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Abstract
We investigate the inverse scale space flow as a decomposition method for 
decomposing data into generalised singular vectors. We show that the inverse 
scale space flow, based on convex and even and positively one-homogeneous 
regularisation functionals, can decompose data represented by the application 
of a forward operator to a linear combination of generalised singular vectors 
into its individual singular vectors. We verify that for this decomposition to 
hold true, two additional conditions on the singular vectors are sufficient: 
orthogonality in the data space and inclusion of partial sums of the subgradients 
of the singular vectors in the subdifferential of the regularisation functional 
at zero.

We also address the converse question of when the inverse scale space flow 
returns a generalised singular vector given that the initial data is arbitrary (and 
therefore not necessarily in the range of the forward operator). We prove that 
the inverse scale space flow is guaranteed to return a singular vector if the data 
satisfies a novel dual singular vector condition.

We conclude the paper with numerical results that validate the theoretical 
results and that demonstrate the importance of the additional conditions 
required to guarantee the decomposition result.

Keywords: generalised singular vectors, inverse scale space flow, singular 
value decomposition, source conditions, non-linear spectral transform,  
total variation regularisation, compressed sensing
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1. Introduction

Regularisation methods are essential tools for the stable approximation of solutions of ill-
posed inverse problems. Hence, their analysis is a vital part of inverse problems research. For 
linear regularisation methods a quite complete theory based on singular value decomposition 
has been available for a while (see [1, 2]). Only recently though a more general definition 
of singular vectors for non-linear regularisation methods has been formalised in [3], despite 
many previous and recent works on generalised Eigenfunctions in the context of non-linear 
partial differential equations and functional inequalities (see [4–14]), control theory (see [15]), 
image processing (see [16–28]), and machine learning (see [29, 30]). The generalised singular 
vector definition is based on the minimisation of convex, one-homogeneous but not neces-
sarily differentiable functionals. Classical non-linear regularisation methods for which gen-
eralised singular vectors apply include the famous total variation (TV) regularisation model 
[31] and �1-norm regularisation, which is a key tool in compressed sensing (see [32–35]). 
Newer advancements include the total generalised variation (TGV, see [36–40]), regularisa-
tions based on the �1-norm in combination with the shearlet transform [41], vectorial total 
variation regularisation (see [42–44]), structure-tensor extensions of the total variation (see 
[45–49]), vector-field regularisation [50], de-biased total variation-type regularisations [51] 
and regularisations based on the �1-norm in combination with tight wavelet frames [52–54], 
to name just a few. It has been shown that generalised singular vectors play a vital role in the 
understanding of those non-linear regularisation methods similar to the role of classical singu-
lar vectors for linear regularisations. Key results are that the non-linear regularisation methods 
are capable of recovering individual singular vectors from data given in terms of a forward 
model applied to a generalised singular vector and additional measurement errors, just with a 
systematic bias. Considering corresponding inverse scale space methods (see [55]) as regula-
risation methods instead, these methods are capable of recovering generalised singular vectors 
without systematic bias (see [3]). The latter also has significant impact on discretisations of 
the inverse scale space method, such as Bregman iteration (see [56, 57]), linearised Bregman 
iterations (see [58–61]) and modifications (see [62, 63]), which are widely used in inverse 
problems applications (see [64–69]).

In [70] Gilboa initiated the idea of a non-linear spectral decomposition of singular vectors 
by defining a spectrum based on the forward-scale space formulation of the TV model. He 
was able to show that this non-linear spectrum can be converted into the original signal via 
a linear inverse transform. In [71] he made the connection that a single generalised singular 
vector (called Eigenfunction therein) of TV can be isolated via this spectral TV transform. In 
[72] the idea of the non-linear spectral transform has further been extended to arbitrary one-
homogeneous functionals, and to variational regularisation as well as the inverse scale space 
method instead of just the forward TV flow.

The definition of the non-linear spectral transform immediately gave rise to the question of 
circumstances under which it would be possible to decompose a signal composed of singular 
vectors. In [73] this question has briefly been addressed, hinting that some sort of orthogonal-
ity condition is necessary for perfect separation (see [73, proposition 1]). These initial ideas 
have been made more precise in [74]; given two singular vectors that are (fully orthogonal 
[74, definition 5] and) linear in the subdifferential [74, definition 7], the non-linear spectral 
transform can separate these singular vectors perfectly (see [74, proposition 4]). In [75] it 
has further been shown that the non-linear spectral transform can indeed decompose data 
into a finite set of singular vectors, given that the corresponding regularisation functional is 
a one-norm concatenated with a linear matrix such that the matrix applied to its transpose is 
diagonally dominant (see [75, theorem 9]).
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Despite containing impressive results, we however also observe limitations of the previ-
ously mentioned works. First of all, all research is restricted to the non-linear spectral trans-
form, which (in its current form) is not applicable to general inverse problems. Secondly, we 
either have theoretical conditions that allow us to separate only two singular vectors for gen-
eral one-homogeneous regularisation functionals, or we have conditions for a specific family 
of regularisers that allow the decomposition of data into multiple singular vectors. With this 
work we want to fill in the knowledge gaps by introducing two conditions that guarantee the 
decomposition of sums of finitely many singular vectors via the inverse scale space method. 
The first condition will be an orthogonality condition on the finite set of singular vectors, while 
the second condition will ensure that partial sums of their subgradients are contained in the 
subdifferential of the corresponding regularisation functional at zero. Our main contrib ution 
will be a theorem which states that perfect decomposition of a finite linear combination of 
generalised singular vectors is guaranteed if these two conditions are satisfied. Subsequently, 
we are also going to investigate the case of arbitrary data that is not given in terms of a finite 
linear combination of generalised singular vectors.

The paper is organised as follows. First, we are going to introduce notation and math-
ematical preliminaries that are necessary throughout this paper. Then we formulate and 
discuss the major contribution of this work which is a result that states that finite sums of 
generalised singular vectors can be decomposed via the inverse scale space method under 
suitable conditions. Subsequently we also address the question of how to characterise the 
first inverse scale space step in case the given data is arbitrary. In this case we investigate 
under which conditions the first step is a generalised singular vector. Finally, we will present 
numerical results to support the theoretical results and conclude with an outlook of open 
questions and problems.

2. Mathematical preliminaries

In this section we set the notation, define assumptions and give mathematical preliminaries. 
Throughout the paper we consider inverse problems of the form

Ku = f (2.1)

where K : U → H is a bounded linear operator from a Banach space U to a Hilbert space H. 
We will denote the space of bounded linear operators between two normed spaces U and V  by 
L(U ,V). We denote by U∗ the dual Banach space of U with norm

‖p‖U∗ = sup
‖u‖U=1

| p(u)| = sup
u∈U\{0}

| p(u)|
‖u‖U

= sup
‖u‖U�1

| p(u)|,

where functional p(u) = 〈p, u〉U∗×U  is the dual pairing between p and u that we will abbrevi-
ate by 〈p, u〉 throughout the course of this work. If U is a Hilbert space then the dual pairing 
can be identified with the inner product on U.

A popular variational framework for approximating solutions of (2.1) is the Tikhonov-type 
variational regularisation framework of the form

û ∈ arg min
u∈dom(J)

{
1
2
‖Ku − f‖2

H + αJ(u)
}

, (2.2)

where J : U → R ∪ {+∞} is a regularisation functional that incorporates prior information 
about û and α > 0 is a regularisation parameter that controls the impact of J on û.

M F Schmidt et alInverse Problems 34 (2018) 045008
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Throughout this paper we assume that the regularisation functional J is proper, lower 
semi-continuous (l.s.c) and convex. We will further assume that J is even and positively  
one-homogeneous, i.e.

J(cu) = |c|J(u), ∀c ∈ R. (2.3)
Such a functional is non-negative by definition and fulfils the triangle inequality

J(u + v) � J(u) + J(v). (2.4)
Hence J is in fact a semi-norm. Furthermore, if v ∈ dom(J) and v0 ∈ ker(J) then

J(v + v0) = J(v), (2.5)

see [75, lemma 3.2]. The subdifferential ∂J(u) of J at some element u ∈ dom(J) will be used 
several times throughout this work and is defined by

∂J(u) = { p ∈ U∗ : J(v)− J(u)− 〈p, v − u〉 � 0, ∀v ∈ dom(J)} .

Since J is even and positively one-homogeneous the subdifferential can be characterised by

∂J(u) := { p ∈ U∗ : 〈p, u〉 = J(u), 〈p, v〉 � J(v), ∀v ∈ dom(J)}, (2.6)

see for instance [76, lemma 3.12]. As a special case we have

∂J(0) := { p ∈ U∗ : 〈p, v〉 � J(v), ∀v ∈ dom(J)}

since J(0) = 0. We observe that the subdifferential for even and positively one-homogenous 
functionals is positively zero-homogeneous, i.e.

∂J(cu) = ∂J(u), ∀c > 0. (2.7)

We also want to emphasise that for a subgradient p ∈ ∂J(u) we know by the characterisation 
(2.6) that 〈p, v〉 � J(v) for all v ∈ dom(J). Now take v ∈ ker(J). Then 〈p, v〉 � 0. Using  −v 
we then get 〈p, v〉 � 0. This shows that for even and positively one-homogeneous functionals:

p ∈ ∂J(u) ⇒ 〈p, v〉 = 0, ∀v ∈ ker(J). (2.8)

In this case ker(J) := {u ∈ dom(J) : J(u) = 0} is a linear subspace of 
dom(J), see [3, lemma 1]. In fact, since J is proper, convex, lower semi-continuous, and 
even and positively one-homogeneous, it is the support function on the convex set ∂J(0), i.e. 
J(u) = supu∗∈∂J(0) 〈u∗, u〉. Using this definition of J we see that ker(J) = ∂J(0)⊥, where 
∂J(0)⊥ := {u | 〈u∗, u〉 = 0, ∀u∗ ∈ ∂J(0)}.

