
ORIGINAL

Predicting the pore-filling ratio in lumen-impregnated
wood

Guanglu Wu1 • Darshil U. Shah2 • Emma-Rose Janeček1 •
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Abstract Lumen impregnation, unlike most other wood modification methods, is

typically assessed by the pore-filling ratio (PFR) (i.e. the fraction of luminal

porosity filled) rather than by weight percentage gain (WPG). During lumen

impregnation, the impregnants act on the voids in the wood rather than on the solid

mass (e.g. cell walls), but the PFR cannot be measured as conveniently as the WPG

during processing. Here, it is demonstrated how the PFR can be calculated directly

from the WPG if the bulk density of the untreated wood is known. The relationship

between the WPG and bulk density was examined experimentally by applying a

pressured impregnation on knot-free specimens from Sitka spruce with a liquid

mixture of methacrylate monomers. Based on the validated model, it was possible to

further study the effect of different process-related parameters, such as hydraulic

pressure, on lumen impregnation. Skeletal density is another key parameter in this

model, which directly reflects the amount of inaccessible pores and closed lumens,

and can be independently determined by helium pycnometry. The permeability can

be qualitatively evaluated by PFR as well as skeletal density. For instance, poor

permeability of knotty wood, due to the large extractives content around knots, was
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reflected by a lower skeletal density and inefficient lumen impregnation (low PFR).

Although this model was examined on a laboratory scale, it provides guidance on

the precise effect of different parameters on lumen impregnation, thereby improving

the fundamental understanding of and enabling better control over the modification

of wood by impregnation.

Introduction

Increasing the use of wood in construction, as a renewable and low-embodied

energy alternative to reinforced concrete and steel, will play an important role in

reducing emissions and solid waste derived from the global construction industry

(Joseph and Tretsiakova-McNally 2010; Ramage et al. 2017). Wood in its natural

form is a widely used construction material, but in certain environments and

applications, issues related to durability, fire resistance, and dimensional stability

need to be addressed (Rowell 2007; Ramage et al. 2017). In general, the treatment

of wood through (1) chemical or thermal modifications, (2) coatings, or (3)

impregnation offers effective routes to address some of these issues (Hill 2006). In

particular, ‘controlled’ impregnation of specific monomers into the cell cavity

(lumen), but also possibly into the cell wall (Militz 1993; Schneider 1995; Cabane

et al. 2014; Keplinger et al. 2015), followed by polymerisation, may enhance the

performance of wood in construction by improving its mechanical properties

(Rowell and Konkol 1987), particularly perpendicular to the grain on account of a

more solid material, i.e. filling of the wood (Akitsu et al. 2007; Xie et al. 2013),

better durability on account of blocking of pores or improved decay resistance

(Militz 1993; Ibach and Rowell 2000; Lande et al. 2004), and fire retardance

(Marney and Russell 2008).

For controlled impregnation and for process evaluation, we need to be able to

assess the ‘achieved’ extent of impregnation, relative to the ‘maximum potential’.

For wood treatments that act on the solid mass of wood (i.e. on cell walls), such as

chemical modification or cell wall impregnation, the ‘achieved’ extent of

impregnation can be directly evaluated by weight percentage gain (WPG).

However, when impregnation only occurs in the luminal cavity of the cell and

the cell wall is left nominally unaltered, the ‘maximum potential’ of impregnation is

better quantified relative to the total void fraction (porosity), and the ‘achieved’

extent of impregnation is directly related to the pore-filling ratio (PFR), i.e. the ratio

of luminal cavity filled to the total cavity volume. In such cases, WPG is not an

appropriate indicator for the extent of lumen impregnation, since it depends not only

on pore space filled but also on the density of the wood and the density of the filling.

