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Summary 

We present an exceptional case of a patient with high-grade serous ovarian cancer, 

treated with multiple chemotherapy regimens, who exhibited regression of some 

metastatic lesions with concomitant progression of other lesions during a treatment-free 

period. Using immunogenomic approaches, we found that progressing metastases were 5 

characterized by immune cell exclusion while regressing and stable metastases were 

infiltrated by CD8+ and CD4+ T cells, and exhibited oligoclonal expansion of specific T 

cell subsets. We also detected CD8+ T cell reactivity against predicted neoepitopes after 

isolation of cells from a blood sample taken almost 3 years after the tumors were 

resected. These findings suggest that multiple distinct tumor immune microenvironments 10 

co-exist within a single individual and may explain in part the heterogeneous fates of 

metastatic lesions often observed in the clinic post therapy. 

 

Introduction 

The majority of patients with ovarian cancer relapse despite appropriate surgery 15 

and chemotherapy (Bowtell et al., 2015a; Cannistra, 2004). Ovarian cancer is 

characterized by a preponderance of DNA copy number alterations and a modest 

somatic missense mutation burden (~61 per exome) (Patch et al., 2015; TCGA et al., 

2011). Analysis of data from various cancer types studied by the Cancer Genome Atlas 

(TCGA) consortium, including ovarian cancer, has demonstrated that the number of 20 

somatic mutations and neoepitopes (peptides resulting from somatic non-silent 

mutations that are presented to the immune system) correlates with overall survival 

(Brown et al., 2014). Together with the observation that chemotherapy in some cases 

may trigger immune activation in ovarian cancer and other cancer types (Galluzzi et al., 
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2015; Gavalas et al., 2010; Pfirschke et al., 2016), this highlights the importance of 25 

investigating the host immune response in ovarian cancer. However, the interplay 

between somatic mutations, prior therapy, and the host immune response in this disease 

remains largely unknown. 

 

Several studies of smaller cohorts of patients with metastatic ovarian cancer 30 

have found that primary and metastatic lesions exhibit heterogeneity at the genomic 

level (Bashashati et al., 2013; Lee et al., 2015; De Mattos-Arruda et al., 2014). 

Supporting these findings, functional magnetic resonance imaging (MRI)-based analysis 

has revealed that ovarian tumors and metastatic peritoneal implants are already 

phenotypically heterogeneous at diagnosis (Sala et al., 2012). As tumor heterogeneity 35 

increases the likelihood of presence of subclones able to escape the immune system 

(Bhang et al., 2015; Su et al., 2012; Turke et al., 2010), immune control may be 

particularly challenging in ovarian cancer due to extensive heterogeneity and the low 

number of potential mutation-derived epitopes. 

 40 

The clinical challenge of tumor heterogeneity has been demonstrated recently in 

the context of immunotherapy: patients with less heterogeneous tumors, and hence, with 

more clonal neoepitopes, were more likely to respond to checkpoint blockade 

immunotherapy than patients with heterogeneous tumors (McGranahan et al., 2016). 

Whether chemotherapy and the immune system could work cooperatively is also being 45 

explored. In some settings, chemotherapy promotes immune cells homeostasis and 

activation (Carson et al., 2004; Gavalas et al., 2010; Pfirschke et al., 2016), tumor 

antigen release (Zitvogel et al., 2008), and decreased numbers of myeloid-derived 

suppressor cells in the tumor microenvironment (Suzuki et al., 2005). Furthermore, 

effector T cells have recently been implicated to play a role in abrogating fibroblast-50 
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mediated chemoresistance in a mouse model of ovarian cancer (Wang et al., 2015). 

Despite these findings, a unified model describing the effect of chemotherapy on the 

tumor heterogeneity and immune-tumor interactions has not yet been reached. A critical 

step toward understanding the effect of chemotherapy on advanced metastatic diseases 

and the immune response in humans is to analyze intra-patient matched primary and 55 

metastatic tumors (Brabletz et al., 2013). The ability to perform such analyses has been 

limited by the fact that multiple tumor sites from a single patient with advanced disease 

are rarely concurrently sampled, mainly due to the lack of clinical indication. 

 

Here we present a case study of a high-grade serous ovarian cancer patient 60 

whose different metastases exhibited concomitant regression and progression after 

treatment with multiple types of chemotherapy. We investigated the genetic, molecular, 

and cellular components that potentially underlie this differential growth using whole 

exome sequencing, RNA expression data, immunohistochemistry, neoepitope 

prediction, in situ T cell receptor sequencing of tumor infiltrating immune cells, and T 65 

cell-neoepitope challenge assays using intracellular cytokine staining (ICS). In this 

heavily chemotherapy-treated patient, immune cell infiltration with clonal expansion of T 

cells, but not mutation or neoepitope number, correlated with tumor 

progression/regression status. Our immunogenomic analysis paints a portrait that 

immune infiltration and activation is different in each tumor (at two years post 70 

chemotherapy). Inter-site immune heterogeneity represents an important clinical 

challenge in the development of treatment modalities to overcome intra-patient tumor 

heterogeneity. 
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Results 

The patient presented here was diagnosed with stage IV high-grade serous 75 

ovarian adenocarcinoma, which typically exhibits a 5-year survival of 17% (National 

Cancer Institute, SEER Data Base), and underwent an optimal surgical debulking 

followed by paclitaxel combined with first cisplatin and then carboplatin. The patient 

experienced recurrence after 7 months, and during a period of 3 years, she was treated 

with multiple regimens of chemotherapy with progression of disease after each therapy 80 

(Fig. 1A-B). Her cancer was growing radiographically and her CA125 was rising during 

treatment with topotecan when she then transitioned to best supportive care and was 

followed clinically with regular CA125 biomarker evaluation. After chemotherapy 

treatment was stopped, she experienced an atypical course: her CA125 decreased, and 

after 2 years of clinical follow up, CT scans showed evidence of differential growth of 85 

metastatic lesions including a new complex cystic mass in the vaginal cuff.  Because of 

her long treatment-free interval and abdominal discomfort, she opted to undergo another 

debulking procedure, which found a substantial disease burden including tumor implants 

on the liver capsule, the splenic hilum, right upper quadrant (RUQ) and recto-vaginal 

space (Fig. 1A-B). Samples of the primary and four metastatic tumors were submitted 90 

for whole exome sequencing, microarray RNA quantification, staining for protein markers 

by immunofluorescence, and in situ T cell receptor sequencing. 

 

Phylogenetic analysis of somatic mutations in tumors  

We performed whole exome sequencing of normal blood and the resected 95 

samples to identify somatic mutations in the primary tumor and the metastases. Of all 

samples, we detected the highest mutation load in the liver and vaginal cuff metastases 

(Fig. 1C). To infer the evolutionary relationship between the tumor samples, we used a 
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binary presence/absence matrix of the non-silent mutations to perform a phylogenetic 

reconstruction based on the parsimony ratchet analysis method with branch lengths 100 

proportional to the number of non-silent mutations (Nixon, 1999; Schliep, 2011) (Fig. 1D 

and Fig. S1A). The liver and vaginal cuff tumors were genetically more heterogeneous 

and harbored more mutations. 

 
To estimate the proportion of cancer cells identified with a given mutation 105 

(cellular prevalence), we applied PyClone (Roth et al., 2014) using CopywriteR (Kuilman 

et al., 2015) inferred DNA copy number changes (Fig. S1B-C), and ABSOLUTE (Carter 

et al., 2012) inferred tumor purity and absolute copy numbers. As expected, truncal and 

shared mutations were generally clonal with high cellular prevalence, whereas private 

mutations had medium to low cellular prevalence indicating subclonal status (Fig. 1E). 110 

Focusing on the specific genes that were mutated across all samples, we found potential 

oncogenic driver alterations among the truncal mutations including WNK3P1728R, 

PAX4P287L, and TP53N247I (Fig. 1D). TP53N247I was detected with a high cellular 

prevalence indicating loss of heterozygosity, which was supported by our DNA copy 

number analysis. Additionally, we identified other putative truncal events including 115 

deletion of BRCA1, BRCA2, PTEN, and amplification of CCNE1 (Fig. S1B), which are 

commonly altered in serous ovarian cancer (Bowtell et al., 2015b; Patch et al., 2015). 

