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Human behavior is guided by our expectations about the
future. Often, we make predictions by monitoring how
event sequences unfold, even though such sequences
may appear incomprehensible. Event structures in the
natural environment typically vary in complexity, from
simple repetition to complex probabilistic combinations.
How do we learn these structures? Here we investigate
the dynamics of structure learning by tracking human
responses to temporal sequences that change in
structure unbeknownst to the participants. Participants
were asked to predict the upcoming item following a
probabilistic sequence of symbols. Using a Markov
process, we created a family of sequences, from simple
frequency statistics (e.g., some symbols are more
probable than others) to context-based statistics (e.g.,
symbol probability is contingent on preceding symbols).
We demonstrate the dynamics with which individuals
adapt to changes in the environment’s statistics—that is,
they extract the behaviorally relevant structures to make
predictions about upcoming events. Further, we show
that this structure learning relates to individual decision
strategy; faster learning of complex structures relates to
selection of the most probable outcome in a given
context (maximizing) rather than matching of the exact
sequence statistics. Our findings provide evidence for
alternate routes to learning of behaviorally relevant
statistics that facilitate our ability to predict future

events in variable environments.

Introduction

Extracting structure from initially incomprehensible
streams of events is fundamental to a range of human
abilities, from navigating in a new environment to
learning a language. These skills rely on identifying
spatial and temporal regularities, often with minimal
explicit feedback (Aslin & Newport, 2012; Perruchet &
Pacton, 2006). The human brain appears expert at
learning contingencies between co-occurring stimuli on
the basis of mere exposure. For instance, structured
patterns become familiar after simple exposure to items
(shapes, tones, or syllables) that co-occur spatially or
follow in a temporal sequence (Chun, 2000; Fiser &
Aslin, 2002a; Saffran, Aslin, & Newport, 1996; Saffran,
Johnson, Aslin, & Newport, 1999; Turk-Browne,
Junge, & Scholl, 2005).

Previous work on human statistical learning has
focused on repetitive patterns and associative pairings.
However, event structures in the natural environment
typically comprise regularities of variable complexity,
from simple repetition to complex probabilistic com-
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binations. For instance, when learning a new piece of
music, we can make use of the intrinsic structure that
ranges from tones to melodies (Fitch & Martins, 2014).
Or, when reading about a new topic, we first extract
information about the key components and then their
interdependencies that together explain particular
phenomena. To account for the full range of learning
behaviors, we therefore need to understand the
processes involved in extracting information of variable
complexity.

Here we investigate the dynamics of learning
predictive structures by modeling whether and when
participants extract the structure that governs temporal
sequences that change in their complexity. To allow
them to do so unencumbered by past experience, we
tested participants with sequences of unfamiliar sym-
bols, where the sequence structure changed unbe-
knownst to the participants (Figure 1). We increased
sequence complexity by manipulating the memory
order (i.e., context length) of the Markov model used to
generate the sequences. In particular, we presented
participants with sequences that were determined first
by frequency statistics (i.e., occurrence probability per
symbol) and then by more complex context-based
statistics (i.e., the probability of a given symbol
appearing depends on the preceding symbols). Partic-
ipants performed a prediction task in which they
indicated which symbol they expected to appear
following exposure to a sequence of variable length.
Following previous statistical learning paradigms,
participants were exposed to the sequences without
trial-by-trial feedback.

Our results show that the participants’ ability to
extract behaviorally relevant temporal statistics im-
proved with training. To understand the dynamics of
this structure learning, we track human predictions as
they evolve over time (i.e., during exposure to the
sequences). In particular, we compare the sequence of
button presses made by the participants to the
presented temporal sequences and test whether and
when participants’ judgments approximate the Markov
model that produced the presented sequences. Using
this approach, we show that participants adapt to
changes in the environment’s statistics and exploit
previous knowledge of similar, but simpler, statistics
when learning higher order structures. Further, we
show that learning of predictive structures relates to
individual decision strategy; some individuals used a
probability-maximization strategy (i.e., extracting the
most probable outcome in a given context), while
others chose to match the exact sequence statistics. We
demonstrate that faster learning of complex structures
is associated with selecting the most probable outcomes
in a given context, suggesting that attempting to learn
all possible statistical contingencies may limit the
ability to learn higher order structures.

Material and methods

Observers

We tested 50 participants (mean age¼ 22.9 years)—
Experiment 1, Group 0: n¼ 19; Experiment 2, Group 1:
n¼ 8; Group 2: n¼ 12; no-training control experiment,
n¼ 11. All observers were unaware of the aim of the
study, had normal or corrected-to-normal vision, and
gave written informed consent. This study was ap-
proved by the University of Birmingham Ethics
Committee.

Stimuli

Stimuli comprised four symbols chosen from the
Ndjuká syllabary (Figure 1a; Turk-Browne, Scholl,
Chun, & Johnson, 2009). The symbols (black on a mid-
gray background; size¼ 8.58) were highly discriminable

Figure 1. Trial and sequence design. (a) Eight to 14 symbols

were presented one at a time in a continuous stream followed

by a cue and the test display. (b) Sequence design. For the zero-

order model (Level 0): Different states (A, B, C, D) are assigned

to four symbols with different probabilities. For first- (Level 1)

and second- (Level 2) order models, diagrams indicate states

(circles) and conditional probabilities (red arrow: high; gray

arrow: low). Transitional probabilities were arranged in a 4 3 4

(Level 1) or 4 3 6 (Level 2) conditional-probability matrix.
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and were unfamiliar to the participants. Experiments
were controlled using MATLAB and the Psychophysics
Toolbox 3 (Brainard, 1997; Pelli, 1997). Stimuli were
presented on a gamma-corrected 21-in. ViewSonic
P225f monitor (1,2803 1,024 pixel; 0.33 0.3 mm/pixel;
85-Hz refresh rate). Experiments were conducted in a
dark room and the viewing distance was 45 cm.