For example, even if the same proportion of pore space has been filled, a denser

wood will show lower WPG. The porosity and the PFR of wood specimens,

however, are not as easily measured during processing as the WPG. Therefore,

being able to relate the porosity and PFR of a specimen to easily measurable

parameters like the WPG and the bulk density is of practical use in assessing the

success of any impregnation process.
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Herein, a simple yet powerful relationship between the WPG and bulk density is

established, and the model is experimentally validated using Sitka spruce as an

example. From this model, it is possible to determine the PFR of an impregnated

specimen. Thereafter, the effect of process-related parameters (i.e. specimen length

and hydraulic pressure) on the extent of impregnation is analysed. Through this

study, the proportion of accessible (open) and inaccessible (closed) pores in wood is

determined, and it is examined how they relate to the extent of impregnation

achieved.

Model description

Definitions of open and closed pores as well as several densities in this work are

essential to understanding and describing the present model:

• Open pores and closed pores: whether a pore is open or closed is determined by

whether the pore is accessible or inaccessible to infiltrates (e.g. helium in

pycnometry, mercury in mercury intrusion porosimetry, and monomers in this

work on wood impregnation). It is noteworthy that measurement of the

proportion of open and closed pores may be limited by the measurement

procedure and conditions. For example, with the increase in pressure in a

pycnometer, helium may access pores which were previously inaccessible

(closed) under lower pressure.

• Bulk density (qB): the ratio of the mass of a wood specimen, Mo, to the external

(bulk) volume, VB (i.e. the sum of the volume of the solid matter, and both the

open and closed pores).

• Skeletal density (qS): the ratio of the mass of a wood specimen, Mo, to the sum

of volume of the solid matter and closed pores, VS. The closed pores in wood

specimen can be pores inside the cell wall or lumens of the inaccessible cells.

• Material density (qM): the ratio of the mass of a wood specimen, MM, to the

volume of the solid matter only, VM (i.e. excluding the volume of both open and

closed pores).

As a starting point, consider that dried wood in the absence of moisture

comprises two phases: solid material (ligno-cellulosic components and extractives)

and voids (Fig. 1). Initially, the voids are either evacuated under vacuum or may

contain air at atmospheric pressure. Since the density of air is lower than the solid

Fig. 1 A simplified model for dried wood with lumen impregnation. V, q denote, respectively, the
volume and density of void phase (V), solid phase (S), and filling (F). The void phase relates to the
summation of all open pores accessible to impregnants. The solid phase relates to the summation of
skeleton of cell wall including closed pores inaccessible to impregnants
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matter in wood by a factor of order 1000, in either case the mass of the voids is

negligible and

MM ¼ Mo ð1Þ

In this simplified model, the void phase relates to the summation of all open

pores, such as the lumen of tracheid cells, which are accessible to impregnants. The

density of the void phase is insignificant. Ideally, the solid phase relates to the

summation of the skeleton of all the cell walls. However, the presence of

inaccessible closed pores such as lumens sealed by aspiration of bordered pits (Petty

1972) or extractives reduces the density of the skeletal structure (consequently the

skeletal density is less than the material density, i.e. qS\ qM).
During lumen impregnation, the bulk flow of monomer mixture, intended to fill

the voids, is transported through a network of interconnected voids and is typically

driven by imposed pressure gradients (Siau 1984). Herein, the pore-filling ratio,

PFR, is defined as the volume fraction of voids filled by the monomer mixture:

PFR ¼ VF=VV � 100 ð2Þ

where VF denotes the volume of the monomer mixture contained within the voids

and VV denotes the total volume of the voids.

Both VF and VV cannot be directly quantified by measurements of the bulk

sample. However, they can be expressed in terms of their mass and density:

VF ¼ MF=qF ð3Þ

where MF denotes the mass of filling (or weight gain) and qF denotes the density of

filling. Now

VV ¼ VB�VS ð4Þ

Hence

VV ¼ VB�VS ¼ Mo � ð1=qB� 1=qSÞ ð5Þ

Substituting Eqs. (3) and (5) into Eq. (2) gives:

PFR ¼ MF=Moð Þ � 1=qFð Þ= 1=qB� 1=qSð Þ � 100 ð6Þ

The weight percentage gain is defined as:

WPG ¼ MF=Mo � 100 ð7Þ

Therefore, the derived relationship between the WPG and the bulk density qB is:

WPG ¼ PFR� qF � 1=qB�1=qSð Þ ð8Þ

The WPG can be calculated by measuring the mass of the specimen before and

after treatment. The bulk density, qB, can be obtained by recording the mass and

bulk volume of the specimen prior to impregnation. The density qF of the filling

monomer mixture employed is either available in standard chemical tables or can be

calculated by measuring the mass per unit volume of the liquid filling mixture.
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If specimens of different bulk densities are treated under the same conditions, by

plotting their WPG against the reciprocal of bulk density (1/qB) and fitting the curve

according to a linear model, PFR can be obtained from the slope of the curve. The

skeletal density (qS) can also be found from the intercept.

The assumptions used in this model include:

1. The filling liquid is incompressible (i.e. qF = constant);

2. The filling only flows into the lumen, and no swelling of the cell wall occurs;

3. The impregnation occurs over a sufficient period of time and pressures that the

system reaches a steady state in which all the accessible voids are filled and no

further transport processes can occur;

4. PFR and qS are independent of qB, which means that different wood specimens

under the same impregnation conditions are assumed to have the same pore-

filling ratio.

In selecting the monomer mixture for impregnation, one has the freedom to select

the chemistry such that the ultimate goals of the impregnation process are achieved

while ensuring that assumptions (1) and (2) hold true, at least within the bounds of

experimental uncertainties. Assumptions (3) and (4) aim to pack all influence from

permeability into one parameter, the skeletal density qS. Under these assumptions, if

qS can be detected and remains constant for most specimens, the PFR of

impregnation is able to be monitored through Eq. (8) with other accessible

parameters. The skeletal density in this model should not be simply equivalent to

‘cell wall density’, but will be affected by the closed volume caused by pit

aspiration or extractives as blockage.

Therefore in this model, the mass and volume contributed from a minor amount

of extractives, ca. 1 wt% in the heartwood and sapwood of Sitka spruce (Caron et al.

2013), are not taken into account separately, but are regarded as a part of solid

materials along with ligno-cellulosic components. The effect of extractives on

blocking pores and isolating cell lumens will be fairly reflected in the skeletal

density on account of increasing closed volume. However, this simplification may

be inappropriate in the presence of a large amount of extractives, as the interaction

between extractives and impregnants will significantly affect the permeability of

specimens. The effect of extractives on permeability will be discussed later.

Experimental

Materials and equipment

Specimens of Sitka spruce (Picea sitchensis) were cut from flat-sawn, kiln-dried

timber supplied by BSW Timber Ltd (UK). The moisture content of un-dried

specimens, determined by the oven drying method, was ca. 12%. The cross section

perpendicular to the grain direction was 10 mm 9 10 mm. The length along the

grain direction was typically 70 mm; however, this ranged from 40 to 115 mm
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when investigating the effect of length. The dimensions of each specimen were

accurately recorded by callipers (to within 0.01 mm) prior to processing.

Methyl methacrylate (MMA, 99%, 0.940 g cm-3), glycidyl methacrylate (GMA,

97%, 1.070 g cm-3), and ethylene glycol dimethacrylate (EDMA, 98%,

1.051 g cm-3) were purchased from Sigma-Aldrich. The ratio of monomers used

in this work was MMA/GMA/EDMA (45:45:10 wt%).

Gas pycnometry was carried out on an AccuPyc 1330 helium pycnometer

(Micromeritics). Stainless steel balls (diameter 3.0 mm; type AISI440-C; Manu Part

No B1001A3.0) were purchased from Dejay Distribution Limited (UK) as metal

fillers for helium pycnometry. Masses were measured by AL204 analytical balance

(Mettler Toledo) with a repeatability of ±0.1 mg. Oven drying was implemented on

FD23 drying and heating oven (Binder). The impregnation was realised in

laboratory scale using Schlenk line and Schlenk techniques. Pressure gauge (WIKA)

was used to monitor and control hydraulic pressure. The pressures presented in this

paper are all absolute values.

