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SUMMARY

When unfolded proteins accumulate in the endo-
plasmic reticulum (ER), the unfolded protein
response (UPR) increases ER-protein-folding capac-
ity to restore protein-folding homeostasis. Unfolded
proteins activate UPR signaling across the ER mem-
brane to the nucleus by promoting oligomerization
of IRE1,aconserved transmembraneERstress recep-
tor. However, the coupling of ER stress to IRE1 oligo-
merization and activation has remained obscure.
Here, we report that the ER luminal co-chaperone
ERdj4/DNAJB9 is a selective IRE1 repressor that pro-
motes a complex between the luminal Hsp70 BiP and
the luminal stress-sensing domain of IRE1a (IRE1LD).
In vitro, ERdj4 is required for complex formation be-
tween BiP and IRE1LD. ERdj4 associates with IRE1LD

and recruitsBiP through the stimulation ofATPhydro-
lysis, forcibly disrupting IRE1 dimers. Unfolded pro-
teinscompete forBiPand restore IRE1LD to itsdefault,
dimeric, and active state. These observations estab-
lish BiP and its J domain co-chaperones as key regu-
lators of the UPR.

INTRODUCTION

Secretory and transmembrane proteins enter the endoplasmic

reticulum (ER) as unfolded polypeptides and emerge as folded

and processed proteins. The protein folding capacity of the

ER, as measured by its luminal volume and the levels of its

protein-folding and processing machinery, is matched to

the inward flux of secretory and transmembrane proteins by

an unfolded protein response (UPR) (Cox et al., 1997; Kozut-

sumi et al., 1988). A stress signal arising from an imbalance

between unfolded proteins and the ER machinery is recognized

by three ER-localized transmembrane proteins—IRE1, PERK,

and ATF6—that affect a rectifying transcriptional and transla-

tional response to restore protein-folding homeostasis (re-

viewed in Walter and Ron, 2011). Although a good deal is known

about the effector functions of the UPR transducers, the phys-
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iological significance of ER stress, and the response to it

(reviewed in Wang and Kaufman, 2016), the upstream molecular

mechanisms that detect the ER stress signal remain poorly

understood.

IRE1, the most conserved and studied UPR transducer (Cox

et al., 1993; Mori et al., 1993), detects stress with its ER-luminal

domain (IRE1LD) and dimerizes, leading to dimerization-depen-

dent autophosphorylation of its cytosolic domain (Shamu and

Walter, 1996) and the subsequent activation of its cytosolic en-

doribonuclease activity (Lee et al., 2008). Activated IRE1 uncon-

ventionally splices the mRNA of the transcription factor XBP1/

HAC1 (Calfon et al., 2002; Cox and Walter, 1996; Yoshida

et al., 2001), promoting XBP1 translation and a conserved

XBP1-dependent gene-expression program.

Dimerization emerges as a key upstream event both in IRE1

activation and in activation of PERK, which shares with IRE1 a

structurally related ER-stress-sensing luminal domain (Harding

et al., 1999; Carrara et al., 2015a). Two hypotheses have been

put forth to explain the coupling of ER stress to dimerization. In

one hypothesis, unfolded proteins are proposed to serve as acti-

vating ligands by directly binding to the luminal domain and sta-

bilizing it in a dimeric conformation. An alternative hypothesis

holds that the UPR is organized along principles similar to its

cytosolic counterpart, the heat shock response, in which an

imbalance between unfolded proteins and heat shock protein

(Hsp)70 chaperones is recognized via the former’s ability to

compete for the latter, kinetically disrupting repressive com-

plexes between chaperones and stress transducers (Abravaya

et al., 1992; Tomoyasu et al., 1998).

The IRE1 luminal domain crystallizes as a dimer, which, in the

yeast protein, is traversed by a groove that could engage an

extended peptide as a stabilizing ligand (Credle et al., 2005).

Yeast IRE1LD peptide ligands have been identified, but when

added to solutions of yeast IRE1LD, they principally affect a tran-

sition from a collection of oligomers to higher-order oligomers

(Gardner and Walter, 2011). In the crystal structure of mamma-

lian IRE1LD and the related PERKLD, the groove is occluded (Car-

rara et al., 2015a; Zhou et al., 2006). Furthermore, mammalian

IRE1LD is a dimer even in pure, dilute conditions (Liu et al.,

2000; Zhou et al., 2006). Thus, the role of unfolded protein bind-

ing in promoting the monomer-to-dimer transition that initiates

UPR signaling remains unclear.
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The ER lumen has a single Hsp70 chaperone, BiP. Reversible

chaperone repression as the regulatory principle of UPR activity

is supported by an inverse correlation between IRE1 activity and

the amount of the ER-localized BiP recovered in complex with it

(Bertolotti et al., 2000; Oikawa et al., 2009; Okamura et al., 2000),

a feature that extends to the related UPR transducer PERK

(Bertolotti et al., 2000; Ma et al., 2002). Furthermore, mutations

in yeast BiP (Kar2p) that stabilize the BiP-IRE1LD interaction

repress the UPR (Kimata et al., 2003), and only unfolded proteins

that engage BiP can induce the UPR (Ng et al., 1992). However,

beyond plausibility suggested by these correlative cell-biological

findings and the argument of evolutionary analogy, this model

was otherwise unsupported.

Hsp70 chaperones undergo a nucleotide-binding and hydro-

lysis-dependent cycle that dramatically alters their affinity for

substrates. The intrinsic ATPase activity of Hsp70s is low,

and ATPase-accelerating J-protein co-chaperones are there-

fore required for efficient substrate recognition and binding by

Hsp70 (reviewed in Kampinga and Craig, 2010; Mayer, 2013).

This feature arises from the ability of the co-chaperones to

stimulate the ATPase activity of the Hsp70 via their conserved

J domains while presenting diverse substrates to the Hsp70

via their divergent targeting domains. As a consequence,

the Hsp70 initially interacts with substrates in a high-kon,

ATP-bound state and then retains the substrate in a low-koff,

ADP-bound state. Cycles of substrate release, accelerated by

nucleotide exchange factors (NEFs, reviewed in Behnke et al.,

2015) and rebinding, specified by the J domain co-chaperone,

result in substrate-selective ultra-affinity (De Los Rios and

Barducci, 2014; Misselwitz et al., 1998) that is the basis for

formation of Hsp70-substrate complexes. Here, we drew on

these well-established principles to examine the possibility

that past failures to obtain biochemical support for reversible

BiP-mediated repression as the basis for UPR regulation arose

from the absence of a suitable ER-localized co-chaperone in

the experimental systems used.

RESULTS

ERdj4 Selectively Represses IRE1 Signaling in
Mammalian Cells
Hsp70s are recruited to their substrates by J-domain-contain-

ing co-chaperones (J-proteins). To examine the potential role

of ER-localized J-proteins (ERdjs) in recruiting BiP to IRE1 to

repress signaling, we used CRISPR-Cas9 genome editing to

systematically inactivate the genes encoding the eight known

ERdjs in Chinese hamster ovary (CHO) cells that expressed

an XBP1s::Turquoise reporter of IRE1 RNase activity and a

CHOP::GFP reporter primarily under the control of PERK.

The two reporters responded in parallel to drug-induced

unfolded protein stress (Figures 1A, inset, and S1A). Deletion

of ERdj2 (Sec63) strongly activated both reporters (Figure 1A),

consistent with a role for this co-chaperone in supporting

BiP-mediated ER-protein-folding homeostasis or in repression

of both IRE1 and PERK. In contrast, deletion of ERdj4 prefer-

entially activated the XBP1::Turquoise reporter. The minor

activation of CHOP::GFP observed in the DERdj4 cells was

completely suppressed by treatment with the IRE1 inhibitor
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4m8c (Figure 1B), indicating that it arose not from PERK activa-

tion but rather from IRE1’s downstream contribution to CHOP

induction (Wang et al., 1998). Together, these observations

suggest that, unlike DERdj2, activation of the IRE1 branch

by DERdj4 is unlikely to reflect solely compromised ER protein

folding.

The ability of ERdj4 to repress IRE1 was dependent on the

integrity of its J domain and its C-terminal targeting domain.

Wild-type (WT) ERdj4 attenuated IRE1 activity in DERdj4 cells,

but H54Qmutant ERdj4 (ERdj4QPD, disrupting the motif required

for productive interactions with Hsp70, Wall et al., 1994) was

largely inert (Figures 1C and S1B). Expression of an ER-localized

truncated ERdj4 fused to mCherry (ERdj4 residues 1–90, con-

taining the J domain, but lacking the C-terminal targeting

domain), failed to attenuate IRE1 activity in DERdj4 cells and

instead further activated both the IRE1 and PERK reporters

(Figure S1C). This feature required integrity of the J domain

(compare the red and green traces in Figure S1C) and is consis-

tent with the ability of a deregulated J domain to perturb protein-

folding homeostasis in the ER. Phosphorylation of endogenous

IRE1a was consistently higher in DERdj4 CHO cells but

increased further during ER stress (Figure 1D), a feature shared

by the XBP1::Turquoise reporter (Figure S1D). These findings

are consistent with a J-domain- and targeting-domain-depen-

dent role for ERdj4 in the repression of endogenous IRE1

signaling.

A special relationship between ERdj4 and the IRE1 branch of

the UPR is further suggested by the selective regulation of the

ERdj4 gene by IRE1/XBP1 activity (Adamson et al., 2016; Lee

et al., 2003) and by the phenotype of ERdj4 inactivation in

mice, which mimics XBP1 overexpression (Fritz and Weaver,

2014). The notion that ERdj4 may repress IRE1 directly

was further supported by evidence that it plays a role in forma-

tion of the (hypothesized) repressive BiP-IRE1LD complex: the

amount of BiP recovered in complex with endogenous IRE1a

from DERdj4 cells was reduced by half relative to the WT cells

(Figures 1E and 1F).

