or walked at each NS iteration it is possible to calculate
the distribution of the number of walks each configuration
has experienced, and from that the mean number of times a
configuration will be walked before it is removed 〈nwalks〉. The
general expression for the length of the walk that must be done
at each iteration to achieve an expected total walk length 〈L〉,
for arbitrary K,Kr , and Ke, is

L′ = 〈L〉/〈nwalks〉 = 〈L〉 Kr

Kr + Ke

= 〈L〉Kr

np

. (B1)

For each MCMC walk in PYMATNEST, different move types
are randomly chosen from the list of possible moves with
predetermined ratios until at least L′ energy evaluations have
been performed.

To maintain load balance the shortest walk must be a few
times longer than the longest possible single step, for example,
a single SP-MC sweep or an MD/GMC trajectory. Therefore
the maximum parallelization, np, that can be achieved depends
only on the total walk length, L, and number of configurations
removed at each iteration, Kr , and not on the number of
configurations, K . For typical runs we show here, Kr = 1,L ≈
500–1000, and the length of each MD trajectory is 8. To keep

reasonable parallel efficiency we find that L′ must be larger
than about 20, so the maximum np ≈ 25–50.

1. Qualitative behavior of parallelized NS

The computational cost and accuracy of NS depend on
these parameters in a complex way. The total computational
work is proportional to K and 〈L〉, and is independent of
Kr and np. If K is increased at fixed Kr , the fraction of
configuration space that remains after each iteration α =
(K + 1 − Kr )/(K + 1) comes closer to 1.0, and the number of
NS iterations required increases approximately linearly with
K . If instead K and Kr are increased proportionately, α and
therefore the number of iterations remain roughly constant, but
the work at each iteration (to walk Kr cloned configurations)
increases proportionately. It is not clear a priori how the
necessary value of 〈L〉 changes with K: there is some evidence
that once K is large enough, increasing it further reduces
the distance each cloned configuration must be walked to
decorrelate it sufficiently, but this relationship requires further
investigation.

The accuracy of the configuration space volume estimates
computed by NS also depends on K and Kr . The value of
α determines the resolution in configuration space volume,
but larger values of K (at constant α) reduce the noise in
the estimate (for the same reason that the 500th sample out
of 999 is a less noisy estimator of the median than the 2nd
sample out of 3). The value of 〈L〉 also affects the error,
because insufficiently walked configurations have a correlation
to the configuration they were cloned from, which leads to a
deviation from the uniform distribution.

Since the useful parallelism is limited by the minimum
value of L′, which is clearly independent of K , only increasing
〈L〉 or Kr can increase it. The former is useful only up to the
point where the configurations are sufficiently decorrelated, as
our convergence plots in Sec. IV B show. Increasing the latter
at constant K decreases the resolution in configuration space
volume (by decreasing α), and therefore leads to increased
error. Increasing Kr while also increasing K proportionately
maintains the resolution and actually reduces the noise in
the configuration space volumes, but also increases the
computational work, but not necessarily the time to solution if
np can also be increased proportionately.

2. Quantitative behavior of parallelized NS

In this section we limit the discussion to the origi-
nal constant-pressure, flexible periodic boundary conditions
nested sampling algorithm as implemented by SP-MC and
GMC. The same discussion can be extended exactly to TE-
HMC by a change of symbols: H for H̃ and 	 for χ (see
Sec. III), so long as one takes care not to confuse the phase
space volume 	 and the gamma function in Appendix B 2 a.
In the next two subsections we separately discuss the effect
of the two approaches to parallelization: first varying Kr

while assuming our MCMC draws perfect samples from the
probability distribution (3) [or (6)]; second varying Ke at fixed
〈L〉 and Kr .
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FIG. 10. Ratio of the rates, R, at which uncertainty in ln χ

accumulates for runs parallelized by removing and walking Kr > 1
as compared to serial run with Kr = 1, as a function of scaled number
of configurations removed Kr−1