Sequence design

To generate probabilistic sequences that differed in
complexity, we used a temporal Markov model and
manipulated the memory order of the sequence, which
we refer to as the context length. The Markov model
determines a sequence of symbols, where the symbol at
time i is determined probabilistically by the previous k
symbols. We refer to the symbol s(i) presented at time i
as the target and to the preceding k-tuple of symbols
(s(i� 1), s(i� 2), . . ., s(i� k)) as the context. The value
of k is the order or level of the model

P s ið Þjs i� 1ð Þ; s i� 2ð Þ; . . . ; s 1ð Þð Þ
¼ P s ið Þjs i� 1ð Þ; s i� 2ð Þ; . . . ; s i� kð Þð Þ; k, i:

The simplest k ¼ 0th order model is a random
memoryless source. This generates, at each time point i,
a symbol according to symbol probability P(s), without
taking account of the previously generated symbols.

The order k¼ 1 Markov model generates symbol s(i)
at each time i conditional on the previous symbol s(i�
1). This introduces a memory in the sequence; that is,
the probability of a particular symbol at time i depends
on the preceding symbol s(i� 1). Unconditional symbol
probabilities P(s(i)) for the case k¼ 0 are replaced with
conditional ones P(s(i)js(i � 1)).

We applied the same logic to higher memory orders:
When k ¼ 2, the probability of a symbol at time i
depends on the two preceding symbols s(i� 1), s(i� 2):
P(s(i)js(i � 1), s(i � 2)). That is, the memory in the
sequence is deeper and the number of conditioning
contexts increases with memory depth k.

At each time point in the sequence, the symbol that
follows a given context is determined probabilistical-
ly, making the Markov sequences stochastic. The
underlying Markov model can be represented through
the associated context-conditional target probabili-
ties. We used four symbols that we refer to as stimuli
A, B, C and D. The correspondence between stimuli
and symbols was counterbalanced across partici-
pants.

For Level 0, the Markov model was based on the
probability of symbol occurrence: One symbol had a
high probability of occurrence and one low, while the
remaining two symbols appeared rarely (Figure 1b).
For example, the probabilities of occurrence for the

four symbols A, B, C, and D were 0.18, 0.72, 0.05, and
0.05, respectively. Presentation of a given symbol was
independent of the stimuli that preceded it.

For Level 1, the target depended on the immediately
preceding stimulus (Figure 1b). Given a context (the
last-seen symbol), only one of two targets could follow:
One had a high probability of being presented and the
other a low probability (e.g., 80% vs. 20%). For
example, when symbol A was presented, only symbols
B or C were allowed to follow, and B had a higher
probability of occurrence than C.

For Level 2, the Markov model contained tempo-
ral contexts of variable length (Figure 1b), extending
the Level 1 model. That is, the Markov model
included both first- and second-order contexts (i.e.,
the target symbols depended on the preceding two
symbols). As with the Level 1 model, given a specific
context, only two symbols were allowed to follow,
one with a high and one with a low probability (e.g.,
80% vs. 20%). The target probabilities for contexts
with B as the last symbol (i.e., AB, BB, CB, DB) were
constrained by allowing only two sets of conditional
target probabilities, namely P(sjAB) and P(sjXB),
where s is the target symbol (A, B, C, or D) and X
stands for any other symbol apart from A (i.e., B, C,
or D). The same structure was imposed for second-
order contexts with C as the last symbol. In this case,
the two sets of conditional target probabilities were
P(sjBC) and P(sjYB), where Y stands for any other
symbol apart from B (i.e., A, C, or D). To
discriminate between contexts that shared the same
last symbol (i.e., XB vs. AB, and YC vs. BC),
different targets were assigned to each context (one
with high and one with low probability). For
example, the allowed targets following XB were C
and D, while the targets for context AB were B and
A. To ensure that learning was not biased by
differences in context probability, the four Level 1
contexts (A, B, C, D) appeared at an equal 25%
probability, and the six Level 2 contexts (A, AB, XB,
BC, YC, D) appeared at similar probabilities (0.19,
0.19, 0.16, 0.16, 0.15, and 0.15, respectively).

To test whether participants adapt to changes in
the temporal structure, we ensured that the sequences
across levels were matched for properties (i.e.,
number or identity of symbols) other than context
length. Further, we designed the stochastic sources
from which the sequences were generated so that the
context-conditional uncertainty remained highly
similar across levels. In particular, for the zero-order
source only two symbols were likely to occur most of
the time; the remaining two symbols had very low
probability (0.05). This was introduced to ensure that
there was no difference in the number of symbols
presented across levels. Of the two dominant symbols,
one was more probable (probability 0.72) than the
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other (probability 0.18). This structure is preserved in
the Markov chain of order 1 or 2, where conditional
on the previous symbols, only two symbols were
allowed to follow, one with higher probability (0.80)
than the other (0.20). This ensures that the structure
of the generated sequences across levels differed
predominantly in memory order (i.e., context length)
rather than context-conditional probability.

Experimental design

We generated probabilistic sequences of symbols
that differed in their complexity using temporal
Markov models—that is, sequences determined by
simple frequency statistics (Level 0) and more
complex sequences defined by context-based statistics
(Levels 1 and 2). Manipulating the memory depth of
the stochastic source that generated the sequences
allowed us to systematically vary the context length of
the sequences (Figure 1, Supplementary Material). In
Experiment 1 (Group 0), we trained participants with
sequences that changed in their complexity starting
from Level 0 and then moving to Level 1 and Level 2
sequences. In Experiment 2, we tested two additional
groups of participants: Group 1 trained first at Level
1 and then Level 2; Group 2 trained only at Level 2.
For each level, observers completed a minimum of
three and a maximum of five training sessions (840–
1,400 trials). Training at each level ended when
participants reached plateau performance (i.e., per-
formance did not change significantly for two
sessions). A posttraining test session followed training
per level, during which observers were presented with
sequences determined by the statistics of the trained
level (90 trials). Before and after training (pre- and
posttraining sessions), participants were tested with
sequences from all three levels (30 trials per level).
Overall, Group 0 completed 13–15 training sessions
and five test sessions (on average 23.3 days); Group 1
completed 8–10 training sessions and four test
sessions (on average 15.6 days); Group 2 completed
four or five training sessions and three test sessions
(on average 9.5 days). Further, to ensure that any
changes observed across time were a result of active
training, we performed a no-training control experi-
ment. Specifically, participants were tested on all
three levels in two behavioral sessions that were
separated by a period (27.9 days on average)
comparable to that between the pre- and posttraining
sessions for Group 0. The stimuli, sequences, and
procedure matched the first and last test sessions in
Experiment 1, but no training took place between
these two sessions.

