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a b s t r a c t

Making predictions about future events relies on interpreting streams of information that

may initially appear incomprehensible. This skill relies on extracting regular patterns in

space and time by mere exposure to the environment (i.e., without explicit feedback). Yet,

we know little about the functional brain networks that mediate this type of statistical

learning. Here, we test whether changes in the processing and connectivity of functional

brain networks due to training relate to our ability to learn temporal regularities. By

combining behavioral training and functional brain connectivity analysis, we demonstrate

that individuals adapt to the environment's statistics as they change over time from simple

repetition to probabilistic combinations. Further, we show that individual learning of

temporal structures relates to decision strategy. Our fMRI results demonstrate that

learning-dependent changes in fMRI activation within and functional connectivity be-

tween brain networks relate to individual variability in strategy. In particular, extracting

the exact sequence statistics (i.e., matching) relates to changes in brain networks known to

be involved in memory and stimulus-response associations, while selecting the most

probable outcomes in a given context (i.e., maximizing) relates to changes in frontal and

striatal networks. Thus, our findings provide evidence that dissociable brain networks

mediate individual ability in learning behaviorally-relevant statistics.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
thought to succeed in this challenge by finding regular pat-

1. Introduction

Successful interactions in a new environment entail inter-

preting initially incomprehensible streams of information and

making predictions about upcoming events. The brain is
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terns and meaningful structures that help us to predict and

prepare for future actions. This skill is thought to rely on our

ability to extract spatial and temporal regularities, often with

minimal explicit feedback (Aslin&Newport, 2012; Perruchet&

Pacton, 2006). For example, previous behavioral studies have
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shown that structured patterns become familiar after simple

exposure to items (shapes, tones or syllables) that co-occur

spatially or follow in a temporal sequence (Chun, 2000; Fiser

& Aslin, 2002; Saffran, Aslin, & Newport, 1996; Saffran,

Johnson, Aslin, & Newport, 1999; Turk-Browne, Junge, &

Scholl, 2005).

Functional imaging studies have identified key brain re-

gions involved in the learning of statistical regularities. In

particular, striatal and hippocampal regions have been

implicated in the learning of temporal sequences (Aizenstein

et al., 2004; Gheysen, Van Opstal, Roggeman, Van Waelvelde,

& Fias, 2011; Hsieh, Gruber, Jenkins, & Ranganath, 2014;

Rauch et al., 1997; Rose, Haider, Salari, & Buchel, 2011;

Schendan, Searl, Melrose, & Stern, 2003). Further, the medial

temporal cortex has been implicated in learning of probabi-

listic associations (Schapiro, Kustner, & Turk-Browne, 2012;

Turk-Browne, Scholl, Johnson, & Chun, 2010). However, we

know little about the functional brain networks and their in-

teractions that mediate statistical learning of temporal

structures.

Recent functional connectivity studies provide accumu-

lating evidence for learning-dependent changes in human

brain networks due to training in a range of tasks including

visual perceptual learning (Baldassarre et al., 2012; Lewis,

Baldassarre, Committeri, Romani, & Corbetta, 2009), motor

learning (Bassett et al., 2011; Ma, Narayana, Robin, Fox, &

Xiong, 2011; Sun, Miller, Rao, & D'esposito, 2007), auditory

learning (Ventura-Campos et al., 2013) and language learning
a

b
Level-0: Zero-order model

Level-1: First-order model
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Fig. 1 e Trial and sequence design. (a) The trial design: 8e14 sym

test display. (b) Sequence design: Markov models of the two co

different states (A, B, C, D) are assigned to four symbols with d

diagrams indicate states (circles) and conditional probabilities (

probability). Transitional probabilities are shown in a four-by-f

indicate the context and columns the corresponding target.
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(Veroude, Norris, Shumskaya, Gullberg, & Indefrey, 2010).

These studies typically involve prolonged training with feed-

back. Here we ask whether mere exposure to streams of in-

formation (i.e., without trial-by-trial feedback) changes

processing in functional brain networks that mediate our

ability to extract statistical regularities.

We combine behavioral measurements and multi-session

fMRI (before and after training) to investigate processing in

functional brain networks that mediate statistical learning

of temporal structures. Event structures in the natural

environment typically contain regularities at different scales

from simple repetition to probabilistic combinations. To

investigate the brain networks involved in extracting such

structures unencumbered by past experience, we generated

temporal sequences based on Markov models of different

orders (i.e., context lengths of 0 or 1 previous item) (Fig. 1).

We exposed participants to sequences of unfamiliar symbols

and varied the sequence structure unbeknownst to the

participants by increasing the context length. To facilitate

learning, sequences were first determined by frequency

statistics (i.e., occurrence probability per symbol), and then

by context-based statistics (i.e., the probability of a given

symbol appearing depends on the preceding symbol). Par-

ticipants performed a prediction task, indicating which

symbol they expected to appear next in the sequence.

Following previous statistical learning paradigms, partici-

pants were exposed to the sequences without trial-by-trial

feedback. We tested for improvement in the prediction
Level-1
Target

A B C D

Co
nt
ex
t A .8 .2

B .8 .2
C .2 .8
D .8 .2

A B C D

.18 .72 .05 .05

    Cue   Response

bols were presented sequentially followed by a cue and the

ntext-length levels. For the zero-order model (level-0):

ifferent probabilities. For the first-order model (level-1),

solid arrows: high probability; dashed arrows: low

our (level-1) conditional probability matrix, where rows
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task and fMRI activation changes in functional networks due

to training (i.e., before vs after training on frequency and

context-based statistics).

Further, we asked whether learning-dependent changes

in functional brain networks relate to the participants' ability
to learn temporal structures. Previous work (Acerbi,

Vijayakumar, & Wolpert, 2014; Eckstein et al., 2013; Erev &

Barron, 2005; Lagnado, Newell, Kahan, & Shanks, 2006;

Murray, Patel, & Yee, 2015; Shanks, Tunney, & McCarthy,

2002; Wozny, Beierholm, & Shams, 2010) has highlighted

the role of strategies in probabilistic learning and decision

making and suggests that previous experience shapes the

selection of decision strategies (Fulvio, Green, & Schrater,

2014; Rieskamp & Otto, 2006). That is, observers are shown

to match their choices stochastically according to the un-

derlying input statistics or maximize their reward by

selecting the most probable positively rewarded outcomes.

Here, we tested whether learning-dependent changes in

functional brain networks relate to the participants' decision
strategy when learning frequency and context-based

statistics.