ERdj4 Promotes Association of BiP with the Structured
Core Region of the IRE1 Luminal Domain in Cells
To further probe ERdj4’s role in BiP recruitment to IRE1LD, we

replaced the cytosolic effector domain of IRE1 with glutathione

S-transferase (GST), yielding a convenient sensor comprised of

IRE1a’s luminal and transmembrane domain fused to cytosolic

GST and uncoupled from downstream signaling (Figure 2A).

IRE1LD-GST recovered by glutathione affinity chromatography

from DERdj4 cells was associated with some BiP. However,

in DERdj4 cells, co-transfection of IRE1LD-GST with WT ERdj4

increased the recovery of BiP by 2.5-fold compared with co-

transfection of ERdj4QPD (Figures 2B and 2C). ERdj4 expression

did not increase the recovery of BiP in complex with the luminal

domain of PERK (Figure 2D). ERdj6, another UPR-induced ER-

localized J-protein, did not increase recovery of BiP in complex

with IRE1LD-GST (Figure 2E). ERdj4 thus has a specific capacity

to promote a BiP-IRE1LD complex.

The luminal domain of IRE1 consists of a structured core re-

gion (CLD, core luminal domain) and a presumably unstructured

tail region leading to the transmembrane domain (Zhou et al.,
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Figure 1. ERdj4 Is a Selective IRE1

Repressor

(A) XBP1s::Turquoise and CHOP::GFP-reporter

activity in CHO cells with the indicated ER-local-

ized J-protein (ERdj) deleted. Shown is the median

fluorescence (± SEM) from 20,000 cells, normal-

ized to WT. Inset: 2-dimensional flow cytometry of

untreated (UT) and tunicamycin-treated (Tm) WT

CHO reporter cells.

(B) XBP1s::Turquoise and CHOP::GFP activity in

CHO cells untreated or treated with the IRE1 in-

hibitor 4m8C, which blocks IRE1-dependent CHOP

activation. Fluorescence normalized to WT. Mean

of medians ± SD, n = 3, ***p = 0.0005, repeated

measurements one-way ANOVA, Dunnett’s multi-

ple corrections test.

(C) XBP1s::Turquoise signals from cells trans-

fected with empty plasmid or with mCherry

marked plasmid encoding ERdj4 with a WT or

inactive J domain (ERdj4QPD). Transfected cells

were gated for moderate mCherry expression

levels, as shown in Figure S1B.

(D) Immunoblot of immunoprecipitated endoge-

nous IRE1a analyzed by Phos-tag SDS-PAGE.

Where indicated, cells were treated with dithio-

threitol (DTT). Fraction of active (phosphorylated)

IRE1-P from this representative blot is noted.

(E) Representative immunoblot of endogenous

IRE1a and associated BiP recovered from the

indicated cell lines by immunoprecipitation of

IRE1a.

(F) Ratio of BiP to IRE1 signal in six independent

experiments as in (E). Mean ± SD, *p = 0.0118,

parametric ratio paired Student’s t test).

See also Figure S1.
2006) (Figure 2A). IRE1LD mutants with truncations in the tail

region are reported to associate with less BiP than full-length

IRE1LD do and, though regulated, have higher constitutive activ-

ity when overexpressed in DIRE1 cells, leading to the suggestion

that BiP binds to the IRE1LD tail region to repress IRE1 signaling

(Oikawa et al., 2009). However, in DERdj4 cells, ERdj4 was still

able to increase BiP recovery with IRE1CLD-GST (Figure 2F), indi-

cating its ability to act on the CLD.

BiP has been reported to associate with IRE1LD in a nucleo-

tide-independent manner via its nucleotide-binding domain

rather than conventionally, by its substrate-binding domain

(Carrara et al., 2015b). However, addition of ATP destabilized

both the BiP-IRE1LD-GST complex and the endogenous

BiP-IRE1 complex (Figures 2G and 2H). Together, these findings

indicate that BiP engages the core structured region of IRE1LD as

a canonical Hsp70 substrate, an event that can be promoted

by ERdj4.
Cell
ERdj4 Opposes IRE1 Luminal
Domain Dimerization in Cells and
In Vitro

To determine whether the ERdj4-pro-

moted BiP-IRE1LD complex influenced

the IRE1LD monomer-dimer transition

that initiates the UPR, we sought to

establish a method to measure endoge-
nous IRE1LD dimerization in cells. The crystal structure of

dimeric, active human IRE1LD reveals a polar interaction be-

tween the side chains of Q105 from opposing protomers (Fig-

ure 3A, PDB: 2HZ6). Using CRISPR-Cas9-mediated homolo-

gous recombination, we replaced this residue with a cysteine

at the endogenous Ern1/Ire1a locus. IRE1Q105C CHO cells

retained the ability to mount a UPR (Figures 3B and S2).

IRE1Q105C is expressed at a lower level than WT IRE1, possibly

because it is less stable in cells. This decreased expression

level likely accounts for the attenuated induction of the IRE1

branch of the UPR in IRE1Q105C cells (Figure S2). Despite its

lower level of expression, ER stress induction by thapsigar-

gin-mediated luminal calcium depletion effected formation of

a disulfide in the IRE1Q105C mutant cells (Figure 3C), reflecting

the close proximity of the cysteines in the activated dimer

and providing a readout for stress-relevant IRE1LD dimer forma-

tion in vivo.
171, 1625–1637, December 14, 2017 1627
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Figure 2. ERdj4 Promotes a BiP-IRE1

Complex

(A) Schema of the IRE1LD-GST protein containing

the entire human IRE1a luminal and trans-

membrane domains (residues 19–486, solid) fused

to GST (striped).

(B) Representative immunoblots of IRE1LD-GST

and endogenous BiP, recovered by glutathione

affinity chromatography or in lysate of transfected

DERdj4 cells.

(C) Ratio of BiP to IRE1LD-GST signal from 4 ex-

periments, as in (B). Mean ± SD. **p = 0.0048,

parametric ratio paired Student’s t test).

(D) As in (B); compares IRE1LD-GST to PERKLD-

GST. R(B/LD) notes the ratio of the BiP signal to the

LD-GST species from the representative experi-

ment shown.

(E) As in (B); compares ERdj4 to ERdj6.

(F)As in (B); compares IRE1LD-GST to IRE1CLD-GST.

(G) As in (B); prior to elution with sample buffer,

the indicated glutathione Sepharose beads were

incubated for 5 min with 3 mM ATP at room

temperature.

(H) Immunoblot of endogenous IRE1a and BiP

recovered from CHO cells of the indicated geno-

type by immunoprecipitation of IRE1a. Prior to

elution with sample buffer, the indicated protein-A

Sepharose beads were incubated with ATP

(as in G). The bottom panel shows the input of BiP

in the two samples.
A modified version of IRE1LD-GST with the Q105C mutation

was used to gauge the effect of ERdj4 on the monomer-dimer

ratio (Figure 3D). Unlike endogenous IRE1Q105C, exogenously

expressed IRE1LD Q105C-GST is abundant and spontaneously

forms disulfide-linked IRE1LD Q105C-GST dimers (Figure 3E).

When co-transfected, WT ERdj4 decreased by 2.5-fold the frac-

tion of disulfide-linked, dimeric IRE1LD Q105C-GST. ERdj4QPD had

no effect on the monomer-to-dimer ratio (Figures 3E and 3F).

To determine whether ERdj4 promoted the BiP-IRE1LD com-

plex by directly recruiting BiP to IRE1LD, we purified the three

proteins from bacteria (Figure 4A). IRE1LD was tagged with biotin

on its C terminus (IRE1LD-bio). Formation of a BiP-IRE1LD-bio

complex was assessed by recovery on immobilized streptavidin

(Figure 4B). BiP and IRE1LD formed a complex only in the pres-

ence of ERdj4 and ATP (Figure 4C, lanes 2, 4, and 9). Like its

in vivo counterpart (Figures 2G and 2H), the isolated BiP-IRE1LD

complex thus formed was sensitive to disruption by incubation

with ATP (Figure 4C, upper panel; the residual BiP eluted with
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SDS, lower panel, reflects incomplete-

ness of the preceding ATP elution). The

ERdj4QPD mutation and mutations in BiP

that interfered with its ATPase activity

(BiPT229A) or substrate binding (BiPV461F)

greatly enfeebled complex formation (Fig-

ure 4C, lanes 5, 7, and 8). Association of

BiP’s isolated nucleotide-binding domain

(NBD) with the IRE1LD was not observed

(Figure S3A), pointing away from the

non-canonical IRE1-BiP interaction (pre-
viously suggested by Carrara et al., 2015b) and favoring instead

formation of a complex in which BiP recognizes IRE1LD as a

typical substrate.

The isolated J domain of ERdj4 retained some ability to pro-

mote a BiP-IRE1LD complex (Figure 4C, lane 6) but was repro-

ducibly weaker than full-length ERdj4, attesting to the impor-

tance of the C-terminal targeting domain of ERdj4. It is likely

that multiple BiP molecules engaged the IRE1LD-bio via multiple

binding sites or as BiP oligomers (Figure S3B). In the presence of

ATP, ERdj4 also recruited BiP to the biotinylated core IRE1CLD,

indicating that the IRE1LD tail region is not essential for complex

formation between IRE1 and BiP (Figure 4D).

To determine whether ERdj4 and BiP interfere with IRE1LD

dimerization in vitro, we produced a non-biotinylated,

tetramethylrhodamine-5-maleimide (TAMRA)-labeled fluores-

cent IRE1LD probe (IRE1LD-TAM) and measured the effect of

BiP, ERdj4, and ATP on recovery of IRE1LD-TAM in complex

with IRE1LD-bio (Figure 4E). Consistent with the high affinity of
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Figure 3. ERdj4 Opposes IRE1 Dimerization

(A) Crystal structure of human IRE1LD (PDB: 2HZ6) highlighting Q105 (black) at the dimer interface.