K
, for several values of K . Dashed line

indicates linear trend for Kr − 1 � K .

a. Kr > 1 and Ke = 0

In this subsection, we assume that our MCMC walk yields
perfect samples from the distribution (3) [or (6)]. In step
1 of the NS algorithm (see Sec. II) H̃ sup is updated to the
lowest of the Kr highest enthalpies in our sample set, and the
configuration space volume contained by the updated H̃ sup is
χi ≈ χ0[(K − Kr + 1)/(K + 1)]i , where i is the NS iteration
number. For Kr > 1 it is also possible to give analytic estimates
of the configuration space volumes contained by the Kr − 1
higher enthalpy values between H̃

sup
i−1 and H̃

sup
i [26]. Thus

one may consider the configurational entropy contained at
fractional numbers of NS enthalpy levels.

After a number of enthalpy levels

n� =
(

K∑
i=K−Kr+1

1

i

)−1

(B2)

the expectation of the logarithm of the configuration space
enclosed by H̃ decreases by 1:〈

ln χi − ln χi+n�

〉 = −1. (B3)

If we assume that it is possible to draw perfect random samples
from (3) [or (6)], then it can be shown that, after the same
number of enthalpy levels n�, the variance of � ln χ = ln χi −
ln χi+n�

is given by

Var(� ln χ ) = d (K−Kr+1)	(z)

dz(K−Kr+1)

∣∣∣∣
z=1

− d (K+1)	(z)

dz(K+1)

∣∣∣∣
z=1

,

(B4)

where 	(z) is the gamma function. The standard deviation,
[Var(� ln χ )]

1
2 , represents the rate at which uncertainty in ln χ

accumulates during a nested sampling calculation. For a serial
calculation (Kr = 1 and Ke = 0), [Var(� ln χ )]

1
2 = 1√

K
.

Figure 10 shows how the ratio of [Var(� ln χ )]
1
2 for

parallel and serial NS, R = [Var(� ln χ )]
1
2 / 1√

K
, depends on

Kr

K
. R represents the relative rate at which uncertainty in

ln χ accumulates during parallel and serial calculations. One
can see that ln R converges for K > 102, and for Kr

K
�

0.25,[Var(� ln χ )]
1
2 ∼ exp (0.28Kr−1

K
) 1√

K
. For larger Kr−1

K
,R

increases more rapidly.

b. Ke > 0 and Kr = 1

Parallelizing with Kr = 1 by using additional tasks to
walk Ke > 0 extra configurations (in addition to those that
were cloned) changes the walk length L from a deterministic
parameter of the NS method to a stochastic one. It is possible
to derive the variance of the walk length

Var(L) = 〈L〉2 Ke

Ke + Kr

. (B5)

While unlike the case of Kr > 1 there are no analytic results
for the error due to the variability of L, several observations can
be made. One is that the square root of the variance (except for
the serial case of Ke = 0) is almost as large as L itself. Another
is that the scaling of Var(L) with the number of extra parallel
tasks Ke is polynomial, unlike the exponential scaling of the
error R with extra tasks for Kr > 1. It is unclear, however, how
this variability in walk length will affect the error in the results,
although the empirical observation is that this effect does not
appear to be strong. Nevertheless, the serial case of Kr = 1
and Ke = 0 results in the lowest uncertainty in estimates of
configuration or phase space volumes.

Algorithm 1. Total enthalpy Hamiltonian Monte Carlo step
for nested sampling. Repeated application converges to uniform
sampling of phase space in the region H < H sup,Ek(p) < E0

k .

subroutine te hmc(s,p,V ,h0,M,dt)
! Nested sampling TE-HMC step

Emax
k = min [E0

k ,H
sup − H̃ (s,V ,h0)]

if(complete_momentum_rand):

p = complete_rand_p(Emax
k )

else:

p = partial_rand_p(Emax
k )