Our behavioral results show that individuals adapt to the

environment's statistics; that is, they are able to extract pre-

dictive structures that change over time. Further, we show that

individual learning of structures relates to decision strategy;

that is, individuals differed in their decision strategies, favoring

probability maximization (i.e., extracting the most probable

outcome in a given context) or matching the exact sequence

statistics. We used this variability in decision strategy to

interrogate fMRI activity in functional brain networks. Our re-

sults demonstrate that distinct brain networks mediate these

two strategies. In particular, learning-dependent fMRI changes

in functional brain networks relate to individual variability in

decision strategy: matching relates to fMRI activation changes

in brain networks involved in memory and stimulus-response

associations (including Precuneus, Sensorimotor, Middle

Temporal and the Right Central Executive), while maximizing

relates to activation changes in frontal and striatal brain net-

works (including Basal Ganglia and the Left Central Executive).

Further, increased functional connectivity due to training be-

tween networks involved in memory and stimulus-response

associations relates to matching, while between frontal and

striatal networks relates to maximization. Thus, our findings

provide evidence for distinct functional brain networks that

mediate individual ability to extract behaviorally-relevant

statistics in variable environments.
2. Material and methods

2.1. Observers

Twenty-three participants (mean age ¼ 21.8 years) were

tested in multiple scanning and behavioral training sessions.

The data from four participants were excluded from further

imaging analysis due to excessive head movement. A single

run from six of the remaining nineteen participants was also

removed due to excessive head movement. All participants

were naive to the aim of the study, had normal or corrected-

to-normal vision and gave informed consent. This study was
Please cite this article in press as: Giorgio, J., et al., Functional brain
dx.doi.org/10.1016/j.cortex.2017.08.014
conducted in the School of Psychology, University of Bir-

mingham and was approved by the University of Birming-

ham Ethics Committee.

2.2. Stimuli

Stimuli comprised four symbols chosen from Ndjuk�a sylla-

bary (Fig. 1a). These symbols were highly discriminable from

each other and were unfamiliar to the participants. Each

symbol subtended 8.5� of visual angle and was presented in

black on amid-gray background. Experiments were controlled

using Matlab and the Psychophysics toolbox 3 (Brainard, 1997;

Pelli, 1997). For the behavioral training sessions, stimuli were

presented on a 21-inch CRT monitor (ViewSonic P225f

1280 � 1024 pixel, 85 Hz frame rate) at a distance of 45 cm. For

the pre and post-training fMRI scans, stimuli were presented

using a projector and a mirror set-up (1280 � 1024 pixel, 60 Hz

frame rate) at viewing distance of 67.5 cm. The physical size of

the stimuli was adjusted so that angular size was constant

during behavioral and scanning sessions.

2.3. Sequence design

To generate probabilistic sequences that differed in their

structure, we used temporal Markovmodels andmanipulated

the memory order of the, which we refer to as the context

length (Wang, Shen, Tino,Welchman,&Kourtzi, in press). The

Markov model consists of a series of symbols, where the

symbol at time i is determined probabilistically by the previ-

ous ‘k’ symbols.We refer to the symbol presented at time i, s(i),

as the target and to the preceding k-tuple of symbols (s(i�1),

s(i�2), …, s(i�k)) as the context. The value of ‘k’ is the order or

level of the sequence:

P(s(i) js(i�1), s(i�2), …, s(1)) ¼ P(s(i) js(i�1), s(i�2), …, s(i�k)), k< i

In our study, we used two levels of memory length; for

k ¼ 0, 1. The simplest k ¼ 0th order model is a memory-less

source. This generates, at each time point i, a symbol ac-

cording to symbol probability P(s), without taking account of

the previously generated symbols. The order k ¼ 1 Markov

model generates symbol s(i) at each time i conditional on the

previously generated symbol s(i�1). This introduces amemory

in the sequence; that is, the probability of a particular symbol

at time i strongly depends on the preceding symbol s(i�1).

Unconditional symbol probabilities P(s(i)) for the case k¼ 0 are

replaced with conditional ones, P(s(i)js(i�1)).

At each time point, the symbol that follows a given context

is determined probabilistically, making the Markov sequences

stochastic. The underlying Markov model can be represented

through the associated context-conditional target probabili-

ties. We used 4 symbols that we refer to as stimuli A, B, C and

D. The correspondence between stimuli and symbols was

counterbalanced across participants.

For level-0, the Markovmodel was based on the probability

of symbol occurrence: one symbol had a high probability of

occurrence, one low probability, while the remaining two

symbols appeared rarely (Fig. 1b). For example, the probabili-

ties of occurrence for the four symbols A, B, C and D were .18,
networks for learning predictive statistics, Cortex (2017), http://
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.72, .05 and .05, respectively. Presentation of a given symbol

was independent of the items that preceded it. For level-1, the

target depended on the immediately preceding stimulus

(Fig. 1b). Given a context (the last seen symbol), only one of

two targets could follow; one had a high probability of being

presented and the other a low probability (e.g., 80% vs 20%).

For example, when Symbol A was presented, only symbols B

or C were allowed to follow, and B had a higher probability of

occurrence than C.

To test whether participants adapt to changes in the tem-

poral structure, we ensured that the sequences across levels

were matched for properties other than context-length. That

is, sequences across levels were matched for the number of

symbols presented (i.e., all four symbols were presented for

both level-0 and level-1 sequences). To ensure that for level-1

participants learned context-target contingences rather than

individual symbols, all symbols in level-1 were presentedwith

equal frequency (i.e., marginal probability of each symbol was

.25). These constraints resulted in differences in the proba-

bility distributions between level-0 and level-1. However, we

designed the stochastic sources from which the sequences

were generated so that the context-conditional uncertainty

remained highly similar across levels. In particular, for the

zero-order source, only two symbols were likely to occur most

of the time; the remaining two symbols had very low proba-

bility (.05); this was introduced to ensure that there was no

difference in the number of symbols presented across levels.

Of the two dominant symbols, one was more probable (prob-

ability .72) than the other (probability .18). This structure is

preserved in Markov chain of order 1, where conditional on

the previous symbol, only two symbols were allowed to

follow, one with higher probability (.80) than the other (.20).

This ensures that the structure of the generated sequences

across levels differed predominantly in memory order (i.e.,

context length) rather than context-conditional probability.

2.4. Procedure

Participants were initially familiarizedwith the task through a

brief practice session (8 min) with random sequences (i.e., all

four symbols were presented with equal probability 25% in

random order). Following this, participants took part in mul-

tiple behavioral training and fMRI scanning sessions that were

conducted on different days. Participants were trained with

structured sequences and tested with both structured and

random sequences to ensure that training was specific to the

trained sequences.