Impregnation procedures

A pressure process similar to the full-cell (Bethell) process was used for

impregnation. Sitka spruce wood specimens were oven-dried at 103.0 ± 0.3 �C
for 12 h. After oven drying, specimens were cooled down to room temperature in a

Schlenk tube under atmospheric pressure. Specimens were then vacuum-dried in the

Schlenk tube to constant mass at room temperature for 48 h before impregnation.

After recording their untreated mass (Mo) and external dimensions (VB), specimens

were placed in a cylindrical Schlenk tube. A vacuum of less than 1 mbar was

applied and allowed to stabilise over 1 h. The monomer mixture was then

introduced into the tube while maintaining vacuum. The vacuum was stopped once

the tube was filled with the monomer mixture, and then a hydraulic pressure of

1250 mbar was applied for 2 h. After impregnation, the monomer mixture was

drained out to a recycling cylinder for reuse. The mass (MI) and dimensions (VI) of

impregnated specimens were measured again after quickly wiping residual liquid

from the sample surface. All experiments were conducted at room temperature. No

extraction was carried out for any of the specimens before impregnation.

Density determination

To determine the density qF of the monomer mixture, the mass of 10 ml of liquid

monomer mixture was obtained by the differential mass before and after being filled

in a 10-ml volumetric flask. An average density was calculated from several

measurements to be 1.0054 ± 0.0003 g cm-3 (298 K).

The bulk density (qB) of the untreated wood specimens was determined from

measurements of the volume VB and the mass M0 of the specimen.

To determine the skeletal density (qS) of the untreated wood specimens, the

volume of the solid phase inclusive of closed pores (VS) was determined using a

helium pycnometer.
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The skeletal volumes of wood specimens measured in this work ranged from 0.25

to 0.40 cm3, occupying around 10% of the chamber volume (3.5 cm3). Since the

result from AccuPyc 1330 will be inaccurate when the detected volume is less than

10% of chamber volume, all the specimens were measured along with metal fillers

in order to occupy more than 50% of chamber volume during the measurement.

Volume of metal fillers was measured separately without wood specimens. The final

skeletal volume of a specimen was obtained by subtracting the volume of metal

fillers from the detected combined volume of specimen and metal fillers.

All the specimens were oven-dried at 103.0 ± 0.3 �C for 12 h. Before being

removed from oven, each specimen was sealed in an individual dried vial and

cooled down to room temperature before loading into the helium pycnometer. Intact

cubic specimens (10 mm 9 10 mm 9 10 mm) along with metal fillers were placed

within the sample chamber of the pycnometer, and air was then evacuated. Then,

pressurised helium gas was intruded into all accessible pores of the wood specimen.

The pressures observed upon filling the specimen chamber and then evacuating it

into a second empty expansion chamber allow the computation of the sample solid-

phase volume using Boyle’s law. A purge fill pressure of 19.500 psig (pounds per

square inch gage, pressure relative to atmospheric pressure) and equilibrium rate of

0.0095 psig/min were used. The final volume reading for a specimen was an

average of ten systematic readings from ten purges and runs (found to be accurate to

within 0.1%). All the pycnometry measurements were taken at a temperature of

26.1 �C.
To determine the material density (qM) of the solid matter within a specimen,

sawdust from the specimen was prepared by ball milling. The sawdust was

sufficiently fine as to ensure that all closed pores were exposed. The volume of

sawdust was then measured by helium pycnometry.

Results and discussion

Relationship between WPG, bulk density and PFR

Sitka spruce (Picea sitchensis) was chosen as the test species in this work because it

is an abundant fast-growing softwood in the UK, and with advancements in specific

properties, it has the potential to be used in a broad range of construction

applications (Ridley-Ellis et al. 2008; Moore 2011). To validate the model, fifty

Sitka spruce specimens of the same bulk dimensions but different bulk densities

were selected for lumen impregnation. No extraction was carried out for any of the

specimens before impregnation. A typical extractives content in a clear specimen

(knot-free wood) of Sitka spruce is ca. 1 wt% (Caron et al. 2013), which in the

present model will be considered along with ligno-cellulosic components with a

contribution to the bulk density. The presence of extractives, as an additional

benefit, may suppress the swelling of cell wall (Mantanis et al. 1994a), which will

make the non-swelling assumption more plausible. Being cut from a knot-free

region of the wood and examined by helium pycnometry, these specimens were

found to have a similar skeletal density, qS, corresponding to assumption (4) (see
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‘‘Model description’’ section). Specimens cut from a near-knot region of the wood

board will be discussed in the final subsection.