In [56] a contrast-enhancing alternative to (2.2) named Bregman iteration has been intro-
duced. This is an iterative regularisation method for which

uk+1 ∈ arg min
u∈dom(J)

{
1
2
‖Ku − f‖2

H + αD pk

J (u, uk)

}
,

where u0 ∈ ker(J) and the subgradients defined by

p0 = 0,

pk+1 = pk +
1
α

K∗( f − Kuk+1),
 

(2.9)

satisfies pk ∈ ∂J(uk) for all k ∈ N0. The operator K∗ : H → U∗ denotes the Banach adjoint 

operator of K defined by 〈Ku, v〉H = 〈u, K∗v〉U×U∗ for u ∈ U , v ∈ H. The term D pk

J (uk+1, uk) 
represents the (generalised) Bregman distance between uk+1 and uk w.r.t. the functional J and 
the subgradient pk ∈ ∂J(uk). The Bregman distance (see [69, 77]) is defined by

M F Schmidt et alInverse Problems 34 (2018) 045008
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D p
J (u, v) = J(u)− J(v)− 〈p, u − v〉 , p ∈ ∂J(v) .

Note that the generalised Bregman distance is always non-negative due to the convexity of J. 
Since the Bregman iteration has a semi-convergence behaviour a stopping criterium for the 
iteration is needed.

If we consider ∆t = 1/α as a time step then the iteration in (2.9) can be interpreted as a 
backward Euler discretisation of the inverse scale space (ISS) flow (see [55])

∂tp(t) = K∗( f − Ku(t)), p(t) ∈ ∂J(u(t)), (2.10)

with p(0) = 0 and u(0) = u0 ∈ ker(J). In [86, section  3] the inverse scale space flow is 
derived as the limit of iterative regularisation for J being the total variation functional and 
K being the identity operator on an Lp-space. To prove existence is beyond the scope of this 
paper. Hence we assume that (2.10) exists. For the remainder of this work we assume w.l.o.g. 
that u(0)  =  u0  =  0 for the initial value of the ISS flow.

If we ignore the one-homogeneity of J for a moment it becomes evident that the ISS flow 
is a generalisation of Showalter’s method [78], i.e.

∂tu(t) = K∗( f − Ku(t)) , (2.11)

which is (2.10) for J(u) = 1
2‖u‖2

L2(Ω), where Ω ⊂ Rm is some domain. It is well known that for 
compact K between Hilbert spaces, solutions of (2.11) - as those of other linear regularisation 
methods—can conveniently be expressed in terms of K’s system of classical singular vectors. 
That is, for two orthonormal bases {vj}j∈N  of R(K) and {uj}j∈N of R(K∗), where R(K) is the 
range of K and R(K∗) is the range of K*, and a null sequence {σj}j∈N satisfying

Kuj = σjvj and K∗vj = σjuj

for all j ∈ N, we can solve (2.11) via

u(t) =
∞∑

j=1

(
1 − e−σ2

j t
) 1
σj
〈 f , vj〉uj . (2.12)

If we now assume that our data is given in terms of some linear combination of finitely many 
singular vectors, i.e. we have f = Ku† for

u† =
n∑

j=1

γjuj

where γj ∈ R and n ∈ N, then (2.12) simplifies to

u(t) =
n∑

j=1

(
1 − e−σ2

j t
)
γjuj .

Hence, Showalter’s method allows us to recover a weighted linear combination of the singular 
vectors of u† from data f = Ku†.

One of our main goals throughout the course of this work is to study solutions of the ISS 

flow (2.10). With the example of Showalter’s method we have seen that for the specific choice 

of J(u) = 1
2‖u‖2

L2(Ω) solutions of (2.11) are just simple transformations of the classical singu-
lar vectors if the data f is represented by a composition of those. However, as we are interested 
in (2.10) in combination with even and positively one-homogeneous regularisation function-
als, classical singular vectors are of no use for our study. A remedy to overcome this issue 
seems to be the use of so-called generalised singular vectors as defined in [3]. Generalised 
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singular vectors are based on a Rayleigh principle, i.e. minimising J with respect to normalisa-
tion and orthogonality to the kernel of J:

ug ∈ arg min
u∈ker(J)⊥
‖Ku‖H=1

J(u) .
 (2.13)

Here ug denotes the so-called non-trivial ground state of the functional J, following [4], for 
which we have J(ug) � J(u) for all u ∈ ker(J)⊥ with ‖Ku‖H = 1. The set ker(J)⊥ is the 
orthogonal complement of ker(J) for which we follow the definition of [3] and define

ker(J)⊥ = {u ∈ dom(J) : 〈Ku, Kv〉 = 0, ∀v ∈ ker(J)}.

Note that we have to ensure ker(K) ∩ ker(J) = {0} for this definition to make sense. Otherwise 
every element u ∈ ker(K) ∩ ker(J) would both satisfy u ∈ ker(J) and u ∈ ker(J)⊥.

We want to highlight that we require the normalisation constraint in (2.13); otherwise every 
function cug with c ∈ R \ {0} is a solution of (2.13) given that ug is already a solution of 
(2.13). We could then make c arbitrarily close to zero to decrease J(cug) = |c|J(ug) due to the 
even and positive one-homogeneity of J.

From (2.13) it follows that J(ug) � J(v) for all v ∈ ker(J)⊥ with ‖Kv‖H = 1, or 
equivalently

J(ug)

‖Kug‖H
�

J(v)
‖Kv‖H

,

for all v ∈ ker(J)⊥. From this we can conclude

J(v)− ‖Kv‖H
‖Kug‖H

J(ug) � 0

or equivalently

J(v)− J(ug)−
J(ug)

‖Kug‖H
(‖Kv‖H − ‖Kug‖H) � 0 . (2.14)

We can obviously add something non-negative to the left-hand-side of (2.14) without affecting 
the inequality. From the convexity of ‖ · ‖H we know

‖Kv‖H − ‖Kug‖H −
〈

Kug

‖Kug‖H
, Kv − Kug

〉
� 0 .

Multiplying the left-hand-side of this inequality with J(ug)/‖Kug‖H and adding it to (2.14) 
yields

J(v)− J(ug)−
J(ug)

‖Kug‖2
H
〈Kug, Kv − Kug〉 � 0 ,

i.e.

J(v)− J(ug)−
〈

J(ug)

‖Kug‖2
H

K∗Kug, v − ug

〉
� 0 .

Hence, this leaves us with the condition

λgK∗Kug ∈ ∂J(ug) , (2.15)

for λg := J(ug)/‖Kug‖2
H. Using the normalisation ‖Kug‖H = 1 and due to the even and posi-

tive one-homogeneity (2.3) we conclude

M F Schmidt et alInverse Problems 34 (2018) 045008
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λg = 〈pg, ug〉 = J(ug)

for pg ∈ ∂J(ug). Equation  (2.15) now characterises the ground state that solves (2.13). 
However, there may exist other functions satisfying

λK∗Kuλ ∈ ∂J(uλ) , (2.16)

with

λ =
J(uλ)

‖Kuλ‖2
H

� λg =
J(ug)

‖Kug‖2
H

. (2.17)

A function uλ that satisfies (2.16) and (2.17) is called a generalised singular vector with 
generalised singular value λ. We normally assume ‖Kuλ‖H = ‖Kug‖H = 1. Throughout the 
course of this work we will use the term singular vectors for generalised singular vectors as 
well. Note that the term vector does not refer to an element in Rm but to an element in a pos-
sibly infinite dimensional space. Additionally, note that if uλ is a singular vector then also −uλ 
is a singular vector for even and positively one-homogeneous J.

Example 2.1. We want to briefly demonstrate that the concept of generalised singular vec-
tors (2.16) is indeed a generalisation of classical singular vectors in inverse problems. If we 
consider the even and positively one-homogeneous regularisation functional J(u) = ‖u‖L2(Ω) 
for U = L2(Ω) on some domain Ω ⊂ Rm we obtain ∂J(u) = {u/‖u‖L2(Ω)} for u with 
‖u‖L2(Ω) �= 0. Hence, (2.16) reads as

λK∗Kuλ =
uλ

‖uλ‖L2(Ω)

for λ = ‖uλ‖L2(Ω)/‖Kuλ‖2
H. If we multiply this equation  by 1/λ and define 

σ = ‖Kuλ‖H/‖uλ‖L2(Ω), we therefore obtain the classical singular vector condition

K∗Kuλ = σ2uλ .

Example 2.2. Let K = I : H1
0(Ω) → L2

0(Ω) be the embedding operator from H1
0(Ω) into 

L2
0(Ω), where subscript zero means that the functions are zero on the boundary of the bounded 

domain Ω ⊂ Rm, and let J(u) = ‖∇u‖L2(Ω;Rm). Then (2.16) reads as

−
‖∇uλ‖2

L2(Ω;Rm)

‖uλ‖2
L2(Ω)

uλ = ∆uλ ,

which is simply the Eigenvalue problem of the Laplace operator.

Example 2.3. Let K = I : �1(Rm) → �2(Rm) be an embedding operator, and let 
J(u) = ‖Wu‖�1(Rm) where W : �1(Rm) → �1(Rm) and W*W  =  I. The subdifferential of J at 
u ∈ �1(Rm) is characterised by

∂J(u) =
(

W∗ ◦ ∂ ‖·‖�1(Rm)

)
(Wu),

where

∂ ‖v‖�1(Rm) = sign(v), sign(v)i ∈



{1}, vi > 0
{−1}, vi < 0
[− 1, 1], vi = 0

.
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Then every vector uλ ∈ Rm making Wuλ consist of peaks of the same magnitude is a singular 
vector:

λK∗Kuλ =
‖Wuλ‖�1(Rm)

‖uλ‖2
�2(Rm)

uλ =
‖Wuλ‖�1(Rm)

‖uλ‖2
�2(Rm)

W∗Wuλ = W∗

(
‖Wuλ‖�1(Rm)

‖uλ‖2
�2(Rm)

Wuλ

)
.

We need to show 
‖Wuλ‖�1(Rm)

‖uλ‖2
�2(Rm)

Wuλ ∈ sign(Wuλ). Now

‖uλ‖2
�2(Rm) = 〈uλ, uλ〉 = 〈uλ, W∗Wuλ〉 = 〈Wuλ, Wuλ〉 = ‖Wu‖2

�2(Rm) .

If c is the magnitude of the peaks of Wuλ and n is the number of peaks then ‖Wuλ‖�1(Rm) = n|c| 
and ‖Wuλ‖2

�2(Rm) = nc2. Hence

‖Wuλ‖�1(Rm)

‖uλ‖2
�2(Rm)

Wuλ =
1
|c|

Wuλ ∈ sign(Wuλ).

If we further want uλ to be normalised we need c = ± 1√
n. The singular value λ then simplifies 

to λ =
√

n.