In the first scanning session, participants were presented

with zero- and first-order sequences and random sequences.

Participants were then trained with zero-order sequences,

and subsequently with first-order sequences. For each level,

participants completed a minimum of 3 and a maximum of 5

training sessions (840e1400 trials). Training at each level

ended when participants reached plateau performance (i.e.,

performance did not change significantly for two sessions). A

post-training scanning session followed training per level (i.e.,

on the following day after completion of training) during

which participants were presentedwith structured sequences

determined by the statistics of the trained level and random

sequences (90 trials each). The mean time interval (±standard
Please cite this article in press as: Giorgio, J., et al., Functional brain
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deviation) between the pre-training and the post-training test

sessions was 21.6 (±3.3) days.

2.5. Psychophysical training

Each training session comprised five blocks of structured se-

quences (56 trials per block) and lasted one hour. To ensure

that sequences in each block were representative of the

Markov model order per level, we generated 10,000 Markov

sequences per level comprising 672 stimuli per sequence. We

then estimated the KullbackeLeibler divergence (KL diver-

gence) between each example sequence and the generating

source. In particular, for level-0 sequences this was defined as:

KL ¼
X
target

QðtargetÞ log

�
QðtargetÞ
PðtargetÞ

�
;

and for level-1 sequences this was defined as:

KL ¼
X

context

QðcontextÞ

�
X
target

QðtagetjcontextÞ log

�
QðtargetjcontextÞ
PðtargetjcontextÞ

�
;

where P( ) refers to probabilities or conditional probabilities

derived from the presented sequences, and Q( ) refers to those

specified by the source. We selected fifty sequences with the

lowest KL divergence (i.e., these sequences matched closely

the Markov model per level). The sequences presented to the

participants during the experiments were selected randomly

from this sequence set.

For each trial, a sequence of 8e14 stimuli appeared in the

center of the screen, one at a time in a continuous stream, each

for 300 msec followed by a central white fixation dot (ISI) for

500 msec (Fig. 1a). This variable trial length ensured that par-

ticipants maintained attention during the whole trial. Each

block comprised equal number of trials with the same number

of stimuli. The end of each sequence was indicated by a red dot

cue that was presented for 500 msec. Following this, all four

symbols were shown in a 2 � 2 grid. The positions of test

stimuli were randomized from trial to trial. Participants were

asked to indicate which symbol they expected to appear

following the preceding sequence by pressing a key corre-

sponding to the location of the predicted symbol. Participants

learned a stimulus-key mapping during the familiarization

phase: key ‘8’, ‘9’, ‘5’ and ‘6’ in thenumber pad corresponded to

the four positions of the test stimuli e upper left, upper right,

lower left and lower right, respectively. After the participant's
response, a white circle appeared on the selected item for 300

msec to indicate the participant's choice, followed by a fixation

dot for 150 msec (ITI) before the start of the next trial. If no

response was made within 2 sec, a null response was recorded

and the next trial started. Participants were given feedback

(i.e., score in the form of performance index (PI), see Section

2.8) at the end of each block e rather than per-trial error

feedback e that motivated them to continue with training.
2.6. Scanning sessions

The pre-training scanning session (Pre) included six runs (i.e.,

three runs per level) the order of which was randomized
networks for learning predictive statistics, Cortex (2017), http://
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across participants. Scanning sessions after training per level

(denoted as Post-0, Post-1) included nine runs of structured

sequences determined by the same statistics as the corre-

sponding trained level and random sequences. Each run

comprised five blocks of structured and five blocks of random

sequences that were presented in a random counterbalanced

order (2 trials per blocks; a total of 10 structured and 10

random trials per run), with an additional two 16 sec fixation

blocks, one at the beginning and one at the end of each run.

The trial design was adjusted to afford modeling of fMRI sig-

nals within the scanning timing constraints. In particular,

each trial comprised a sequence of 10 stimuli that were pre-

sented for 250msec each, separated by a blank interval during

which a white fixation dot was presented for 250 msec.

Following the sequence, a response cue (central red dot)

appeared on the screen for 4 sec before the test display

(comprising four test stimuli) appeared for 1.5 sec. Partici-

pants were asked to indicate which symbol they expected to

appear following the preceding sequence by pressing a key

corresponding to the location of the predicted symbol. Awhite

fixation was then presented for 5.5 sec before the start of the

next trial. In contrast to the training sessions, no feedbackwas

given during scanning.

2.7. fMRI data acquisition

The experiments were conducted at the Birmingham Uni-

versity Imaging Centre using a 3T Philips Achieva MRI scan-

ner. T2*-weighted functional and T1-weighted anatomical

(175 slices; 1 � 1 � 1 mm3 resolution) data were collected with

a 32-channel head coil. Echo planar imaging (EPI) data

(gradient echo-pulse sequences) were acquired from 32 slices

(whole brain coverage; duration ¼ 6 min; TR ¼ 2 sec;

TE ¼ 35 msec; 2.5 � 2.5 � 4 mm3 resolution; SENSE).

2.8. Behavioral analysis

2.8.1. Performance Index
We assessed participant responses in a probabilistic manner.

We computed a Performance Index (PI) per context that

quantifies the minimum overlap (min: minimum) between

the distribution of participant responses and the distribution

of presented targets estimated across 56 trials per block by:

PIðcontextÞ ¼
X
target

minðPrespðtarget
��context�;

Ppresðtarget
���contextÞ�

where the sum is over targets from the symbol set A, B, C and

D.

The overall PI is then computed as the average of the per-

formance indices across contexts, PI (context), weighted by

the corresponding stationary context probabilities:

PI ¼
X

context

PIðcontextÞ$PðcontextÞ

To compare across different levels, we defined a normal-

ized PI measure that quantifies participant performance

relative to random guessing. We computed a random guess

baseline; i.e., performance index PIrand that reflects
Please cite this article in press as: Giorgio, J., et al., Functional brain
dx.doi.org/10.1016/j.cortex.2017.08.014
participant responses to targets with a) equal probability of

25% for each target per trial for level-0 (PIrand ¼ .53); b) equal

probability for each target for a given context for level-1

(PIrand ¼ .45). To correct for differences in random-guess

baselines across levels, we subtracted the random guess

baseline from the performance index (PInormalized¼ PI� PIrand).