(B) Reducing Phos-tag SDS-PAGE of endogenous IRE1a recovered from WT or IRE1Q105C cells treated in the indicated manner. Fraction of active (phos-

phorylated) IRE1-P from this representative immuno blot is noted.

(C) Representative immunoblot of endogenous IRE1a and PERK recovered from the indicated cell lines by immunoprecipitation of IRE1a or PERK and resolved by

reducing and non-reducing SDS-PAGE. ER stress was induced by thapsigargin (Tg) or DTT.

(D) Schema of IRE1LD Q105C-GST with the Q105C-Q105C disulfide indicated.

(E) Representative immunoblot of IRE1LD Q105C-GST and BiP recovered from DERdj4 cells transfected with indicated constructs and resolved by non-reducing

SDS-PAGE.

(F) Ratio of disulfide-bound IRE1LD Q105C-GST dimer to free thiol in indicated samples. Quantified in six independent experiments as shown in (D) above (mean ±

SD, n = 6, ****p < 0.0001, unpaired Student’s t test with Welch’s correction).

See also Figure S2.
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Figure 4. Complex Formation between BiP and IRE1 Requires ERdj4

(A) Coomassie stain of purified BiP, IRE1LD-bio, and ERdj4 resolved by SDS-PAGE.

(B) Schema of the experiment shown in (C).

(C) Coomassie-stained SDS-PAGE gel of biotinylated IRE1LD-bio and BiP recovered on a streptavidin matrix from reactions constituted as indicated. Con-

centrations used were 5 mM IRE1LD-bio, 8 mM ERdj4, 30 mM BiP, and 2 mM ATP. Q = ERdj4QPD, T = BiPT229A, V = BiPV461F, and J = isolated J domain of ERdj4.

Proteins were eluted sequentially with ATP (ATP elution) and SDS sample buffer (SDS elution).

(D) As in (B) and (C), with IRE1CLD.

(E) Schema of the experiment shown in (F).

(F) Sequential fluorescence scan and Coomassie stain of the same SDS-PAGE gel of proteins recovered on immobilized streptavidin from reactions assembled

from the indicated components. The IRE1LD-bio-loaded beads were allowed to associate with fluorescently labeled IRE1LD-TAM, whose recovery in the

(legend continued on next page)
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IRE1LD protomers for each other, IRE1LD-TAM formed a stable

complex with IRE1LD-bio that was readily recovered on immobi-

lized streptavidin. However, introduction of WT BiP, WT ERdj4,

and ATP interfered with the IRE1LD dimer while forming a BiP-

IRE1LD-bio complex (Figure 4F). Completion of the BiP cycle

by addition of the nucleotide exchange factor GRP170/

ORP150 significantly increased the amount of BiP recovered

with IRE1LD-bio and further attenuated recovery of IRE1LD-

TAM (Figures 4G, 4H, and S3C).

Bio-layer interferometry (BLI) was used to dissect ERdj4-

mediated BiP recruitment to IRE1LD. IRE1LD-bio immobilized

onto the BLI sensor readily associated with both WT ERdj4

andmutant ERdj4QPD, generating a robust BLI signal (Figure 5A).

The isolated J domain of ERdj4 did not interact with the IRE1LD-

bio sensor, implicating the C-terminal domain of ERdj4 in the

interaction. In the absence of ATP, the binary complex of

IRE1LD-bio and ERdj4 (stabilized by the very low koff rate of the

complex, Figure S4A) interacted minimally with BiP and did not

interact with mutants of BiP (BiPT229A and BiPV461F), even in

the presence of ATP. However, immersing the sensor loaded

with the IRE1LD-bio-ERdj4 complex into a solution of BiP and

ATP gave rise to a highly reproducible, transient, positive BLI

signal, followed by its decline toward the baseline signal of the

IRE1LD-bio-loaded BLI sensor (observed before formation of

the IRE1LD-bio-ERdj4 complex; Figure 5A, green trace). The ki-

netics of this biphasic swing in the BLI signal were increased

both by the amount of ERdj4 bound to the IRE1LD-bio-loaded

BLI sensor (Figure S4B) and by the concentration of BiP

(Figure S4C).

Analysis of the protein content of the BLI sensor preceding

and following its immersion into the solution containing BiP

and ATP revealed the presence of ERdj4 in the former steady

state and its absence from the latter (Figure 5B). These obser-

vations are consistent with ERdj4’s ability to promote forma-

tion of a complex between BiP and IRE1LD through directed

ATP hydrolysis and to maintain this complex by facilitating

BiP re-binding following nucleotide exchange. BiP binding dis-

rupts the otherwise stable IRE1LD-ERdj4 complex. When ERdj4

is present at adequate concentration, its re-binding to IRE1LD

dynamically maintains the IRE1LD-BiP complex (Figure 4C).

However, ERdj4 dissociated from the BLI sensor is too dilute

to rebind, allowing the IRE1LD-BiP complex to dissipate

through nucleotide exchange (last segment of green trace in

Figure 5A).

To determine whether ERdj4 and BiP could forcibly disrupt

pre-formed IRE1LD dimers or merely repress IRE1LD dimerization

by retaining monomers, we confronted pre-formed IRE1LD-bio/

IRE1LD-TAM dimers, immobilized on streptavidin, with BiP,

GRP170, and ATP in the presence or absence of ERdj4 and

monitored the loss of bound IRE1LD-TAM (Figure 5C). Dissoci-

ated IRE1LD-TAM was diluted in the large assay volume, mini-

mizing the effect of rebinding. ERdj4 accelerated the loss of
pull-down reports on the integrity of the IRE1LD dimer. Concentrations used were

T = BiPT229A, V = BiPV461F, and J = isolated J domain of ERdj4.

(G) As in (E) and (F), with 1 mM GRP170.

(H) Quantification of the effect of GRP170 on BiP association with IRE1LD-bio, as

See also Figure S3.
IRE1LD-TAM (Figure 5D), indicating that ERdj4 empowered BiP

to split pre-existing IRE1 dimers.

To determine if ERdj4 could recruit BiP to dimeric IRE1LD

(a prerequisite for the forceful disruption suggested by Fig-

ure 5D), biotinylated IRE1LD Q105C was purified and allowed

to form Q105C-Q105C disulfides, covalently stabilizing the bio-

tinylated IRE1LD Q105C dimers. ERdj4 bound (Figure 5E) and re-

cruited BiP to disulfide-linked dimeric biotinylated IRE1LD Q105C

(Figure 5F), suggesting the existence of an allosteric component

to BiP-mediated inhibition of IRE1. BiP and ATPwere also able to

remove ERdj4 bound to the biotinylated disulfide-linked dimeric

biotinylated IRE1LD Q105C, indicating that IRE1 de-dimerization is

not a strict prerequisite for BiP-mediated ERdj4 displacement

(Figure S4D).

Unfolded Protein Substrates Compete with IRELD for
BiP, Restoring IRE1LD Dimers
Tomonitor the disruption of IRE1LD dimers in real time, we devel-

oped a Förster resonance energy transfer (FRET)-based assay

that reports on the IRE1LD monomer-dimer equilibrium. IRE1LD

molecules labeled on a single cysteine introduced at R234

with an Oregon green 488 donor were combined with molecules

labeled on a single cysteine introduced at S112 with a TAMRA

acceptor. A robust FRET signal (predicted by proximity of

R234 and S112 in the human IRE1LD dimer crystal structure,

PDB: 2HZ6), reflected by the quenching of donor fluorescence,

was detected. Addition of unlabeled IRE1LD restored donor

fluorescence nearly to levels observed in absence of acceptor

molecules, confirming the role of dimerization in the quenched

donor fluorescence (Figure 6A).

Extended incubation of donor- and acceptor-labeled IRE1LD

molecules with high concentrations of ADP-bound BiP (in the

absence or presence of ERdj4) did not disrupt the FRET signal,

indicating that IRE1LD is a poor equilibrium BiP substrate

(Figure 6A, lower traces). However, addition of BiP, ERdj4, and

ATP to pre-equilibrated donor and acceptor IRE1LD reversed

the FRET such that donor fluorescence nearly equaled that

observed in the absence of acceptor molecules. BiP mutants

defective in ATP hydrolysis (BiPT229A) and substrate binding

(BiPV461F) and ERdj4QPD were inert, as was BiPAMP that had

been inactivated by AMPylation (Preissler et al., 2015b). The

isolated J domain of ERdj4 could not drive efficient monomer-

ization. Addition of GRP170 significantly increased the rate

of IRE1LD monomerization (Figure 6B). BiP, ERdj4, and ATP

also disrupted the FRET observed between donor and acceptor

labeled IRE1 CLD (IRE1CLD, Figure S5).

Addition of a BiP substrate (CH1 peptide) (Marcinowski et al.,

2011) alone weakly restored the FRET signal to samples main-

tained in the monomeric state by ERdj4, BiP, and ATP. How-

ever, introduction of sub-stoichiometric amounts of a second

J-protein (devoid of IRE1LD-binding activity), alongside the BiP

substrate, markedly accelerated re-formation of the FRET signal
0.5 mM IRE1LD-TAM, 8 mM ERdj4, 30 mM BiP, and 2 mM ATP. Q = ERdj4QPD,

in (G). Mean ± SD, n = 3, *p = 0.0223 by Student’s paired ratio t test.
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Figure 5. ERdj4 Recruits BiP to Disrupt IRE1 Dimerization

(A) Bio-layer interferometry (BLI) signal of streptavidin sensors loaded with the indicated biotinylated ligand and reacted sequentially with the indicated solution of

analyte, followed sequentially by the indicated solutions of BiP and ATP. Concentrations used were 1.5 mM ERdj4, 1 mM BiP, and 2 mM ATP.