Training sessions

Each training session comprised five blocks of
structured sequences (56 trials per block) and lasted 1
hr. To ensure that sequences in each block were
representative of the Markov-model order per level,
we generated 10,000 Markov sequences per level
comprising 672 stimuli per sequence. We then
estimated the Kullback–Leibler divergence (KL di-
vergence) between each example sequence and the
generating source. In particular, for Level 0 sequences
this was defined as

KL ¼
X
target

Q targetð Þ log
Q targetð Þ
P targetð Þ ;

and for Level 1 and 2 sequences it was defined as

KL ¼
X

context

�
Q contextð Þ �

X
target

Q targetjcontextð Þ

3 log
Q targetjcontextð Þ
P targetjcontextð Þ

�
;

where P( ) refers to probabilities or conditional
probabilities derived from the presented sequences
and Q( ) refers to those specified by the source. We
selected 50 sequences with the lowest KL divergence
(i.e., these sequences closely matched the Markov
model per level). The sequences presented to the
participants during the experiments were selected
randomly from this sequence set.

For each trial, a sequence of 8–14 stimuli appeared
in the center of the screen, one at a time in a
continuous stream, for 300 ms each followed by a
central white fixation dot (interstimulus interval) for
500 ms (Figure 1a). This variable trial length ensured
that observers maintained attention during the whole
trial. Each block comprised an equal number of trials
with the same number of stimuli. The end of each trial
was indicated by a red-dot cue that was presented for
500 ms. Following this, all four symbols were shown
in a 2 3 2 grid. The positions of test stimuli were
randomized from trial to trial. Observers were asked
to indicate which symbol they expected to appear
following the preceding sequence by pressing a key
corresponding to the location of the predicted
symbol. Observers learned a stimulus–key mapping
during the familiarization phase: 8, 9, 5, and 6 on the
number pad corresponded to the four positions of the
test stimuli—upper left, upper right, lower left, and
lower right, respectively. After the observer’s re-
sponse, a white circle appeared on the selected
stimulus for 300 ms to indicate the observer’s choice,
followed by a fixation dot for 150 ms (intertrial
interval) before the start of the next trial. If no
response was made within 2 s, a null response was
recorded and the next trial started. Participants were
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given feedback (i.e., score in the form of a perfor-
mance index; see Data analysis) at the end of each
block—rather than per-trial error feedback—that
motivated them to continue with training.

Test sessions

Test sessions were conducted at the beginning and
end of Experiments 1 and 2. Pre- and posttraining test
sessions comprised nine runs (i.e., three runs per level).
Intermediate test sessions (i.e., test sessions after
training per level) included nine runs with sequences
from the trained level. Each run comprised five blocks
of structured and five blocks of random sequences
presented in random order (two trials per block; a
total of 10 structured and 10 random trials per run).
For random sequences the four symbols were pre-
sented with equal probability in a random order. Each
trial comprised a sequence of 10 symbols that were
presented for 250 ms each, separated by a blank
interval during which a white fixation dot was
presented for 250 ms. Following the sequence, a
response cue (central red dot) appeared on the screen
before the four test stimuli were displayed for 1.5 s.
No feedback was given during the test sessions.

Data analysis

Performance index

We assessed participant responses in a probabilistic
manner. For each context, we computed the absolute
Euclidean distance between the distribution of partic-
ipant responses and the distribution of presented
targets estimated across 56 trials per block:

AbDist contextð Þ ¼
X
target

Prespðtarget
�� ��contextÞ

� Ppres targetjcontextð Þ;
where the sum is over targets from the symbol set A, B,
C, and D. We estimate AbDist per context for each
block. We quantified the minimum overlap between
these two distributions by computing a Performance
Index (PI) per context:

PI contextð Þ ¼
X
target

min Presp targetjcontextð Þ;
�

Ppres targetjcontextð ÞÞ:

Note that PI(context)¼ 1� AbDist(context)/2. The
overall performance index is then computed as the
average of the performance indices across contexts,
PI(context), weighted by the corresponding stationary
context probabilities:

PI ¼
X

context

PI contextð Þ � P contextð Þ:

To compare across different levels, we defined a
normalized PI measure that quantifies participant
performance relative to random guessing. We com-
puted a random-guess baseline—that is, performance
index PIrand—that reflects participant responses to
targets with equal probability of 25% for each target
per trial for Level 0 (PIrand ¼ 0.53) and equal
probability for each target for a given context for
Levels 1 and 2 (PIrand¼ 0.45). To correct for differences
in random-guess baselines across levels, we subtracted
the random-guess baseline from the performance index
(PInormalized ¼ PI � PIrand).