2.8.2. Strategy choice and strategy index
To quantify each participant's strategy, we compared indi-

vidual participant response distributions (response-based

model) to two baselinemodels: (i) probabilitymatching, where

probabilistic distributions are derived from the Markov

models that generated the presented sequences (Model-

matching) and (ii) a probability maximization model, where

only the single most likely outcome is allowed for each

context (Model-maximization).We used KullbackeLeibler (KL)

divergence to compare the response distribution to each of

these two models. KL is defined as follows:

KL ¼
X
target

MðtargetÞ log

�
MðtargetÞ
RðtargetÞ

�

for level-0 model, and

KL ¼
X
context

MðcontextÞ

�
X
target

MðtargetjcontextÞ log

�
MðtargetjcontextÞ
RðtargetjcontextÞ

�

for level-1 model, where R( ) and M( ) denote the probability

distribution or conditional probability distribution derived

from the human responses and the models (i.e., probability

matching or maximization) respectively, across all the

conditions.

We quantified the difference between the KL divergence

from the response-based model to Model-matching and the

KL divergence from the response-based model to Model-

maximization. We refer to this quantity as strategy choice

indicated by DKL (Model-maximization, Model-matching). We

computed strategy choice per training block, resulting in a

strategy curve across training for each individual participant.

We then derived an individual strategy index by calculating

the integral of each participant's strategy curve and sub-

tracting it from the integral of the exact matching curve, as

defined by Model-matching across training. We defined the

integral curve difference (ICD) between individual strategy

and exact matching as the individual strategy index. Negative

strategy index indicates a strategy closer to matching, while

positive index indicate a strategy closer to maximization.

2.9. fMRI data analysis

2.9.1. Data pre-processing
We pre-processed the fMRI data in Matlab R2013a and SPM12

software package (http://www.fil.ion.ucl.ac.uk/spm/software/

spm12/) following the pipeline described in recent work

(Taylor et al., 2015). We first processed the T1 weighted

anatomical images by applying brain extraction and seg-

mentation. From the segmented T1 we created a white matter

(WM) mask and a cerebrospinal fluid (CSF) mask. For each

fMRI run, we corrected the EPI data for slice scan timing (i.e., to
networks for learning predictive statistics, Cortex (2017), http://
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remove time shifts in slice acquisition) and motion (least

squares correction). We co-registered each run to the T1

image and calculated the mean CSF and WM signal per vol-

ume. We then aligned the T1 image to MNI space (affine

transformation) and applied the same transformation to the

EPI data. Finally, we resliced the aligned EPI data to

3� 3� 4mm3 resolution and applied spatial smoothing with a

5 mm isotropic FWHM Gaussian kernel.

2.9.2. Independent component analysis (ICA)
We used group spatial ICA (GICA) (Calhoun & Adali, 2012;

Calhoun, Liu, & Adali, 2009; Haberecht et al., 2001; McKeown

et al., 1998) to extract participant- and session-specific he-

modynamic source locations using the Group ICA fMRI

Toolbox (GIFT) (http://mialab.mrn.org/software/gift/). Pre-

training sessions comprised 3 runs, whereas post-training

sessions comprised 9 runs. To account for the difference in

number of runs between sessions, we matched the post-

training session runs to the pre-training session in their

acquisition order and therefore, we included the matched 3

runs for subsequent analyses. Following pre-processing of

each run, we performed intensity normalization and

dimensionality reduction. We used the Minimum

Description Length criteria (MDL) (Rissanen, 1978) to esti-

mate the dimensionality and determine the number of inde-

pendent components. We used a two-level dimensionality

reduction procedure using PCA; first at the participant level

and then at the group level. The ICA estimation was run 20

times and the component stability was estimated using

ICASSO (Himberg, Hyv€arinen, & Esposito, 2004).

This procedure resulted in 28 independent components.

We generated participant- and session-specific spatial maps

and timecourses for each component using GICA3 back

reconstruction. Participant spatial maps were not scaled and,

as intensity normalization was performed prior to ICA, they

represent percent signal change. For further analysis, we

extracted the timecourse per participant per component and

regressed out the six motion parameters (translation and

rotation) as well as the mean WM and CSF signal. We then

removed slow drifts by applying linear detrending on the

regressed timecourse (Van Dijk et al., 2010).

2.9.3. Component selection
We used a quantitative method (Stevens, Kiehl, Pearlson, &

Calhoun, 2007) to remove components of non-neuronal

origin. We first converted each component's spatial map to a

z-map and thresholded it at z ¼ 1.96 to calculate its spatial

correlation with gray matter (GM) and CSF probabilistic maps

(as extracted from the MNI template). We rejected any

component with a spatial correlation of R2 > .025 with CSF or

WM and of R2 < .025 with GM. To supplement this method, we

visually inspected all rejected components to verify that they

were not of neuronal origin. This method resulted in 13

rejected components: 7 components had a high spatial cor-

relation with CSF, 1 component had a high correlation with

WM and 5 components had a low correlation with GM.

We labeled the selected components based on spatial

correlation with known resting-state networks, as the brain's
functional architecture at rest has been shown to relate to

task-based networks (Fox & Raichle, 2007; Smith et al., 2009).
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We correlated the thresholded spatial maps with network

templates (Allen et al., 2011) and labeled each component

based on its highest correlation value to the network tem-

plates. In further analysis, we used only the selected compo-

nents. To further denote the areas included in each selected

component, we created participant-specific maps per

component by averaging the maps across runs and sessions

per participant. We then generated a groupmap based on one

sample t-test on the participant averagemap (FWER corrected

at p < .005). We visualized the significant clusters in xjView

toolbox (http://www.alivelearn.net/xjview) and labeled them

based on their peak voxels (Table 1).

2.9.4. GLM-based analysis
We generated a GLM event-related (epoch) design and ran a

multiple regression analysis on each component's timecourse

(treated for nuisance variables: 6-motion parameters, CSF and

WM) per participant per run. The GLM designwas composed of

random and structured trial blocks convolved with the hemo-

dynamic response function.Theoutputof the regression isa set

of b weights (i.e., parameter estimates) for the task conditions

(random, structured sequences); where the bweights represent

thedegree towhich the component timecourse ismodulatedby

each task condition. We then averaged the b weights of each

task condition across runs resulting in a single value for each

condition per participant per component per session.