(B) Protein recovered from a BLI sensor lacking (lane 1) or containing an IRE1LD-bio ligand (lanes 2–4). The sensor was incubated with an ERdj4 analyte and then

with BiP or BiPV461F ± ATP.

(C) Schema of the experiment shown in (D).

(D) Fluorescence scans and Coomassie-stained SDS-PAGE gel of proteins recovered on immobilized streptavidin from reactions assembled from the indicated

components. The IRE1LD-bio-loaded streptavidin beadswere pre-associatedwith IRE1LD-TAMand then incubated in a solution of BiP, ERdj4, GRP170, and ATP.

Bars showmean IRE1LD-TAM signal recovered with IRE1LD-bio (±SD) from four independent experiments, ***p = 0.001 by parametric student’s paired ratio t test.

(E) Time-dependent changes in BLI signal of sensors loaded with either WT biotinylated IRE1LD (blue trace) or covalent dimeric disulfide-linked IRE1LD Q105C-bio

(red trace) ligands. Ligand loading (step 1), wash (step 2), interaction with ERdj4 (step 3), and wash (step 4) are shown.

(F) Coomassie stained non-reducing SDS-PAGE gel of IRE1LD-bio and BiP recovered on a streptavidin matrix from reactions constituted as in Figures 4B and 4C

but with IRE1LD-bio or covalent dimeric disulfide-linked IRE1LD Q105C-bio. Proteins were eluted with SDS sample buffer.

See also Figure S4.
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Figure 6. Unfolded Proteins Compete for

BiP to Restore the IRE1 Dimer

(A) Donor fluorescence as a function of the con-

centration of competing unlabeled IRE1LD equili-

brated with a FRET pair (0.2 mM labeled IRE1LD)

consisting of an IRE1LD-OG488 donor (conjugated

at R234C) and IRE1LD-TAM acceptor (conjugated

at S112C) (blue trace, mean values ± SD from

three independent experiments). Also shown are

titrations of unlabeled IRE1LD into a mock FRET

sensor (no IRE1LD-TAM acceptor; red trace) and

titration of BiP with ADP (± ERdj4) into the pre-

equilibrated FRET pair (green and black traces).

(B) Time-dependent change in donor fluorescence

of the IRE1LD FRET pair from (A) incubated at t = 0

with the components shown to the right. Concen-

trations used were 0.2 mM FRET IRE1LD, 30 mM

BIP, 2.5 mM ERdj4, 1 mM GRP170, and 2 mM ATP.

JERdj4 lacks the C-terminal targeting region. BiPAMP

is AMPylated BiP. The asterisks marks a reaction

set up with a mock FRET sensor lacking the

IRE1LD-TAM acceptor.

(C) Time-dependent change in donor fluorescence

of the IRE1LD FRET pair exposed at t = 0 to BiP,

ERdj4 and ATP (arrow labeled ‘‘+ ATP’’). Concen-

trations used were 0.2 mM FRET IRE1LD, 50 mM

BIP, 2.5 mM ERdj4, and 2 mM ATP. Following

disruption of the FRET pair, at 60 min, the

sample was injected with BiP binding peptide

and the J domain of ERdj6 (2.5 mM) (arrow labeled

‘‘+ competitor’’).

See also Figure S5.
(Figure 6C). These observations suggest that BiP binding

to a substrate peptide directed by an orthogonal J-protein

can compete successfully for ERdj4-directed, BiP-mediated

IRE1LDmonomerization. The transitions between themonomeric

‘‘low-FRET’’ and dimeric ‘‘high-FRET’’ states (Figure 6C) occur

on a 30- to 60-min timescale similar to that of the dissolution of

the BiP-IRE1 complex in stressed cells and its reformation in

cells recovering from stress (Bertolotti et al., 2000; Figure 4

therein), suggesting that IRE1LD, BiP, J-proteins, and a BiP sub-

strate together can recapitulate in a simple in vitro assay, a key

aspect of UPR signaling.

DISCUSSION

The discovery of an ER-localized J-protein that selectively re-

presses IRE1 activity has paved the way for experimental recon-

stitution of a UPR that is based on sensor repression by free

chaperone and de-repression by accumulating unfolded pro-
Cell
teins. The experiments incorporating this

missing component have thus closed an

important gap between the finding that

activity of the UPR transducers in cells

correlates inversely with the amount of

associated BiP and a plausible model for

how this might come about.

The structural basis for the disruption

of dimeric IRE1LD by ERdj4-recruited BiP
remains to be determined. However, ERdj4’s ability to recruit

BiP to disulfide-stabilized IRE1LD dimers in vitro suggests that

chaperone-mediated IRE1 monomerization may proceed

through an unstable tertiary IRE12-BiP intermediate and that

BiP interferes with IRE1 dimerization by allosterically disrupting

the dimer interface, not merely by binding to and blocking the

dimer interface. Such a process, dependent on energy released

by ERdj4-promoted ATP hydrolysis by BiP, may be analogous

to auxilin-directed, Hsc70-mediated destabilization of clathrin

coats (Xing et al., 2010) or DnaJ-directed, DnaK-mediated

destabilization of E. coli s32 (Rodriguez et al., 2008).

In eukaryotic cells, BiP is highly abundant, whereas IRE1 is

scarce (Ghaemmaghami et al., 2003; Kim et al., 2014). Given

this stoichiometry, how might BiP repression be reconciled

with the high sensitivity of the UPR that is observed empirically

(Pincus et al., 2010)? Alone, BiP has very low equilibrium affinity

for IRE1, likely a reflection of the lack of accessible high-affinity

BiP binding site(s) on the regulatory core of IRE1LD. Instead,
171, 1625–1637, December 14, 2017 1633



Figure 7. IRE1 Repression by ERdj4 and BiP

and Activation by Unfolded Proteins

In the unstressed ER (green shading), ERdj4 binds

the IRE1 CLD via its C-terminal targeting domain.

ERdj4 stimulates BiP’s ATPase activity to promote

BiP binding to IRE1, ejection of ERdj4, and for-

mation of a repressive BiP-IRE1 complex with a

disrupted dimer interface. The BiP-IRE1 complex

turns over by nucleotide exchange. Free ERdj4 and

BiP recruit the released IRE1 (either as a monomer

or dimer) in a kinetically maintained repressive

cycle. Accumulating unfolded proteins during ER

stress (red shading) compete for BiP and/or ERdj4,

interrupting the cycle of repression. IRE1 mono-

mers are free to dimerize and activate downstream

signals.
the BiP-IRE1 complex is maintained through a dynamic, non-

equilibrium, ATP-consuming process of J-protein-driven cycles

of BiP rebinding to IRE1LD and release following nucleotide ex-

change. The ability of the nucleotide exchange factor GRP170

to increase both the amount of BiP recruited to IRE1LD and the

rate of IRE1LD monomerization in vitro points to the importance

of the ATP-bound pool of BiP to IRE1 repression, as it is best ex-

plained by GRP170’s ability to recover BiP molecules that have

futilely hydrolyzed ATP without recruitment onto IRE1LD, thereby

increasing the concentration of ATP-bound BiP.

A repressive complex maintained dynamically by J-acces-

sible, substrate-free, and ATP-bound BiP molecules would be

sensitive to the concentration of unfolded proteins, as these

compete for the same pool of BiP (Figure 7). It is noteworthy

that analysis of cell lysates suggests that the pool of BiP avail-

able for IRE1 repression is small: most of the BiP detectable

on native gels is either substrate bound, engaged in inactive

BiP oligomers, or inactivated by AMPylation (Freiden et al.,

1992; Preissler et al., 2015a, 2015b). Thus, the buffer of ATP-

bound BiP available to repress IRE1 is likely rather modest.

The strict requirement for a J-protein for repressive complex

formation suggests that competition may also occur at the

level of the co-chaperone. ERdj4, far less abundant than BiP,

likely possesses affinity for certain unfolded proteins through

its C-terminal targeting domain (Dong et al., 2008; Shen et al.,

2002). Since ERdj4 is similarly dependent on this domain to

repress IRE1 both in vitro and in vivo, it follows that the canonical

chaperone-substrate interaction underlying IRE1 repression

could be out-competed by ERdj4 ligands and serve as selective

activators of the IRE1 branch of the UPR.

There is nothing in our findings to argue against an additional

role for unfolded proteins as activating IRE1 ligands. However,

ERdj4-directedBiP repression is playedout at the level of themin-
1634 Cell 171, 1625–1637, December 14, 2017
imal structured core IRE1LD, sufficient for

UPR regulation (Oikawa et al., 2009). In

pure solution, core IRE1LD protomers

have a high affinity for each other and

dimerize without a stabilizing ligand (Zhou

et al., 2006). Furthermore, the formation of

a stress-dependent IRE1LD Q105C disulfide

is difficult to reconcile with an extended
unfolded protein engaging the proposed peptide binding groove

of IRE1LD as the initiator of IRE1LD dimerization. If unfolded

proteins contribute to IRE1 activity, it seems they do so not by

altering the monomer-dimer equilibrium, the crucial, first, regula-

tory step of IRE1 signaling, but rather by influencing the formation

of higher-order IRE1 oligomers (Karagöz et al., 2017).

A J-protein that selectively represses IRE1 and is, in turn, a se-

lective transcriptional target of XBP1 (Adamson et al., 2016; Lee

et al., 2003) constitutes a strand-specific negative-feedback

loop. The intriguing parallels in phenotype between XBP1 over-

expression and ERdj4 deletion, as reflected in defective B cell

development (Fritz and Weaver, 2014), suggest an important

premium attached to selectively capping the expression of

XBP1 target genes. To attain this selectivity, ERdj4 likely exploits

structural differences between PERKLD and IRE1LD. This should

not be difficult, given that these proteins attain their homologous

structure via very limited sequence identity.