Among the private mutations we detected several potential driver mutations including 

RUNX3P246S in the growing splenic lesion and CSMD1G1770R in the primary tumor. 

Several private and shared branch mutations were found in different Rho GTPase 120 

activating genes (ARHGAP) which inactivate Rho and Rac signaling involved in the 

control of cellular motility (Bernards and Settleman, 2004; Li et al., 2014). 

 



 6 

Transcriptomic analysis reveals immune-related pathways over-expressed 

in regressing tumors 125 

To evaluate if genes involved in chemotherapy resistance were differentially 

altered between tumors and associated with regression and progression status, we 

analyzed somatic alterations and gene expression data (Affymetrix transcript array) 

across the samples. After analyzing chemotherapy-resistance genes identified in 

HGSOC (Patch et al., 2015), as well as gene sets for multidrug resistance (ABC 130 

transporters), apoptosis, and DNA damage response, we found no clear evidence of 

gene expression or somatic alteration patterns (mutations, DNA amplification and deep 

deletion) that differed between progressing (primary, vaginal cuff, and spleen) and 

regressing/stable tumors (RUQ and liver) (Fig. S2A-C). Interestingly, there was a trend 

that the ABC transporter TAP1, which is known for its function as a transporter of 135 

cytosolic peptides to the endoplasmic reticulum for HLA class I presentation (Bahram et 

al., 1991; Neefjes et al., 1993; Powis et al., 1991; Suh et al., 1994), was expressed at a 

higher level in the regressing tumors (Fig. 2A). 

 

To further identify potential differences between samples we analyzed gene sets 140 

and pathways in an unbiased manner with single sample Gene Set Enrichment Analysis 

(ssGSEA) (Barbie et al., 2009; Subramanian et al., 2005). Using permutation-based 

false discovery rate, we estimated the significance of the enrichment score for each 

pathway and performed an outlier analysis relating gene set significance to the relative 

change in enrichment score between a given sample and the rest of the samples (Fig. 145 

2B, Table S3 and S4). The most significant and differentially enriched pathway found 

was the immune system pathway with a higher enrichment in the spleen and RUQ 

metastases, and a lower enrichment in the primary and vaginal cuff tumors (Table S4B). 
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Further indicating immune activation, the systemic lupus erythematosus pathway was 

highly enriched in the RUQ and liver metastases (Table S4C), while TCR signaling 150 

pathways were preferentially enriched in the RUQ sample alone (Table S4D). Cancer 

and proliferation pathways, as well as Wnt signaling, were more enriched in the primary 

and vaginal cuff tumors (Table S4E). No outlier gene sets were identified for the 

negatively enriched pathways (Fig. S2E, Table S3). 

 155 

To investigate the gene expression differences between the samples on an 

unbiased individual gene level, we calculated the coefficient of variation of the 

expression levels for each gene across samples (Table S2A). We found that among the 

most variably expressed genes, besides lipid metabolic process-related genes in the 

liver, the T cell chemo-attractant CXCL9 was predominantly expressed in the RUQ and 160 

liver metastases, as well as STAT1, which has been implicated in the regulation of 

CXCL9 expression (Liao et al., 1995; Satoh and Tabunoki, 2013) (Fig. S2D). No 

relevant mutations in immune-related molecules were identified except for truncal 

mutations in the MHC class I polypeptide-related sequence B (MICB) (Table S1A), 

which is a stress-induced ligand recognized by NKG2D receptors on CD8αβ and γδ T 165 

cells, as well as NK cells (Bauer et al., 1999; Groh et al., 1999). 

 

Heterogeneous immune cell infiltration in growing and regressing lesions 

To investigate the immune infiltration status of the tumors, we analyzed tumor 

purity and overall stromal and immune components using ESTIMATE (Yoshihara et al., 170 

2013). The lowest tumor purities and highest immune infiltration scores were found in 

the RUQ, liver and spleen samples (Fig. 3A). Furthermore, we deconvolved the gene 
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expression data using CIBERSORT (Newman et al., 2015) as a first approach to dissect 

infiltration of specific immune cell subsets in the tumors. We found that the largest 

immune cell components corresponded to CD8+ and CD4+ T cells in RUQ, liver, and 175 

spleen tumors, although the overall CIBERSORT deconvolution p-value was only 

significant for RUQ and liver tumors (Fig. 3B). In contrast, the primary and vaginal cuff 

tumors had low immune cell ESTIMATE scores and insufficient levels of immune cell 

transcripts to confidently apply CIBERSORT (Table S5A-B), together suggesting a low 

or absent immune component present in these tumors. 180 

 

Following this analysis, samples were immuno-fluorescently co-stained for T cell 

markers CD4, CD8 and the T regulatory cell marker FOXP3, double stained for PD-L1 

and macrophage marker CD68, as well as double stained for PD-L1 and the T cell 

marker CD3 (Fig. 3C and S3A). Consistent with the transcriptomic deconvolution 185 

analyses, the primary tumor demonstrated no T cell infiltration and was negative for PD-

L1 and CD68 (Fig. 3C-D, S3A, and Table S5C). The vaginal cuff lesion, which was 

growing at the time of surgical resection, did display a T cell population, however, these 

cells bordered but did not infiltrate the tumor. The splenic lesion, which was also 

progressing at the time of resection, albeit at a much more modest rate than the vaginal 190 

cuff lesion, demonstrated a CD8+ infiltrate. Finally, the RUQ and liver metastases, which 

were regressing and stable respectively at the time of surgical resection, displayed a 

strong CD4+ and CD8+ infiltrate. In summary, the transcript and IF analyses suggested 

each tumor site displayed a unique tumor-immune microenvironment ranging from 

immune cell inclusion to exclusion. 195 
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Regressing metastases show T cell oligoclonal expansion 

It is known that genetic alterations in HLA-I molecules are associated with escape of 

cancer cells from CD8+ T cell recognition (Shukla et al., 2015). The patient’s HLA alleles 

were determined experimentally by conventional PCR-based HLA typing and 200 

computationally on exome data by OptiType (Szolek et al., 2014) and POLYSOLVER 

(Shukla et al., 2015) independently, yielding the same results (Table S6A). We searched 

copy number alterations, as well as mutations by applying POLYSOLVER – a specific 

computational pipeline for HLA-I typing and mutation detection in the HLA-I genes – 

however no genetic alterations were detected. We then assessed gene expression and 205 

found that all HLA-I genes were expressed in the tumors (Table S2), however, 

compared to primary and vaginal cuff samples, an overall higher expression of HLA 

genes was observed in the RUQ and liver samples, with a lesser extent seen in the 

spleen sample (Fig. 4A). 

 210 

We next estimated the neoepitope landscape of the samples by mapping 

missense mutations to their amino acid sequences, in silico generating the mutant 

peptide sequences, and predicting the mutant peptide-HLA binding affinities to the 

patient’s HLAs. The predictions were performed using the NetMHC algorithm with HLA 

specific cut-offs for HLA-I (Lundegaard et al., 2008; Nielsen et al., 2003; Paul et al., 215 

2013) and consensus scores for HLA-II (Kim et al., 2012; Kreiter et al., 2015). The 

tumors with the highest mutation and neoepitope loads for both HLA class I and HLA 

class II were the liver and vaginal cuff, which also had the highest number of missense 

mutations (Fig. 4B). We also investigated if there were shared neoepitopes or mutations 

present in the RUQ (regressing) and liver (stable) metastases alone, i.e. not present in 220 

the other tumors. No shared mutations between RUQ and liver alone were detected 
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(Fig. S4A); therefore, it did not appear that a shared neoepitope or mutation alone 

explained the behavior of the non-progressing tumor sites. 