To test whether component activation changes in relation

to individual behavior (i.e., strategy), we correlated strategy

index for frequency (level-0) and context-based (level-1) sta-

tistics with change of b weight (i.e., post minus pre-training)

per component, separately for each task condition (random,

structured). We used the Robust Correlation Toolbox (Pernet,

Wilcox, & Rousselet, 2013) and Pearson's skipped correlation

to account for potential outliers. We accepted as significant

the correlations where the bootstrapped 95% confidence in-

terval (CI) after 1000 permutations doesn't cross the zero

origin.

2.9.5. Functional Network Connectivity (FNC)
To investigate the functional interaction of the networks

identified in the GLM-based analysis we calculated the be-

tween network connectivity of these components (Jafri,

Pearlson, Stevens, & Calhoun, 2008). We defined as FNC the

correlation of each component's timecourse (after nuisance

regression and detrending) with every other component's
timecourse, per participant. We converted the correlation

coefficients to z-scores (Fisher z-transform) and averaged the

values across runs for each pair of components; deriving one

connectivity value per participant per session. We then

correlated the change in average z-score (post minus pre-

training) with strategy for frequency (level-0) and context-

based (level-1) statistics using the Robust Correlationmethod.
3. Results

3.1. Behavioral performance

Previous studies have compared learning of different spatio-

temporal contingencies in separate experiments across
networks for learning predictive statistics, Cortex (2017), http://
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Table 1 e ICA components. Clusters within the 15 task-related components are extracted from the group maps and are
organized into known functional groups (Allen et al., 2011). The table shows the number of voxels within each cluster, the x,
y, z coordinates of the peak voxel in MNI space and the t-statistic of the peak voxel.

Network Component Areas Voxels x, y, z (mm) t-Value

Attentional CP 17 Inferior parietal R 387 48, �61, 42 23.91

Cerebellum Posterior L 151 �12, �73, �34 18.51

Inferior frontal gyrus R 817 45, 41, 14 16.35

Thalamus R 67 9, �22, 6 15.95

Putamen R 155 30, 14, �6 14.96

Inferior parietal L 57 �48, �46, 50 11.75

CP 21 Inferior parietal L 414 �36, �58, 42 16.32

Cerebellum Posterior R 147 21, �67, �34 15.29

Middle frontal gyrus L 658 �45, 23, 30 15.04

Putamen L 46 �33, �16, �6 14.08

Insula L 25 �27, 17, �2 11.76

CP 24 Cingulate Gyrus BL 3742 6, 20, 38 28.71

Cerebellum Posterior R 23 36, �67, �26 10.32

Basal Ganglia CP 13 Caudate R/L 1548 18, 17, 2 28.46

CP 27 Putamen R/L 1321 �24, 2, �6 25.81

Cingulate Gyrus BL 86 6, �1, 46 12.07

Cerebellum Anterior L 20 �3, �58, �38 11.17

Default mode CP 20 Precuneus R/L 819 12, �67, 30 21.61

Cingulate R/L 251 12, 32, 18 15.51

Superior Frontal Gyrus L 26 �24, 41, 22 11.86

Inferior parietal R 20 48, �55, 42 10.72

CP 23 Anterior Cingulate R/L 1834 �6, 44, 10 24.39

Posterior Cingulate R/L 121 �3, �46, 30 18.83

Cingulate gyrus L 32 �3, �16, 38 11.45

Superior Temporal Gyrus L 68 �48, �58, 26 12.18

Cerebellum Posterior R 52 27, �79, �30 11.02

Superior Temporal Gyrus R 26 54, �61, 38 10.61

Putamen R 24 30, 8, 2 10.48

CP 26 Precuneus R/L 1011 6, �61, 18 21.88

Middle Temporal Gyrus R 237 45, �64, 22 21.75

Middle Temporal Gyrus L 233 �48, �67, 14 13.61

Postcentral Gyrus R 93 48, 8, 26 14.71

Sensorimotor CP 5 Superior Temporal Gyrus L 516 �45, �19, 6 19.38

Superior Temporal Gyrus R 654 48, �10, 6 17.27

Middle frontal gyrus L 24 �3, �1, 62 12.41

CP 6 Postcentral Gyrus L 448 �42, �28, 54 25.15

Precentral Gyrus R 91 57, �13, 34 14.48

Cerebellum Anterior R 72 21, �52, �26 12.48

Postcentral Gyrus R 30 36, �7, 62 10.96

Parietal Superior L 20 �21, �61, 58 10.03

CP 10 Paracentral R/L 1653 21, �31, 66 24.7

Cerebellum Anterior L 125 �6, �46, �18 12.75

CP 19 Insula L 139 �39, �13, �2 17.42

Supramarginal R 167 57, �28, 26 17.17

Insula R 177 42, �10, �6 16.19

Supramarginal L 114 �63, �31, 22 15.48

Cingulate Gyrus R/L 87 12, �34, 38 13.3

Precuneus R/L 33 �6, �49, 58 13.21

Postcentral R 20 21, �46, 66 11.2

Middle Temporal Gyrus L 22 �54, �61, 6 9.83

Visual CP 7 Lingual Gyrus R/L 1197 5, �63, 2 31.77

Cerebellum Declive BL 47 �3, �73, �26 15.43

CP 12 Middle Occipital Gyrus R/L 1730 30, �85, 18 22.85

Posterior Cingulate R/L 107 1, �31, 26 15.94

Cerebellum CP 16 Cerebellum Anterior Lobe BL 3013 30, �58, �34 36.86

Precuneus R/L 30 3, �58, 38 10.51
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different participant groups (Fiser&Aslin, 2002, 2005). Here, to

investigate whether individuals extract changes in structure,

we presented the same participants with sequences that

changed in structure unbeknownst to them (Fig. 1a). We
Please cite this article in press as: Giorgio, J., et al., Functional brain
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parameterized sequence structure based on the memory-

order of the Markov models used to generate the sequences

(see Section 2.3); that is, the degree to which the presentation

of a symbol depended on the history of previously presented
networks for learning predictive statistics, Cortex (2017), http://
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Fig. 2 e Behavioral performance. (a) Mean normalized

performance index (PI) across participants per level during

pre-training (gray bars) and post-training (black bars) test

sessions. Error bars indicate standard error of the mean

across participants. (b) Strategy index boxplots for level-

0 and level-1 indicate individual variability. The upper and

lower error bars display the minimum and maximum data

values and the central boxes represent the interquartile

range (25th to 75th percentiles). The thick line in the

central boxes represents the median. (c) Scatterplot of

strategy index for level-0 against strategy index for level-1.
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symbols (Fig. 1b). We first presented participants with simple

zero-order sequences (level-0) followed bymore complex first-

order sequences (level-1), as previous work has shown that

temporal dependencies are more difficult to learn as their

length increases (van den Bos & Poletiek, 2008) and training

with simple dependencies may facilitate learning of more

complex contingencies (Antoniou, Ettlinger, & Wong, 2016).