ERdj4 deletion only partially deregulates IRE1. Residual IRE1-

BiP complexes found in DERdj4 cells are likely catalyzed by

other ERdjs, which may also target BiP to PERKLD. ERdj2 is a

plausible candidate and may play a role in repressing both the

IRE1 and PERK branches of the UPR. This remains a specula-

tion, as the experiments performed here do not distinguish

between a role in protein-folding homeostasis from direct

recruitment of BiP to the luminal domains of the UPR trans-

ducers. Indeed, it remains possible that several ERdj proteins

contribute to both processes, accounting for the observed

redundancy in their function.

Recent work has emphasized the importance of the translocon

in IRE1 regulation (Adamson et al., 2016), with evidence that

disruption of a complex involving Sec61, ERdj2/Sec63, and

IRE1 deregulates IRE1 signaling (Plumb et al., 2015; Sundaram

et al., 2017). Thus, given the evidence uncovered here for the



critical role of J-proteins in catalyzing a repressive BiP-IRE1 com-

plex, it is tempting to propose that translocon-associated ERdj2

may couple IRE1 signaling directly to the flux of proteins

imported into the ER. When the flux is low, ERdj2 recruits BiP

to IRE1LD. During periods of high secretory activity, ERdj2 is

engaged in facilitating translocation, thereby allowing IRE1 to

dimerize and activate. Through this coupling, the UPR may acti-

vate even before unfoldedproteins begin to accumulate in theER.

By exploiting the diversity of functionalities associated with

J-proteins, BiP-mediated repression of ER stress transducers

emerges as a conserved, sensitive, and potentially versatile

mechanism for coupling changes in unfolded protein burden to

signaling—the essence of the UPR.
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, David Ron

(dr360@medschl.cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

CHO cell line
A parental stock of Chinese Hamster Ovary CHO-K1 cells (ATCC, CCL-61) was used. Its identity has been validated by the presence

of auxotrophic markers and by deep sequencing of the genome.

CHOP::GFP and XBP1::Turquoise reporters were introduced sequentially under G418 and puromycin selection to generate the

previously-described derivative CHO-K1 S21 clone (Sekine et al., 2016). The puromycin resistance marker was subsequently lost,

rendering CHO-K1 S21 cells sensitive to puromycin.

Adherent CHO cell-lines were grown in Ham’s nutrient mixture F12 (Sigma). All cell media was supplemented with 10% Hyclone

FetalClone-2 serum (FetalClone II, Hyclone-GE Healthcare Life Sciences, South Logan, UT Lot# ABB214492), 2mM glutamine

(Sigma), 100 U/ml penicillin and 100 mg/ml streptomycin (Sigma). Cells were grown at 37�C in 5% atmospheric CO2.

Bacterial culture
Proteins were expressed in BL21 C3013 E. coli cells or Origami B(DE3) cells (NEB). Bacterial cultures were grown at 37�C in LB

medium containing 100 mg/ml ampicillin to an OD600nm of 0.6-0.8. Expression was induced with 0.5 mM isopropylthio b-D-1-galac-

topyranoside (IPTG) and the cells were further incubated for 16 hours at 18�C.

METHOD DETAILS

Cell culture
Thapsigargin (Calbiochem) treatment was at 0.5 mM. Tunicamycin (Melford) treatment was at 2.5 mg/ml for 16 hours unless

otherwise stated. 2-Deoxyglucose (Sigma) treatment was at 4 mM for 16 hours. Dithiothreitol (DTT) (Sigma) treatment was at

2 mM for 15 minutes. 4m8c (Cross et al., 2012) treatment was at 10 mM for 12 days.

Transfection
Cells were transfected using Lipofectamine LTX (Life Technologies) with the reduced serum medium Opti-MEM (Life Technologies)

according to manufacturer’s instructions.

Gene manipulation and allele analysis
Cas9 guide design was aided in part by the online resource ‘‘CRISPy’’ (Ronda et al., 2014) though several guides were designed

manually following standard guidelines (Ran et al., 2013). Cells were transfected with the Cas9 and guide constructs and grown

for a week before analysis by flow cytometry and sorting.

For genotyping, genomic DNA was extracted from cells by incubation in proteinase K solution (100 mM Tris pH 8.5, 5 mM EDTA,

200mMNaCl, 0.25%SDS, 0.2 mg/ml Proteinase K) overnight at 50�C. Proteinase Kwas then heat inactivated at 98�C for 20minutes

before the supernatant was collected and used as a template in PCR reactions before sequencing. To aid in interpreting sequencing

data of genes modified by Cas9 the changes in size of the target gene alleles were determined by capillary electrophoresis on a

3730xl DNA analyzer (Applied Biosystems). Samples to be analyzed by the DNA analyzer were generated through PCR reactions

where one of the oligonucleotides had a 50 6-carboxyfluorescein (FAM) flurophore modification. Genomic information of the clones

elaborated, is provided in supplemental table S3

Creating the endogenous IRE1Q105C

The endogenous IRE1 locus was challenged with Cas9 guide UK1558 to generate a loss of function indel and fluorescence-activated

cell sorting (FACS) was used to select for XBP1s::Turquoise dull cells after 2-deoxyglucose (2DG) treatment. The resultant clones

were genotyped with oligonucleotides 1100/1125 and 1101. After sequencing, a clone (NC6) that was apparently homozygous

for a single frameshift nucleotide deletion was selected. To introduce the Q105C and C109S mutations, the new IRE1 locus was

challenged with Cas9 guide UK1559 and a PCR-knitting generated repair template (oligonucleotides used: 1097, 1098, 1116,

1117 to PCR from CHO genomic DNA, see supplemental table S4 for repair template sequence). Cells that successfully repaired

the IRE1 locus were selected using FACS to collect cells that were XBP1s::Turquoise bright after 2DG treatment. Resultant

clones were genotyped with oligonucleotides 1100/1125 and 1101. Two clones (CV1 and CV8) were idenitfied by sequencing as

homozygous for the repair sequence and were used for subsequent experiments.

Flow cytometry and FACS
Flow cytometry was carried out on a BD LSRFortessa. Adherent CHO cells were washed once in PBS and then incubated for 5 mi-

nutes in PBS + 4mMEDTA before harvesting and fixing in PBS + 1.1%paraformaldehyde. Cell sorting was carried out on a Beckman
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Coulter MoFlo Cell sorter. Adherent CHO cells were washed once in PBS and then incubated 5 minutes in PBS + 4mMEDTA + 0.5%

BSA before sorting into fresh media. CHOP::GFP fluorescence was measured by excitation at 488 nm and monitoring emission at

530/30 nm. XBP1s::Turquoise fluorescence was measured by excitation 405 nm and monitoring emission 450/50 nm.

Mammalian cell lysis
Adherent cells were grown in 10-cm dishes and treated as described above. The dishes were then transferred to ice and cells were

washed in PBS and harvested in PBS + 1 mM EDTA with a cell scraper. The collected cells were spun at 370 g for 5 minutes at 4�C.
Cells were lysed in 1% Triton X-100, 150 mM NaCl, 20 mM HEPES-KOH pH 7.5, 10% glycerol, 1 mM EDTA, 1 mM phenylmethylsul-

phonyl fluoride (PMSF), 4 mg/ml Aprotinin, and 2 g/ml Pepstatin A and 2 mM Leupeptin. For BiP coimmunoprecipitation experiments

the lysis buffer lacked EDTA and was further supplemented with 10 mMMgCl2, 6 mg/ml glucose and 2mg/ml Hexokinase (Sigma) to

deplete ATP and stabilize BiP substrate interactions. For analysis of IRE1 phosphorylation by Phos-tag gel electrophoresis (Yang

et al., 2010), the lysis buffer was further supplemented with 10 mM tetrasodium pyrophosphate, 100 mM sodium fluoride and

17.5 mM b-glycerophosphate. For analysis of IRE1Q105C disulfide linked species the lysis buffer was further supplemented with

20 mM N-Ethylmaleimide (NEM). After 5 minutes of lysis on ice, cells were spun at 21,130 g for 10 minutes at 4�C. The supernatant

was transferred to a fresh tube and, when necessary, protein concentration measured with Bio-Rad protein assay (Bio-Rad).

To reduce the non-specific binding of BiP to protein-A Sepharose beads the experiments shown in Figures 1D, 1E, and 2H included

an additional digitonin permeabilization step (Le Gall et al., 2004) to remove non-membrane associated BiP from cells prior to lysis.

After harvesting, cells were washed in HNC buffer (50 mM HEPES-KOH pH 7.5, 150 mM NaCl, 2 mM CaCl2) and then incubated in

HNC with 0.1% (w/v) digitonin (Calbiochem) for 10 minutes. Cells were then washed in HNE buffer (50 mM HEPES-KOH pH 7.5,

150 mM NaCl, 1 mM EGTA) before proceeding to the lysis step as described above.

Antibodies
Anti-mouse IRE1a serum (NY200) and anti-mouse PERK serum (NY97 & NY201) was used for immunoprecipitation and immunoblot

detection of endogenous IRE1a, PERK and PERK-P respectively (Bertolotti et al., 2000). Anti-hamster BiP serumwas used for immu-

noblot detection of endogenous BiP (Avezov et al., 2013). Anti-GST serumwas used for immunoblot detection of GST fusion proteins

(Ron and Habener, 1992). Anti-FLAG-M2 monoclonal antibody was used for immunoblot detection of FLAG fusion proteins

(Sigma F1804).

Immunoprecipitation and GSH pull-down assays
Protein A Sepharose 4B beads (Zymed Invitrogen) and appropriate antisera (against IRE1 and PERK), or glutathione (GSH)

Sepharose 4B beads (GE Healthcare) were equilibrated in lysis buffer. 20 mL beads per sample were added to lysates and left rotating

for 1 hour at 4�C. The beads were then washed in lysis buffer and residual liquid was removed using a syringe. The protein from the

beads was eluted in SDS sample buffer containing 20 mM DTT or 20 mM NEM (for non reducing gels).