Example 2.4. Let J(u) = TV∗(u) be the slightly modified total variation regularisation as 
defined in [3, section 4.1]:

TV∗(u) := sup
ϕ∈C∞(Ω;Rm),

‖ϕ‖L∞(Ω,Rm)�1

∫

Ω

u divϕ dx,

where Ω ⊆ Rm is a bounded domain. In contrast to the normal TV-functional we do not 
choose test functions ϕ with compact support, which yields an additional boundary term. For 
functions u ∈ W1,1([0, 1]) ∩ C([0, 1]) we have

TV∗(u) =
∫ 1

0
|u′(x)| dx + |u(1)|+ |u(0)|.

Let K = I : BV([0, 1]) → L2([0, 1]) be an embedding operator. It is then shown in [3, theorem 2]  
that the Haar wavelet basis is an orthonormal set of singular vectors for K and J. Examples are 
for instance the one-dimensional Haar wavelets

uλ1(x) =





1, 0 � x < 1/2
−1, 1/2 � x < 1
0, otherwise

, and uλ2(x) =





√
2, 0 � x < 1/4

−
√

2, 1/4 � x < 1/2
0, otherwise

,

with λ1 = TV∗(uλ1) = 4 and λ2 = TV∗(uλ2) = 4
√

2.

We now introduce a source condition. The source condition is similar to the singular vector 
condition (2.15) but is less restrictive. For a given function u†, the source condition is defined 
as

R(K∗) ∩ ∂J(u†) �= ∅ .

It ensures the existence of a source element v ∈ H \ {0} such that

M F Schmidt et alInverse Problems 34 (2018) 045008
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K∗v ∈ ∂J(u†) (SC)

is satisfied.
The (generalised) strong source condition as introduced in [79], in contrast to (SC), is 

defined as

R(K∗K) ∩ ∂J(u†) �= ∅ ,

which guarantees the existence of a source element w ∈ U \ {0} with

K∗Kw ∈ ∂J(u†) . (SSC)

We want to highlight the following connections between the singular vector condition (2.16) 
and the two source conditions (SC) and (SSC). Starting with (SSC) it is obvious that any 
singular vector uλ satisfying (2.16) does also satisfy (SSC) with u† = uλ and w = λuλ. The 
converse is not true in general, which we want to demonstrate with the following example. 
Let U = H = L2(Ω), J(u) = ‖u‖L2(Ω) and u† ∈ L2(Ω) with ‖u†‖L2(Ω) = 1. Then (SSC) reads 
as K∗Kw = u† and we see immediately that w does not need to be a multiple of u† in this 
case.

We summarise the assumptions that will be used throughout this work:

Assumption 2.5 (Setup).  

 • U is a Banach space.
 • H is a Hilbert space.
 • K ∈ L(U ,H).
 • J : dom(J) ⊆ U → R ∪ {+∞} is a proper, lower semi-continuous, convex, and even and 

positively one-homogeneous functional.
 • ker(K) ∩ ker(J) = {0}.
 • f ∈ H and 〈K∗f , v〉 = 0 for all v ∈ ker(J). We assume u(0)  =  u0  =  0 can be picked as the 

initial value of the ISS flow.

3. Decomposition of generalised singular vectors

Throughout this section we use assumption 2.5. In addition we assume that the input data f for 
the inverse scale space flow (2.10) is represented by a linear combination of generalised singu-

lar vectors, i.e. f =
∑n

j=1 γjKuλj where {uλj}n
j=1 is a finite set of generalised singular vectors 

for J and K and γj ∈ R, j = 1, . . . , n. The main goal is to investigate if and under which con-
ditions the ISS flow will give a perfect decomposition into the singular vectors representing  
f, i.e. when do we obtain

u(t) =





0, 0 � t < t1,
k∑

j=1
γjuλj , tk � t < tk+1 for k = 1, ..., n − 1,

n∑
j=1

γjuλj , tn � t,

 (3.1)

for fixed tk  >  0, k = 1, ..., n. We will introduce two conditions that will be imposed on the sin-
gular vectors in order for the ISS flow to behave this way. In addition we discuss the possibil-
ity of singular vector fusion, i.e. the possibility that two or more singular vectors can add up to 
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another singular vector, which would make a decomposition impossible due to [3, theorem 9].  
Our results will be compared to the achievements of [74] which deals with signal denoising 
and data represented by two singular vectors.

3.1. Orthogonality condition

We want to motivate an orthogonality condition for the generalised singular vectors {uλj}n
j=1 

representing the data f =
∑n

j=1 γjKuλj. Let us for the moment assume that the solution u(t) of 
the inverse scale space flow (2.10) is differentiable w.r.t. time, and that J is Fréchet differen-
tiable (for arguments u(t) �= 0). The latter implies p(t) = J′(u(t)). If we use the chain rule for 
differentiation, we on the one hand obtain

d
dt

J(u(t)) = 〈J′(u(t)), ∂tu(t)〉 = 〈p(t), ∂tu(t)〉 .

On the other hand, the even and positive one-homogeneity of J together with the product rule 
yields

d
dt

J(u(t)) =
d
dt

〈p(t), u(t)〉 = 〈p(t), ∂tu(t)〉+ 〈∂tp(t), u(t)〉 .

Hence, we observe that the solution u(t) of (2.10) needs to satisfy

〈∂tp(t), u(t)〉 = 0.

From the definition of the inverse scale space flow we know ∂tp(t) = K∗( f − Ku(t)), thus

〈K∗( f − Ku(t)), u(t)〉 = 0 (3.2)

needs to be satisfied, at least in case that u(t) is differentiable w.r.t. time and that J is Fréchet 
differentiable.

Condition (3.2) motivates us to define an orthogonality condition for the generalised singu-

lar vectors {uλj}n
j=1. Let the data for the inverse scale space flow be given as f =

∑n
j=1 γjKuλj 

where {uλj}n
j=1 is a set of generalised singular vectors. Assume that the inverse scale space 

flow gives a decomposition into the singular vectors of f with no loss of contrast, i.e. the solu-
tion of the ISS flow is given by (3.1). The orthogonality condition (3.2) then states that

0 =

〈
K∗




n∑
j=1

γjKuλj −
k∑

j=1

γjKuλj


 ,

k∑
j=1

γjuλj

〉

=

〈
n∑

j=k+1

γjKuλj ,
k∑

j=1

γjKuλj

〉

for k = 1, 2, . . . , n − 1. A sufficient condition for this to hold is K-orthogonality between the 
singular vectors:

〈
Kuλj , Kuλk

〉
= 0, j �= k. (OC)

Note that the orthogonality condition (OC) as a condition does not require assumptions such 
as Fréchet differentiability of J or differentiability of u w.r.t. to time. We highlight that all 
upcoming proofs will rely on the orthogonality condition (OC) only and not on (3.2) unless 
explicitly stated otherwise. The sole purpose of condition (3.2) was to motivate (OC). We 
also point out that (OC) can be quite restrictive, see also [3, section 3.3] where failure of the 
Rayleigh principle has been discussed.
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3.2. (SUB0) condition

K-orthogonality between the singular vectors representing f will not be enough to guarantee 
that the solution of the ISS flow is given by (3.1). We therefore introduce an additional condi-
tion on the subgradients of the singular vectors that we name the (SUB0) condition. It is a 
condition on the sum of the subgradients of a set of singular vectors which turns out to be a 
kind of linearity condition for ∂J in the singular vectors. The (SUB0) condition furthermore 
implies linearity of J in the singular vectors.

Definition 3.1 (SUB0 Condition). Let (uλ1 , . . . , uλn) = (uλj)j=1,...,n be an ordered set of 
singular vectors of J with corresponding singular values (λj)j=1,...,n. We say that (uλj)j=1,...,n 
satisfy the (SUB0) condition if

k∑
j=1

λjK∗Kuλj ∈ ∂J(0), ∀ k ∈ {1, . . . , n}, (SUB0)

Remark 3.2. We want to emphasise that in order for a set of singular vectors to satisfy 
the (SUB0) condition it is necessary that the inclusion is satisfied for all k ∈ {1, . . . , n}. It is 
not enough that the full sum over the subgradients is included in the subdifferential at zero. 
We will call the inclusions for k ∈ {1, . . . , n − 1} the partial sum conditions of the (SUB0) 
condition.

The (SUB0) condition is equivalent to a linearity condition for the subdifferential for 
K-orthogonal singular vectors:

Proposition 3.3. Let (uλj)j=1,...,n be a set of K-normalised singular vectors of J with corre-
sponding singular values (λj)j=1,...,n. Assume that they satisfy the orthogonality condition 
(OC). Then the (SUB0) condition is satisfied if and only if

k∑
j=1

λjK∗Kuλj ∈ ∂J




k∑
j=1

cjuλj


 , cj � 0, ∀ k ∈ {1, . . . , n}.

Proof. Proof of ‘⇐’: This is straightforward using the subdifferential characterisation (2.6).
Proof of ‘⇒’: Using the orthogonality condition (OC), the triangle inequality (2.4) for J, 

and the (SUB0) condition we get
〈

k∑
j=1

λjK∗Kuλj ,
k∑

j=1

cjuλj

〉
=

k∑
j=1

cjλj =

k∑
j=1

J(cjuλj)

� J




k∑
j=1

cjuλj


 �

〈
k∑

j=1

λjK∗Kuλj ,
k∑

j=1

cjuλj

〉

for cj � 0, j = 1, ..., k. It follows that the inequalities above are equalities and by the subdiffer-

ential characterisation (2.6) we conclude that 
∑k

j=1 λjK∗Kuλj ∈ ∂J
(∑k

j=1 cjuλj

)
 for all 

k ∈ {1, . . . , n}. □ 
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We would like to make a comparison to the (LIS) condition in [74, definition 7]. LIS stands 
for linearity in the subdifferential. The (LIS) condition is in principle the same as the (SUB0) 
condition through proposition 3.3, except that the (LIS) condition is only defined for a pair of 
two singular vectors and additionally requires the linearity in the subdifferential to hold for 
negative coefficients cj  <  0 as well. (LIS) turns out to imply directly orthogonality between 
the singular vectors, see [74, proposition 4].