 

As an active CD8 T cell infiltration can be a selective pressure at the neoepitope 225 

level (DuPage et al., 2012; Matsushita et al., 2012; Teng et al., 2015; Tran et al., 2016; 

Verdegaal et al., 2016), we further interrogated the neoepitope landscape by analyzing 

potential evidence of neoepitope depletion using an approach adopted from a report 

analyzing TCGA data (Rooney et al., 2015). Relative to the other samples of the patient, 

the regressing RUQ tumor showed a consistent – yet non-significant – tendency of 230 

neoepitope depletion (p<0.1 by two-sided empirical p-value, Fig. S4B-C). This result is 

in line with a recent report showing neoepitope depletion in tumors with higher levels of 

immune signatures in colorectal cancer (Davoli et al., 2017). We then predicted the 

intrinsic immunogenicity of neoepitopes by analyzing the biochemical properties of 

peptides that are predicted to be associated with T cell-epitope recognition (Calis et al., 235 

2013). We observed that there was a significant effect of neoepitope clonality on the 

probability of a neoepitope having immunogenic properties, with clonal neoepitopes 

being predicted as less immunogenic (p=0.02 by chi-square test, Fig. S5A-D). Using the 

predicted non-binders instead of binders in a control analysis, the opposite trend was 

observed as there was a small but significant effect of clonal mutations being predicted 240 

as more immunogenic (p=0.003 by chi-square test, Fig. S5F). Although preliminary, 

these analyses indicate a potential negative selection process at the neoepitope level. 

 

To evaluate a T cell response in the tumors, we investigated whether a T cell 

clonal expansion could be detected in the tumor samples. To this end, we performed in 245 

situ TCR sequencing on each sample and on peripheral blood from the patient sampled 

550 days after tumor resection (Fig. 4C, S6A, and Table S8). We detected a T cell 
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expansion in the RUQ metastasis with a dominant clone accounting for 13% of all 

productive T cell receptors sequenced. The expanded clone was also detected in the 

liver and spleen metastases, and strikingly also in the blood of the patient. Though, the 250 

clonal frequency in the RUQ metastasis was significantly higher than the other samples 

(q<0.001 by two-sided binomial tests with BH correction). In contrast, no T cell receptors 

were detected in the primary and vaginal cuff tumors, further supporting their lack of T 

cell infiltrate. 

 255 

Peripheral blood CD8+ T cells react against predicted neoepitopes  

Since expanded T cell clones detected in the tumors were still detected in the 

patient’s blood sampled 1 year 6 months (550 days) after resection, we decided to test 

whether circulating T cells could react against any of the predicted neoepitopes. We 

sampled blood from the patient again, this time at 2 years 8 months (978 days) after 260 

resection, and isolated peripheral blood mononuclear cells (PBMCs) (Fig. S6A). We 

performed an intracellular cytokine staining (ICS) assay lasting 21 days, where PBMCs 

were cultured with each of the mutant peptides (n=43) predicted to have at least one 

HLA-I neoepitope, as a mutant peptide (17mer) can have more than one predicted 

binder (9mer) (Fig. S6B). Importantly, the likelihood of observing T cell reactivity by the 265 

ICS assays is low due to the low frequency of T cell precursors in the blood and the 

limited representation of the total TCR repertoire in each peptide challenge experiment 

(5x105 cells per well) (Rizvi et al., 2014). Despite the high false negative rate generally 

observed with the ICS assay, we found CD8+ T cells reactive against several mutant 

peptides showing cytokine activation levels (INFγ and TNFα) similar to the positive 270 

control consisting of a mixture of viral-derived epitopes (Fig. 5A-B, Table S8A). Of the 

top five reactive peptides detected, all had a higher mutant to wild type predicted HLA-I 
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binding affinity (inset, Fig. 5B). With limited material available, we focused on the top 

hits and repeated the ICS experiment and again found reactivity with peptide 12, which 

was derived from a clonal mutation in FLG2 E1608K (Fig. S7), and peptide 6, which was 275 

derived from a private mutation in LRRC8E in the spleen.  

Discussion 

The natural history of ovarian cancer typically features remissions of decreasing 

length, leading to premature death (Bowtell et al., 2015). In this unusual case, the 

divergent fates of the tumors show an overall association with multiple molecular and 280 

cellular features at the tumor-immune interface (Fig. S8). For example, the shrinking 

RUQ tumor was heavily infiltrated with CD4 and CD8 T cells and had evidence of active 

CD8 T cell surveillance with expansion of specific TCR clonotypes. The stable liver 

tumor also exhibited immune infiltration, but at a lower level and with fewer expanding T 

cell clones. The spleen tumor was growing modestly at the time of resection, and 285 

presented with intermediate tumor-immune microenvironment features. Finally, the 

growing vaginal cuff and the primary tumor exhibited complete immune cell exclusion. 

The TCR clone most prevalent in the non-progressing tumors was also detected in the 

blood of the patient 18 months after the metastases were resected, and clonal 

neoepitopes induced a CD8+ T cell response from PBMCs obtained nearly 3 years after 290 

surgery. The two most extreme tumors, the RUQ and the vaginal cuff, had a consistently 

divergent pattern of molecular features associated with immune activation (HLA 

expression, INFγ, CXCL9, TAP1 etc.) and immune suppression (Wnt signaling). 

Importantly, the observed features that relate to progression/regression status are 

correlative and do not per se prove any bona fide mechanism nor negate the fact that 295 

chemotherapy could have influenced the divergent fates. In sum, we find evidence of 
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distinct tumor-immune microenvironments among differentially growing metastases 

within the same individual.  

 

Particular findings of this study may have important clinical implications if they 300 

are corroborated in large cohorts. In this patient with advanced HGSOC we observed 

distinct tumor immune microenvironments in the five sampled tumors (primary and four 

recurrent tumors). The mutation and predicted neoepitope space alone did not explain 

the different regressing/progressing behavior of the metastatic samples. In contrast to 

recent studies of resistance to immunotherapy, no mutations were detected in the 305 

antigen presentation machinery (Giannakis et al., 2016; Rooney et al., 2015; Shukla et 

al., 2015), beta2-microglobulin (Challa-Malladi et al., 2011; Rooney et al., 2015; Zaretsky 

et al., 2016), the IFN-gamma pathway (Benci et al., 2016; Zaretsky et al., 2016), or HLA-

I molecules (Rooney et al., 2015; Shukla et al., 2015; Tran et al., 2016) in the growing 

tumors. Instead of specific neoepitopes present in regressing samples, T cell reactivity 310 

against clonal neoepitopes was detected. Interestingly, all neoepitopes that elicited a 

CD8+ T cell response had higher mutant to wild-type HLA-I predicted binding affinity. 

The lack of tumor specific somatic alterations in the regressing and stable tumors alone 

puts forward the idea that non-somatic factors in the tumor microenvironment may have 

been playing a critical role in the immune response and overall fate of the tumors. For 315 

example, STAT1 and CXCL9 were highly expressed in the RUQ and liver metastases; 

CXCL9 is well known as a potent T cell chemokine (Liao et al., 1995; Rainczuk et al., 

2012) and high expression of CXCL9 and CXCL10 correlate with enhanced T cell 

infiltration of tumors and better survival of ovarian cancer patients (Bronger et al., 2016). 

In contrast, the vaginal cuff growing metastasis had a higher enrichment score in the 320 

Wnt pathway, which has been implicated as a mechanism that impairs recruitment of 

dendritic cells and prevents T cell infiltration in autochthonous mouse melanoma models 
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via a CXCL9 and CXCL10 dependent mechanism (Spranger et al., 2015, 2017). 

Although a direct link between tumor fate and the observations found in this patient 

cannot be proven with the available samples, this case emphasizes the importance of an 325 

integrative approach to understand the molecular mechanisms governing the interaction 

between the tumor and its immune microenvironment (Miao and Van Allen, 2016). 