SDS-PAGE/Phos-tag SDS-PAGE and immunoblotting
Samples were separated on standard polyacrylamide Tris-HCl gels and transferred to Immobilon-P PVDF membrane (Pore size

0.45 mm, Sigma). The membrane was then blocked in 5% (w/v) dried skimmedmilk in PBS. For the non-reducing gels of endogenous

IRE1a (recovered by immunoprecipitation) the membrane was treated with GDHCl buffer (6 M Guanidine-HCl, 250 mMNaCl, 50 mM

Tris pH 7.5, 10% glycerol) with added 0.2% SDS and 100 mM DTT for 30 minutes then washed in GDHCl buffer, and finally treated

with GDHCl buffer with added 40mMNEM for 30minutes. Themembranes were then washed three times in TBS (50mMTris pH 7.5,

150 mMNaCl) and blocked in 5% (w/v) dried skimmedmilk in PBS before continuing with the standard procedure. After blocking the

membranes were washed in TBSwith 0.1% Tween-20 and stained with various primary antibodies/antisera followed by staining with

IRDye fluorescently labeled secondary antibodies or horse radish peroxidase (HRP) labeled secondary antibodies (G21234,

ThermoFisher). Super Signal West Pico Chemiluminescent substrate (Thermo Scientific) was used as an HRP substrate. Imaging

was carried out with either a LICOR CLx Odyssey infrared imager or by film. For Phos-tag gels, 50 mM Phos-tag acrylamide

(NARD) and 100 mM MnCl2 were included in the gel recipe as described (Kinoshita et al., 2009). Transfer was carried out according

to the standard protocol except that prior to transferring, the Phos-tag gel was washed in transfer buffer supplemented with

1 mM EDTA.

Coomassie-staining was carried out with Instant Blue (Expedeon) and imaged on the above-mentioned LICOR. IRE1LD-TAM in

SDS-PAGE gels was imaged with a typhoon trio imager with a 532 nm laser and monitoring emission at 580/30 nm.

Signal quantitation from SDS-PAGE gels or from immunoblots was carried out using the ImageJ software (NIH).

Protein Purification
Human IRE1LD

IRE1LD (UK2007), IRE1LD-cys (UK1915) and IRE1CLD-cys (UK1998) used to make IRE1LD-biotin (UK1915 and UK2007), IRE1LD-OG

(UK1915) and IRE1CLD-biotin (UK1998), were encoded on pGEX vectors (GE Healthcare) as GST fusion proteins and expressed in

BL21 C3013 E. coli cells (NEB). Bacterial cultures were grown at 37�C in LB medium containing 100 mg/ml ampicillin to an

OD600nm of 0.6-0.8. Expression was induced with 0.5 mM IPTG and the cells were incubated for 16 hours at 18�C. The cells were
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sedimented by centrifugation and the pellets were resuspended in TNGMT buffer (50 mM Tris pH 7.4, 500 mM NaCl, 10% glycerol,

1 mM MgCl2, 1 mM TCEP). The cell suspension was supplemented with 0.1 mg/ml DNaseI and protease inhibitors [2 mM PMSF,

4 mg/ml pepstatin, 4 mg/ml leupeptin, 8 mg/ml aprotinin] and lysed by repeated passage through a high-pressure homogenizer

(EmulsiFlex-C3, Avestin). The lysates were cleared by centrifugation at 20,000 g for 60 minutes. The supernatant was removed, sup-

plemented with 0.5% (v/v) Triton X-100, and incubated for 60 minutes at 4�C with glutathione Sepharose beads (GE Healthcare;

0.5mL per liter of bacterial culture). The beadswerewashed four timeswith 50mL of TNGMTbuffer (supplementedwith 0.05%Triton

X-100) and incubated for 20 minutes with 2 bed volumes of TNTGsh buffer (50 mM Tris pH 7.4, 150 mM NaCl, 40 mM GSH, 1mM

TCEP). The slurry was passed through a table-top column and the flow-through was collected after a wash with 1 bed volume of

TNTGsh elution buffer. Tobacco Etch Virus protease (TEV) was added (1:100 mol:mol) and the eluate was incubated overnight at

4�C to remove the GST tag. The eluted and cleaved proteins were concentrated and passed through a Superdex 200 10/300 GL

gel filtration column (GE Healthcare) connected in series with a 1 mL GSTrap FF column (GE Healthcare) equilibrated in HKG buffer

(50mMHEPES-KOHpH 7.6, 150mMKCl, 10%glycerol). For IRE1LD-cys, the buffer was supplementedwith 1mMTCEP and 0.1mM

EDTA. Appropriate fractions were collected, concentrated, and flash frozen.

IRE1LD-cys (UK1915) and IRE1CLD-cys (UK1998) were labeled with a 3-fold molar excess of biotin-maleimide (Sigma) to make

IRE1LD-biotin and IRE1CLD-biotin, respectively. IRE1LD-cys was labeled with a 1:100 (mol:mol) ratio of Oregon Green-iodoacetic

acid (ThermoFisher) to make IRE1LD-OG. The reaction proceeded at room temperature in the dark for two hours and was quenched

by the addition of 5 mM DTT. The reaction mixture was passed through a CentiPure P10 gravity-desalting column (Generon) equil-

ibrated in HKG buffer and through a Superdex 200 10/300 GL gel filtration column equilibrated in HKG buffer. Appropriate fractions

were collected, concentrated, and flash frozen.

The IRE1LD R234C (UK2048) and IRE1LD S112C (UK2076) used to make IRE1LD-donor and IRE1LD-acceptor, respectively, were

encoded on a pET-derived vector (Novagen) as a His-Smt3 fusion protein and expressed as described above. Cells were harvested

in HNKIGT buffer (25 mM HEPES-KOH pH 7.5, 400 mM NaCl, 100 mM KCl, 25 mM imidazole, 10% glycerol, 1 mM TCEP) and lysed

and clarified as above. The lysates were cleared by centrifugation at 20,000 g for 60 minutes. The supernatant was removed, sup-

plemented with 0.5% (v/v) Triton X-100, and incubated for 60minutes at 4�Cwith Ni-NTA Agarose beads (ThermoFisher; 0.75mL per

liter of bacterial culture). The beads were washed four times with 50 mL of HNKIGT buffer (supplemented with 0.05% Triton X-100)

and eluted with HNKIGT buffer supplemented with 250 mM imidazole. The eluate was concentrated, passed through a gravity de-

salting column equilibrated with HKG supplementedwith 1mMTCEP and 0.1mMEDTA, concentrated and labeled overnight at room

temperature with a 3-fold molar excess of TAMRA-maleimide (Sigma) or Oregon Green-iodoacetic acid (ThermoFisher) to create

IRE1LD S112C-TAM and IRE1LD R234C-OG, respectively. The reactionmixtures were quenched, passed through a gravity desalting col-

umn, and passed through an S200 column as described above and the appropriate fractions were concentrated and flash frozen.

IRE1CLD-S112C (UK2117) and IRE1CLD-R234C (UK2118) were expressed, purified, and labeled similarly.

The IRE1LD Q105C (UK2045) used to make disulfide-linked dimeric IRE1LD-bio was expressed as an His6-Smt3 fusion protein in

Origami B(DE3) cells (Novagen) and purified without reducing agent as described above. Dimeric IRE1LD-Q105C and standard

IRE1LD (UK2007) were labeled at a 1:10 (mol:mol) ratio with biotin-NHS ester (Sigma) for one hour at room temperature to create di-

sulfide-linked dimeric IRE1LD-bio and wild-type IRE1LD-bio, respectively. Reactions were quenched by the addition of 5 mM Tris-

HCl pH 8.

Hamster ERdj4

ERdj4 and variants were expressed as fusion proteins with an N-terminal His6-Smt3 (UK2012 for WT, UK2040 for QPD) or with both

an N-terminal His6-Smt3 and C-terminal MBP (UK2108 for WT, UK2119 for QPD). Proteins were expressed in Origami B(DE3) cells.

ERdj4 proteins expressed in BL21 (DE3) cells were not soluble, suggesting that ERdj4may have a stabilizing disulfide between its two

cysteines therefore, no reducing agent was used in purification of Erdj4 or its variants. Cells were grown and lysed as described

above for His6-Smt3 tagged proteins. Media of cells expressing His6-Smt3-ERdj4-AviTag (UK2098) was supplemented with

0.2 mM Biotin (to allow the endogenous biotinylation enzymes of the bacteria to biotinylate the Erdj4 protein). The lysates were pu-

rified by Ni affinity chromatography as described above. His6-Smt3-ERdj4 was aliquotted immediately after elution from the Ni ma-

trix. It was found to precipitate immediately upon cleavage of Smt3 byUlp1. His6-Smt3-ERdj4-MBPwas loaded onto an S200 10/300

GL column equilibrated in HKG buffer. Fractions containing His6-Smt3-ERdj4-MBP were collected, aliquotted, and flash frozen.

Human GRP170

N-terminally His6-tagged human GRP170 (UK1264) was expressed in BL21 (DE3) cells and induced, lysed, and bound to a Ni-NTA

agarose beads as described above however, no detergent was present in any of the buffers and all buffers contained 5mMATP. The

beads were sequentially washed with two bed volumes of HNIGbA buffer (50 mM HEPES-KOH pH 7.4, 300 mM NaCl, 5% glycerol,

10 mM imidazole, 5 mM b-mercaptoethanol, 5 mM ATP) supplemented with 0.5 M NaCl, 3 mM Mg2+-ATP, 0.25 M Tris pH 7.5, and

35mM imidazole. The protein was then eluted in buffer HNIGbA supplementedwith 240mM imidazole. The eluted protein was loaded

onto an Superdex S200 10/300 GL column equilibrated in HKMA buffer (50 mM HEPES-KOH pH 7.4, 150 mM KCl, 10 mM MgCl2,

0.5 mM ATP). GRP170-containing fractions were aliquotted and flash frozen.