Strategy choice and strategy index

To quantify each observer’s strategy, we compared
individual participant responses to probability match-
ing, where probability distributions are derived from
the Markov models that generated the presented
sequences (matching), and probability maximization,
where only the single most likely outcome is allowed for
each context (maximization). We used KL divergence
to compare the response distribution to matching
versus maximization. KL is defined as follows:

KL ¼
X
target

M targetð Þlog MðtargetÞ
RðtargetÞ

� �

for the Level 0 model and

KL ¼
X

context

M contextð Þ
X
target

M targetjcontextð Þ

3 log
MðtargetjcontextÞ
R targetð Þjcontext

� �

for the Levels 1 and 2 model, where R( ) and M( )
denote the probability distribution or conditional
probability distribution derived from the human
responses and probability matching versus maximiza-
tion respectively, across all the conditions.

We quantified the difference between the KL
divergence from maximization and matching to the
response-based distribution, respectively. We refer to
this quantity as strategy choice, indicated by
DKL(maximization, matching). We updated the strat-
egy choice per trial and averaged across blocks,
resulting in a strategy curve across training for each
individual participant. We then derived an individual
strategy index by calculating the integral of each
participant’s strategy curve and subtracting it from the
integral of the exact matching curve, as defined by
matching across training. We defined the integral-curve
difference between individual strategy and exact
matching as the individual strategy index.
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Results

Experiment 1: Behavioral performance

Previous studies have compared learning of differ-
ent spatiotemporal contingencies in separate experi-
ments across different participant groups (Fiser &
Aslin, 2002a, 2005). Here, to investigate whether
individuals extract changes in structure, we presented
the same participants with sequences that changed in
structure unbeknownst to them (Figure 1a). We
parameterized structure complexity based on the
memory order of the Markov models used to generate
the sequences—that is, the degree to which the
presentation of a symbol depended on the history of
previously presented symbols (Figure 1b). We first
presented participants with simple zero-order se-
quences (Level 0), followed by more complex first- and
second-order sequences (Level 1, Level 2), as previous
work has shown that temporal dependencies are more
difficult to learn as their length increases (van den Bos
& Poletiek, 2008) and training with simple dependen-
cies may facilitate learning of more complex contin-
gencies (Antoniou, Ettlinger, & Wong, 2016). Zero-
order sequences (Level 0) were contextless—that is,
the presentation of each symbol depended only on the
probability of occurrence of each symbol. First- and
second-order sequences were governed by context-
based statistics—that is, the presentation of a partic-
ular symbol was conditionally dependent on the
previously presented symbols (i.e., context length of 1
or 2). Participants were presented with first-order
(Level 1: context length of one stimulus) followed by
variable-order (Level 2: context length of one or two
stimuli) context–target contingencies. We measured
participant performance in the prediction task before
and after training.

As the sequences we employed were stochastic, we
developed a probabilistic measure to assess partici-
pants’ performance in the prediction task. Specifically,
we computed a performance index (PI) that indicates
how closely the distribution of participant responses
matched the probability distribution of the presented
symbols. This is preferable to a simple measure of
accuracy because the probabilistic nature of the
sequences means that the correct upcoming symbol is
not uniquely specified; thus, designating a particular
choice as correct or incorrect is often arbitrary.

Our results showed fast learning initially (i.e.,
enhanced performance in the first two training blocks
compared to the pretraining test) that was followed by
further improvement during the rest of the training
(Figure 2a). This is consistent with the time course
demonstrated by previous perceptual-learning studies
(Karni & Sagi, 1993). Comparing normalized perfor-

mance (i.e., after subtracting random guessing) before
and after training showed that participants were able to
learn the presented sequences (only one participant
showed less than 10% improvement after four training
sessions for Level 2). A repeated-measures ANOVA
with session (pre-, posttest) and complexity level (0, 1,
2) as factors showed significant main effects of session,
F(1, 18)¼ 145.8, p , 0.001, and level, F(1, 18)¼ 19.0, p
, 0.001, consistent with enhanced performance after
training and increasing task difficulty for higher order
sequences. Further, the lack of a significant interaction
between session and level, F(2, 36) ¼ 2.40, p ¼ 0.106,
suggests similar improvement across levels.

The learning functions in Figure 2a highlight that
performance improves through training. Next we
directly assessed how well participants were able to
extract structures that were predictive of upcoming
events. Figure 2b shows that the participants’ ability to
extract the most frequently presented symbols (Level 0)
or context–target contingencies (Levels 1 and 2)
improved with training across levels. When participants
were presented with sequences of variable context
length (Level 2), they maintained good performance for
the first-order contingencies and also improved in
extracting second-order contingencies.

Finally, we asked whether these learning effects were
specific to the trained sequences. First, we contrasted
performance accuracy on structured versus random
sequences before and after training sessions. We found
significant interactions between session and sequence,
indicative of effects specific to the structured sequenc-
es—Level 0: F(1, 18)¼ 9.17, p¼ 0.007; Level 1: F(1, 18)
¼ 83.8, p , 0.001; Level 2: F(1, 18)¼ 61.7, p , 0.001.
Second, we conducted a no-training control experi-
ment. Participants (n¼ 11) were tested with structured
sequences in two sessions, but they did not receive
training between sessions. Our results showed no
significant main effect of session, F(1, 10)¼ 0.12, p¼
0.736, or level, F(1, 10) ¼ 1.84, p ¼ 0.205, nor a
significant interaction between session and level, F(1,
10)¼ 1.16, p¼ 0.308, indicating that improvements
were specific to trained sequences rather than a result of
repeated exposure during the pre- and posttraining
sessions.

Response tracking

To quantify our results, we tracked the participants’
responses across trials using a weighted combination
(i.e., mixture) of Markov processes (i.e., zero-, first-,
second-order). Previous work has used a Hebbian
process to account for perceptual learning without
explicit feedback (Liu, Lu, & Dosher, 2010; Petrov,
Dosher, & Lu, 2005, 2006). For our purposes,
however, capturing the dynamics of participants’
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responses as they learn to condition their responses on
higher order statistics is difficult for a Hebbian
process, due to the limited discrete data (i.e., one
response per trial) during the learning process.
Following previous work on the learning of visual
statistics (Droll, Abbey, & Eckstein, 2009; Eckstein,
Abbey, Pham, & Shimozaki, 2004), we used a Bayesian
process to adjust the mixture coefficient weights
assigned to these component Markov processes during
training (Supplementary Material). In particular, we
extracted changes in participants’ responses over time
that relate to the rule used to generate the sequences—
that is, memory or context length (e.g., the current
target depends on the last symbol or the last two
symbols)—and to the contingencies between individual

stimuli in the sequence (e.g., last stimulus was A, so
next is likely to be B).