! NVE MD for M steps with time step dt

! Starts from (s,p), ends at (s′,p′)
(s′,p′) = MD traj(s,p,V ,h0,M,dt)

p′ ← −p′ ! reverse momenta: ensures

! detailed balance

if (H (s′,V ,h0; p′) < H sup AND Ek(p′) < E0
k):

(s,p) ← (s′,p′) ! Accept proposal (s′,p′)

p ← −p ! reverse momenta

return (s,p)
end subroutine
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APPENDIX C: TE-HMC MONTE CARLO STEP

The TE-HMC Monte Carlo step is given in Algorithm 1.
This algorithm makes use of subroutines for complete and
partial momentum randomization given in Algorithms 2 and
3, respectively.

We set all particle masses to be equal, as described
in Sec. III B, which helps ensure the sampler spends an
approximately equal amount of computer time exploring each
degree of freedom.

Algorithm 2. Full momentum randomization from the uniform
distribution inside the hypersphere Ek(p) < Emax

k . We set all particle
masses to be equal, as described in Sec. III B. uranf() is a random
number uniform in [0,1]. granf() is a Gaussian distributed random
number, Normal(0,1).

subroutine complete rand p(Emax
k ,m)

! Random vector p with Ek(p) < Emax
k .

! Generate random unit vector p̂
p̂i = granf() : i = 1, 3N

p̂ = p̂/|p̂|
! Choose random |p| with Ek(p) < Emax

k

a = uranf()**(1/(3N))

p = a(2mEmax
k )

1
2 p̂

return p
end subroutine

Algorithm 3. Partial momentum randomization for TE-HMC
nested sampling. Converges to the uniform distribution inside the
hypersphere Ek(p) < Emax

k . We set all particle masses to be equal,
as described in Sec. III B. uranf(a,b) is a random number uniform in
[a,b]. Note, for odd numbers of atoms N , we do not rotate p compo-
nent rand indices(3N ). However, since rand indices(3N ) is chosen
at random, the subroutine partial_rand_p satisfies detailed balance.

subroutine partial rand p(p)
! Partial randomization of momentum p.

! Choose random |p| with Ek(p) < Emax
k

a = uranf()**(1/(3N))

p = a(2mEmax
k )

1
2 p/|p|

! indices {1,2, . . . ,3N} in a random order

rand_indices = random_order(1,3N)

do i = 1, floor(3N/2) ! loop over pairs

! pick random angle from [−γ,γ ]
θ = urand(−γ,γ )

! pair of components of p vector

j = rand indices(2i − 1)
k = rand indices(2,i)

! 2D rotation of p components j,k

u = cos θ pj + sin θ pk

v = − sin θ pj + cos θpk

pj = u

pk = v

end do

return p
end subroutine

APPENDIX D: POTENTIAL ENERGY FUNCTIONS

1. Lennard-Jones potential

The Lennard-Jones potential used in the paper is the
“truncated and shifted” potential, given by

U (r) =
{

4ε
∑

i<j

[(
σ
rij

)12 − (
σ
rij

)6 − c
]
, rij < rc ,

0, rij � rc ,

c =
(

σ

rc

)12

−
(

σ

rc

)6

. (D1)

Here, rij is the radial distance between particles i and j ,
while two atoms at dynamical equilibrium have a combined
energy −ε and are separated by a distance 2

1
6 σ . This potential

goes continuously to zero at a radius rc. Calculations were
performed using ε = 1,σ = 1,rc = 3.

2. Binary Lennard-Jones alloy potential

The potential used to simulate the binary Lennard-Jones
alloy is given by

U (r) =
{

4
∑

i<j εij

[(
σ
rij

)12 − (
σ
rij

)6]
, rij < rc ,

0, rij � rc .
(D2)

Calculations were performed using εAA = 1,εAA = 1,εBB =
1.5,σ = 1,rc = 3. In this potential, all atoms have equal
atomic radii, but interactions between different atomic species
(A and B) are 1.5 times stronger than A-A interactions or B-B
interactions.