BiP

BiP and BiP variants were purified as previously described (Petrova et al., 2008; Preissler et al., 2015a). Briefly, His6-BiP (WT and

variants) was expressed and purified from BL21 C3013 E. coli cells as described above for His6-Smt3-IRE1. Cells were lysed in

TNGMTr buffer (50 mM Tris pH 7.4, 500 mM NaCl, 10% glycerol, 1 mMMgCl2, 0.2% (v/v) Triton X-100, 20 mM imidazole) containing
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protease inhibitors and DnaseI as above. Prior to elution of BiP from the Ni-NTA agarose beads, the beads were washed with

TNGMTr sequentially supplemented with 30 mM imidazole, 1% (v/v) Triton X-100, 1 M NaCl, 5 mM Mg2+-ATP and 0.5 M Tris–

HCl pH 7.5. BiP was eluted in TNGMIz buffer (50 mM Tris–HCl pH 7.5, 500 mMNaCl, 1 mMMgCl2, 10% (v/v) glycerol, 250 mM imid-

azole) and dialyzed against HKM buffer (50 mM HEPES-KOH pH 7.4, 150 mM KCl, 10 mM MgCl2).

BiP NBD was purified as described for His6-Smt3-IRE1. After elution the protein was concentrated and passed through a

CentiPure gravity-desalting column into 50 mM HEPES pH 7.4, 150 mM KCl, 10% glycerol and 0.1 mM EDTA.

AMPylation of purified BiP proteins was performed as previously described with minor modifications (Preissler et al., 2015b).

Purified BiP was incubated for 6 hours at 30�C with 0.25 mg bacterially expressed FICDE234G per 20 mg of BiP protein in presence

of 3 mM ATP in buffer I [25 mM HEPES-KOH pH 7.4, 100 mM KCl, 10 mMMgCl2, 1 mM CaCl2, 0.1% (v/v) Triton X-100] followed by

binding to Ni-NTA agarose beads for 1 hour at 25�C. The beads were washed with buffer I, and eluted in buffer I containing 350 mM

imidazole for 45 minutes at 25�C. The eluate was desalted using a CentriPure column equilibrated in HKM buffer.

ERdj6 J domain

The J domain of ERdj6 (UK185) was purified as previously described (Petrova et al., 2008). Briefly, the J domain of ERdj6

was expressed as a GST fusion protein and purified as described above for GST fusion proteins. The protein was eluted in

buffer H [50mMHEPES-KOH pH 7.4, 100mMKCl, 4 mMMgCl2, 1 mMCaCl2, 0.1% (v/v) Triton X-100, 1mMDTT, 10% (v/v) glycerol,

40 mM reduced glutathione] and dialyzed overnight against HKM buffer.

GADD34-bio

GADD34-bio (UK1920) was purified as previously described (Crespillo-Casado et al., 2017). Briefly, GADD34-bio (PPP1R15A) was

purified as above for GST tagged proteins with the modification that the TNGMT lysis buffer was supplemented with 1 mM MnCl2.

Following the intial GST based purification and overnight incubation with TEV, cleaved GADD34 was bound to amylose beads (New

England Biolabs) for 1–2 hr at 4�C. The amylose beads were washed with TNGMT and protein eluted with HEPES buffer (20 mM

HEPES, 100 mM NaCl, 0.2 mM CaCl2, 0.2 mM ATP, 0.2 mM TCEP, 0.5 mM MnCl2, 100 mM PMSF, 20 mTIU/ ml aprotonin, 2 mM

leupeptin, and 2 mg/ml pepstatin) and 10 mM maltose. The eluted GADD34 was then biotinylated using BirA (BirA UK1881 purified

as described above for GST fusion proteins) in the presence of 2mMMgCl2, 2 mMATP, 0.01% Triton X-100, excess biotin (1:2 molar

ratio to substrate protein) andBirA (1/20thmolar ratio of substrate protein). Following biotinylation GADD34-bio was passed through a

CentiPure gravity-desalting column into HEPES buffer to remove excess of biotin that would interfere with the Bio-Layer Interferom-

etry measurements.

Table S5 lists the concentration of the proteins used in each experiment.

Streptavidin pull-down assays
Assessing ERdj4 loading BiP onto IRE1

Schema shown in Figure 4B. 20 mL Dynabeads MyOne Streptavidin C1 (Thermo Fisher Scientific) per sample were used. Reactions

were carried out in 150 mM KCl, 50 mM HEPES-KOH pH 7.4, 10 mM MgCl2, 1 mM CaCl2, 0.1% Triton X-100. Reactions contained

5 mM IRE1LD-bio, 8 mMERdj4 or variants, 30 mMBiP or variants, and 2 mM ATP. Reactions proceeded for 20 minutes at 30�C before

quenching with an excess of ice cold 1 mM ADP and clarification at 21,130 g for 5 minutes, followed by the addition of magnetic

beads to supernatant. Binding was carried out for 15 minutes before washes and elution in first 5 mM ATP followed by SDS sample

buffer. Pull-down experiments with the nucleotide binding domain of BiP were conducted similarly, but the ATP elution was skipped.

Assessing ERdj4’s effect on IRE1 dimerization

Schema shown in Figure 4E. Beads were first preloaded with IRE1LD-bio and then washed extensively. Beads were then incubated

with the reaction mixtures containing 0.5 mM IRE1LD-TAM with 8 mMERdj4 or variants, 30 mMBiP or variants, and 2 mM ATP. Where

indicated, reactions also contained 1 mMGRP170. Reactions were quenched as described above. The beads were washed and the

protein was eluted in SDS sample buffer.

Assessing the disruption of IRE1 dimers

Schema shown in Figure 5C. Beads were first pre-loaded with IRE1LD-bio and then washed extensively. Beads were incubated with

0.5 mM IRE1LD-TAM for one hour at 30�C, washed extensively, and then incubated with a solution of 30 mM BiP, 8 mM ERdj4, 1 mM

GRP170, and 2 mM ATP at 30�C for 15 minutes. The reaction was quenched as described above and the beads were washed and

eluted in SDS sample buffer.

Size-exclusion chromatography
Samples were run through a SEC-3 300A, 4.6x300 mm column (Agilent 5190-2513) on an Agilent infinity HPLC system in HKM buffer

(150mMKCl, 50mMHEPES-KOH pH 7.4, 10mMMgCl2). Reactions proceeded in 20 mL for 20minutes at 30�C before clarification at

21,130 g for 5 minutes and subsequent injection.

Bio-Layer Interferometry experiments
Experiments were performed on an Octet RED96 (Pall ForteBio) in HKMGTr buffer (50 mMHEPES-KOH pH 7.6, 150 mMKCl, 10 mM

MgCl2, 10% glycerol, 0.05% Triton X-100).

In the sequential dipping experiment (Figures 5A and S4C), streptavidin biosensors were loadedwith IRE1LD-bio or GADD34-bio to

approximately 1 nm shift, washed in buffer, and then sequentially dipped in wells containing 1.5 mMSmt3-ERdj4 or variants, 1 mMBiP
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with no nucleotide, 1mM BiPT229A with 2 mM ATP, 1 mM BiPV461F with 2 mM ATP, and 1 mM BiP (Figure 5A) or BiP at the indicated

concentration (Figure S4C) with 2 mM ATP. Data were decimated, background-subtracted, and normalized to the signal after the

first wash step.

In the titration experiment (Figure S4A), streptavidin biosensors were loaded with Smt3-ERdj4-bio to approximately 1 nm shift,

washed in buffer, and then dipped in wells containing the indicated concentration of IRE1LD. Data were decimated and normalized

to the signal after the first wash step.

In the sequential dipping experiment (Figure S4B), streptavidin biosensors were loaded with IRE1LD-bio to approximately 1 nm

shift, washed in buffer, and then dipped in wells containing the indicated concentration of Smt3-ERdj4. Data were decimated, back-

ground subtracted, and normalized to the signal after the first wash step.

In the elution experiments (Figure 5B), streptavidin biosensors were loaded with IRE1LD-bio to a shift of approximately 7.5 nm.

The biosensors werewashed in buffer and then dipped in wells containing 1.2 mMSmt3-ERdj4. The biosensors werewashed in buffer

and then dipped in wells containing either: 6 mM BiP with no ATP, 6 mM BiP with 2 mM ATP, or 6 mM BiPV461F with 2 mM ATP. The

biosensors were then washed in buffer with 2 mM ATP and the was protein eluted in SDS sample buffer.

In the dimeric IRE1LD experiment (Figure 5E), streptavidin biosensors were loaded with monomeric (UK2007) or disulphide-linked

dimeric IRE1LD-bio (UK2045) to approximately 2 nm shift. The biosensors were washed in buffer and then incubated with 2.5 mM

Smt3-ERdj4, and then incubated in buffer again.

In the sequential dipping and elution experiment (Figure S4D), streptavidin biosensors were loaded with IRE1LD-bio (UK2007)

or IRE1LD Q105C-bio (UK2045) to a shift of approximately 3.5 nm. The biosensors were washed in buffer and then dipped in wells

containing 1.7 mM Smt3-ERdj4. The biosensors were washed in buffer and then dipped in wells containing: 6 mM BiP with 2 mM

ATP, or just buffer. The biosensors were then washed in buffer with 2 mM ATP and the protein eluted in SDS sample buffer and

ran on a non-reducing SDS-PAGE gel. The BLI data was decimated and normalized to the signal after the first wash step.