The (SUB0) condition furthermore implies some kind of linearity of J for K-orthogonal 
singular vectors:

Proposition 3.4. Let (uλj)j=1,...,n be a set of K-normalised singular vectors of J with corre-
sponding singular values (λj)j=1,...,n. Assume that they satisfy the orthogonality condition 
(OC) and the (SUB0) condition. Then

J




n∑
j=1

cjuλj


 =

n∑
j=1

cjJ(uλj)

for cj � 0, j = 1, ..., n.

Proof. This follows directly from the proof of ‘⇒’ of proposition 3.3. □ 

Remark 3.5. Note that the linearity in J is only satisfied for non-negative coefficients cj and 
the proposition actually holds even if (SUB0) is only satisfied for k  =  n.

Remark 3.6. Linearity of J does not imply the (SUB0) condition under (OC), see example 
3.8 for a counter example.

In order to give an intuitive idea of what the orthogonality condition (OC) and the (SUB0) 
condition require of the singular vectors, we give three examples:

Example 3.7. Let us again consider K = I : �1(Rm) → �2(Rm) and J(u) = ‖Wu‖�1(Rm) as 
in example 2.3. In order for two singular vectors uλ1 and uλ2  to be orthogonal we need

0 = 〈uλ1 , uλ2〉 = 〈uλ1 , W∗Wuλ2〉 = 〈Wuλ1 , Wuλ2〉 .

Hence we can just check that Wuλ1 and Wuλ2 are orthogonal in �2(Rm). For the (SUB0) condi-
tion we have

λ1uλ1 + λ2uλ2 = λ1W∗Wuλ1 + λ2W∗Wuλ2

= W∗(sign(Wuλ1) + sign(Wuλ2)).

If Wuλ1 and Wuλ2 have non-overlapping supports then

λ1uλ1 + λ2uλ2 = W∗(sign(Wuλ1 + Wuλ2)) ∈ ∂J(0)

and the (SUB0) condition is satisfied. Note that in this case also the orthogonality condition 
(OC) is satisfied.

Example 3.8. Let J(u) = ‖u‖�1(Rm) with ∂J(u) = sign(u), see example 2.3. We look at a 

convolution problem where K : �1(Rm) ⊇ �2(Rm) → �2(Rm) is the convolution operator de-
fined by
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(Ku)k =

1∑
j=−1

uk−jgj, g =
1√
2




1
1
0


 .

The adjoint operator K* is determined by

(K∗v)j =

1∑
k=−1

vj+kgk.

Two examples of K-normalised singular vectors are

uλ1 = (0, 0, 1, 0, 0)T and uλ2 =
1√
2
(0, 1, 0,−1, 0)T .

Kuλ1 = (0, 1/
√

2, 1/
√

2, 0, 0)T , ‖Kuλ1‖�1(Rm) = 1,

Kuλ2 = (1/2, 1/2,−1/2,−1/2, 0)T , ‖Kuλ2‖�1(Rm) = 1,

and

J(uλ1)K
∗Kuλ1 = (0, 1/2, 1, 1/2, 0)T ∈ sign(uλ1),

J(uλ2)K
∗Kuλ2 = (1/2, 1, 0,−1,−1/2)T ∈ sign(uλ2).

The two singular vectors are K-orthogonal but they do not satisfy the (SUB0) condition since

J(uλ1)K
∗Kuλ1 + J(uλ2)K

∗Kuλ2 = (1/2, 3/2, 1,−1/2,−1/2)T /∈ ∂J(0) = [−1, 1].

This example also shows that proposition 3.4 only holds one way since for c1, c2 � 0 we have

J(c1uλ1 + c2uλ2) =
∥∥∥(0, c2/

√
2, c1,−c2/

√
2, 0)T

∥∥∥
�1(Rm)

= c1 + 2c2/
√

2

= c1 · 1 + c2 · 2/
√

2 = c1J(uλ1) + c2J(uλ2).

Hence the linearity of J in the singular vectors does not imply that the (SUB0) condition is 
satisfied. In figure 1 we see the two singular vectors and their corresponding subgradients. We 
see that the subgradients contain values between  −1 and 1 and are exactly  −1 at the negative 
peaks and 1 at the positive peaks. In figure 1(c) we see the sum of the singular vectors that 
contains three peaks. The sum of the subgradients contains values above one and is therefore 
not in the subdifferential of J at zero. The problem is that the two positive peaks of the singular 
vectors get too close, which makes the sum of the subgradients exceed one.

Example 3.9. We consider K = I : BV([0, 1]) → L2([0, 1]) and J(u) = TV∗(u). It is straight 
forward to see that if we consider two Haar wavelets with non-overlapping supports, then both 
the orthogonality condition (OC) and the (SUB0) condition are satisfied. The same would be 
true for calibrable convex sets in higher dimensions. In the case of two step functions with 
overlapping supports, however, this can never be obtained as we are going to illustrate with the 
following example. The restrictive condition here is really the orthogonality condition (OC).
Consider the two Haar wavelets uλ1 and uλ2  as defined in example 2.2. By adding these two 
singular vectors we get
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(uλ1 + uλ2)(x) =





1 +
√

2, 0 � x < 1/4,
1 −

√
2, 1/4 � x < 1/2,

−1, 1/2 � x � 1,
0, otherwise.

The total variation of the sum is then

TV∗(uλ1 + uλ2) = sup
ϕ∈C∞([0,1]),

‖ϕ‖L∞([0,1])�1

∫ 1

0
(uλ1 + uλ2)(x)ϕ

′(x) dx,

= sup
ϕ∈C∞([0,1]),

‖ϕ‖L∞([0,1])�1

{
(1 +

√
2)

∫ 1/4

0
ϕ′(x) dx + (1 −

√
2)

∫ 1/2

1/4
ϕ′(x) dx −

∫ 1

1/2
ϕ′(x) dx

}

= sup
ϕ∈C∞([0,1]),

‖ϕ‖L∞([0,1])�1

{
−(1 +

√
2)ϕ(0) + 2

√
2ϕ(1/4) + (2 −

√
2)ϕ(1/2) −ϕ(1)

}

� 1 +
√

2 + 2
√

2 + 2 −
√

2 + 1 = 4 + 2
√

2

= TV∗(uλ1) +
1
2

TV∗(uλ2)

< TV∗(uλ1) + TV∗(uλ2).

By proposition 3.4, uλ1 and uλ2  do not satisfy the (SUB0) condition. In figure 2 we see the 
two Haar wavelets plotted. In figure 2(a) we see the sum of the two Haar wavelets. At x  =  1/2 
we have a second jump downwards. This is at the place where the two Haar wavelets have 
overlapping jumps in opposite directions. That is exactly what makes the TV∗-functional non-
linear in the singular vectors.

In the following we are going to provide an alternative dual norm formulation of the (SUB0) 
condition under a norm-inequality assumption on J.

Definition 3.10 (Norm-inequality assumption). J satisfies the norm-inequality  
assumption if there exists a positive constant c0  >  0 such that

c0 ‖u‖U � J(u), ∀u ∈ ker(J)⊥. (3.3)
□ 

Under the norm-inequality assumption we are able to show a relation between the subdiffer-
ential at zero and the dual norm:

Proposition 3.11. Let J be even and positively one-homogeneous and satisfy the norm-
inequality assumption (3.3). Then

‖ω∗‖U∗ � c0and 〈ω∗, v〉 = 0, ∀v ∈ ker(J) ⇒ ω∗ ∈ ∂J(0).

Proof. Let ‖ω∗‖U∗ � c0 and 〈ω∗, v〉 = 0 for all v ∈ ker(J). We need to show 〈ω∗,ω〉 � J(ω) 
for all ω ∈ U . We can already exclude all ω ∈ ker(J) since in this case we have 〈ω∗,ω〉 = 0 by 
assumption and J(ω) = 0. For ω ∈ ker(J)⊥ we get

〈ω∗,ω〉 � ‖ω∗‖U∗ ‖ω‖U � c0 ‖ω‖U � J(ω)
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by (3.3). Hence for ω = ω1 + ω2 with ω1 ∈ ker(J) and ω2 ∈ ker(J)⊥ we have

 〈ω
∗,ω〉 = 〈ω∗,ω2〉 � J(ω2) = J(ω), □

where the last equality follows from (2.5).

Now we see that if
∥∥∥∥∥∥

k∑
j=1

λjK∗Kuλj

∥∥∥∥∥∥
U∗

= c0 (3.4)

for k ∈ {1, . . . , n} then the (SUB0) condition is satisfied, since

Figure 1. Convolution example. In figures (a) and (b) we see two K-orthogonal singular 
vectors. Their subgradients reach 1, respectively  −1, for positive, respectively negative, 
peaks. Between the peaks the value is in [−1, 1]. In figure (c) we see the sum of the two 
singular vectors and the sum of the subgradients. The (SUB0) condition is not satisfied 
since the sum of the subgradients exceeds one. The problem is the two positive peaks 
of the singular vectors getting too close. (a) First singular vector and subgradient. (b) 
Second singular vector and subgradient. (c) Sum of singular vectors and subradients.
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〈
k∑

j=1

λjK∗Kuλj , v

〉
= 0, ∀v ∈ ker(J)

is already satisfied by (2.8) and λjK∗Kuλj ∈ ∂J(uλj) for j = 1, ..., k. Hence we can use (3.4) 
as an alternative to the (SUB0) condition for numerical implementations when the norm-
inequality assumption is satisfied. Note that in (3.4) we deal with a strict equality as a strict 
inequality automatically implies a set of trivial singular vectors.

Remark 3.12. Note that if J(u) = ‖u‖U  then

‖ω∗‖U∗ � 1and 〈ω∗, v〉 = 0, ∀v ∈ ker(J) ⇒ ω∗ ∈ ∂J(0)

by proposition 3.11 with c0  =  1 and for ω∗ ∈ ∂J(0) we have

‖ω∗‖U∗ = sup
‖v‖U�1

〈ω∗, v〉 � sup
‖v‖U�1

J(v) = sup
J(v)�1

J(v) = 1.

Hence in this case the (SUB0) condition is equivalent to
∥∥∥∥∥∥

n∑
j=1

λjK∗Kuλj

∥∥∥∥∥∥
U∗

= 1.