 

As in any case study, the present study has notable limitations. It involves only 

one patient, and thus further studies are needed to determine whether the principles 330 

discovered here apply to other patients. Furthermore, the interplay between treatment, 

somatic mutations, the immune system, and heterogeneous fates of the tumors cannot 

be untangled in this clinical case. For example, it is feasible that the multiple 

chemotherapy interventions for this patient contributed to shaping the somatic mutations 

and the microenvironment of the tumors, but due to the availability of samples and 335 

descriptive nature of the study this could not be explored further. Despite such 

limitations, this case provides evidence for differential tumor immune responses existing 

in metastases of the same individual, related not only to genetic alterations but also to 

the tumor-immune microenvironment, which to our knowledge has not yet been 

demonstrated in patients with ovarian cancer. Also, most studies on the tumor-immune 340 

microenvironment have been conducted in primary tumors (Teng et al., 2015), with the 

exception of a study of matched primary and metastatic tumors, which concluded that 

the immune contexture globally recapitulates that of the primary (Remark et al., 2013). In 

contrast, the case of recurrent HGSOC presented here clearly shows the opposite: that 

tumor-immune microenvironments, between primary tumor and metastases, and 345 

between metastases, can be heterogeneous within a patient.  
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Previous genomic and immune profiling of multiple lesions in patients have also 

shed light on tumor heterogeneity and its implications on tumor evolution (Gerlinger et 

al., 2012), disease progression (Ascierto et al., 2017), and immune control (McGranahan 350 

et al., 2016; Şenbabaoğlu et al., 2016; Sridharan et al., 2016). For example, tumors that 

are genetically more heterogeneous have less immune infiltrates (Şenbabaoğlu et al., 

2016) and less benefit from checkpoint blockade immunotherapies (McGranahan et al., 

2016). It has been shown that T cell infiltration and gene expression of immune related 

genes correlates with response to checkpoint blockade immunotherapy in melanoma 355 

(Chen et al., 2016). Additionally, analyses of synchronous resected metastases with 

differential progression in patients with melanoma has shown that intra-patient 

metastases present not only genetic heterogeneity, but also immune infiltration 

heterogeneity of immune cell types and T cell clonality between samples (Reuben et al., 

2017). A rapid autopsy study of a patient with metastatic melanoma treated with anti-PD-360 

1 therapy showed that resistant metastases overexpressed genes related to extracellular 

matrix and neutrophil function (Ascierto et al., 2017). Interestingly, association between 

Wnt siganlling and lack of T cell infiltration was also observed in a patient with adenoid 

cystic carcinoma where serial biopsies from the same patient were analyzed, and 

different expression profiles between primary and metastatic deposits where also 365 

detected (Sridharan et al., 2016). Finally, a plethora of molecular mechanisms and types 

of cells influencing the tumor immune microenvironment have been described in different 

tumor types leading to important advances in immunotherapy (Johanna A. Joyce, 2015; 

Melero et al., 2014; Sharma et al., 2017). Unfortunately, the promise of immunotherapy 

has not been as successful in ovarian cancer as it has been in other tumor types 370 

(Homicsko et al., 2016) despite it has been recognized more than a decade ago that T 

cell infiltration is a key element for patient outcome in this disease (Zhang et al., 2003). 

We believe that the growing evidence of differential genomic, transcriptomic, and 
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immune profiles between and within patients will eventually provide new key elements to 

target in ovarian cancer and other tumor types. However, this task will require extensive 375 

and deep systematic analyses along with longitudinal data, as the differences between 

metastases and coexistence of tumor immune microenvironments within a patient are 

likely to be dynamic and sensitive to intrinsic (e.g. mutations and cell-cell 

communication) and extrinsic perturbations (e.g. prior treatment and microbiome (Sivan 

et al., 2015; Vetizou et al., 2015)). 380 

 

 In conclusion, this case study provides evidence of divergent tumor genetics, 

tumor microenvironments, and immune activation within a single patient with advanced 

ovarian cancer. If this phenomenon proves generalizable, then the inter-site 

heterogeneity described here bespeaks a profound clinical challenge for the use of 385 

cytotoxic-, targeted-, and immunotherapies. This observation, while made in an 

exceptional long-term survivor patient, may explain the frequent heterogeneous 

responses seen clinically but insufficiently documented by the limited radiographic 

measurements provided by the Response Evaluation Criteria in Solid Tumors (RECIST). 

Given the data presented in this study, it will be essential to understand not only how to 390 

therapeutically target genomic heterogeneity between and within metastases, but also 

how to successfully mobilize an anti-tumor immune response able to control all 

metastases in advanced cancers. 
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Main figure titles and legends 

Figure 1. Metastatic tumors exhibit heterogeneous growth and somatic mutation patterns 

after multi-line chemotherapy. A) Representative CT scans showing concomitant 
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progression/regression of the different resected metastatic tumors. RUQ=right upper quadrant. 

“Spleen” refers to the tumor deposit adjacent to the spleen. B) CT-based volume of metastatic 680 

lesions represented with the solid vertical lines, and dynamics of quantified CA125 levels with the 

red line indicating the CA125 upper limit of normal (35 Units/mL). The x-axis at the bottom shows 

a timeline of therapeutic interventions and clinical follow up. C) Number of missense, silent, and 

nonsense mutations. D) The phylogenetic tree represents the relationship of the samples based 

on binary calls of non-silent point mutations (Table S1A). Length of the branches is proportional 685 

to the number of mutations. Potential driver mutations are indicated. E) Hierarchical cluster 

analysis (Euclidean distance metric and “average” linkage method) of the cellular prevalence of 

point mutations (n=299) estimated with PyClone (Roth et al., 2014) (Table S1B). 

 

Figure 2. Differential expression of immune related pathways in heterogeneously growing 690 

tumors. A) Expression levels and genetic alterations of genes associated with chemotherapy 

resistance in HGSOC (Patch et al., 2015) and multidrug resistance. Amplification and deep 

deletion were defined as at least ±2 median absolute deviations of copy number alterations for 

each sample (Fig. S1C). B) Single sample gene set enrichment analysis (Barbie et al., 2009; 

Subramanian et al., 2005) of up-regulated pathways using the KEGG (Kanehisa and Goto, 2000; 695 

Kanehisa et al., 2015) and REACTOME (Fabregat et al., 2016) databases (Table S3). 

Significantly enriched pathways (q < 0.05) pathways with at least ±1 log2 change relative to the 

median of the other samples are colored (Table S4). False discovery rate adjusted p-value (q-

value) was calculated using the Benjamini-Hochberg method. 

 700 

Figure 3. Immune infiltration status shows heterogeneous microenvironments across 

tumor samples. A) Tumor purity and immune component estimated by analyzing Affymetrix-

based transcriptomics (Table S5A) (Yoshihara et al., 2013). B) Fractions of immune cell subsets 

in tumor samples inferred from gene expression data using CIBERSORT (Newman et al., 2015). 

Width of bars is proportional to the –log10 p-value of the deconvolution (Table S5B). CIBERSORT 705 

empirical p-value, * p<0.05. C) Representative images of hematoxylin and eosin staining of tumor 
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samples and immunofluorescence staining for DAPI, cytotoxic T cells (CD8+), helper T cells 

(CD4+FOXP3-), T cells (CD3+), T-regs (CD4+FOXP3+), macrophages (CD68+), and immune-

checkpoint PD-L1. Complete slides are shown in Figure S3. D) Image-based cell quantification of 

whole slides (Table S5C). 710 

 

Figure 4. Higher HLA expression and T cell oligoclonal expansion detected in regressing 

tumors. A) HLA-I and II gene differential expression across samples (Table S2). B) Number of 

predicted neoepitopes per sample (Table S6B-D). C) TCR sequencing of FFPE tumor samples 

and blood. The most prevalent TCR clonotypes (top 5 for each sample and blood) are shown 715 

(Table S8). The blood sample was collected from the patient 550 days after secondary debulking 

(Fig. S6A). Inset shows detection of the most frequent TCR rearrangement 

(CASSNDEYRGPTYEQYF) and its abundance comparison between samples (two-sided binomial 

tests with Benjamini-Hochberg multiple test correction, *** q<0.001). 

 720 

Figure 5. Predicted neoepitopes with higher mutant than wild-type HLA-I binding affinity 

elicit a T cell response. A) Representative scatter plots of TNFα and IFNγ intracellular cytokine 

staining of CD8+ T cells after 21 days of culture with CEF peptides or DMSO as positive and 

negative controls, or the predicted mutant peptides (Fig. S6B). CEF=Cytomegalovirus, Epstein-

Barr virus, Influenza virus. B) Percentage of CD8+ T cells with double positive intracellular 725 

staining (TNFα and IFNγ) after incubation with each of the 43 predicted HLA-I neoepitopes, and 

HLA-I predicted binding affinity wild-type to mutant ratio (Table S9A). Mutation in gene FLG2 

(P12) was found clonal after manual inspection in IGV (Fig S7A).  