FRET equilibrium experiments
In Figure 6A IRE1LD-donor and IRE1LD-acceptor were combined at a 1:2 ratio and incubated at room temperature in the dark for two

hours. IRE1LD-donor and acceptor (0.2 mM total) was combined with unlabelled IRE1LD at the specified concentration in HKMGTw

buffer (50 mM HEPES-KOH pH 7.6, 150 mM KCl, 10 mM MgCl2, 10% glycerol, 0.05% TWEEN 20) and incubated for 3 hours. The

samples were transferred to a black low volume 384-well plate and donor fluorescence was recorded with a CLARIOstar platereader

(BMG), exciting at 470-15 nm and reading emission at 524-20 nm. Alternatively, IRE1LD-donor and acceptor was combined with

BiP at the specified concentration in HKMGTw buffer and incubated for 24 hours. Fluorescence was recorded as described above.

Fluorescence was normalized to that of IRE1LD-donor/IRE1LD acceptor absent titrant.

FRET kinetic experiments
IRE1LD-donor and IRE1LD-acceptor were combined at a 1:2 ratio and incubated at room temperature in the dark for two hours. In

Figure 6B BiP, Smt3-ERdj4-MBP, and IRE1LD-donor and acceptor were combined in HKMGTw buffer. The concentrations used

were 30 mM BiP, 2.5 mM Smt3-ERdj4-MBP, and 0.2 mM IRE1LD-donor and acceptor. After incubation for 30 minutes, 2 mM ATP

with an ATP regeneration system (8 mM phosphocreatine, 0.016 mg/ml creatine kinase) was added to initiate the reaction. In the

indicated wells, 1 mM GRP170 was added along with ATP and the regeneration system. In Figure 6C, 50 mM BiP, 2.5 mM Smt3-

ERdj4-MBP, and 0.2 mMequilibrated IRE1LD-donor and acceptor were combined in HKMGTwbuffer. After incubation for 30minutes,

2 mM ATP with the ATP regeneration system was added to initiate the reaction. At the indicated time, buffer, CH1 heptapeptide

(HTFPAVL, a model BiP substrate) at the indicated concentration, and/or 2.5 mM ERdj6 J domain was added. In all kinetic experi-

ments, donor fluorescence was followed with a CLARIOstar plate reader (excitation: 470-15 nm / emission: 524-20 nm) recording

fluorescence every 30 s. Fluorescence was normalized to the level at t = 0.

QUANTIFICATION AND STATISTICAL ANALYSIS

The GraphPad-Prism V7 software was used for all statistical analysis. Statistical details of experiments can be found in the figure

legends.

Supplemental table S6 tabulates the number of times the key observation reported on in each of the paper’s 38 representative data

panels has been reproduced

Figure 1A. XBP1s::Turquoise and CHOP::GFP reporter activity in CHO cells deleted in the indicated ER-localized J protein (ERdj).

Bars show the median fluorescence (±SEM) from 20,000 cells, normalized to wild-type (WT).

Figure 1B. XBP1s::Turquoise and CHOP::GFP activity in CHO cells untreated or treated with the IRE1 inhibitor 4m8C, which blocks

IRE1-dependent CHOP activation. Fluorescence normalized to WT. (Bars show the mean (±SD) of median fluorescence obtained

from independent experiments (n = 3) where eachmedian was determined from 20,000 cells, ***p = 0.0005, repeated-measurements

one-way ANOVA, Dunnett’s multiple corrections test).

Figure 1F. Bars showmean ratio of BiP to IRE1 signal (±SD) from 6 independent experiments (n = 6) as in Figure 1E, *p = 0.0118 by

parametric ratio paired Student’s t test.
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Figure S1A. Plot of tunicamycin (Tm) concentration-dependent changes in XBP1s::Turquoise and CHOP::GFP reporter gene

activity in wild-type CHO cells. Shown is the median fluorescence value (normalized to the untreated sample) obtained from

10,000 cells in experimental triplicates and the fit to sigmoidal dose-response curve.

Figure 2C. Bars show mean ratio of BiP to IRE1LD-GST signal (±SD) from 4 independent experiments (n = 4), as in Figure 2B,

**p = 0.0048 by parametric ratio paired Student’s t test.

Figure 3F. Bars show mean ratio of disulfide-bound IRE1LD Q105C-GST dimer to free thiol (±SD) from 6 independent experiments

(n = 6) as shown in Figure 2D, ****p < 0.0001 by unpaired Student’s t test with Welch’s correction.

Figure 4H. Bars show mean BiP signal recovered with IRE1LD-bio (±SD) from 3 independent experiments (n = 3) as shown in

Figure 4G, *p = 0.0223 by Student’s paired ratio t test.

Figure S3C. Bars show mean IRE1LD-TAM signal recovered with IRE1LD-bio (±SD) from 3 independent experiments (n = 3) as

shown in Figure 4G, *p = 0.0293 by Student’s paired ratio t test.

Figure 5D. Bars show mean IRE1LD-TAM signal recovered with IRE1LD-bio (±SD) from 4 independent experiments (n = 4),

***p = 0.001 by parametric student’s paired ratio t test.

Figure 6A. IRE1LD-OG488 donor fluorescence (blue trace), mean values ± SD from 3 independent experiments
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Supplemental Figures

Figure S1. Wild-Type ERdj4 Rescues DERdj4, Related to Figure 1

(A) Plot of tunicamycin (Tm) concentration-dependent changes in XBP1s::Turquoise and CHOP::GFP reporter gene activity in wild-type CHO cells. Shown is the

median fluorescence value (normalized to the untreated sample) obtained from 10,000 cells in experimental triplicates and the fit to a sigmoidal dose-

response curve.

(B) Dual channel flow cytometry plots of the XBP1s::Turquoise reporter and mCherry (a transfection marker) in wild-type and DERdj4 cells transiently transfected

with a mCherry-tagged plasmid encoding no ERdj4 (‘‘empty’’), wild-type ERdj4 and mutant ERdj4QPD. The red rectangle delineates the gate used to select cells

expressing moderate levels of mCherry-tagged plasmid for the histogram shown in Figure 1C.

(C) XBP1s::Turquoise and CHOP::GFP signals from cells of the indicated genotype (wild-type, WT or DERdj4) transfected with ER-localized mCherry (ER-

mCherry, a control) or mCherry tagged full-length ERdj4 (ERdj4-mCherry), mCherry tagged ERdj4 isolated J domain (1-90) (J4-mCherry;WT andQPD, lacking the

C-terminal targeting domain). Transfected cells were gated for moderate mCherry expression as in (B) above.

(D) XBP1s::Turquoise signals from wild-type or DERdj4 cells. Where indicated, cells were treated with tunicamycin (Tm) or the IRE1 inhibitor 4m8c.



Figure S2. ERN1Q105C/IRE1Q105C Encodes a Functional (albeit Attenuated) IRE1, Related to Figure 3

Histogram of XBP1s::Turquoise and CHOP::GFP signals obtained by flow cytometry analysis of the indicated cell lines untreated or exposed overnight to

2-deoxyglucose (2DG, 4mM), or tunicamycin (Tm, 2.5 mg/ml).
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Figure S3. Canonical Complex Formation between BiP and IRE1, Related to Figure 4

(A) Coomassie-stained SDS-PAGE gel of biotinylated IRE1LD-bio and BiP recovered on a streptavidin matrix from reactions constituted as in Figure 4B, with BiP

or the nucleotide-binding domain of BiP (NBD) as indicated. Note: We have not been able to observe noncanonical complex formation between IRE1LD and the

BiP NBD.

(B) Fluorescence trace (Ex: 496 nm Em: 524 nm) of IRE1LD-OG elution from a Sec3 size-exclusion chromatography column. Reaction mixtures of the indicated

composition were incubated at 30�C for 20 minutes and clarified at 21,000 g for 5 minutes.

(C) Quantification of the effect of GRP170 on IRE1LD-TAM association with IRE1LD-bio, as in Figure 4G. Mean ± SD, n = 3, *p = 0.0293 by Student’s paired ratio

t test.



Figure S4. Disruption of Pre-formed IRE1LD-Dimers, Related to Figure 5

(A) Bio-layer interferometry (BLI) signal from streptavidin sensors pre-loaded with a biotinylated ERdj4 ligand (or with an irrelevant control biotinylated GADD34

ligand) and reacted with the indicated concentration of IRE1LD as an analyte and then transferred to a buffer only (wash) solution.

(B) BLI signal from streptavidin sensors pre-loaded with biotinylated IRE1LD ligand and reacted with the indicated concentrations of ERdj4 as an analyte and

transferred to a buffer only (wash) solution before incubation with 1 mM BiP and 2 mM ATP.

(C) BLI signal from streptavidin sensors pre-loaded with biotinylated IRE1LD ligand and reacted with ERdj4 as an analyte and then transferred to a buffer only

(wash) solution before incubation with the indicated concentrations of BiP and 2 mM ATP.

(D) (Left) BLI signal of streptavidin sensors loadedwith thewild-type biotinylated IRE1LD, or covalent dimeric disulfide-linked biotinylated IRE1LD Q105C ligands and

reacted with ERdj4, followed sequentially by the indicated solutions. Concentrations used were 1.7 mM ERdj4, 6 mM BiP, 2 mM ATP. (Right) Coomasie-stained

non-reducing SDS-PAGE gel of protein recovered by SDS sample buffer elution from the BLI sensors used (left). The dotted line indicates the boundary at which

(legend continued on next page)



the image contrast/brightness properties were treated differently to make the image clearer. Note: To enable formation of Q105C-disulfide, without interference

by other cysteines, both the WT IRE1LD and the IRE1LD Q105C ligands were surface biotinylated on exposed lysine residues. This coupling chemistry likely ac-

counts for the differences in kinetics of the BLI signal observed in this experiment as compared with (A), (B), and (C) and Figure 5A, in which the IRE1LD ligand was

biotinylated on a single C-terminal cysteine residue (D443C) using maleimide biotin



Figure S5. ERdj4 and BiP Monomerize the IRE1 Core Luminal Domain, Related to Figure 6

As in Figure 6B, but with OG488 and TAMRA-labeled IRE1CLD.
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