Example 3.13  With this final (SUB0)-example we want to highlight that given the orthog-
onality condition (OC), the one-homogeneous analogue to Showalter’s method, i.e. the ISS 
flow (2.10) with J(u) = ‖u‖L2(Ω), U = L2(Ω), satisfies the (SUB0) condition only for k  =  1. 
We see this by considering (SUB0) in this particular case. We have

∥∥∥∥∥∥
k∑

j=1

λjK∗Kuλj

∥∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥∥
k∑

j=1

uλj

‖uλj‖L2(Ω)

∥∥∥∥∥∥
L2(Ω)

,

Figure 2. TV∗-denoising example. In figure 2 we see two Haar wavelets which are 
orthogonal singular vectors for the TV∗-functional and the embedding operator 
I : BV([0, 1]) → L2([0, 1]). The singular vectors do not satisfy the (SUB0) condition 
by proposition 3.4, since TV∗(uλ1 + uλ2) < TV∗(uλ1) + TV∗(uλ2). (a) Two Haar 
wavelets. (b) Sum of the two Haar wavelets.
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due to ∂‖u‖L2(Ω) = u/‖u‖L2(Ω) for ‖u‖L2(Ω) �= 0. Due to the K-orthogonality in combination 
with the singular vector condition (2.16) we observe 0 = λi〈Kuλi , Kuλj〉 = 〈uλi , uλj〉/‖uλi‖L2(Ω), 
which implies 〈uλi , uλj〉 = 0. Hence, we have

∥∥∥∥∥∥
k∑

j=1

uλj

‖uλj‖L2(Ω)

∥∥∥∥∥∥

2

L2(Ω)

=

〈
k∑

i=1

uλi

‖uλi‖L2(Ω)

,
k∑

j=1

uλj

‖uλj‖L2(Ω)

〉

=
k∑

i=1

〈uλi , uλi〉
‖uλi‖L2(Ω)‖uλi‖L2(Ω)

= k ,

and therefore
∥∥∥∥∥∥

k∑
j=1

λjK∗Kuλj

∥∥∥∥∥∥
L2(Ω)

=
√

k � 1 ,

for k ∈ N. Thus, according to remark 3.12, the (SUB0) condition is only satisfied for k  =  1.

3.3. Inverse scale space decomposition

We now provide our main result which states that the ISS flow gives a perfect decomposition 
into the generalised singular vectors representing the data of the flow given that (OC) and 
(SUB0) are satisfied.

Theorem 3.14 (Inverse scale space decomposition). Let (uλj)j=1,...,n be a set of  
K-normalised singular vectors of J with corresponding singular values (λj)j=1,...,n. Let the 

data f be given by f =
∑n

j=1 γjKuλj for positive constants (γj)j=1,...,n and let tj < tj+1, with 

tj = λj/γj impose the ordering of the set (uλj)j=1,...,n. Then, if the orthogonality condition 
(OC) and the (SUB0) condition are satisfied for this particular ordering, a solution of the 
inverse scale space flow (2.10) is given by

u(t) =





0, 0 � t < t1,
k∑

j=1
γjuλj , tk � t < tk+1 for k = 1, ..., n − 1,

n∑
j=1

γjuλj , tn � t.

Proof. The proof is divided into the following three steps corresponding to the three differ-
ent cases for u(t):

  Step 1: 0 � t < t1.
  Step 2: tk � t < tk+1 for k = 1, ..., n − 1
  Step 3: tn � t.

For every step we have to show that the solution satisfies the inverse scale space flow.

  Step 1: Let 0 � t < t1. Then u(t) = 0, and from the inverse scale space flow we get

∂tp(t) = K∗f , p(0) = 0.
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  Integrating 
∫ t

0 ∂τp(τ)dτ  yields

p(t) = tK∗f = t




n∑
j=1

γj

λj
pλj


 ,

  where we have used the notation pλj = λjK∗Kuλj. We need to show that 
p(t) ∈ ∂J(u(t)) = ∂J(0). Using the characterisation (2.6) of the subdifferential we need 
to show that 〈p(t), v〉 � J(v) for all v ∈ U . We have

〈p(t), v〉 = t

〈
n∑

j=1

γj

λj
pλj , v

〉
.

  Hence we need to show

t

〈
n∑

j=1

γj

λj
pλj , v

〉
� J(v), ∀v ∈ U . (3.5)

  If 
〈∑n

j=1
γj

λj
pλj , v

〉
� 0 then inequality (3.5) is trivially satisfied since J(v) � 0 for all 

v ∈ U .

       If 
〈∑n

j=1
γj

λj
pλj , v

〉
> 0 then

t

〈
n∑

j=1

γj

λj
pλj , v

〉
< t1

〈
n∑

j=1

γj

λj
pλj , v

〉
= 〈pλ1 , v〉+ t1

〈
n∑

j=2

γj

λj
pλj , v

〉
.

  If 
〈∑n

j=2
γj

λj
pλj , v

〉
� 0 inequality (3.5) is satisfied since pλ1 ∈ ∂J(0). If 〈∑n

j=2
γj

λj
pλj , v

〉
> 0 then

〈pλ1 , v〉+ t1

〈
n∑

j=2

γj

λj
pλj , v

〉
< 〈pλ1 , v〉+ t2

〈
n∑

j=2

γj

λj
pλj , v

〉

= 〈pλ1 + pλ2 , v〉+ t2

〈
n∑

j=3

γj

λj
pλj , v

〉
.

  If 
〈∑n

j=3
γj

λj
pλj , v

〉
� 0 then inequality (3.5) is satisfied since pλ1 + pλ2 ∈ ∂J(0) by the 

(SUB0) condition. If 
〈∑n

j=3
γj

λj
pλj , v

〉
> 0 we continue the process. The process termi-

nates when we reach
〈

n∑
j=1

pλj , v

〉
,

  which is less than or equal to J(v) since 
∑n

j=1 pλj ∈ ∂J(0) by the (SUB0) condition. In 
any case we have shown that p(t) ∈ ∂J(0) for 0 � t < t1.

  Step 2: Let tk � t < tk+1. Then u(t) =
∑k

j=1 γjuλj and from the inverse scale space flow 

we get
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∂tp(t) = K∗


 f −

k∑
j=1

γjKuλj


 =

n∑
j=k+1

γjK∗Kuλj =

n∑
j=k+1

γj

λj
pλj .

  A continuous extension of p at t  =  tk is given by

p(t) =
k∑

j=1

pλj + t




n∑
j=k+1

γj

λj
pλj


 .

  We require p(t) ∈ ∂J(u(t)) = ∂J
(∑k

j=1 γjuλj

)
. Using the characterisation (2.6) of the 

subdifferential we need to show
〈

p(t),
k∑

j=1

γjuλj

〉
= J




k∑
j=1

γjuλj


 and 〈p(t), v〉 � J(v), ∀v ∈ U . (3.6)

  For the first criterion of (3.6) we get
〈

p(t),
k∑

j=1

γjuλj

〉
=

〈
k∑

j=1

pλj ,
k∑

j=1

γjuλj

〉
+ t

〈
n∑

j=k+1

γj

λj
pλj ,

k∑
j=1

γjuλj

〉

=

k∑
j=1

γjJ(uλj) = J




k∑
j=1

γjuλj


 .

  We have used the formula for p(t), the properties of singular vectors, the orthogonality 
condition (OC) and for the last equality proposition 3.4. For the second criterion of (3.6) 
we can use the same process as for Step 1.

  Step 3: Let tn � t. Then u(t) =
∑n

j=1 γjuλj and from the inverse scale space flow we get

∂tp(t) = K∗( f −
n∑

j=1

γjKuλj) = 0.

  A continuous extension of p at t  =  tn is

p(t) =
n∑

j=1

pλj .

  We need to show that p(t) ∈ ∂J(u(t)) = ∂J
(∑n

j=1 γjuλj

)
. This follows directly from 

proposition 3.3. □

Remark 3.15. Note that for n  =  2 the (SUB0) condition is both necessary and sufficient 
under the orthogonality condition (OC). In this case we can compute

p(t) =




tK∗f , 0 � t < t1,
pλ1 + tγ2K∗Kuλ2 , t1 � t < t2,
pλ1 + pλ2 , t2 � t.

Hence we need p(t) ∈ ∂J(u(t)) for t2 � t, i.e.
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pλ1 + pλ2 ∈ ∂J(γ1uλ1 + γ2uλ2) ⊂ ∂J(0).

This shows that the (SUB0) condition is necessary. In fact, for arbitrary n we always need ∑n
j=1 pλj ∈ ∂J(0) for the decomposition to happen. This is, however, not enough, as we will 

see in example 3.18.

Remark 3.16. If uλj  is a singular vector then also −uλj is a singular vector. Hence if γj < 0, 
we can just pull the negative sign of γj  onto uλj  and regard this as a singular vector with a 
positive contribution to f. Then theorem 3.14 still holds true with tk = λk/|γk| and the (SUB0) 
condition being replaced by

k∑
j=1

γj

|γj|
λjK∗Kuλj ∈ ∂J(0), ∀k ∈ {1, . . . , n}.

Remark 3.17. In example 3.13 we have shown that the (SUB0) condition is never satisfied 
for n  >  1 for J(u) = ‖u‖L2(Ω), U = L2(Ω). Since by remark 3.15 the full sum over the sub-
gradients of the singular vectors always has to be in the subdifferential of J at zero in order 
for the ISS flow to give a decomposition into the K-orthogonal singular vectors representing 
f, we then conclude that the inverse scale space decomposition can never happen in this case 
without re-weighting its coefficients.

We give a comparison to a decomposition result in [74, theorem 2] under the earlier mentioned 
(LIS) condition [74, definition 7] and orthogonality condition (FO) [74, definition 5]. As previ-
ously mentioned the (LIS) condition requires linearity in the subdifferential for both positive and 
negative coefficients. The orthogonality condition is formulated a bit differently but boils down to 
the same as (OC) and is actually automatically satisfied under the (LIS) condition when J is even 
and positively one-homogeneous. It is then shown that the (forward) scale space flow

∂tu(t) = −p(t), p(t) ∈ ∂J(u(t)), u(0) = f

gives a decomposition into singular vectors under the (LIS) and (FO) conditions when f is 
given as the sum of two singular vectors and J is one-homogeneous. The results are stated for 
the forward scale space flow and for denoising problems where K is the identity and involve 
decomposition into two singular vectors only.