Extracting context length from participants’
responses

First, we asked whether participants were able to
extract the correct context length during training. In
particular, a significant increase in the mixture coeffi-
cient for a given Markov order (e.g., Level 1) provides
an indication that participants use a given memory
length (e.g., context length 1) when responding. As the
participants learned, we dynamically tracked whether
and when the memory (context length) in their

Figure 2. Experiment 1: Behavioral performance. (a) Performance index for Group 0 (n ¼ 19) across training (solid circles) blocks,

pretraining test (Pre: open squares), and posttraining test (Post: open squares). The performance index expresses the absolute

distance (proportion overlap) between the distribution of participant responses and the distribution of presented targets. Overall

performance index is calculated as the weighted average across context probabilities. Data are fitted for participants who improved

during training (black circles). Data are also shown for one participant who did not improve during training (Level 2, gray symbols).

Error bars show standard error of the mean. (b) Response probabilities for individual targets (Level 0) or conditional probabilities of

context–target contingencies (Levels 1 and 2) across training blocks. Red lines indicate targets or context–target contingencies with

the highest (conditional) probability (i.e., 0.72 for Level 0 and 0.8 for Levels 1 and 2), blue lines indicate the second-highest

(conditional) probabilities (i.e., 0.18 for Level 0 and 0.2 for Levels 1 and 2), and green lines indicate targets or context–target

contingencies that appear rarely (i.e., 0.05) or not at all. For Level 2, first- and second-order contexts are presented separately

(dashed vs. solid lines).
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responses changed. In particular, we traced the
evolution of the coefficients of the individual mixture
components across training blocks. Mixture coefficient
curves for individual participants followed a sigmoid
shape, indicating changes in the context length
extracted by the observers during training; we refer to
these curves as learning curves. This analysis (Figure 3a)
revealed that most participants became better at
extracting the correct context length during training,

except two participants (gray lines for Level 2 in Figure
3a) who showed less than a 25% probability of selecting
the correct context length. Further, comparing learning
rate—as determined by the sigmoid mixture coefficient
curves—across levels (0, 1, and 2) showed significantly
slower learning rates for higher order than simpler
sequences, F(2, 49) ¼ 23.7, p , 0.001.

A notable feature of the learning curves in Figure 3a
is the variability in learning rates between different

Figure 3. Experiment 1: Response tracking. (a) Functional clustering analysis (Group 0) showed two data clusters, indicated in red

(Level 0: n¼ 13, Level 1: n¼ 14, Level 2: n¼ 11) versus blue (Level 0: n¼ 6, Level 1: n¼ 5, Level 2: n¼ 6). Mixture coefficient curves

are shown for each individual participant; bold curves indicate sigmoid fits to each cluster. Data are also shown for two participants

(black lines) who showed less than a 25% probability of extracting the correct context length at the end of training. (b) Learning

predictive probabilities. DKL curves between the predictive mixture model for each level and baseline models across training blocks.

DKL values above zero indicate that the participant responses approximated the Markov model that generated the sequences.

Average data are shown per participant cluster (i.e., red vs. blue). Note: The smaller DKL values and error bars for Level 2 reflect small

differences between Level 1 and Level 2 models; yet fast learners show higher values than zero, indicating that they are able to learn

second-order context–target contingencies. Error bars show the standard error of the mean. (c) Strategy choice, as indicated by

comparing (DKL) matching versus maximization for each participant per cluster (i.e., red vs. blue).
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participants: Some individuals extracted the correct
context length earlier in the training than others. To
characterize prototypical learning profiles, we per-
formed a functional clustering analysis of the learning
curves (Supplementary Material). We found that two
clusters were adequate to capture the individual
variability in the data (Supplementary Figure S1).
Given the apparent difference between participant
groups in the speed of extracting the correct context
length, we refer to these clusters as fast and slower
learners. Supplementary Figure S2 shows differences in
the learning rate of the more probable contingencies
between the two clusters, confirming that some learners
extracted the behaviorally relevant statistics faster than
others.

We took a number of steps to validate our response-
tracking analysis in a controlled manner. As a first step,
we applied this analysis to random responses. We found
no evolution of the coefficients of the individual mixture
components, suggesting that the changes revealed using
the participants’ data do not simply reflect the dynamics
of parameter initialization. We also tested our response-
tracking analysis on responses generated by a synthetic
learner (Supplementary Material), controlling for key
parameters (learning rate and memory-order transition
point). We varied the synthetic learner’s parameters and
recorded the sequence of predictions it made. This test
showed that we could recover the key parameters that
determined the synthetic learner’s predictions (Supple-
mentary Figure S3).

Extracting predictive contingencies from
participants’ responses

For individuals to succeed in the prediction task,
they needed to extract not only the appropriate context
length but also the correct conditional probabilities
(i.e., context–target contingencies). To capture the
dynamics of learning predictive contingencies, we
sought to quantify the relationship between the
participants’ responses and the Markov models used to
generate stimulus sequences. For each Markov order
level, we considered two alternative models: the correct
model order (e.g., Level 1 choices for Level 1
sequences) or a lower order approximation based on
the previously trained sequence level (e.g., Level 0
choices for Level 1 sequences). We initially favored the
lower order approximation to prevent emulating lower
order structure using a higher order model. Using a
Bayesian updating process, we obtained evidence that
allowed us to discern whether responses were governed
by a lower or a higher order process. We quantified
how close participants’ behavior was to a particular
model using the Kullback–Leibler (KL) divergence
statistic. We then contrasted KL statistics (i.e., slope of

DKL learning curves) to test which model the
participants’ responses approximated (Figure 3b). A
two-way ANOVA showed a significant interaction
between complexity level (0, 1, 2) and cluster (fast vs.
slower learners), F(2, 49)¼ 3.90, p ¼ 0.027, suggesting
that individuals who extracted the correct context
length early in the training also learned the appropriate
context–target contingencies. Further, we observed a
main effect of level—fast learners: F(2, 49)¼ 39.0, p ,
0.001; slower learners: F(2, 49)¼ 4.90, p¼ 0.012—
suggesting that learning the correct predictive contin-
gencies was more difficult for higher order sequences.