As a full-cell process was employed with a considerably long impregnation time

under pressure, the amount of infiltrating monomers for a typical specimen mainly

relied on the porosity and was barely affected by the permeability of the specimens.

In order to meet the non-swelling assumption, methacrylate monomers were chosen

as impregnants, since these monomers have been reported to be almost completely

located in the lumen rather than in the cell wall during the impregnation (Rowell R

and Konkol 1987; Zhang et al. 2005). A formula of MMA/GMA/EDMA

(45:45:10 wt%) was employed owing to the optimisation from a previous work

(Farina et al. 2014). The monomer mixture was regarded as an incompressible

liquid, with density qF = 1.005 g cm-3. Since the monomer mixture may evaporate

during polymerisation, when calculating the WPG, only the mass obtained after

impregnation but before polymerisation (or curing) was used. Therefore, the WPG

is practically obtained by:

WPG ¼ MI �Moð Þ=Mo � 100 ð9Þ

where Mo denotes the mass after drying but before impregnation and MI denotes the

mass after impregnation but before polymerisation.

As shown in Fig. 2, WPG exhibits a linear relationship with the reciprocal of

bulk density, with a coefficient of determination of r2 = 0.986, suggesting that this

model works well for the lumen impregnation of Sitka spruce.

The PFR can be deduced from the slope of the linear fit (as qF, the density of

filling is known). The PFR percentage was found to be 101 ± 3%, suggesting

complete impregnation with all accessible void being filled by the monomer

Fig. 2 Relationship between WPG and reciprocal of bulk density. The density of methacrylate monomer
mixture (qF) was measured as 1.005 g cm-3. Through linear fitting according to Eq. (8) (r2 = 0.986),
PFR of 101% and the density of solid part of the wood (qS) of 1.374 g cm-3 were obtained from the
slope and intercept, respectively. Processing condition: Sitka spruce, 10 mm 9 10 mm 9 70 mm (grain
direction), oven-dried, vacuum (*1 mbar) for 1 h, soaked for 2 h under 1250 mbar, filling: MMA/GMA/
EDMA (45:45:10 wt%). Note: The arrowed point in the figure is not used for fitting, as explained in the
text
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mixture. The PFR value slightly over 100 may be caused by an inevitable infiltration

of cell wall with minor amount of monomer liquid. An ideal liquid that only resides

in lumen is unfeasible. Most organic solvents can more-or-less infiltrate the cell wall

and cause wood swelling mainly determined by their basicity, molar volume, and

hydrogen bonding capability (Mantanis et al. 1994b). Fortunately, by using

methacrylate monomers as impregnants here, the swelling-caused model deviation

can be minimised within the experimental uncertainty.

Although the slope or PFR percentage indicates that most of the specimens have

a similar extent of lumen impregnation, their WPG% actually varies from 100 to

230% due to different bulk densities. The average bulk density of Sitka spruce is

around 0.35 g cm-3 (1/qB = 2.86 cm3 g-1), but with considerable variation, which

can range from 0.20 to 0.75 g cm-3 (Moore 2011). This highlights that WPG is not

a suitable measure to describe the extent of lumen impregnation since a larger WPG

does not necessarily mean a larger pore-filling ratio nor better impregnation.

However, the advantage of using WPG is that the determination of weight is easy

and practical. Using the model proposed here, PFR can be assessed by measuring

the bulk density of untreated wood and WPG upon impregnation. Timbers used in

industry usually have a regular shape so that the external volume and the bulk

density can be readily measured.