 

Supplemental figure titles and legends 730 

Figure S1. Non-silent somatic mutations and copy number alterations. A) Binary matrix of 

present/absent non-silent point mutations (n=188) used for the phylogeny tree reconstruction in 

Figure 1D (Table S1A). B) Relative copy number alterations inferred from WES data of the 
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primary and metastatic samples using CopywriteR (Kuilman et al., 2015). C) Relative copy 

number profiles and tumor purity inferred after ABSOLUTE (Carter et al., 2012) analysis. 735 

Amplified and deep deleted DNA segments were defined as copy number alterations with at least 

±2 median absolute deviations for each sample. MAD = median absolute deviation. 

 

Figure S2. Gene set analysis of transcript abundance and somatic alteration patterns 

across samples. A-C) Gene expression levels and genetic alterations of the DNA damage, 740 

apoptosis pathways, and caspases. D) Expression levels of the 50 most variant genes according 

to their coefficient of variation (Table S2A). E) Differential enrichment scores and enrichment q-

values of down-regulated pathways between tumor samples (Table S3). Significantly enriched 

pathways (q < 0.05) pathways with at least ±1 log2 change relative to the median of the other 

samples are colored (Table S4). False discovery rate adjusted p-value (q-value) was calculated 745 

using the Benjamini-Hochberg method. 

 

Figure S3. Complete slide hematoxylin and eosin, and immunofluorescent staining. A) 

Hematoxylin and eosin staining of tumor samples. Immunofluorescence staining for cytotoxic T 

cells (CD8+), helper T cells (CD4+FOXP3-), and regulatory T cells (CD4+FOXP3+). 750 

 

Figure S4. Neoepitope distributions and HLA-I neoepitope depletion analysis. A) Number of 

unique and overlapping expressed missense mutations, HLA-I and II neoepitopes between 

samples (Table S6D). B) Correlations between expressed missense mutations and predicted 

HLA-I neoepitopes using NetMHC applied to TCGA ovarian samples (n = 150) and the primary 755 

and metastatic tumors (Table S7A-C). KDE=kernel density estimate. C) Top: Estimated 

neoepitope deviation from expected in the five tumor samples compared to TCGA ovarian cancer 

samples (n=150). The expected number of neoepitopes was calculated by taking into account the 

expected number of missense mutations and the number of silent mutations according to Rooney 

et al, 2015 (see Methods). Bottom: Neoepitope depletion analysis of 150 random unique 760 

permutations of the patient’s tumors (primary, spleen, RUQ, liver, and vaginal cuff) and their 
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mutations. Each sample was compared against its own 150 unique permutations to control for the 

number of mutations (Table S7D-E). Two-sided empirical p-values were calculated from each 

distribution. 

 765 

Figure S5. Predicted immunogenicity of HLA class I neoepitopes. A) Predicted immunogenic 

properties of trunk (clonal) and private HLA-I neoepitopes. Positive immunogenicity scores have 

biochemical properties associated with higher immunogenicity that outweigh properties 

associated with lower immunogenicity, and vice versa for negative scores (Calis et al., 2013). B-

C) Comparison between clonal and sub-clonal (including shared between two or more samples 770 

but not all) predicted immunogenicity of predicted binders and non-binders (two-sided Mann-

Whitney rank test). D-F) Probability of an HLA-I neoepitope having immunogenic properties 

considering its clonality and HLA-I binding affinity using the neoepitope data in A, B, and C 

respectively. Clonal neoepitopes have a lower probability of having immunogenic properties than 

sub-clonal predicted binders (chi-square test, p=0.02). For non-binders (NetMHC score > HLA-I 775 

specific cutoff), clonal neoepitopes have a higher probability of having immunogenic properties 

(chi-square test, p=0.003), as well as peptides with higher HLA-I affinities (chi-square test, 

p=0.0001), although the absolute differences are minor. No significant interaction between 

clonality and predicted HLA-I binding affinity was detected for either binders or non-binders. 

GLM=generalized linear model. 780 

 

Figure S6. PBMCs samples timeline and T cell-neoepitope recognition assay. A) Blood 

samples obtained from the patient 550 and 978 days after resection were used for TCR 

sequencing and T cell – neoepitope recognition assays respectively. B) Experimental setup and 

flow cytometry gating strategy for the T cell –neoepitope recognition assays (intracellular cytokine 785 

staining assay) with surface staining of CD3, CD4, CD8, CD45, and intracellular staining of IL-4, 

IFNγ, TNFα. PBMC=peripheral blood mononuclear cells. 
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Figure S7. IGV screenshots of mutation FLG2E1608K. A) From the mutant peptides that elicited 

a T cell response in the two independent experiments, peptide 12 comes from the mutation 790 

FLG2E1608K. This mutation was originally called in all tumors expect the RUQ regressing tumor 

(Table S1). However, after manual inspection on IGV, we found that the mutation was present in 

the RUQ tumor as well, but at a very low level. 

 

Figure S8. Overall associations between tumor fates and tumor-immune 795 

microenvironmental features. A) Cellular and molecular associations with change in tumor 

growth. Change in tumor growth (y-axis) was calculated by dividing the tumor volume at CT scan 

11 by the tumor volume at CT scan 10 (Fig. 1B). Fitted curves are 2nd order polynomial 

regression lines plotted for trend visualization rather than prediction purposes. Capase 1 and 4 

are considered inflammatory caspases involved in a type of apoptosis related to immune 800 

response called pyroptosis. The enrichment score x-axis and the q-values come from the 

ssGSEA analysis. HLA-I genes include HLA-A, B, C, E, and F. HLA-II genes include HLA-DPA1, 

DMA, DRA, DQA1, DMB, DPB1, DQB2, DRB5, DRB1, DQB1, and DOA. 

STAR Methods 

Lead contact: Alexandra Snyder, MD. 805 
 
Human subjects research 

Patient samples were collected and analyzed after informed consent to the 

institutional tissue collection protocol, and approval by the Internal Review Board (IRB) 

of Memorial Sloan Kettering Cancer Center.   810 

 
Tumor volume calculation 

The two axes CT scan measurements and the equation for the ellipsoid volume 

(V = 4/3 * pi * a * b * c) were used to estimate tumor volumes, where a and b are the two 

axes and c is their mean.  815 
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Whole exome sequencing 

Whole exome sequencing was performed using the Illumina protocol at the 

Broad Institute of MIT and Harvard, Cambridge, MA, USA. Illumina sequencing of 

exomes was employed targeting approximately 37.7Mb of mainly exonic territory made 820 

up of all targets from Broad Institute’s Agilent exome design (Agilent SureSelect All Exon 

V2), all coding regions of Gencode V11 genes, and all coding regions of RefSeq gene 

and KnownGene tracks from the UCSC genome browser (http://genome.ucsc.edu). Data 

was analyzed using the Broad Picard Pipeline which includes de-multiplexing and data 

aggregation. 825 

 

The Illumina exome sequencing uses Illumina’s in-solution DNA probe based 

hybrid selection method that uses similar principles as the Broad Institute-

AgilentTechnologies developed in-solution RNA probe based hybrid selection method 

(Fisher et al., 2011; Gnirke et al., 2009) to generate Illumina exome sequencing libraries. 830 

Pooled libraries were normalized to 2nM and denatured using 0.2N NaOH prior to 

sequencing. Flow cell cluster amplification and sequencing were performed according to 

the manufacturer’s protocols using either the HiSeq 2000 v3 or HiSeq 2500. Each run 

was a 76 bp paired-end with a dual eight-base index barcode read. The sequencing 

depths of the samples were: normal blood sample (90% at 20X), primary (82% at 50X), 835 

spleen (78% at 50X), RUQ (60% at 50X), liver (89% at 50X), and vaginal cuff (77% at 

50X) tumors. 

 
Mutation calling 

Reads with mapping quality below 30 in the BAM files were filtered out before 840 

mutation calling. Somatic single nucleotide variants (SNVs) were called using MuTect 
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version 1.1.4 (Cibulskis et al., 2013). Identified missense mutations were manually 

reviewed using the Integrative Genomics Viewer version 2.3.61 (Robinson et al., 2011; 

Thorvaldsdóttir et al., 2013). 