To emphasise that the partial sum conditions of the (SUB0) condition are necessary we 
look at the following example:

Example 3.18. Let J(u) = ‖u‖�1(Rm) with ∂J(u) = sign(u), see example 2.3. We reuse the 
convolution operator K : �1(Rm) → �2(Rm) from example 3.8. Define the vectors

uλ1 = (0, 0, 0, 1,−1, 0, 0, 0, 0)T , uλ2 = (0, 0, 0, 0,−1, 1, 0, 0, 0)T ,

uλ3 =
1√
2
(0, 0, 0, 1, 0, 1, 0, 0, 0)T , uλ4 = (0,−1, 0, 0, 0, 0, 0, 0, 0)T ,

uλ5 = (0, 0, 0, 0, 0, 0, 0,−1, 0)T .

Using the notation pλj = λjK∗Kuλj we get
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pλ1 = (0, 0, 1, 1,−1,−1, 0, 0, 0)T ∈ ∂J(uλ1),

pλ2 = (0, 0, 0,−1,−1, 1, 1, 0, 0)T ∈ ∂J(uλ2),

pλ3 = (0, 0, 1/2, 1, 1, 1, 1/2, 0, 0)T ∈ ∂J(uλ3),

pλ4 = (−1/2,−1,−1/2, 0, 0, 0, 0, 0, 0)T ∈ ∂J(uλ4),

pλ5 = (0, 0, 0, 0, 0, 0,−1/2,−1,−1/2)T ∈ ∂J(uλ5).

Hence

(uλj)j=1,...,5

is a set of five singular vectors. In figure 3 we see all the singular vectors and their corre-
sponding subgradients. We observe that two peaks of the same sign cannot get too close if we 
want to obtain a singular vector since the convolution kernel spreads out the peaks. We also 
see that the subgradients have their maximum magnitude 1 at the peaks.

We note that 
〈
Kuλi , Kuλj

〉
= 1

λi

〈
pλi , uλj

〉
= 0 for i �= j. Hence the orthogonality condi-

tion (OC) is satisfied. The singular vectors are also normalised such that 
∥∥Kuλj

∥∥
�2(Rm)

= 1 for 

j = 1, ..., 5 holds true. Now let

(λj)j=1,...,5

be such that λk/γk < λk+1/γk+1 for k = 1, ..., 4. Then if the (SUB0) condition is satisfied, 

theorem 3.14 tells us that the ISS flow gives a decomposition of the data f =
∑5

j=1 γjKuλj into 

the singular vectors. But the (SUB0) condition is not satisfied since the partial sums over the 

Figure 3. Singular vectors and their corresponding subgradients for example 3.18. (a) 
uλ1 and pλ1. (b) uλ2  and pλ2 . (c) uλ3 and pλ3. (d) uλ4  and pλ4 . (e) uλ5 and pλ5.
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subgradients are not in the subdifferential of J at zero:

pλ1 + pλ2 = (0, 0, 1, 0,−2, 0, 1, 0, 0)T /∈ ∂J(0),

pλ1 + pλ2 + pλ3 = (0, 0, 3/2, 1,−1, 1, 3/2, 0, 0)T /∈ ∂J(0),

pλ1 + pλ2 + pλ3 + pλ4 = (−1/2,−1, 1, 1,−1, 1, 3/2, 0, 0)T /∈ ∂J(0),

pλ1 + pλ2 + pλ3 + pλ4 + pλ5 = (−1/2,−1, 1, 1,−1, 1, 1,−1,−1/2)T ∈ ∂J(0).

Only the full sum over all the subgradients is in the subdifferential of J at zero. In figure 4 we 
see some of the partial sums over the subgradients. In figure 4(a) we see the sum over the first 
three subgradients. We see that the sum does not have its maximum magnitude at the peaks 
and it exceeds the limit of a magnitude of one. Hence the sum of the first three subgradients is 
not in the subdifferential of J at zero. In figure 4(b) we see the sum over all five subgradients. 
This sum has its maximum magnitude at the peaks and does not exceed the magnitude limit of 
one. Hence the full sum is in the subdifferential of J at zero.

We are going to see in section  5.2 that the first peak reconstructed by the ISS flow in 
this case is at the middle position. This peak does not match any of the singular vectors uλj , 
j = 1, . . . , 5, and we will not obtain the decomposition.

3.4. Singular vector fusion

One might think that if two or more singular vectors representing the data f add up to another 
singular vector, then the ISS flow is not able to give a complete decomposition into the sin-
gular vectors. However, it turns out that under the (SUB0) condition and the orthogonality 
condition (OC), two or more singular vectors cannot add up to another singular vector.

Proposition 3.19 (Impossible singular vector fusion). Let (uλj)j=1,...,n be a set of  
K-normalised singular vectors of J with corresponding singular values (λj)j=1,...,n. Assume 
that they satisfy the orthogonality condition (OC) and the (SUB0) condition. Let the data 

Figure 4. Sum of subgradients for example 3.18. We see that the partial sum conditions 
of the (SUB0) condition are not satisfied. The sum over the first three subgradients seen 
in figure (a) exceeds one and can therefore not be in the subdifferential of J at zero. In 
figure (b) the full sum over the subgradients is seen and this is in the subdifferential of 

J at zero. (a) 
∑3

j=1 uλj and 
∑3

j=1 pλj. (b) 
∑5

j=1 uλj and 
∑5

j=1 pλj.
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f be given by f =
∑n

j=1 γjKuλj, where γj > 0 and λj/γj < λj+1/γj+1. Let (uλjk
)k=1,...,m, 

m ∈ {2, . . . , n}, be a subset of the singular vectors ordered so that λjk/γjk < λjk+1/γjk+1. Then 
no such subset of singular vectors can add up to another singular vector, i.e.

J
(∑m

k=1 γjk uλjk

)

∥∥∥K
(∑m

k=1 γjk uλjk

)∥∥∥
2

H

K∗K

(
m∑

k=1

γjk uλjk

)
/∈ ∂J

(
m∑

k=1

γjk uλjk

)
.

Proof. The proof is by contradiction. Hence we assume that 
∑m

k=1 γjk uλjk
 is a singular  

vector. Using (OC) and proposition 3.4 we can explicitly compute the singular value:

J
(∑m

k=1 γjk uλjk

)

∥∥∥K
(∑m

k=1 γjk uλjk

)∥∥∥
2

H

=

∑m
k=1 γjkλjk∑m

k=1 γ
2
jk

.

Using the characterisation (2.6) of the subdifferential we then get

J(v) �

〈∑m
k=1 γjkλjk∑m

k=1 γ
2
jk

K∗K
(∑m

k=1
γjk uλjk

)
, v

〉

=

∑m
k=1 γjkλjk∑m

k=1 γ
2
jk

∑m

k=1

〈
γjk K

∗Kuλjk
, v
〉

for all v ∈ dom(J). Set v = uλj1
. Using J(uλj1

) = λj1 and (OC) in the above we obtain

λj1 �

∑m
k=1 γjkλjk∑m

k=1 γ
2
jk

γj1 .

Rearranging and writing out the first term of both sums, the above implies

λj1γ
2
j1 + λj1

m∑
k=2

γ2
jk = λj1

m∑
k=1

γ2
jk � γj1

m∑
k=1

γjkλjk = γ2
j1λj1 + γj1

m∑
k=2

γjkλjk .

We let the term λj1γ
2
j1 on both sides cancel and rearrange again to obtain

λj1

γj1
�

∑m
k=2 γjkλjk∑m

k=2 γ
2
jk

=
γj2λj2 +

∑m
k=3 γjkλjk∑m

k=2 γ
2
jk

.

Using the ordering λjk/γjk < λjk+1/γjk+1 then for k � 3 we get λjk >
λj2
γj2

γjk. Applying this in 

the above we reach

λj1

γj1
>

γj2λj2 +
λj2
γj2

∑m
k=3 γ

2
jk∑m

k=2 γ
2
jk

=

λj2
γj2

(
γ2

j2 +
∑m

k=3 γ
2
jk

)
∑m

k=2 γ
2
jk

=
λj2

γj2
.

This is a contradiction since by assumption λj1/γj1 < λj2/γj2. Hence the assumption that 
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∑m
k=1 γjk uλjk

 is a singular vector is false. □ 

4. Decomposition of arbitrary input data

Having addressed the question of when a finite sum of singular vectors can be decomposed 
via the ISS flow (2.10), we want to draw our attention to a rather converse question: when is 
the first non-trivial solution of (2.10) a singular vector? We first give a characterisation of the 
first non-trivial solution of the ISS flow when the data f is given by f = Kω, where ω satis-
fies the strong source condition (SSC). Then we give a characterisation of the first non-trivial 
ISS solution for arbitrary data f ∈ H and observe that it satisfies the source condition (SC). 
Finally, we investigate under which conditions this first non-trivial solution is a singular vec-
tor. Throughout the section assumption 2.5 will be used.

4.1. Strong source condition

We identify the first step of the ISS flow for given data f = Kω, where ω ∈ U \ {0} is 
the source element for the strong source condition (SSC), i.e. K∗Kω ∈ ∂J(u†) for some 
u† ∈ dom(J). The first non-trivial solution of the ISS flow under this assumption for the data 
is then characterised via the following lemma.

Lemma 4.1. Let (SSC) be satisfied, i.e. there exists a source element ω ∈ U \ {0} such that 
K∗Kω ∈ ∂J(u†). Let f = Kω be the given data for the ISS flow (2.10). Then a first non-trivial 
solution of the flow is given by

u(t1) = γu†, t1 = 1,

where γ � 0 is a constant.

Proof. Starting with u(t) = 0 for 0 � t < t1 we need to compute t1 and u(t1). By the ISS 
flow we get

∂tp(t) = K∗f = K∗Kω, 0 � t < t1.

Using p(0) = 0 and integrating 
∫ t

0 ∂τp(τ)dτ  we get

p(t) = tK∗Kω, 0 � t < t1.

We need to show that p(t) ∈ ∂J(u(t)) = ∂J(0) for 0 � t < t1. Using the strong source condi-
tion and the characterisation (2.6) of the subdifferential, we obtain

〈p(t), v〉 = t 〈K∗Kω, v〉 � tJ(v) < t1J(v), ∀v ∈ U .