Effect of hydraulic pressure and specimen length on lumen impregnation

Based on this evaluation method, the effect of different process-related parameters

on lumen impregnation can be studied. WPG in Fig. 3a was measured from

specimens treated for the same impregnation period (2 h) but under different

hydraulic pressures. PFR % could be obtained from linear fitting based on Eq. (8)

using qF of 1.005 g cm-3 and qS of 1.374 g cm-3 as known parameters. Specimens

treated under a hydraulic pressure higher than 1240 mbar exhibited a PFR of 103,

while specimens treated with a hydraulic pressure lower than 1060 mbar (close to

atmospheric pressure) exhibited a lower PFR of 95. This suggests that, for a fixed

(a) (b)

Fig. 3 Effect of hydraulic pressure (a) and specimen length (b) on lumen impregnation. All the PFR
were obtained using qF = 1.005 g cm-3 and qS = 1.374 g cm-3 as the fitting parameter for Eq. (8).
Specimen length in a was 70 mm. Specimens in b were treated in a single batch under the same
impregnation period and the same hydraulic pressure which was larger than 1240 mbar

Wood Sci Technol

123



impregnation time, the extent of lumen impregnation increases with hydraulic

pressure, up to the point at which all void spaces are impregnated (PFR = 100).

Specimens with different lengths along the grain direction (40, 70, and 115 mm)

were treated as a single batch under the same hydraulic pressure and the same

impregnation period. As shown in Fig. 3b, all the specimens are consistent with a

PFR of 97%, suggesting that the length range studied had little, if any, effect on the

extent of impregnation. It is expected that the length of a specimen should affect its

permeability, which will further influence the processing time (Bramhall 1971; Siau

1972). However, under the 2-h pressure process used here, the variation of length

appears to be insufficient to induce a change in the PFR. Specimens with larger

dimensions and shorter processing times will be further investigated taking into

account the effect of permeability.

Effect of variations in skeletal density

The intercept of the linear fit in Fig. 2 provides an estimate of the skeletal density of

the Sitka spruce specimens selected from knot-free regions of the wood. This

estimate is qS = 1.374 g cm-3. If the solid matter in the Sitka spruce consists of

only cell wall material, then its composition, by weight, would approximately be

40–50% cellulose (1.56 g cm-3), 20–30% hemicellulose (1.46–1.80 g cm-3), and

20–35% lignin (1.33–1.38 g cm-3) (Pereira et al. 2003) providing expected

densities in the range 1.47–1.62 g cm-3 (typically reported to be approximately

1.5 g cm-3, Plötze and Niemz 2011). The material density of the solid matter in the

Sitka spruce specimens was determined by grinding them into fine sawdust, and

measuring the density using helium pycnometer. For the specimens, a value of

1.517 ± 0.002 g cm-3 was obtained—this is in good agreement with the values

expected from the cell wall composition (Plötze and Niemz 2011).

The lower skeletal density obtained from the experiments indicates that the

portion of a specimen inaccessible to impregnants not only includes the solid matter

of the cell wall but also closed pores or even closed lumens, as illustrated in Fig. 1.

The skeletal density of the solid phase can be directly determined by helium

pycnometry, provided the closed pores are both inaccessible to liquid monomer and

helium gas. Although the bulk densities ranged from 0.3 to 0.6 g cm-3, the fifty

specimens cut from the knot-free region (closed symbols in Fig. 4) exhibited a

similar skeletal density in the range from 1.359 to 1.422 g cm-3. In other words, if a

specimen has a skeletal density that is very different from 1.37 g cm-3, it will lie

away from the fitting curve plotted in Fig. 2. For instance, the data point marked by

arrow in Fig. 2 was not used for the fit, as its skeletal density was found to be

1.315 g cm-3 (the star symbol in Fig. 4).

Although the bulk density may be different, the skeletal density of Sitka spruce

cut from knot-free part of the wood board is generally the same (ca. 1.37 g cm-3).

Wood grown in different geographical regions, however, may have different qS
values. Therefore, the qS of representative specimens should be determined before

using this model to evaluate the PFR.