Zero-order sequences (level-0) were context-less; that is, the

presentation of each symbol depended only on the probability

of occurrence of each symbol. For first-order sequences (level-

1), the presentation of a particular symbol was conditionally

dependent on the previously presented symbol (i.e., context

length of one).

As the sequences we employed were probabilistic, we

developed a probabilistic measure to assess participants'
performance in the prediction task. Specifically, we computed

a PI that indicates how closely the probability distribution of

the participant responses matched the probability distribu-

tion of the presented symbols. This is preferable to a simple

measure of accuracy because the probabilistic nature of the

sequences means that the ‘correct’ upcoming symbol is not

uniquely specified; thus, designating a particular choice as

correct or incorrect is often arbitrary.

Comparing normalized performance (i.e., after sub-

tracting performance based on random guessing) before

and after training per level (Fig. 2a) showed that partici-

pants improved substantially in learning probabilistic

structures. A two-way repeated measures ANOVA with

Session (Pre, Post) and Level (level-0, level-1) showed a

significant main effect of Session [F(1,18) ¼ 58.7, p < .001],

but no significant effect of Level [F(1,18) ¼ .6, p ¼ .459] nor a

significant interaction [F(1,18) ¼ .6, p ¼ .459], indicating that

participants improved similarly at both levels through

training. Further, we asked whether these learning effects

were specific to the trained structured sequences. We con-

trasted performance on structured versus random se-

quences before and after training sessions. A repeated-

measures ANOVA showed a significant interaction of Ses-

sion (Pre, Post) and Sequence type (structured, random) for

level-0 [F(1,18) ¼ 20.5, p < .001] and level-1 [F(1,18) ¼ 58.6,

p < .001], suggesting that learning improvement was spe-

cific to the structured sequences.

3.2. Decision strategies: matching versus maximization

Previous work (Acerbi et al., 2014; Eckstein et al., 2013; Fulvio

et al., 2014; Lagnado et al., 2006; Murray et al., 2015;

Rieskamp & Otto, 2006; Shanks et al., 2002) on probabilistic

learning and decision making has proposed that individuals

use two possible decision strategies when making a choice:

matching versus maximization. Observers have been shown

to either match their choices stochastically according to the

underlying input statistics or to maximize their reward by

selecting the most probable positively rewarded outcomes. In

the context of our task, as the Markov models that generated

stimulus sequences were stochastic, participants needed to

learn the probabilities of different outcomes to succeed in the

prediction task. It is possible that participants used probability

maximization whereby they always select the most probable

outcome in a particular context. Alternatively, participants
Please cite this article in press as: Giorgio, J., et al., Functional brain
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might learn the relative probabilities of each symbol [e.g.,

p(A)¼ .18; p(B)¼ .72, p(C) ¼ .05; p(D)¼ .05] and respond so as to

reproduce this distribution, a strategy referred to as proba-

bility matching.
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http://dx.doi.org/10.1016/j.cortex.2017.08.014
http://dx.doi.org/10.1016/j.cortex.2017.08.014


c o r t e x x x x ( 2 0 1 7 ) 1e1 6 9
To quantify participants' strategies across training, we

computed a strategy index that indicates each participant's
preference (on a continuous scale) for responding using

probability matching versus maximization (Fig. 2b). Fig. 2b

and c indicate variability in strategy index across participants.

Comparing individual strategy across levels showed signifi-

cantly higher values for level-1 compared to level-0 [t(18)¼ 2.2,

p ¼ .04], suggesting that participants adopted a strategy closer

to maximization when learning context-based rather than

frequency statistics (Fig. 2c). Note, that this relationship was

not confounded by differences in performance, as there were

no significant correlations (level-0: r ¼ .34, p ¼ .19; level-1:

r ¼ .04, p ¼ .88) between performance after training and

strategy index. Further, we conducted two additional analyses

to control for the possibility that the differences we observed

in strategy index between levels may be confounded by dif-

ferences in the probability distributions between levels (i.e.,

72% vs 80% probability for the most frequent target for level-

0 vs level-1) and PI. First, we observed significantly higher

strategy index for level-1 compared to level-0 [t(18) ¼ 2.19,

p¼ .042] after scaling the strategy index in level-0 by .8/.72 (i.e.,

the ratio of maximum PI for exact maximization for level-1

vs level-0). Second, strategy index remained higher for level-

1 than level-0 [t(18) ¼ 2.36, p ¼ 0.030] after regressing out the

post-training PI from strategy index per level. Thus, our result

showing higher strategy index for level-1 than level-0 is un-

likely to be confounded by differences in PI or the probability

distributions between levels.

Finally, participants were exposed to the sequences

without trial-by-trial feedback, but were given block feedback

about their performance that motivated them to continue

with training. A control experiment during which the partic-

ipants were not given any feedback showed similar results to

our main experiment; that is, higher strategy index for level-1

than level-0, suggesting that differences in the strategy be-

tween levels could not be simply attributed to feedback. Taken

together, these results suggest that participants adopt a

strategy closer to maximization for learning higher-order se-

quences (i.e., context-based statistics) than simple frequency

statistics. This is consistent with previous studies showing

that participants adopt a strategy closer to matching when

learning a simple probabilistic task in the absence of trial-by-

trial feedback (Shanks et al., 2002). However, for more com-

plex probabilistic tasks, participants weight their responses

towards the most likely outcome (i.e., adopt a strategy closer

to maximization) after training (Lagnado et al., 2006).

3.3. fMRI analysis: functional brain networks

To identify functional brain networks that mediate our ability

to adapt to changes in temporal statistics, we performed fMRI

on participants before and after training on each level with

structured and random sequences. First, we decomposed the

fMRI timecourse into functionally connected components (i.e.,

components comprising voxel clusters with correlated fMRI

time course) using ICA and selected components of neuronal

origin using a spatial correlation method with known brain

networks (Allen et al., 2011) (Fig. 3, Table 1). We then tested

whether learning-dependent changes in fMRI activation in

these brain networks relate to individual strategy when
Please cite this article in press as: Giorgio, J., et al., Functional brain
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learning frequency and context-based statistics. For each

component we extracted a b weight across voxels for struc-

tured and random sequences per session (pre-, post-training).

