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Restricted Set Classification with prior probabilities: A case study on chessboard
recognition

Ludmila I. Kuncheva∗, James H. V. Constance

School of Computer Science, Bangor University, Dean Street, Bangor Gwynedd, LL57 1UT, United Kingdom

Abstract

In the Restricted Set Classification approach (RSC), a set of instances must be labelled simultaneously into a given number of
classes, while observing an upper limit on the number of instances from each class. In this study we expand RSC by incorporating
prior probabilities for the classes and demonstrate the improvement on the classification accuracy by doing so. As a case-study, we
chose the challenging task of recognising the pieces on a chessboard from top-view images, without any previous knowledge of the
game. This task fits elegantly into the RSC approach as the number of pieces on the board is limited, and each class (type of piece)
may have only a fixed number of instances. We prepared an image dataset by sampling from existing competition games, arranging
the pieces on the chessboard, and taking top-view snapshots. Using the grey-level intensities of each square as features, we applied
single and ensemble classifiers within the RSC approach. Our results demonstrate that including prior probabilities calculated from
existing chess games improves the RSC classification accuracy, which, in its own accord, is better than the accuracy of the classifier
applied independently.

1. Introduction

Restricted set classification (RSC) refers to the following
problem. Given is a set containing m instances, X = {x1, ..., xm},
where x j ∈ Rn, j = 1, . . . ,m, is a data point in some n-
dimensional space. Each instance must be labelled in one of
c classes from the set Ω = {ω1, . . . , ωc}. It is known that the
maximum number of instances from class ωi, present within
X, is ki, i = 1, . . . , c. Thus the cardinality of X must satisfy
1 ≤ |X| ≤

∑c
i=1 ki.

The solution to this problem is not straightforward. If a clas-
sifier is trained and then applied for labelling the instances in X
(called the ‘independent classifier’), the obtained labels are not
guaranteed to meet the count constraints. Incorporating these
constraints into the classification process has been shown to
lead to an improvement on the accuracy of the independent clas-
sifier [14, 15]. Here we hypothesise that a further improvement
can be achieved if prior probabilities depending on the whole
of X are considered by the RSC set classifier.

Examples of real-life RSC problems include recognising
people in a group (e.g., for attendance monitoring of the stu-
dents in a class [1] or for tracking [17]) and identification of an-
imals for the purposes of monitoring and conservation [13, 7].
A particularly suitable application is identifying the pieces on a
chessboard from an image. When classifying chess pieces to-
gether, we can take advantage of the knowledge that there can
only be a given number of objects from each class. For ex-
ample, there can be at most eight white pawns on the board.
In this paper, we chose chessboard recognition as an example
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to demonstrate the expected improvement on the classification
accuracy of the independent classifier when using prior proba-
bilities.

The rest of the paper is organised as follows. The RSC ap-
proach is detailed in Section 2. Our proposed extension is de-
scribed in Section 3. Section 4 contains our case-study which
demonstrates the improvement of the proposed approach over
the original RSC in recognising chess pieces on a board. Sec-
tion 5 offers our conclusions and ideas for future work.

2. Restricted Set Classification (RSC)

RSC is detailed in Algorithm 1. The RSC approach oper-
ates by applying a pre-trained classifier D to X to acquire es-
timates of the posterior probabilities for every instance within,
and making an optimal label assignment while observing the
count restriction. The classifier D is termed the independent
classifier as it is trained on independent, identically distributed
(i.i.d.) data, and is oblivious to any count limits. This can be any
classifier which returns estimates of the posterior probabilities,
D(x) = {PD(ω1|x), . . . , PD(ωc|x)}. Denoting the space of prob-
ability distributions over Ω by P(Ω), we have D : Rn → P(Ω).
It is desirable that these estimates are well calibrated [5].

D can be a single classifier or a classifier ensemble itself, as
long as the output is a probability distribution. Straightforward
estimates of the posterior probabilities from a classifier ensem-
ble are the proportions of votes for the respective classes.