Hence choosing t1  =  1 we know that p(t) ∈ ∂J(0) for 0 � t < t1. At the time t1 we require 
p(t1) = t1K∗Kω = K∗Kω ∈ ∂J(u(t1)). Hence choosing u(t1) = γu† for γ � 0 the condition 
is satisfied by the positive scaling invariance (2.7) of the subdifferential. Hence a first non-
trivial step of the ISS flow is

u(t1) = γu†, t1 = 1. □ 

Remark 4.2. If we further assume that the orthogonality condition (3.2) is satisfied, then γ 
in lemma 4.1 can be determined by
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0 =
〈
K∗(Kω − γKu†), u†

〉
=

〈
K∗Kω, u†

〉
− γ

∥∥Ku†∥∥2
H = J(u†)− γ

∥∥Ku†∥∥2
H ,

i.e. γ = J(u†)/
∥∥Ku†

∥∥2
H � 0.

4.2. Source condition

We emphasise the connection between the first non-trivial solution of the ISS flow (2.10) and 
the source condition (SC) for arbitrary data f. It turns out that the first solution satisfies the 
source condition, and under the special kind of source condition (4.1) the first non-trivial solu-
tion is also a singular vector.

We show that the first non-trivial solution of the ISS flow satisfies the source condition 
(SC). Since u(t) = 0 for 0 � t < t1 for some t1  >  0, using the ISS flow we get

∂tp(t) = K∗f , 0 � t < t1.

Using p(0) = 0 and integration yields

p(t) = tK∗f , 0 � t < t1.

At t  =  t1 we then require

p(t1) = t1K∗f ∈ ∂J(u(t1))

by the definition of the ISS flow. Setting v = t1f ∈ H we obtain K∗v ∈ ∂J(u(t1)) which is 
exactly the source condition. Hence u(t1) satisfies the source condition.

In [3, theorem 10] it has been shown that for data given as f = γKuλ + g, for some g ∈ H, 
the first non-trivial solution of the ISS solution at time t1 = λη/(λ+ γη − µ) < t2 = η is 
given via u(t1) = (γ + (λ− µ)/η)uλ if the condition

µK∗Kuλ + ηK∗g ∈ ∂J(uλ) (4.1)

for some γ > µ/η is met. We also want to emphasise that (4.1) is in fact nothing but the source 
condition (SC) for the particular choice v = µKuλ + ηg. So we do know from [3, theorem 10] 
that under this specific kind of source condition the first non-trivial ISS solution is indeed a 
generalised singular vector. This can be of practical interest if we have arbitrary data f that can 
be decomposed into a singular vector and an element g such that (4.1) is satisfied. However, 
one has to be very careful that the conditions for a successful application of [3, theorem 10] 
are actually met, as the following example shows.

Example 4.3. Let us consider the embedding operator K = I : BV([0, 1]) → L2([0, 1]) and 
the one-dimensional total variation regularisation

J(u) = TV(u) := sup
ϕ∈C∞

0 ([0,1])
‖ϕ‖L∞([0,1])�1

∫ 1

0
u(x)ϕ′(x) dx .

Given the function f (x) = −cos(2πx) it is quite obvious that we can decompose f into 
f = γuλ + g for a constant γ > 0,
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uλ(x) =
{

1, x ∈
[ 1

4 , 3
4

]
−1, else

and g(x) =
{
−γ − cos(2πx), x ∈

[ 1
4 , 3

4

]
γ − cos(2πx), else

.

Hence, if we could verify (4.1) for two constants μ and η with µ/η < γ , we would know from 
[3, theorem 10] that (γ + (λ− µ)/η)uλ would be the first non-trivial solution of the ISS flow. 
In order to do so we have to characterise the subdifferential of TV, which reads as

∂TV(u) =
{

q′ | ‖q‖L∞([0,1]) � 1, q(0) = q(1) = 0, and 〈q′, u〉 = TV(u)
}

.

In our case we therefore have to find constants μ and η and a function q with q′ = µuλ + ηg, 
q(0) = q(1) = 0, ‖q‖L∞([0,1]) � 1 and 〈q′, uλ〉 = TV(uλ). We make the assumption η = 2π 
and verify that we can find a function q that satisfies all conditions listed above for some μ. 
We do so by considering q(x) := −sin(2πx). We immediately observe q(0) = q(1) = 0 and 
‖q‖L∞([0,1]) = 1. For the choice η = 2π we further compute

q′(x) = −2π cos(2πx) = µuλ(x) + η

{
−µ

η − cos(2πx), x ∈
[ 1

4 , 3
4

]
µ
η − cos(2πx), else

.

For the choice µ = γη we then obtain −q′ = µuλ + ηw, and further observe 
〈q′, uλ〉 = 4 = TV(uλ). Hence, we have verified µuλ + ηw ∈ ∂TV(uλ) for η = 2π and 
µ = γη. Unfortunately, we do not obtain µ/η < γ , which means that we cannot apply  
[3, theorem 10] to automatically conclude that the first non-trivial solution of the ISS flow is 
given via a singular vector, though it seems tempting at first glance.

4.3. Arbitrary input data

In this section we want to characterise the first non-trivial solution of the ISS flow for arbi-
trary given data. We investigate under which conditions the first solution is guaranteed to be 
a singular vector. This investigation leads to the definition of dual singular vectors in the data 
space.

Under the norm-inequality assumption (3.3) for J we can characterise the first non-trivial 
solution of the ISS flow (2.10) via the following lemma.

Lemma 4.4 (First non-trivial solution of ISS flow). Assume that J satisfies the norm-
inequality assumption (3.3). Let f ∈ H \ ker(K∗) be arbitrary given data for the ISS flow 
(2.10) satisfying 〈K∗f , v〉 = 0 for all v ∈ ker(J). Then the first non-trivial solution of the flow 
is characterised by

u(t1) = c1u1

where t1 = c0/ ‖K∗f‖U∗ (c0 being the norm-inequality constant), c1  >  0 is a constant and 
u1 = v1/ ‖Kv1‖H with

v1 ∈ arg min
v∈ker(J)⊥

{J(v)− t1 〈K∗f , v〉} . (4.2)
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Proof. For 0 � t < t1 we have u(t) = 0. The ISS flow then gives

∂tp(t) = K∗f , 0 � t < t1.

Using p(0) = 0 and integration we obtain p(t)  =  tK*f for 0 � t < t1. This implies

‖p(t)‖U∗ = t ‖K∗f‖U∗ < t1 ‖K∗f‖U∗ = c0.

Together with the assumption that 〈K∗f , v〉 = 0 for all v ∈ ker(J), proposition 3.11 then 
implies p(t) ∈ ∂J(0). Hence the ISS flow is satisfied for 0 � t < t1. At t  =  t1 we need 
p(t1) = t1K∗f ∈ ∂J(c1u1) = ∂J(u1) = ∂J(v1) for c1u1 to be the solution at time t1. This is 
exactly the optimality condition of

v1 ∈ arg min
v∈ker(J)⊥

{J(v)− t1 〈K∗f , v〉} ,

since the Lagrange multiplier for the constraint v ∈ ker(J)⊥ is zero. □ 

Remark 4.5. Like in remark 4.2 we can determine c1 in lemma 4.4, if we assume that the 
orthogonality condition (3.2) is satisfied, via

0 = 〈K∗( f − Ku(t1)), u(t1)〉 = c1 〈K∗f , u1〉 − c2
1 = c1

(
J(u1)

t1
− c1

)
.

We have used that t1K∗f ∈ ∂J(u1) for the last equality. From the above we obtain

c1 =
J(u1)

t1
.

The interesting question now is when the first ISS solution u1 characterised via (4.2) is a 
singular vector. We need to investigate if J(u1)K∗Ku1 ∈ ∂J(u1). Using the characterisation of 
the subdifferential (2.6) we need to show

〈J(u1)K∗Ku1, u1〉 = J(u1) and J(u1)K∗Ku1 ∈ ∂J(0).

The first condition is easy to verify since ‖Ku1‖H = 1. For the second condition we use propo-
sition 3.11, thus we need ‖J(u1)K∗Ku1‖U∗ � c0. For J(u1) we use the estimate

J(u1) = t1 〈K∗f , u1〉 =
c0

‖K∗f‖U∗
〈f , Ku1〉 �

c0

‖K∗f‖U∗
‖f‖H ‖Ku1‖H = c0

‖f‖H
‖K∗f‖U∗

.

Then we obtain

‖J(u1)K∗Ku1‖U∗ � c0
‖f‖H

‖K∗f‖U∗
‖K∗‖ ‖Ku1‖H = c0

‖f‖H ‖K∗‖
‖K∗f‖U∗

,

where ‖K∗‖ is the standard operator norm

‖K∗‖ = sup
ω∈H\{0}

‖K∗ω‖U∗

‖ω‖H
.

Hence we see that if ‖K∗f‖U∗ = ‖K∗‖ ‖f‖H then the first ISS solution u1 is actually a singular 
vector of J. We note here that one should be very careful using the correct norms. To empha-
sise this we consider the following example:
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Example 4.6. Let K = I : H1
0(Ω) → L2

0(Ω) be an imbedding operator and Ω a bounded 
domain in R2. Here subscript zero means that the functions are zero on the boundary of Ω. 
Let J(u) = ‖∇u‖L2(Ω). Using Poincaré’s inequality ‖u‖L2(Ω) � C ‖∇u‖L2(Ω) for some C  >  0 
and u ∈ ker(J)⊥, we can verify that J satisfies the norm-inequality assumption (3.3) for 
c0 = 1/(1 + C2)1/2. Let f ∈ H1(Ω) be the data for the ISS flow. If f satisfies

‖I∗f‖H1(Ω) = ‖I∗‖ ‖f‖L2(Ω) = ‖f‖L2(Ω) ,

the first non-trivial solution of the ISS flow is a singular vector. The equality is not always 
satisfied even though K is an embedding operator. We see that we need

(
‖f‖2

L2(Ω) + ‖∇f‖2
L2(Ω)

)1/2
= ‖f‖L2(Ω) ⇔ ‖∇f‖L2(Ω) = 0.

The condition ‖K∗f‖U∗ = ‖K∗‖ ‖f‖H gives rise to the following theorem:

Theorem 4.7. Assume that J satisfies the norm-inequality assumption (3.3). If 
f ∈ H \ ker(K∗) is a dual singular vector, i.e.

‖K∗f‖U∗

‖f‖2
H

f ∈ ∂ ‖K∗f‖U∗ , (4.3)

and satisfies 〈K∗f , v〉 = 0 for all v ∈ ker(J), then the first non-trivial solution u1 of the ISS 
flow (2.10) characterised via (4.2) is a (primal) singular vector of J.