 845 
Phylogenetic tree inference 

The phylogenetic tree was generated as described in Murugaesu et al., 2015. A 

binary presence/absence matrix of all non-silent mutations was used as input for the R 

package phangorn version 2.0.2 (Schliep, 2011). UPGMA hierarchical clustering 

followed by the parsimony ratchet analysis (Nixon, 1999) were implemented to build the 850 

unrooted tree, and the acctran function was used to determine branch lengths. 

 
Relative copy number alterations 

To extract copy number information based on the sequenced exomes of the 

samples, CopywriteR version 2.2.0 (Kuilman et al., 2015) was employed in R version 855 

3.2.3. To perform the analysis, mappability information based on the hg19 human 

reference genome, 20 kb bin size, and default parameters were used.  

 

Absolute copy number alterations and tumor purity 

The absolute copy number profiles and the tumor content of the samples were 860 

inferred using the computational method ABSOLUTE version 1.0.6 (Carter et al., 2012) 

in R version 3.2.3. ABSOLUTE integrates segmented copy number data, pre-computed 

statistical models of recurrent cancer karyotypes, allelic fractions of somatic SNVs, and a 

probabilistic model framework to jointly estimate candidate tumor purity, ploidy values, 

absolute copy number data, and subclonal single nucleotide variants (Carter et al., 865 

2012). Tumor purity and absolute copy numbers were obtained using ABSOLUTE 

default parameters, segmented copy number data derived from CopywriteR, and variant 
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allele frequencies estimated by MuTect (Cibulskis et al., 2013). Best model selection 

was based on the guidelines provided by GenePattern and the Broad Cancer Genome 

Analysis group (http://www.broadinstitute.org/cancer/software/genepattern/analyzing-870 

absolute-data). Amplifications and deep deletions were defined as copy number 

alterations with at least ±2 median absolute deviations for each sample copy number 

distribution as shown in Figure S1C. 

 
Mutation cellular prevalence 875 

Variant allelic cellular prevalence was estimated using PyClone version 0.13.0 

(Roth et al., 2014) in Python version 2.7.11. The PyClone pipeline analysis was 

performed jointly on all samples with their tumor purity and absolute copy number 

alterations estimated by ABSOLUTE. Total copy number prior probability estimate and 

the PyClone binomial model were used in the analysis. The mutation variant allele 880 

frequencies, closest integer copy number alterations, and tumor purity were used as 

input. Mutations not present or called in the sample were set to 0. Agglomerative 

hierarchical cluster analysis with Euclidean distance metric and average linkage 

clustering was performed on the cellular prevalence values and samples. The 

SREBF2S120* nonsense mutation was not included in the PyClone pipeline because its 885 

copy number data was closest to 0.  

 

Gene expression 

RNA was extracted from FFPE samples using the RecoverAll Total Nucleic Acid 

Isolation from Thermo Fisher Scientific (Catalog Number: AM1975).! RNA expression 890 

was assessed using the human Affymetrix Clariom D Pico assay. Arrays were analyzed 

using the SST-RMA algorithm in the Affymetrix Expression Console Software. 

Expression was determined by using the Affymetrix Transcriptome Analysis Console, 
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and for genes displaying inconsistent expression between probes, the SRY gene signal 

was used as a cutoff. 895 

 

Single sample gene set enrichment analysis 

Single-sample GSEA (Barbie et al., 2009), a modification of standard GSEA 

(Subramanian et al., 2005), was performed on RNA measurements for each sample 

using the GSVA package version 1.24.1 (Hänzelmann et al., 2013) in R version 3.3.2 900 

with parameters: method=‘ssgsea’, and tau=0.25. Normalized enrichment scores 

were generated for gene sets belonging to KEGG (Kanehisa and Goto, 2000; Kanehisa 

et al., 2015) and Reactome (Fabregat et al., 2016). The gene sets were obtained from 

MSigDB database version 5.2 (Liberzon et al., 2011). In order to identify significantly up- 

and down-regulated gene sets, a p-value was calculated for each gene set based on 905 

comparison of the enrichment score with 10,000 permutations of randomly sampled 

gene sets of the same size. All genes listed in the expression array were used to derive 

the permutated gene sets. Finally, the p-values were corrected using Benjamini and 

Hochberg (BH) method. 

 910 

Immune cell gene expression signatures 

Tumor purity and total immune component in the tumor samples were analyzed 

using the ESTIMATE algorithm method version 1.0.13 (Yoshihara et al., 2013) on the 

gene expression data using the option: platform=affymetrix9 in R version 3.4.0. 

Then, selection of probes with the highest variance for each gene was performed to 915 

deconvolute cell type specific immune signatures. The deconvolution was achieved 

using CIBERSORT Jar version 1.05 (https://cibersort.stanford.edu/) with the standard 
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LM22 signature gene file, and 1000 permutations to calculate deconvolution p-values 

(Newman et al., 2015). 

 920 

Immunofluorescent staining 

The immunofluorescent staining and cell counting were performed at Molecular 

Cytology Core Facility of Memorial Sloan Kettering Cancer Center using Discovery XT 

processor (Ventana Medical Systems) by a cytologist blinded to the sample identifiers 

and conditions. The tissue sections were deparaffinized with EZPrep buffer (Ventana 925 

Medical Systems), antigen retrieval was performed with CC1 buffer (Ventana Medical 

Systems). Sections were blocked for 30 minutes with Background Buster solution 

(Innovex) followed by avidin/biotin blocking for 8 minutes. Pseudocolors were applied as 

follows: CD4 A594, FOXP3 A488, CD8 A647; CD68 and CD3 A594 and PD-L1 A488. 

Cells were detected using the DAPI image, which was processed and segmented using 930 

ImageJ/FIJI (NIH). Appropriate threshold values were set for all other markers, and the 

number of cells with positive signal above the threshold was counted for all single and 

double staining. 

 

For multiplex staining, each marker was added consecutively in separate staining 935 

runs as follows. CD4/FoxP3/CD8: Sections were incubated with anti-CD4 (Ventana, 

cat#790-4423, 0.5 µg/ml) for 5 hours, followed by 60 minutes incubation with biotinylated 

goat anti-rabbit IgG (Vector Laboratories, cat # PK6101) at 1:200 dilution. The detection 

was performed with Streptavidin-HRP D (part of DABMap kit, Ventana Medical 

Systems), followed by incubation with Tyramide Alexa 488 (Invitrogen, cat# T20922) 940 

prepared according to manufacturer instruction with predetermined dilutions. Next, slides 

were incubated with anti-FoxP3 (Abcam, cat#ab20034, 5 µg/ml) for 4 hours, followed by 

60 minutes incubation with biotinylated horse anti-mouse IgG (Vector Laboratories, cat# 
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MKB-22258) at 1:200 dilution. The detection was performed with Streptavidin-HRP D 

(part of DABMap kit, Ventana Medical Systems), followed by incubation with Tyramide 945 

Alexa Fluor 568 (Invitrogen, cat# T20914) prepared according to manufacturer 

instruction with predetermined dilutions. Finally, sections were incubated with anti-CD8 

(Ventana, cat#790-4460, 0.07 µg/ml) for 5 hours, followed by 60 minutes incubation with 

biotinylated goat anti-rabbit IgG (Vector, cat # PK6101) at 1:200 dilution. 