Previous work (Jensen, Boley, Gini, & Schrater,
2005) has demonstrated that temporal structure can be
extracted without an explicit representation of the
underlying model based on computing the entropy of
excerpts from temporal sequences. We implemented an
entropy-based approach and showed that it could
recover first- and second-order contexts from the
participant responses (Supplementary Figure S4).
However, we found that this approach was limited in
tracking the learning dynamics, as it required more
trials to extract learning strategies from participant
responses (i.e., there were insufficient participant
responses to reliably estimate entropy in the first 10
blocks of trials).

Strategies for probability learning: Matching
versus maximization

As the Markov models that generated stimulus
sequences were stochastic, participants needed to learn
the probabilities of different outcomes to succeed in the
prediction task. Motivated by previous work on
decision making in the context of cognitive (Shanks,
Tunney, & McCarthy, 2002) and sensorimotor tasks
(Acerbi, Vijayakumar, & Wolpert, 2014; Eckstein et al.,
2013; Murray, Patel, & Yee, 2015), we formulated two
possible strategies for making predictions. First,
participants might use probability maximization,
whereby they would always select the most probable
outcome in a particular context. Alternatively, they
might learn the relative probabilities of each symbol—
for example, p(A)¼ 0.18, p(B)¼ 0.72, p(C)¼ 0.05, p(D)
¼ 0.05—and respond so as to reproduce this distribu-
tion, a strategy referred to as probability matching.

To quantify participants’ strategies across training, we
computed a strategy index that indicates each partici-
pant’s preference (on a continuous scale) for responding
using probability matching versus maximization (Figure
3c). We found that for Level 0 sequences, participants
adopted a strategy that was closer to probability
matching than maximization, suggesting that they
solved the task by memorizing the frequency with which
each symbol occurred. However, for Levels 1 and 2 they
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shifted toward maximization. Comparing individual
strategy across levels and participant clusters showed a
significant main effect of complexity level, F(2, 49)¼
12.2, p , 0.001, suggesting that participants’ strategies
shifted closer to maximization for higher order se-
quences. Further, a significant main effect of cluster, F(1,
49)¼ 60.9, p , 0.001, indicates that fast learners who
extracted the correct context length early in training
deviated from matching and adopted a strategy closer to
maximization. The lack of a significant interaction
between cluster and level, F(2, 18)¼ 0.025, p¼ 0.915,
suggests that each cluster of participants adopted a
similar strategy across levels (i.e., closer to maximization
for fast than for slower learners).

Despite greater maximization at higher complexities,
we note that participants did not achieve optimal
maximization performance (Figure 3c). Maximization
is typically observed under supervised or reinforcement
learning paradigms (Shanks et al., 2002), so it is
perhaps not surprising that our participants did not
achieve exact maximization, as trial-by-trial feedback
was not provided. Moreover, the tendency for partic-
ipants to respond using probability matching may be
higher when individual elements are clearly discrimi-
nable (i.e., our symbols) but nevertheless ambiguous
because different processes can give rise to similar
sequences of symbols (as in our sequence-generation
process; Murray et al., 2015). Our findings are
consistent with previous studies showing that partici-
pants adopt a strategy closer to matching when
learning a simple probabilistic task in the absence of
trial-by-trial feedback (Shanks et al., 2002). However,
for more complex probabilistic tasks, participants
weight their responses toward the most-likely outcome
(i.e., adopt a strategy closer to maximization) after
training (Lagnado, Newell, Kahan, & Shanks, 2006).

Experiment 2: Behavioral performance

We next asked whether learning of simple structures
facilitates subsequent learning of complex structures. In
Experiment 2, we tested two additional participant
groups who started training from Level 1 (Group 1) or
Level 2 (Group 2) rather than Level 0. We then
compared performance in Groups 1 and 2 with
performance by participants who trained on all three
levels (i.e., Experiment 1, Group 0).

Group 1 participants (n ¼ 8) were first trained on
Level 1 and then Level 2, but not Level 0. The results
from this group (Figure 4) were similar to the results
from Experiment 1. In particular, comparing perfor-
mance between Group 0 and Group 1 (three-way mixed
ANOVA) showed significant effects of session (pre vs.
post), F(1, 25)¼ 191.3, p , 0.001, and complexity level
(1 vs. 2), F(1, 25)¼ 25.9, p , 0.001, but no significant
effect of group, F(1, 25)¼ 0.253, p ¼ 0.619, nor any
significant interactions: session, level, and group, F(1,
25)¼ 0.311, p ¼ 0.582; session and group, F(1, 25) ¼
2.22, p ¼ 0.149; level and group, F(1, 25) ¼ 1.15, p ¼
0.293. Further, comparing initial training performance
(mean of first two training blocks) between the two
groups did not show a significant group effect, F(1, 25)
¼ 0.106, p ¼ 0.747, suggesting that training with zero-
order sequences does not facilitate the learning of
higher order sequences.