3. CuAu EAM

We used a Finnis-Sinclair-type embedded-atom model
(EAM) for the CuxAu1−x binary alloy. The potential
parameters are from the method in Ref. [14], based on the
pure element parameters of Ref. [16], with interspecies
parameters that are optimized to fit the formation energies of
a few crystal structures at selected compositions of the binary
alloy. The full parameter set for LAMMPS [9] is available for
download from Ref. [15].

4. Bead-spring polymer models

The bead-spring models used to study long molecule
chains are based on those used by Nguyen et al. to study
polymer crystallization [24]. The energy of a bond between
two monomers along the backbone of a polymer chain

Ub(�) = kb

2
(� − a)2 (D3)

is harmonic in the distance from the characteristic distance
a. The bond stiffness kb = 600ε/σ 2. The energy of an angle
θ formed by three consecutive monomers along the polymer
backbone is given by a cosine potential,

Ua(θ ) = ka[1 − cos(θ )], (D4)

where the angular stiffness ka penalizes angular deviations
away from a straight backbone θ = 180◦ and is set either
to ka = 0 for a fully flexible chain or to ka = 10ε. The
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FIG. 11. Convergence of the heat capacity Cp(T ) with respect
to minimum cell depth, d0, for a periodic system of 64 Lennard-
Jones particles at pressure log10 P ∗ = −1.194. The peak at high
temperature corresponds to condensation, while the peak at lower
temperature corresponds to freezing. The legend on the right shows
the value of d0 used in each calculation.

nonbonded interaction between two monomers a distance
r from one another is given by Eq. (D1). The monomer
diameter σ = 2−1/6a, so that the bond distance and diameter
are commensurate. The cutoff is set to rc = 3σ. As the name
suggests, nonbonded interactions apply only to monomers that
are not bonded together.

APPENDIX E: MINIMUM CELL DEPTH d0

Figure 11 shows the heat capacity of a periodic system of
64 Lennard-Jones particles at fixed pressure. This calculation
used a potential similar to that given in Appendix D 1.
In particular, we set the radial cutoff rc = 3σ and c = 0
in Eq. (D1). We also incorporated the standard long-range

correction to the energies to account for interactions beyond the
cutoff [27]. Each curve corresponds to a single NS simulation,
performed using SP-MC nested sampling, with K = 640,
Kr = 1, L = 2824, and MC steps in the ratio (1 64-particle
SP-MC sweep : 10 cell volume : 1 cell shear : 1 cell stretch). In
these calculations each 64-particle SP-MC sweep was broken
up into 64 individual single atom SP-MC moves, interspersed
between cell moves. In each calculation we constrained the
cell depth to be greater than some minimum value, d0 [see
Eq. (3)]. A clear transition to a quasi-2D system is observed
when reducing d0. The location of the condensation transition
is independent of d0 for d0 � 0.35, and the location of the
freezing transition for d0 � 0.65.

At low values of d0 the simulation cell becomes very thin in
at least one dimension and the system’s behavior is dominated
by unphysical correlations introduced by the periodic bound-
ary conditions. The effect of unphysical correlations is reduced
at lower densities, and also by increasing d0 which constrains
the simulation cell to more cubelike cell shapes. A larger
value of d0 is thus required at higher densities to sufficiently
reduce the unphysical correlations. At the same time, setting
d0 too close to 1 excludes crystal structures that require a
noncubic simulation cell. Quoting from [1], “The window of
independence from d0 grows wider as the number of particles is
increased. For larger numbers of atoms, there are more ways to
arrange those atoms into a given crystal structure, including in
simulation cells that are closer to a cube. Similarly, unphysical
correlations are introduced when the absolute number of atoms
between faces of the cell becomes too small, and therefore
larger simulations can tolerate ‘thinner’ simulation cells h0.”
It is clear from Fig. 11 that by imposing a suitable minimum
cell height we can remove the unphysical behavior from the
fully flexible cell formulation.
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