 950 

PDL1/CD68 or CD3: First, sections were incubated with anti-PDL1 (Cell 

Signaling, cat#13684, 5 µg/ml) for 5 hours, followed by 60 minutes incubation with 

biotinylated goat anti-rabbit IgG (Vector, cat # PK6101) at 1:200 dilution. The detection 

was performed with Streptavidin-HRP D (part of DABMap kit, Ventana Medical 

Systems), followed by incubation with Tyramide Alexa 488 (Invitrogen, cat# T20922) 955 

prepared according to manufacturer instruction with predetermined dilutions. Next, slides 

were incubated with anti-CD68 (DAKO, cat#M0814, 0.02 µg/ml) for 5 hours, followed by 

60 minutes incubation with biotinylated horse anti-mouse IgG (Vector Labs, cat# MKB-

22258) at 1:200 dilution, or with anti-CD3 (DAKO, cat#A0452, 1.2 µg/ml) for 4 hours, 

followed by 60 minutes incubation with biotinylated horse anti-rabbit IgG (Vector Labs, 960 

cat# PK6101) at 1:200 dilution. The detection was performed with Streptavidin-HRP D 

(part of DABMap kit, Ventana Medical Systems), followed by incubation with Tyramide 

Alexa Fluor 568 (Invitrogen, cat# T20914) prepared according to manufacturer 

instruction with predetermined dilutions. After staining slides were counterstained with 

DAPI (Sigma Aldrich, cat# D9542, 5 µg/ml) for 10 min and cover slipped with Mowiol. 965 

 

HLA typing 

HLA class I and class II 6-digit typing was performed at the New York Blood 

Center by sequence-based typing and specific sequence primers; as well as the HLA 
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genotyping algorithms OptiType version 1.0 (Szolek et al., 2014) and POLYSOLVER 970 

version 1.0 (Shukla et al., 2015) with default parameters for HLA class I 4-digit typing. 

POLYSOLVER HLA-I typing and mutation calling were performed using samtools 

version 0.1.19 and novocraft 3.02.05 for the alignment, and MuTect version 1.1.7 for the 

variant calling. 

 975 

Neoepitope predictions 

In silico mutant peptide generation 

To predict neoepitopes, “wild-type” petide 17mers (for HLA-I) and 29mers (for 

HLA-II) with the affected amino acid in the middle for each missense mutation were 

retrieved from the GRCh37.74 human reference proteome 980 

(http://ftp.ensembl.org/pub/release-74/fasta/homo_sapiens/pep/). To generate “mutant” 

peptides, the affected amino acid was replaced in silico with the corresponding mutant 

amino acid.  

 

HLA class I epitope binding predictions 985 

Mutant peptides were used as input for the T Cell Epitope Prediction Tools 

included in the Immune Epitope Database and Analysis Resource (IEDB) 3.0 

(http://www.iedb.org/) (Vita et al., 2015). The HLA class I epitope binding predictions 

were performed using the HLA-I IEDB algorithms Consensus (Kim et al., 2012) and the 

artificial neural network (NetMHC) version 3.4 (Lundegaard et al., 2008; Nielsen et al., 990 

2003) independently yielding same conclusions. For Consensus method – which 

combines NetMHC, the stabilized matrix method (Peters and Sette, 2005), and the 

combinatorial peptide libraries method (Sidney et al., 2008) – 9mers with a relative 

percentile rank ≤ 1% for each HLA-I allele were considered binders to cover most of the 

potential immune responses as previously suggested (Kotturi et al., 2007; Moutaftsi et 995 
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al., 2006). For NetMHC, different cut-off values were evaluated independently and 

compared between each other. 9mers with absolute IC50 affinity values ≤ HLA-I specific 

cutoffs were considered binders (http://help.iedb.org/entries/23854373) (Paul et al., 

2013). HLA-I specific cut-offs were not available for HLA-I C alleles, therefore an IC50 ≤ 

500nM was used instead. All mutant predicted binders were considered for the analyses, 1000 

i.e. for each missense mutation, up to six binders for HLA-I (A, B, C alleles) and up to 

four binders for HLA-II (DQ and DR alleles). Since NetMHC gives actual nM binding 

affinities, and HLA-I specific cutoffs have been estimated, we used NetMHC predictions 

throughout the manuscript. 

 1005 

HLA class II epitope binding predictions 

HLA class II epitope binding predictions on 15mers were performed using the 

HLA-II IEDB algorithms Consensus (Wang et al., 2008, 2010), NetMHCII version 2.2 

(Nielsen and Lund, 2009), and Sturniolo (Sturniolo et al., 1999) since these were the 

only available methods for the patient HLA-II alleles. The Consensus method used the 1010 

relative percentile ranks of NetMHCII and Sturniolo, and 15mers with percentile ranks ≤ 

1% were considered binders. 15mers with NetMHCII IC50 ≤ 500nM or Sturniolo 

percentile rank ≤ 1% were considered binders, which are more stringent cut-off values 

than the IEDB recommended 1000nM for NetMHCII and ≤ 10% percentile rank for 

Sturniolo. In the authors’ knowledge, HLA-II specific NetMHCII cut-offs have not been 1015 

reported.  

 

Neoepitope depletion analysis 

TCGA ovarian cancer null model 

To analyze neoepitope depletion across the different samples, we followed the 1020 
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method developed by Rooney and colleagues using only expressed mutations. 

Commonly mutated genes were not included as indicated (Rooney et al., 2015). The 

method compares the samples to a data driven null model. To generate the null model 

and estimate neoepitope depletion, the nucleotide sequences flanking each mutation 

(context of the mutation) are taken into account. To control for tumor type differences, 1025 

we used TCGA ovarian cancer samples to generate the null model (TCGA et al., 2011). 

Context of the mutations for the TCGA ovarian cancer samples and the case study 

tumor samples were obtained from the assembly of the Genome Reference Consortium 

Human Reference 37. Only TCGA ovarian cancer samples with mutation context in all 

missense and silent mutations were included (n=150). We predicted HLA-I neoepitopes 1030 

of TCGA ovarian cancer samples using the same approach as for the case study 

samples described above. 

 

Permutation null model 

To compare the levels of neoepitope depletion only between the patient’s 1035 

samples, we generated sample specific null models based on 150 random unique 

permutations (redundant permutations excluded) of the samples and their mutations 

(Table S7D). The number of permutations was selected based on the number of 

samples used in the TCGA ovarian cancer neoepitope depletion analysis (n=150). 

Permutated and real samples were analyzed together using the same approach as for 1040 

the TCGA ovarian cancer neoepitope depletion analysis described above. A 

permutation-based null model for each sample was used to control for the number of 

mutations.  

 

Immunogenicity predictions 1045 
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Immunogenic properties of HLA class I epitopes were estimated in silico using 

the IEDB resource tool “MHC I Immunogenicity” (http://tools.iedb.org/immunogenicity/), 

which combines the chemical and physical properties of the amino acids, their position in 

the epitope, and the HLA-I subtype allele to estimate the immunogenicity of a given 

neoepitope-HLA complex (Calis et al., 2013). To compare clonal and sub-clonal 1050 

predicted immunogenic properties, we used two approaches: a) Mann-Whitney rank 

tests to compare absolute scores and b) binomial generalized linear models (GLM). The 

binomial GLM approach was considered appropriate for this setting because 

immunogenicity can be considered a binomial process, immunogenic or non-

immunogenic. In this scenario, however, the binomial process corresponds to whether 1055 

an epitope has biochemical properties associated with immunogenicity (score ≥ 0) that 

outweigh properties associated with no immunogenicity (score < 0). Importantly, 

predicted immunogenicity scores < 0 can still elicit an immunogenic response, but 

overall they have less immunogenic properties than positive scores (Calis et al., 2013). 