The posterior probability estimates for all instances in X are
organised in an m× c “probability matrix” Pp, where row i rep-
resents the probability distribution obtained from D for instance
xi ∈ X. Subsequently, an augmented probability matrix, Pa is
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constructed by repeating each column of Pp as many times as
the number of allowed instances from the corresponding class.
For example, if k1 = 3 and k2 = 4, the first three columns of
Pa will be copies of the first column of Pp, followed by four
copies of the second column of Pp. Thus the size of Pa is m×q,
where q =

∑c
i=1 ki. We have previously proved [15, 14] that the

optimal assignment guaranteeing the minimum Bayes error in
labelling the whole of X requires that the product of the poste-
rior probabilities is maximum, that is

〈ω∗1, ω
∗
2, . . . , ω

∗
m〉 = arg max

〈ω(a)
1 ,ω(a)

2 ,...,ω(a)
m 〉

m∏
i=1

P
(
ω(a)

i |xi

)
, (1)

where ω(a)
i is the class label assigned to xi, and ω∗i is the optimal

label. This optimisation must be carried out subject to the con-
dition that the number of labels for class ω j in the returned set
must be no greater than the restriction constant k j, j = 1, . . . , c.
The construction of the augmented matrix with posterior proba-
bilities guarantees the compliance with the constraints. In order
to find the optimal 〈ω∗1, ω

∗
2, . . . , ω

∗
m〉, we need a matching proce-

dure. The Hungarian algorithm finds the optimal match which
minimises the sum (or cost) of assignments. Therefore, in or-
der to use this algorithm we convert the product in eqn. 1 into
a sum of logarithms. As we are seeking to maximise this sum
while the aglorithm looks for minimum cost, we submit to the
Hungarian algorithm the matrix with the negative logarithms
Pa.

Algorithm 1: Restricted Set Classification
Input: Pre-trained classifier D : Rn → P(Ω), the

allowed number of instances from each class
K = {k1, . . . , kc}, a set of instances to be
classified together X = {x1, ..., xm}, xi ∈ Rn.

Output: Labels L for the instances in X.
// acquire probability matrix Pp

1 for i← 1, . . . ,m do
2 Pp(i, 1 : c)← D(xi)

// construct augmented probability matrix

Pa

3 Pa ← ∅.
4 for i← 1, . . . ,m do
5 cc← 1 // column counter

6 for j← 1, . . . , c do
7 for k ← 1, . . . , ki do
8 Pa(i, cc)← Pp(i, j)
9 cc← cc + 1

// find optimal label assignment M
10 M ← hungarian-assignment(− log(Pa))
11 L← retrieve-labels(M)

12 Return L.

The output of the Hungarian algorithm is a binary matrix M
of the same size as Pa (m×q), containing 1s where rows are as-
signed the column label, and 0s elsewhere. Each row (instance

in X) has one and only one assigned column. The class label
of the instance is retrieved by identifying which class label has
given rise to the column in Pa. In the above example, if a col-
umn between 1 and 3 contains the 1 for the row, the label for the
instance is ω1. Alternatively, if the 1 is in one of the columns
between 4 and 7, class ω2 will be retrieved.

The theoretical grounds and empirical evidence that the RSC
works better than m independent applications of D to the ele-
ments of X are given in the original work [15]. Here we are
interested in extending RSC to incorporate prior probabilistic
information, as proposed next.

3. Incorporating a conditional prior into RSC

Suppose that by analysing a large prior database, we were
able to obtain prior probabilities depending on some parameter
of the set of instances X. This parameter can be, for example,
the cardinality of X or some relationship between the instances
in X, θ = θ(X). Say, we are recognising the students in a class
from a photo of the classroom. While the students can sit wher-
ever they choose in the classroom, some usually pick the same
seats. We can use a parameter such as

θ = Sitting in the first row? (y/n),

and pre-calculate a prior probability for each student (class)
conditioned on θ. The appearance of the student’s face in the
photo, which would be their feature vector x, will not depend
on θ.