In contrast, extracting higher order structures proved
to be more difficult for Group 2 participants (n¼ 12),
who did not have prior experience with zero- or first-
order sequences (Figure 4). In particular, eight of 12
participants improved significantly in the task during
training, while the rest of the participants showed less
than 10% improvement. A mixed ANOVA comparing
training session (start, end of training) and group (0, 1,

Figure 4. Experiment 2: Behavioral performance. Data for Group 1 (n¼ 8; Levels 1 and 2) and Group 2 (n¼ 12; Level 2). Performance

index is shown across training (solid circles) blocks, pretraining test (Pre: open squares), and posttraining test (Post: open squares).

Fitted data are shown for participants who improved during training (black circles). Data are also shown for participants (n ¼ 4) in

Group 2 who did not improve during training (Level 2, gray symbols). Error bars show standard error of the mean.
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2) showed a significant interaction between the two, F(2,
31)¼ 4.41, p¼ 0.021. In particular, there was a
significant difference between groups in performance at
the start, F(2, 31)¼ 5.14, p¼ 0.012, but not the end of
training, F(2, 31)¼ 0.893, p¼ 0.420. To investigate this
difference further, we compared performance on the
second-order contexts only (i.e., excluding first-order
contexts in Level 2) between groups. There was a
significant interaction between session and group, F(2,
31)¼ 10.52, p , 0.001, and a significant difference
between groups in performance at the start, F(2, 32)¼
5.05, p¼ 0.013, but not at the end of training, F(2, 32)¼
1.75, p¼ 0.191. Post hoc comparisons showed signif-
icantly higher performance indices in the prediction task
for second-order contexts in Group 0 and Group 1 than
in Group 2—Group 0 versus Group 2: p¼ 0.023; Group
1 versus Group 2: p¼ 0.009.

Taken together, these results suggest that learning
first-order sequences facilitates learning of higher order
sequences. In contrast, learning frequency statistics
does not facilitate performance in learning higher order
sequences. Further, fast learners in Experiment 2
extracted the correct context length and context–target
contingencies early in training and deviated from
matching toward maximization (Supplementary Figure
S5). In particular, fast learners extracted second-order
contexts earlier than slower learners, who continued to
rely on first-order contexts (Supplementary Figure S6).

Tracking individual strategy across levels

Combining data across experiments, we asked how
individual strategy relates to learning performance (i.e.,
learning rate). Significant correlations (Figure 5a)
between participants’ learning rate and strategy in-

dex—Level 1 (n¼ 27): R¼ 0.461, p¼ 0.016; Level 2 (n¼
33): R ¼ 0.519, p¼ 0.002—indicate that participants
who extracted the correct context length early in the
training adopt a strategy closer to maximization. These
results suggest that fast learning relates to selecting the
most probable outcome when learning context–target
contingencies. We then asked how the participants’
strategies developed during training across levels.
Correlating individual strategy index across Levels 1
and 2 (Figure 5b) showed that participants’ strategy
was highly correlated (R ¼ 0.489, p ¼ 0.0131) across
Levels 1 and 2 (n ¼ 25 from Groups 0 and 1). These
results suggest that participants mostly retained the
same strategy across levels of complexity (i.e., from
first- to second-order sequences).

Discussion

Here we ask how individuals adapt to changes in the
environment’s statistics to make predictions about
future events. In particular, we sought to characterize
the dynamics of learning temporal structures that
change in their complexity. We tracked each partici-
pant’s responses across trials and tested whether and
when participants extract the structure that governs
sequences of unfamiliar symbols. This enabled us to
provide the following four main advances in under-
standing the dynamics of human statistical learning.

First, we show that participants adapt to the
environment’s statistics: They extract behaviorally
relevant structures from temporal sequences that
change in their complexity to make predictions about
upcoming events. Further, they benefit from previous
exposure to lower order statistics (i.e., first-order

Figure 5. Strategies for learning context-based statistics. (a) Correlations of individual strategy index and learning rate for participants

who improved at both Levels 1 and 2 during training in Group 0 and Group 1. (b) Correlation of individual strategy index between

Level 1 and Level 2 for participants trained in Group 0 and Group 1. Negative strategy-index values indicate a strategy closer to

matching, while positive values indicate a strategy closer to maximization.
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sequences) when learning higher order structures.
Previous studies (Fiser & Aslin, 2002a, 2005) have
shown that humans are able to extract complex
spatiotemporal statistics (e.g., joint vs. conditional
probability statistics). These statistics are typically
manipulated in separate short-lasting experiments and
tested across separate groups of individuals. Here, we
test how the same individuals extract structures that
change in their complexity, simulating more naturalis-
tic situations that require extracting a range of patterns
from simple repetition to probabilistic combinations.
Our response-tracking approach allows us to monitor
whether and when individuals shift from learning
simple to complex structures, as the complexity of the
presented sequences changed unbeknownst to them.
Our findings demonstrate that individuals extract the
behaviorally relevant context length and context–target
contingencies that correspond to the structure of the
presented sequences.

Second, our response-tracking approach allowed us
to extract prototypical patterns of learning dynamics.
We demonstrate that fast learners succeeded in
identifying the correct statistical structure early in the
training. Interestingly, when learning complex struc-
tures, fast learners extracted higher order contexts and
adopted a learning strategy closer to maximization (i.e.,
extracted the most probable target per context) earlier
in the training. Previous work has tested the role of
matching versus maximization strategies in perceptual
decision making (Acerbi et al., 2014; Eckstein et al.,
2013; Murray et al., 2015) and reward-based learning
(Shanks et al., 2002): Observers may distribute their
choice responses so as to match the underlying input
statistics versus maximize their reward by selecting the
most frequently rewarded outcome in each trial. Here,
we test these strategies in the context of statistical
learning. We show that fast learners tend to use a
strategy closer to maximization, suggesting that there
may be a benefit to extracting the most probable target
per context rather than attempting to learn all
statistical dependencies. Further, our findings are
consistent with studies suggesting that previous expe-
rience shapes the selection of decision strategies
(Fulvio, Green, & Schrater, 2014; Rieskamp & Otto,
2006).