It was found that qS was sensitive to the presence of a large amount of

extractives, for instance, in the specimens near the knots (knotwoods). Fifteen
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specimens (marked by open symbols in Fig. 4) that were cut from parts near knots

exhibited lower skeletal density. Furthermore, the specimens located just beside

knots showed an extremely low skeletal density of 1.126 g cm-3 (open pentagon

symbols in Fig. 4), and resulted in values of almost half of the WPG compared with

normal specimens with the same bulk density. The smaller skeletal density observed

for knotwoods is probably the result of the large extractives content around knots. It

has been reported that knotwood contains exceptionally larger amounts of

extractives than sapwood and heartwood (Willför et al. 2004; Pietarinen et al.

2006). For instance, knotwood from Sitka spruce had nearly ten times the total

extractives content of sapwood and heartwood from the same tree (Caron et al.

2013). Since more cell lumens will be blocked in the presence of a considerable

amount of extractives, knotwoods will contain more closed lumens and exhibit

lower skeletal density than observed for knot-free specimens.

As mentioned before, open pores and closed pores are determined by the type of

infiltrates used to fill the space. For the fifty knot-free specimens in Fig. 4, the

skeletal density (i.e. similar portion of closed pores) directly measured from helium

pycnometry is identical to the value fitted by the present model from monomer

impregnation. This suggests that the permeability variance caused by different

infiltrates is diminished for these knot-free specimens through long-period pressured

impregnation.

In other words, the permeability can be qualitatively evaluated by fitting PFR

from this validated model using the skeletal density obtained from gas pycnometry.

Fig. 4 Effect of qS on PFR. The values in the figure are the skeletal density of untreated dried specimens
measured by helium pycnometer assisted by metal fillers. The open symbols correspond to the specimens
cut from parts near knots. The closed symbols represent specimens cut from knot-free parts. Specimens of
the same symbol were cut from the same part of the wood board. The short and long dashed lines are the
fitting curve when (qS, PFR%) are (1.374 g cm-3, 103%) and (1.310 g cm-3, 89%), respectively

Wood Sci Technol

123



For instance, a PFR percentage of 89% was obtained for the knotwoods in Fig. 4

with a skeletal density measured from helium pycnometry of about 1.310 g cm-3.

The presence of a large amount of extractives around knotwoods amplified the

permeability difference between monomers and helium. A pore channel coated by

considerable extractives is more permeable to helium (only weak dispersion force)

than to methacrylate monomers (polarisation force between methacrylate and

extractives). This explains why infiltration capacity or permeability of methacrylate

monomers is only 89% of helium gas in this case.

Conclusion

Weight percentage gain (WPG), an easy-to-measure control parameter, is popularly

used by the wood modification community to evaluate the extent of treatment.

However, it has been misused in impregnation strategies, especially for lumen

impregnation (MMA, furfuralation, etc.). In order to evaluate the extent of lumen

impregnation in an appropriate, representative way, a simple yet effective,

experimentally validated model was developed to describe the relationship between

the WPG and the sample bulk density. The relationship enables the determination of

the pore-filling ratio (PFR) and the skeletal density from a linear fit. The PFR is a

better indicator of the extent of lumen impregnation than the WPG, and through this

model the PFR can be readily determined if the bulk density is known. Furthermore,

along with the skeletal density obtained from helium pycnometry, it was shown that

the PFR is able to qualitatively evaluate the permeability variance caused by

different parameters such as type of infiltrates, applied impregnation pressure,

length of specimens, or amount of extractives.

In this work, the proposed model was examined and validated on a laboratory

scale by full penetration (i.e. PFR known as 100) of small knot-free specimens.

When applying it to industrial scale, this model can be used, in a reverse way, to

infer the unknown PFR from obtained WPG, bulk density, and skeletal density. The

WPG and bulk density can be easily measured in any scale. Quantifying the skeletal

density remains challenging since it is affected by the sample permeability and

therefore may vary in time as environmental conditions change. However, a crude

simple method would be to infer skeletal densities from representative specimens,

thereby enabling an estimate of the PFR to be calculated at an industrial scale.
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