Denote by PP(ωi|θ) the conditional prior probability for class
ωi, i = 1, . . . , c. To integrate this probability within the proba-
bilities obtained from the independent classifier, PD, we use

P(ωk |x, θ) =
P(x, θ|ωk)P(ωk)

P(x, θ)

Assuming independence between x and θ,

P(ωk |x, θ) =
P(x|ωk) P(θ|ωk) P(ωk)

P(x) P(θ)

=
P(x|ωk) P(ωk)

P(x)︸            ︷︷            ︸
posterior

P(θ|ωk)
P(θ)

Multiplying and dividing by P(ωk),

P(ωk |x, θ) = P(ωk |x)
P(θ|ωk) P(ωk)

P(θ)
1

P(ωk)

= P(ωk |x)
P(ωk |θ)
P(ωk)

.

Any estimate of the probabilities can be plugged in this equa-
tion. In our case:

PE(ωk |x, θ) = PD(ωk |x)︸    ︷︷    ︸
from D

PP(ωk |θ)
PP(ωk)︸     ︷︷     ︸

from the prior database

.
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We may wish to control the influence of the conditional prior
probability on the final posterior probability. Therefore we in-
troduce a tunable parameter, β ∈ [0, 1], as follows:

PE(ωk |x, θ) = PD(ωk |x)
[

PP(ωk |θ)
PP(ωk)

]β
. (2)

This probability distribution across the class labels Ω should
be calculated for each instance x j ∈ X and used instead of D(x j)
in constructing Pp in Algorithm 1.

Note that the conditional prior is only available in relation
to the whole set X. Arguably, this probability extension can
be thought of as coming from an extra classifier built upon an
alternative feature space containing only θ.

At this point, several questions may arise: What kind of class
priors should be used? How could the choice of such priors
impact the overall performance of the proposed extension? In
theory, adding a new feature (in this case θ) to a given classi-
fier model cannot harm the performance, but can improve it.
Our model of including this new feature depends on two fac-
tors: the independence assumption holding, and the accuracy
of the approximation of the probabilities of interest PP(ωk |θ)
and PP(ωk).

For the task of chess piece recognition, our θ is the number
of pieces on the board and the position of the square. We can
assume that θ and the appearance of the image of a square x
do not depend on one another as the photographs are taken in
the same way regardless of the number of pieces. Then the de-
ciding factor is the accuracy of approximation of the two prob-
abilities. While PP(ωk) is easy to obtain even from a small
number of boards, PP(ωk |θ) requires a lot more data. In order
to find a reasonably accurate approximation for each square,
given the total number of pieces on the board, a large number
of boards must be available. Note that the “heavy-duty” data
collection in our case is acquiring the images of the boards and
the squares, while estimating the probabilities from hundreds
of thousands of recorded games requires only a simple calcu-
lation. The availability of large databases of historical chess
game records gave us the idea to exemplify the RSC extension
by chess piece recognition. We investigate in Section 4.6 the
sensitivity of our method to the number of data samples from
which PP(ωk |θ) is calculated.

In this paper we raise a new hypothesis: by including prior
probabilities in the RSC, the obtained set classifier will be sig-
nificantly better than that without the prior probabilities, and
also significantly better than the independent classifier, with or
without the conditional prior probability. While a single exam-
ple cannot corroborate the overall validity of our hypothesis,
below we provide support for it through a case study.

4. A case study: Recognising chess pieces on a board

While online chess games are played using a representation
of the board on the screen, rated games are usually played in the
traditional way, face to face, over a physical, three-dimensional
board. Most commonly, games are recorded by the players on a
piece of paper as they play, and at the end of the game the moves

are manually entered into chess software. For some profes-
sional games, such as the World Championships or high-level
tournaments, the games are played on DGT (Digital Games
Technology) electronic boards [23], which can sense the iden-
tity and location of pieces on the board. However electronic
boards are expensive. A cheaper alternative would be to use
images or video-feed from a standard physical chessboard.

4.1. Related Work

Since the late 18th century, when a fake chess-playing ma-
chine called The Turk, (the Mechanical Turk or the Automaton
Chess Player) was introduced to the Empress Maria Theresa,
robotic chess-players have attracted the attention of the pub-
lic and researchers alike. A full-scale design of playing robot
relying on machine vision must address the problems of the
physical piece movement in addition to the processing of the
video-feed, recognising the move of the opponent, and querying
a chess engine to identify the best move that the robot should
make [6, 16, 22, 4].