Third, we ask whether learning temporal structures
occurs in an incidental manner through exposure to
regularities or whether it involves explicit knowledge of
the underlying sequence structure. Previous studies
have suggested that learning of regularities may occur
implicitly (i.e., by mere exposure rather than external
feedback) in a range of tasks: visuomotor sequence
learning (Nissen & Bullemer, 1987), artificial grammar
learning (Reber, 1967), probabilistic category learning
(Knowlton, Squire, & Gluck, 1994), and contextual cue
learning (Chun & Jiang, 1998). Most studies have

focused on implicit measures of sequence learning, such
as familiarity judgments or reaction times (for a review,
see Schwarb & Schumacher, 2012). In contrast, our
paradigm allows us to directly test whether exposure to
temporal sequences facilitates observers’ ability to
explicitly predict the identity of the next stimulus in a
sequence. Our experimental design makes it unlikely
that the participants memorized specific stimulus
positions or the full sequences. Further, participants
were exposed to the sequences without trial-by-trial
feedback, but were given block feedback about their
performance that motivated them to continue with
training. A control experiment during which the
participants were not given any feedback showed
similar results to our main experiment (Supplementary
Figure S7), suggesting that it is unlikely that the block
feedback facilitated explicit sequence memorization.
Yet it is possible that making an explicit prediction
about the identity of the test stimulus made the
participants aware of the dependencies between the
stimuli presented in the sequence. During debriefing,
most participants reported some predictive sequence
structures (i.e., high-probability symbols or context–
target combinations). Thus, it is possible that pro-
longed exposure to probabilistic structures (i.e., multi-
ple sessions in contrast to single-exposure sessions
typically used in statistical-learning studies) in combi-
nation with prediction judgments (Dale, Duran, &
Morehead, 2012) may evoke some explicit knowledge
of temporal structures, in contrast to implicit measures
of anticipation typically used in statistical-learning
studies.

Finally, previous work has discussed a range of
possible representations that are formed during statis-
tical learning. This has mainly focused on deriving
generative structure from the stimulus space (for a
review, see Dehaene, Meyniel, Wacongne, Wang, &
Pallier, 2015) and implicated a range of representations
from learning stimulus associations and transitional
probabilities to sequence chunks (i.e., statistical con-
tingencies) and abstract rules (Aslin & Newport, 2012;
Fiser, Berkes, Orbán, & Lengyel, 2010; Opitz, 2010;
Orbán, Fiser, Aslin, & Lengyel, 2008; Reber, 1967). In
the context of our task, extracting the sequence context
length may relate to rule-based learning, while learning
behaviorally relevant contingencies may relate to chunk
learning. Further, this range of processes parallels the
distinctions between model-free and model-based
learning by exploring new strategies versus exploiting
previously learned associations in the context of
reward-based learning (Dayan & Niv, 2008; Koechlin,
2014). However, distinguishing between these accounts
in the context of statistical learning is complicated by
task setting and complexity (Franco & Destrebecqz,
2012; Pothos, 2007). Here we take a different perspec-
tive: To understand the dynamics of human behavior,
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we track human responses during mere exposure to
temporal sequences that change in their structure,
simulating interactions in naturalistic settings that vary
in context and complexity. We show that learning
predictive statistics proceeds without explicit trial-by-
trial feedback and relates to individual strategy in
extracting behaviorally relevant structure from se-
quences of events.

In sum, our findings provide evidence that successful
learning of complex structures relies on extracting
behaviorally relevant statistics that are predictive of
upcoming events. This learning of predictive structures
relates to individual decision strategy: Faster learning
of complex structures relates to selecting the most
probable outcomes in a given context rather than
learning the exact sequence statistics, providing evi-
dence for an alternate route to learning. In future work,
it would be interesting to investigate whether these
strategies are specific to the sensory input modality or
mediate domain-general learning of temporal structure
(Nastase, Iacovella, & Hasson, 2014). Recent work has
provided evidence for statistical learning within and
across different sensory modalities (vision, audition,
touch; Conway & Christiansen, 2005; Mitchel & Weiss,
2011), suggesting that statistical learning is imple-
mented by domain-general principles that are subject to
modality-specific constraints (Frost, Armstrong, Sie-
gelman, & Christiansen, 2015). For example, in vision
statistical learning has been mainly demonstrated by
extracting spatial relations, while in audition by
extracting temporal regularities. Learning predictive
statistics across modalities is critical not only for
sensorimotor interactions with the environment but
also higher cognitive functions that involve complex
structures, such as action organization, music compre-
hension, and language learning (Conway & Christian-
sen, 2001; Dehaene et al., 2015; Fitch & Martins, 2014;
Frost et al., 2015). Finally, it would be interesting to
investigate the developmental time course of learning
predictive statistics. Previous work has provided
evidence for statistical learning from infancy to older
age (for a review, see Krogh, Vlach, & Johnson, 2012)
in both vision (e.g., Bulf, Johnson, & Valenza, 2011;
Fiser & Aslin, 2001, 2002a, 2002b; Kirkham, Slemmer,
& Johnson, 2002; Kirkham, Slemmer, Richardson, &
Johnson, 2007) and audition (e.g., Pelucchi, Hay, &
Saffran, 2009; Saffran et al., 1999; Saffran, Aslin, &
Newport, 1996; Saffran, Newport, & Aslin, 1996).
Further, it has been suggested that while learning
probabilities is achieved early in life, learning mean-
ingful statistical patterns develops later in adolescence
(Amso & Davidow, 2012; Janacsek, Fiser, & Nemeth,
2012). This may relate to the suggestion that young
children maximize, while matching develops later in life
(Kam & Newport, 2009; Stevenson &Weir, 1959; Weir,
1964). Future work on the brain mechanisms of

learning predictive statistics may explore the develop-
ment of common brain routes to structure learning
across domains of perceptual and cognitive expertise.
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