To further explain variation in the intrinsic immunogenic predictions we included HLA-I 1060 

binding affinity (nM) as an explanatory variable. We then calculated the probability of a 

peptide having a positive immunogenic score or not based on the samples’ neoepitope 

data. No interaction between clonality and HLA-I binding affinity was found, thus the 

interaction was excluded from the model. The final binomial GLM formula used is: 

#9R93.4.091065 

m9<?glm(data=data,immunogenicity~clonality+hla_binding,family=binomial)9

 

TCR sequencing 

High-throughput sequencing of the T cell receptors present in the samples and blood of 

the patient was done using the immunoSEQ assay platform (Adaptive biotechnologies). 1070 
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Analysis of the sequences was performed on the immunoSEQ ANALYZER 3.0 (Adaptive 

biotechnologies). T cell rearrangements that are differentially abundant between 

samples were detected using the Differential Abundance tool by two-sided binomial tests 

with Benjamini and Hochberg multiple test correction, q-value < 0.01 was considered 

statistically significant. 1075 

 

PBMC – neoepitope assay 

The predicted peptides were synthesized (Genscript Corporation). PBMCs were 

cultured in complete RPMI (Core Media Preparation Facility MSKCC) with peptides at 1 

µg/mL, peptide vehicle (DMSO, Sigma-Aldrich) and CEF peptide pool (2µg/mL, C.T.L) 1080 

for 21 days with peptide restimulation at day 7 and day 14. IL-2 (Proleukin, Chiron) and 

IL-15 (Peprotech, cat#200-15) were added every 3 days at 10 IU/mL and 10 ng/mL 

respectively. Intracellular Cell Staining (ICS) was performed at day 14, and day 21 after 

6 hour re-stimulation in the presence of monensin for 5 hours (GolgiStop, BD). Cells 

were then stained for 15 min with viability dye (LIVE/DEAD Fixable Aqua Dead Cell 1085 

Stain Kit, ThermoFisher) at 4°C followed by 30 min incubation with CD45-APC-H7 (BD 

Pharmingen, clone 2D1), CD3-Pacific Blue (BD Pharmingen, clone UCHT1), CD4-

PerCP-Cy5.5 (eBioscience, clone OKT4), CD8-PE (BD Biosciences, clone SK1). Cells 

were then fixed and permeabilized with BD Cytofix/Cytoperm (BD Biosciences) for 20 

min at 4°C and washed with BD Perm/Wash (BD Biosciences). The ICS was performed 1090 

in BD Perm/Wash with IFNγ-FITC (eBioscience, clone GZ-4) and TNFα-PE-Cy 

(eBioscience, clone MAb11) at 4°C for 30 min. Samples were acquired on a BD LSRII 

flow cytometer (BD Biosciences) and the analysis was performed on FlowJo software 

(FlowJo, LLC). 

 1095 
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Code availability 

Code for the aforementioned bioinformatics will be shared upon request. 

Supplemental tables 

Table S1. Mutation data. A) Non-silent mutations in binary format. B) Mutation cellular 

prevalence. C) Log2 gene expression of mutations after SST-RMA and LOESS normalizations. D) 1100 

Log2 gene expression of mutations after SST-RMA normalization. E) Gene expression of 

mutations in binary format (see methods). 

Table S2. Gene expression data. A) Log2 gene expression after SST-RMA and LOESS 

normalizations. B) Gene expression in binary format (see methods). C) Log2 gene expression 

after SST-RMA. 1105 

Table S3. Single sample gene set enrichment analysis data. A) Enrichment scores after z-

score normalization. B) Enrichment score q-values. C) Raw enrichment scores. 

Table S4. Significantly differentially enriched pathways. A) Enrichment scores and q-values 

of significantly differentially enriched pathways. B) REACTOME immune system pathway genes. 

C) KEGG systemic lupus erythematosus genes. C) REACTOME T cell signaling pathway genes. 1110 

D) KEGG Wnt signaling pathway genes.  

Table S5. Tumor immune microenvironment data. A) ESTIMATE data. B) CIBERSORT data. 

C) Immunofluorescence whole slide quantification data. 

Table S6. HLA and neoepitope prediction data. A) HLA genotypes. B) HLA-I neoepitope 

binding affinity predictions. C) HLA-II neoepitope binding affinity predictions. D) Expressed 1115 

predicted binders. 

Table S7. Neoepitope depletion data. A) Samples and predicted HLA-I binding affinity of 

expressed mutations. B) TCGA ovarian cancer samples and predicted HLA-I binding affinity of 

expressed mutations. C) Neoepitope depletion ratio of TCGA ovarian cancer samples and case 

study samples. D) Randomly permutated samples and predicted HLA-I binding affinity expressed 1120 

muattions (see methods). E) Neoepitope depletion ratios of randomly permutated samples and 

real case study samples (see methods). 

Table S8. TCR sequencing data. 
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Table S9. T cell-neoepitope challenge data. 

 1125 
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Figure 1. Metastatic tumors exhibit heterogeneous growth and somatic mutation 

patterns after multi-line chemotherapy. A) Representative CT scans showing concomitant 

progression/regression of the different resected metastatic tumors. RUQ=right upper 

quadrant. “Spleen” refers to the tumor deposit adjacent to the spleen. B) CT-based volume of 

metastatic lesions represented with the solid vertical lines, and dynamics of quantified CA125 

levels with the red line indicating the CA125 upper limit of normal (35 Units/mL). The x-axis at 

the bottom shows a timeline of therapeutic interventions and clinical follow up. C) Number of 

missense, silent, and nonsense mutations. D) The phylogenetic tree represents the 

relationship of the samples based on binary calls of non-silent point mutations (Table S1A). 

Length of the branches is proportional to the number of mutations. Potential driver mutations 



are indicated. E) Hierarchical cluster analysis (Euclidean distance metric and “average” 

linkage method) of the cellular prevalence of point mutations (n=299) estimated with PyClone 

(Roth et al., 2014) (Table S1B). 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2. Differential expression of immune related pathways in heterogeneously 

growing tumors. A) Expression levels and genetic alterations of genes associated with 

chemotherapy resistance in HGSOC (Patch et al., 2015) and multidrug resistance. 

Amplification and deep deletion were defined as at least ±2 median absolute deviations of 

copy number alterations for each sample (Fig. S1C). B) Single sample gene set enrichment 

analysis (Barbie et al., 2009; Subramanian et al., 2005) of up-regulated pathways using the 

KEGG (Kanehisa and Goto, 2000; Kanehisa et al., 2015) and REACTOME (Fabregat et al., 

2016) databases (Table S3). Significantly enriched pathways (q < 0.05) pathways with at 

least ±1 log2 change relative to the median of the other samples are colored (Table S4). False 

discovery rate adjusted p-value (q-value) was calculated using the Benjamini-Hochberg 

method. 

 

 

 



 

Figure 3. Immune infiltration status shows heterogeneous microenvironments across 

tumor samples. A) Tumor purity and immune component estimated by analyzing Affymetrix-

based transcriptomics (Table S5A) (Yoshihara et al., 2013). B) Fractions of immune cell 

subsets in tumor samples inferred from gene expression data using CIBERSORT (Newman 

et al., 2015). Width of bars is proportional to the –log10 p-value of the deconvolution (Table 

S5B). CIBERSORT empirical p-value, * p<0.05. C) Representative images of hematoxylin 

and eosin staining of tumor samples and immunofluorescence staining for DAPI, cytotoxic T 

cells (CD8+), helper T cells (CD4+FOXP3-), T cells (CD3+), T-regs (CD4+FOXP3+), 

macrophages (CD68+), and immune-checkpoint PD-L1. Complete slides are shown in Figure 

S3. D) Image-based cell quantification of whole slides (Table S5C). 

 

 



Figure 4. Higher HLA expression 

and T cell oligoclonal expansion 

detected in regressing tumors. 

A) HLA-I and II gene differential 

expression across samples (Table 

S2). B) Number of predicted 

neoepitopes per sample (Table 

S6B-D). C) TCR sequencing of 

FFPE tumor samples and blood. 

The most prevalent TCR 

clonotypes (top 5 for each sample 

and blood) are shown (Table S8). 

The blood sample was collected 

from the patient 550 days after 

secondary debulking (Fig. S6A). 

Inset shows detection of the most 

frequent TCR rearrangement 

(CASSNDEYRGPTYEQYF) and its 

abundance comparison between 

samples (two-sided binomial tests 

with Benjamini-Hochberg multiple 

test correction, *** q<0.001). 

 

 

 

 

 

 

 

 



Figure 5. Predicted neoepitopes with higher mutant than wild-type HLA-I binding 

affinity elicit a T cell response. A) Representative scatter plots of TNFα and IFNγ 

intracellular cytokine staining of CD8+ T cells after 21 days of culture with CEF peptides or 

DMSO as positive and negative controls, or the predicted mutant peptides (Fig. S6B). 

CEF=Cytomegalovirus, Epstein-Barr virus, Influenza virus. B) Percentage of CD8+ T cells 

with double positive intracellular staining (TNFα and IFNγ) after incubation with each of the 43 

predicted HLA-I neoepitopes, and HLA-I predicted binding affinity wild-type to mutant ratio 

(Table S9A). Mutation in gene FLG2 (P12) was found clonal after manual inspection in IGV 

(Fig S7A).  

 