Almost invariably, the systems for chess board and piece
recognition are based on image difference. A pair of images
is acquired, one “before” the move, called the reference image,
and one “after” the move. The difference is used to identify a
region-of-interest in the image. Combined with the knowledge
of the piece positions before the move, and the possible legal
moves, this approach makes the identification problem much
easier than using a single image and no history of the game
progression.

Depending on the physical set-up, different approaches have
been proposed for piece recognition. Cour et al. [6] use an over-
head webcam to track the moves, as do Wang and Green [24],
Koray and Sümer [12], and Illeperuma [10], while Chen et al.
[4] view the board from a camera held at a small angle from the
vertical. Piškorec et al. [21], on the other hand, use an overhead
camera to track the moves in conjunction with a second camera
with a side-view to identify piece types. The current consen-
sus is that a top-view camera is of no use for piece recogni-
tion [19, 21, 9]. Side views contain information about the piece
silhouettes, which is deemed more suitable for the task [9, 21].
The features (descriptors) are typically the Fourier coefficients
of the cumulative angular function of the shape [25]. A prob-
lem with this approach is that pieces may not be clearly visible,
hence occlusion by other pieces may need to be taken into con-
sideration. Schwenk and Yuan [22] create 3-D models of the
shapes, and subsequently render and project a 3-D image of a
piece onto the board. They match the projection to the side
board view, and choose the pieces whose projection matches
the current image most closely. Often, the board is modified
in order to allow for identification of the squares which does
not interfere with the piece recognition. For example, red and
green colours are chosen for dark and light squares, instead of
the standard equipment used in chess tournaments [9, 21, 10].

The shortcomings to the tracking approach are as follows:
(1) the initial position must be known, and manually entered in
the tracking system; (2) if a move is misidentified, subsequent
positions will be affected, propagating the error.
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As opposed to tracking the position of the pieces, there is
very little literature on piece recognition from a single static
image. The silhouette approaches could be useful but the occlu-
sion problem may prove a significant obstacle without knowl-
edge of the previous position of the board. If the image is taken
at an angle which favours the silhouettes, the information about
the square occupancy may become insufficient or unreliable.
In this paper, we take the task of identifying the whole chess
board from a top-view image, without any knowledge of the
game moves leading to the current position.

4.2. Chess piece recognition as an RSC problem
There are 13 classes of chess pieces as shown in Table 1. The

independent classifier D will be trained with cropped images of
squares from the chessboard. Each square is pre-labelled into
one of the 13 classes. Table 1 also shows the maximum allowed
number of pieces (ki) for each class.

The set X contains 64 images of squares which make up a
whole board.

The parameter θ in our case study consists of two compo-
nents: the (estimated) number of pieces on the board, and the
position of the square in the board. To incorporate this infor-
mation, we treat both the board position and the number of
pieces as nominal variables, and use a look-up table with pre-
calculated probabilities.

Denote by t the number of pieces on the chess board, t ∈
{2, 3, . . . 32}, and by r the position of a square, r ∈ {1, 2, . . . 64}.
Then PP(ωi|θ) = PP(ωi|t, r) is the conditional prior in eqn (2).

Since we aim to recognise one whole board at a time, X con-
tains all the squares in the board (|X| = 64), and the size of the
augmented matrix in Algorithm 1, Pa, is 64 × 94.

The number of pieces is not immediately available for a
given X. We assume that distinguishing empty from non-empty
squares is an easier task compared to any piece recognition.
Therefore we take the estimate of the number of pieces t from
our classifier applied on X.

It is difficult to advise a researcher on the choice of θ for
their specific problem. In fact, the availability of large number
of past records of chess games guided us to choose the num-
ber of pieces for each square as a prior. This choice came be-
fore the statistical workout. Suitable candidates for the priors’
parameter would be easily obtainable features from large exist-
ing databases or the Internet, for example using web-priors for
video summarisation [11].

4.3. Organisation of the experiment
4.3.1. Data

We used a collection D of 3583 games from edition
1144 of The Week In Chess Magazine, published online on
10/10/20161.