We correlated learning-dependent changes in fMRI signal

(post-pre b weight) for structured sequences with individual

strategy. Positive correlations indicate increased activation

after training that relates to maximization, while negative

correlations indicate increased activation that relates to

matching, as negative strategy index indicates strategy to-

wards matching.

First, we observed significant negative correlations between

learning-dependent fMRI changes and strategy index in func-

tional brain networks known to be involved in memory pro-

cesses and stimulus-response associations. In particular, for

learning frequency statistics (Fig. 4a), we found significant

negative correlations of fMRI activation change in the Pre-

cuneus (CP_20, peak activations in bilateral Precuneus and

cingulate; r ¼ �.70, CI ¼ [�.88, �.48]), the Sensorimotor (CP_6,

peak activations in bilateral precentral and postcentral gyri;

r ¼ �.70, CI ¼ [�.90, �.42]) and the Right Central Executive

(CP_17, peak activations in right inferior parietal and right

inferior frontal gyrus; r ¼ �.42, CI¼ [�.73, �.07]) networks with

strategy. For learning context-based statistics (Fig. 4b), we

found significant negative correlations of fMRI activation

change in the Precuneus (CP_20; r ¼ �.37, CI ¼ [�.68, �.03]) and

the Middle Temporal (CP_26, peak activations in bilateral Pre-

cuneus and Middle Temporal gyrus extending medially into

parahippocampal cortex; r ¼ �.44, CI ¼ [�.74, �.01]) networks

with strategy. These results suggest that increased functional

activation in these brain networks after training relates to

matching the exact sequence statistics. This is consistent with

the role of Precuneus and cingulate in memory retrieval

(Wagner, Shannon, Kahn, & Buckner, 2005; Cabeza, Ciaramelli,

Olson,&Moscovitch, 2008; St. Jacques, Kragel,& Rubin, 2011) in

the context of episodic and working memory tasks (Nyberg,

Forkstam, Petersson, Cabeza, & Ingvar, 2002). Further, Senso-

rimotor areas have been implicated in the consolidation of

stimulus-response associations, mainly at early stages of

motor consolidation (Muellbacher et al., 2002). Similarly, the

Right Central Executive Network has been implicated in the

initial stages of learning (Seger et al., 2000). Thus, these net-

works contribute at the initial training on frequency statistics,

while the Middle Temporal network contributes at later

learning of context-based statistics, as this brain network has

been implicated in episodic memory and mnemonic tasks

involving longer memory length (Cabeza et al., 2008; Nyberg

et al., 2002; Vincent et al., 2006).

In contrast, we observed significant positive correlations

between learning-dependent fMRI changes and strategy in

the Basal Ganglia and the Left Central Executive Networks. In

particular, for learning frequency statistics, we found a sig-

nificant positive correlation of fMRI activation change in the

Basal Ganglia Network (CP_13, peak activation in bilateral

caudate) with strategy (r ¼ .43, CI ¼ [.04, .72]) (Fig. 5a), sug-

gesting involvement of Basal Ganglia in learning by maxi-

mizing. This is consistent with previous work suggesting that

Basal Ganglia is involved in the consolidation of the

stimulus-response mapping (Albouy et al., 2008; Shohamy,

Myers, Kalanithi, & Gluck, 2008) and category learning

(Ashby & Maddox, 2005; Seger & Cincotta, 2005). In particular,
networks for learning predictive statistics, Cortex (2017), http://
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Fig. 3 e Spatial maps of ICA task-related components. 15 task-related components are shown organized into known

functional groups (Allen et al., 2011). Spatial maps are thresholded at p < .005 (FWER corrected) and displayed in

neurological convention (left is left) on the MNI template. The x, y, z coordinates per component denote the location of the

sagittal, coronal and axial slices, respectively.
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previous work on humans and animals emphasizes the role

of the caudate in switching between strategies (Cools, Clark,

& Robbins, 2004; Monchi, Petrides, Petre, Worsley, & Dagher,

2001; Seger & Cincotta, 2005), and learning after a rule

reversal (Cools, Clark, Owen, & Robbins, 2002; Pasupathy &

Miller, 2005). For learning context-based statistics, we found

a significant positive correlation of fMRI activation change in

the Left Central Executive Network (CP_21, peak activations

in left inferior parietal and left middle frontal gyrus) with

strategy (r ¼ .63, CI ¼ [.29, .84]) (Fig. 5b), suggesting that higher

activation after training in this region relates to maximiza-

tion. Executive networks have been implicated in holding and

updating task rules (Ridderinkhof, van den Wildenberg,

Segalowitz, & Carter, 2004; Vincent, Kahn, Snyder, Raichle,

& Buckner, 2008; D'Ardenne et al., 2012). In particular,

increased activation in the Left Central Executive Network

has been shown after training in the context of category

learning (Seger et al., 2000). This is consistent with our

behavioral results showing that participants adopt a stronger

maximization strategy during later training on context-based

statistics.
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Finally, we tested whether our results were specific to the

learned structured sequences. We computed fMRI activation

for random sequences in brain networks that showed signif-

icant correlations with strategy for structured sequences. For

frequency statistics, fMRI activation change in the Precuneus

Network showed a significant negative correlation with

strategy (r ¼ �.53, CI ¼ [�.81, �.11]). For context-based statis-

tics: a) activation change in the Middle Temporal Network

(r ¼ �.59, CI ¼ [�.87, �.14]) and the Precuneus Network

(r ¼ �.57, CI ¼ [�.81, �.25]) showed a significant negative

correlation with strategy b) activation change in the Left

Central Executive Network showed a significant positive cor-

relation with strategy (r ¼ .61, CI ¼ [.25, .79]). To compare

correlations for structured versus random sequences, we used

Steiger z-score comparison (Lee & Preacher, 2013), for

comparison of dependent correlations with a shared variable

(i.e., strategy index). We found significantly higher negative

correlations for structured versus random trials in: a) Pre-

cuneus (z ¼ �2.19, p ¼ .029), b) Right Central Executive

(z ¼ �2.43, p ¼ .015) and c) Sensorimotor (z ¼ �2.92, p ¼ .004)

Networks. These results suggest differences in the processing
networks for learning predictive statistics, Cortex (2017), http://
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of structured versus random sequences primarily when par-

ticipants learn by matching, as this strategy requires learning

the exact sequence statistics that differ between these two

sequence types.

3.4. Functional Network Connectivity (FNC)

Our analyses so far identified brain networks that show

learning-dependent changes in functional processing that

relate to individual strategy for learning temporal structures.