Proof. We have shown above that if f satisfies ‖K∗f‖U∗ = ‖K∗‖ ‖f‖H, then u1 is a singular 
vector. Since

‖K∗‖ = sup
ω∈H

‖K∗ω‖U∗

‖ω‖H

we see that in order for ‖K∗f‖U∗ = ‖K∗‖ ‖f‖H to hold true, f has to satisfy

f ∈ arg max
ω∈H

‖K∗ω‖U∗

‖ω‖H
.

The optimality condition for this is

0 ∈
∂ ‖K∗f‖U∗ ‖f‖H − ‖K∗f‖U∗

f
‖f‖H

‖f‖2
H

which implies

‖K∗f‖U∗

‖f‖2
H

f ∈ ∂ ‖K∗f‖U∗ .

 
□ 

Remark 4.8. Setting J2(ω) = ‖K∗ω‖U∗, ω ∈ H, we see from the above that f has to be a 
singular vector of J2 (and I : H → H). J2 is even and positively one-homogeneous and hence 
we can reuse all the results for even and positively one-homogeneous functionals.
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5. Numerical results

We conclude the paper with numerical results that demonstrate the sufficiency of the (SUB0) 
condition when we wish to decompose a linear combination of generalised singular vectors. 
In order to verify the theoretical results provided in section 3, we need to be able to solve the 
ISS flow (2.10) numerically. In [80] it has been shown that solutions of (2.10) can be com-
puted directly in case of J(u) = ‖u‖�1(Rm) via what has been termed the adaptive inverse scale 
space method (aISS). In [81] the aISS has been extended to general polyhedral functionals 
J and could therefore also be used to numerically verify the behaviour of functionals like 
the anisotropic total variation, for example. For arbitrary convex, even and positively one-
homogeneous functionals J, however, there does not exist a way to efficiently compute the 
exact ISS solution at each time step numerically to the best of our knowledge. Therefore, for 
simplicity, we are going to restrict ourselves to the case of J(u) = ‖u‖�1(Rn) for the numerical 
results. We compute the inverse scale space solution for a composition satisfying the (SUB0) 
condition. We also demonstrate the need for the (SUB0) condition computing ISS solutions of 
compositions following examples 3.8 and 3.18.

5.1. (SUB0) observance

With our first example we simply verify that the result of theorem 3.14 is observed in prac-
tice. In order to do so, we consider the operator K : �1(R8) ⊇ �2(R8) → �2(R8) defined by 

(Ku)k =
∑1

j=−1 uk−jgj  for g = (1, 1, 0)T/
√

2 from example 3.8, respectively example 3.18, 
the even and positively one-homogeneous functional J(u) = ‖u‖�1(R8), and the following 
three K-normalised and K-orthogonal singular vectors

uλ1 = (0, 0, 0, 1,−1, 0, 0, 0)T ,

uλ2 = (0,−1, 0, 0, 0, 0, 0, 0)T ,

uλ3 = (0, 0, 0, 0, 0, 0, 1, 0)T ,

with λ1 = 2 and λ2 = λ3 = 1. We now verify that these singular vectors satisfy the 
(SUB0) condition in the order they are defined, i.e. we have to verify λ1K∗Kuλ1 ∈ ∂J(0), 
λ1K∗Kuλ1 + λ2K∗Kuλ2 ∈ ∂J(0) and λ1K∗Kuλ1 + λ2K∗Kuλ2 + λ3K∗Kuλ3 ∈ ∂J(0). The first 
condition trivially follows from uλ1 being a generalised singular vector, the second and third 
follow from

2∑
j=1

λjK∗Kuλj = (−1/2,−1, 1/2, 1,−1,−1, 0, 0)T ∈ ∂J(0),

3∑
j=1

λjK∗Kuλj = (−1/2,−1, 1/2, 1,−1,−1/2, 1, 1/2)T ∈ ∂J(0).

Hence, (SUB0) is satisfied and theorem 3.14 guarantees that (2.10) and therefore the aISS 

algorithm will decompose any composition f =
∑3

j=1 γjKuλj with λ1/γ1 < λ2/γ2 < λ3/γ3 
into γ1uλ1, γ1uλ1 + γ2uλ2 and γ1uλ1 + γ2uλ2 + γ3uλ3. Figure 5 shows the three iterations of 

the aISS method until convergence, for f =
∑3

j=1 γjKuλj with γ1 = 5, γ2 = 2 and γ3 = 1. It 
can be seen that the aISS algorithm and therefore (2.10) indeed decomposes the signal f as 
stated by theorem 3.14.
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5.2. (SUB0) violations

Following example 3.8 we also want to verify numerically that the absence of the (SUB0) con-
dition in fact can lead to results different from the decomposition of the data into the original 
singular vectors. We use the operator K, the functional J, and the two singular vectors

uλ1 = (0, 0, 1, 0, 0)T and uλ2 =
1√
2
(0, 1, 0,−1, 0)T ,

from example 3.8. We know that the two singular vectors are K-orthogonal but violate the 

(SUB0) condition. We can then for instance define f = Kuλ1 +
3

2
√

2
Kuλ2 as potential input 

data that we want to decompose. Note that we have ensured λ1/γ1 = 1 < 4/3 = λ2/γ2. In 
order to compute a solution of the ISS flow (2.10) we again use the aISS method. The first 
non-trivial solution u(t1) of the aISS method reads as

Figure 5. The three iterations of the aISS algorithm until convergence for the example 
of section 5.1. Figure (a) shows both the primal and the dual variable, i.e. u(t1), p(t1), at 
t  =  t1, whereas figures (b) and (c) show the same for t2 and t3, respectively. It is easily 
observed that the aISS algorithm has decomposed the signal f into the original singular 
vectors with no loss of contrast, as stated by theorem 3.14. (a) First aISS solution and 
subgradient. (b) Second aISS solution and subgradient. (c) Third and final aISS solution 
and subgradient.
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u(t1) = (0, 5/4, 0, 0, 0)T .

This solution is obviously as sparse as uλ1 and also a singular vector (with the same singular 
value after normalisation) but corresponds neither to uλ1 nor to uλ2 . More importantly, it is a 

better fit to the data f with respect to the �2-norm, as we have ‖Ku(t1)− f‖2
�2(Rm) = 9/16 as 

opposed to ‖Kuλ1 − f‖2
�2(Rm) = 9/8. Hence, it is logical that the first ISS solution is not uλ1. 

The remaining ISS solutions are

u(t2) = (0, 1, 1/2, 0, 0)T and u(t3) = (0, 3/4, 1,−3/4, 0)T ,

where u(t3) satisfies u(t3) = uλ1 +
3

2
√

2
uλ2. What is interesting about this example is that the 

ISS flow (2.10), whilst converging to a J-minimial solution of K∗Ku = K∗f , most importantly 
has to minimise the residual in each step. This dominates the behaviour of keeping J minimal 
at the same time, as we observe J(u(t1)) > J(uλ1) but ‖Ku(t1)− f‖�2(Rm) < ‖Kuλ1 − f‖�2(Rm).

We can obviously apply aISS method to compute solutions for compositions made from 
the singular vectors described in example 3.18 as well. We pick γ1 = 9, γ2 = 8, γ3 = 3

√
2, 

γ4 = 2, and γ5 = 1 in order to have λk/γk < λk+1/γk+1 for k = 1, . . . , 4. In this case the first 
non-trivial solution u(t1) of the aISS method is given by

u(t1) = (0, 0, 0, 0,−11/2, 0, 0, 0, 0)T .

The recovered peak does not match any of the singular vectors uλj , j = 1, . . . , 5. This shows 
that in order for the ISS flow to give a decomposition into the singular vectors of f it is not 
enough that the full sum of the subgradients is in the subdifferential of J at zero. We need the 
partial sums as well. The remaining solutions are

u(t2) = (0, 0, 5, 0,−11/2, 0, 5, 0, 0)T ,

u(t3) = (0, 0, 5/4, 15/2,−37/4, 0, 5, 0, 0)T ,

u(t4) = (0, 0, 0, 12,−17, 11, 0, 0, 0)T = γ1uλ1 + γ2uλ2 + γ3uλ3 ,

u(t5) = (0,−2, 0, 12,−17, 11, 0, 0, 0)T = γ1uλ1 + γ2uλ2 + γ3uλ3 + γ4uλ4 ,

u(t6) = (0,−2, 0, 12,−17, 11, 0,−1, 0)T = γ1uλ1 + γ2uλ2 + γ3uλ3 + γ4uλ4 + γ5uλ5 .

The solutions at steps two and three cannot be written as any linear combination of the five 
singular vectors uλj , j = 1, . . . , 5. From step four the solutions can be written as linear com-
binations of the singular vectors with no loss of contrast. However, we are not able to separate 
uλ1, uλ2 , and uλ3.

6. Conclusions and outlook

In this paper we have investigated the possibility of using the inverse scale space flow as a 
decomposition method for even and positively one-homogeneous regularisation functionals. 
We have formulated conditions under which the inverse scale space flow will give a decompo-
sition of a linear combination of generalised singular vectors. Furthermore, we have investi-
gated the behaviour of the flow for arbitrary data. We have given a characterisation of the first 
non-trivial solution and shown that this solution is a primal singular vector when the input data 
is what we have named a dual singular vector.
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For the inverse scale space decomposition we require the generalised singular vectors 
representing the data to be orthogonal when mapped to the data space by the forward opera-
tor. This condition, however, is quite restrictive and in future research we aim to relax the 
condition. The idea is that the inverse scale space flow will then still give a decomposition 
into the singular vectors but with time-varying coefficients. Another subject of interest is to 
investigate whether the data can always be decomposed into a linear combination of singular 
vectors and a remainder that can be seen as noise satisfying special conditions such as (4.1). 
Extending the decomposition results to data containing noise in the same manner as in [3, 
section 7.2] we then know that the inverse scale space flow will always give a decomposition 
into singular vectors.

Another direction for future research is the numerical computation of inverse scale space 
solutions as well as the numerical computation of generalised singular vectors. As mentioned 
earlier, the former is currently restricted to polyhedral regularisation functionals (see [80, 81]). 
For the latter there has been made substantial progress in [82–85], but many open questions 
need yet to be addressed. How can we compute ground states as well as non-trivial singular 
vectors with larger singular values? How can we incorporate (linear) forward operators? How 
can we compute dual singular vectors in a robust fashion? These are only few of many open 
questions that need to be addressed in future research.
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