The data was divided into three parts.
• We sampled 100 boards from D as the training data, D2,
which we use to explore the influence of the tunable parame-
ter β in eqn. (2) on the accuracy of the extended RSC.

1http://theweekinchess.com/twic

• Another set of 100 boards was sampled fromD as the testing
data, called D3.2 This data set was not seen at any stage of
the training. Using the parameter values chosen on D2, and
training a classifier on the whole ofD2, we subsequently tested
all accuracies of interest onD3.
• The reminder ofD, after removingD2 andD3, was taken for-
ward as D1, from which we calculated the prior probabilities.
Note that data D1 is not used for anything else during training
and testing.

The 200 boards for D2 and D3 were arranged on a physi-
cal board and photographed from above. The top-view images
of the chessboards were processed to separate the individual
squares on each board. An example of the colour-enhanced im-
age of a board with the square corners marked with green x is
shown in Figure 1. The inner 7-by-7 grid-points were detected3

and were subsequently augmented with the outer grid points to
achieve the segmentation shown in the figure.

Figure 1: Top-view image of the chessboard with segmented squares.

Examples of the acquired images for sets D2 and D3 are
shown in Figure 2. The only features we considered first were
the grey level intensities of the pixels. Each square was re-
sized to a given resolution and the pixel intensities were con-
catenated. For example, for a 10-by-10 resolution, each square
was represented by 100 features (pixel intensities).

The majority of our experiments are carried out with this
most basic set of features for at least two reasons: (1) to make
the classification task reasonably difficult so that we can show-
case the difference between the proposed and the standard so-
lutions; (2) to ensure that our experiments would be easily re-
producible by a non-expert. We further experiment with more
advanced feature representations, as reported in Section 4.5.

2The indices of the sampled boards are available in MATLAB format from
https://github.com/LucyKuncheva/Chess-piece-recognition

3MATLAB function detectCheckerboardPoints was used.
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Table 1: Classes in the chess-pieces recognition problem, and the limit number for each class in a standard chess game.
Class #: 1 2 3 4 5 6 7 8 9 10 11 12 13

K Q R B N P k q r b n p Z
king queen rook bishop knight pawn king queen rook bishop knight pawn empty

Numbers: 1 1 2 2 2 8 1 1 2 2 2 8 62
allowed

We experimented with squares with the following resolu-
tions: 5 × 5, 10 × 10, 25 × 25, and 50 × 50.4

K
Q
R
B
N
P
k
q
r
b
n
p
Z

Figure 2: Examples of the images of the 13 classes of squares on the chess-
board.

4.3.2. The independent classifier
Bearing in mind that the output of the independent classifier

must be estimates of the posterior probabilities for the classes
in Ω, we chose the following collection of models for D:

1. A customised nearest neighbour classifier (c-1nn) which
returns posterior probabilities based on the distance be-
tween the instance x ∈ Rn and its nearest neighbour from

4The images of the training and testing data with resolution 100 ×
100 are provided in GitHub https://github.com/LucyKuncheva/

Chess-piece-recognition.

each class. Then the posterior probability for class ωi is
estimated through the softmax rule:

PD(x|ωi) =
exp(−di)∑c

j=1 exp(−d j)
,

where di is the distance between x and its nearest neigh-
bour among the reference points from class ωi.

2. Bagging classifier ensemble with decision trees as the base
classifier [2]. We set the number of classifiers to 200. The
posterior probabilities are calculated as the proportion of
individual classifiers which vote for the respective class.
This calculation is the same for all ensemble methods used
as D.

3. Random Subspace classifier ensemble with 1-nn as the
base classifier. Twenty features were sampled for each
base classifier.

4. Random Forest ensemble with 200 classifiers. [3]

4.3.3. Experimental protocol
Using D1, we calculated the look-up table of size 31 × 64 ×

13 (number of pieces5, number of squares, number of classes).
Entry (i, j, k) in the table is an estimate of

PP(ωk |t = i + 1, r = j),

where t is the number of pieces on the board, and r is the posi-
tion of the square out of the 64 possible positions. To calculate
this estimate we first located the position of the square, and then
took the number of occurrences of each piece in this square.
The proportion of occurrences of a given piece was taken as the
estimate P̂P(ωk |t = i + 1, r = j).