Next, we asked whether learning-dependent changes in the

connectivity between these networks relate to individual

strategy when learning frequency and context-based statis-

tics.We calculated pairwise correlations between the six brain

networks (Precuneus, Sensorimotor, Right Central Executive,

Middle Temporal, Basal Ganglia, Left Central Executive) that

showed significant correlations with strategy (see Section 3.3).

We calculated these correlations for each session (Pre, Post-0,

Post-1) and converted them to z-scores (Fisher z). We then

correlated change (post minus pre-training z-score) in

FNC with strategy index to assess the relationship of strategy

with changes in between-network connectivity (Fig. 6).

For frequency statistics, we found that a) connectivity

change between Left Central Executive and Middle Temporal

Networks correlated negatively with strategy (r ¼ �.62,

CI ¼ [�.86, �.18]), and b) connectivity change between Pre-

cuneus and Sensorimotor Networks correlated negatively

with strategy (r¼�.62, CI¼ [�.88,�.15]). These results suggest
Please cite this article in press as: Giorgio, J., et al., Functional brain
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that increased connectivity between these networks with

training relates to learning by matching the exact sequence

statistics. For context-based statistics, we found that con-

nectivity change between Right Central Executive and Basal

Ganglia Networks correlated positively with strategy (r ¼ .55,

CI ¼ [.01, .85]), suggesting that increased connectivity between

these networks with training relates to maximization. These

results are consistent with previouswork highlighting the role

of Central Executive Networks in controlling learning of

contextual and stimulus-response associations (Ridderinkhof

et al., 2004; D'Ardenne et al., 2012). Further, recent neuro-

physiology findings (Antzoulatos & Miller, 2014) show

enhanced connectivity between prefrontal cortex and Basal

Ganglia in the context of category learning, suggesting that

fast learning in the Basal Ganglia may train slower learning in

the frontal cortex that may facilitate the generalization and

abstraction of learned associations.

This functional connectivity analysis is consistent with our

previous analyses showing fronto-striatal networks involved

in maximization, the strategy for which participants showed

stronger preference when learning context-based statistics

(Fig. 2b and c). Our results provide complementary evidence

that learning-dependent changes in the connectivity of brain

networks known to be involved in memory and stimulus-

response associations mediate learning by matching the

exact sequence statistics, while connectivity changes in

frontal and striatal networks mediate learning by maximizing

(i.e., extracting themost probable outcome in a given context).
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4. Discussion

Here, we investigate the functional brain networks that

mediate our ability to adapt to changes in the environment's
statistics and make predictions. Our behavioral results

demonstrate that individuals adapt to changes in temporal

structure and extract the relevant frequency or context-based

statistics for making predictions of upcoming events. Our

fMRI results provide evidence for dissociated functional brain

networks that mediate our ability to extract behaviorally-

relevant statistics.

Our modeling approach allows us to track participants'
predictions and their strategies during training. We demon-

strate that learning predictive structures relates to individual

variability in decision strategies: that is, individuals favored

either probability maximization (i.e., extracting the most

probable outcome in a given context) or matching the exact

sequence statistics. Previous behavioral studies have reported

individual variability in decision strategy in the context of

probabilistic learning tasks and suggested that strategies

change during the course of training with feedback (Gluck,

Shohamy, & Myers, 2002; Lagnado et al., 2006; Shanks et al.,

2002). Here we show that decision strategy relates to

sequence structure; that is, learning context-based statistics

relates to stronger maximization than learning simple fre-

quency statistics. Further, we provide evidence that these

decision strategies engage distinct functional brain networks:

matching relates to changes in fMRI activation within and

functional connectivity between brain networks involved in

memory and stimulus-response associations, while maxi-

mizing relates to changes in frontal and striatal brain

networks.

Previous work has implicated these brain networks in

reinforcement learning [e.g., for reviews (Robbins, 2007;

Balleine & O'Doherty, 2010)]. Previous brain imaging and

neurophysiology studies have demonstrated learning-

dependent changes in functional brain connectivity in a
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range of tasks: visual perceptual learning (Baldassarre et al.,

2012; Lewis et al., 2009), category learning (Antzoulatos &

Miller, 2014), motor learning (Bassett et al., 2011; Ma et al.,

2011; Sun et al., 2007), auditory learning (Ventura-Campos

et al., 2013) and language learning (Veroude et al., 2010).

However, most of this work has focused on reward-based

learning that involves training with trial-by-trial feedback.

Here, we show that learning temporal statistics may proceed

without explicit trial-by-trial feedback and involve in-

teractions between brain networks similar to those known to

support reward-based learning (Alexander, DeLong, & Strick,

1986; Lawrence, Sahakian, & Robbins, 1998).

Finally, we considered whether the learning we observed

occurred in an incidental manner or involved explicit knowl-

edge of the underlying sequence structure. Previous studies

have suggested that learning of regularities may occur

implicitly in a range of tasks: visuomotor sequence learning

(Nissen & Bullemer, 1987; Schwarb & Schumacher, 2012;

Seger, 1994), artificial grammar learning (Reber, 1967), proba-

bilistic category learning (Knowlton, Squire, & Gluck, 1994)

and contextual cue learning (Chun & Jiang, 1998). This work

has focused on implicit measures of sequence learning, such

as familiarity judgments or reaction times. In contrast, our

paradigm allows us to directly test whether exposure to

temporal sequences facilitates the observers' ability to

explicitly predict the identity of the next stimulus in a

sequence. Although, our experimental design makes it un-

likely that the participants memorized specific stimulus po-

sitions or the full sequences, debriefing the participants

suggests that most extracted some high probability symbols

or context-target combinations. Thus, it is possible that pro-

longed exposure to probabilistic structures (i.e., multiple ses-

sions in contrast to single exposure sessions typically used in

statistical learning studies) in combination with prediction

judgments (Dale, Duran, & Morehead, 2012) may evoke some

explicit knowledge of temporal structures, in contrast to im-

plicit measures of anticipation typically used in statistical

learning studies.
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5. Conclusions

Our findings provide evidence that functional brain connec-

tivity changes with learning in dissociable networks to sup-

port our ability to extract behaviorally-relevant statistics. This

network connectivity relates to individual decision strategies

when learning temporal structures. Our paradigm tested

learning of structures that increased in context-length over

time; thus, it does not allow us to dissociate learning time

course from changes in sequence structure over time. In

future work, it would be interesting to investigate the time

course of learning temporal statistics using dynamic con-

nectivity analysis that allows us to track changes in brain

connectivity over time.
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