The prior probabilities PP(ωi) were calculated from D2 as
the proportion of the classes.

Next we ran a training cycle to determine the best param-
eter value, choosing among: β = {0.01, 0.03, . . . , 0.19}. For
each classifier model, we ran a 100-fold cross-validation onD2.
Each fold was a complete chessboard containing 64 instances.
The reason for this choice is that we are interested in two mea-
sures of the accuracy with respect to X [15]:

• AP, partial accuracy: AP is the proportion correctly la-
belled instances in X (the conventional estimate of the
classification accuracy).

5Minimum possible number of pieces left on the board is 2, and maximum
is 32.
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• AT , total accuracy: AT = 1 if all labels are correctly as-
signed to the instances in X, and AT = 0, otherwise.

For every fold, we calculated the pair of accuracies (AT , AP)
for the following scenarios, where the testing set X was the
chessboard left outside the training:

1. D, the independent classifier applied on its own.
2. D+P, where P stands for ‘conditional prior’. The label for

x is assigned by the maximum PE(ωk |x, t, r), k = 1, . . . , c,
as in eqn. (2).

3. RSC(D), where the restricted set classification model is
applied only with the independent classifier D, as in [15].

4. RSC(D + P), which is the proposed extension.

For each classifier model, we chose β which maximised AT

for the respective scenario. These parameter values were taken
forward for the classification of the testing dataD3.

Finally, we applied the 4 classifier models of D and the 4
scenarios to D3. Each of the 100 chessboards was considered
as X, and the two accuracies (AT , AP) were calculated.

As we are interested in the difference between the proposed
extension RSC(D + P) and the non-extended versions, we ran a
statistical test. The null hypothesis H0 was that there is no dif-
ference between the mean accuracy (AT or AP) of RSC(D + P)
and the chosen rival among the other three scenarios. The alter-
native hypothesis H1 was that the mean accuracy of RSC(D+P)
is higher than that of the rival scenario. As all accuracies are
commensurable, we ran a right-tailed paired t-test.

For comparing the paired AT scores forD3, we note that they
are collections of 100 binary values, which we can interpret as
true (all squares on the board labelled correctly) and false (there
has been at least one mistake). The statistical test suitable for
this type of data is the McNemar test [18]. The null hypothesis
H0 for this test is that there is no difference between the propor-
tion of 1s in both candidate sets. The alternative hypothesis H1
is that the proportions are not equal (the difference could be in
either direction).

4.4. Results
Figures 3 and 4 show respectively accuracies AP and AT for

the four models chosen for the independent classifier D as func-
tions of the image resolution. All 4 scenarios are plotted in
every diagram. Red lines and small triangle markers indicate
that RSC is used, while black lines and square markers indicate
that only an independent classifier is used, be it with or with-
out modifications. Solid lines show the scenarios where priors
are used, and dashed lines, the scenarios without the proposed
extension. Large triangle markers indicate no significant dif-
ference from the RSC(D + P) point at significance level 0.05
using paired right-tailed t-test. For all other points below the
RSC(D + P) graph, the difference is statistically significant.

It can be seen that, in both figures, the lines for RSC(D + P)
are above the lines for the rival scenarios, which demonstrates
the advantage of our proposed extension of RSC. The patterns
for all examined classifier models are very similar, indicating
the robustness of the proposed extension. The proposed exten-
sion is also not sensitive to the image resolution; it dominates
the rival scenarios for all four resolutions.

Custom 1-nn Bagging

Random Subspace (1-nn) Random Forest

Figure 3: Partial accuracy (standard classification accuracy) AP for the 4 inde-
pendent classifier models. Triangle markers indicate that the top value is not
significantly higher than the lower one at significance level 0.05 (paired right-
tailed t-test).

Custom 1-nn Bagging

Random Subspace (1-nn) Random Forest

Figure 4: Total accuracy AT for the 4 independent classifier models. Triangle
markers indicate no significant difference from the top point at significance
level 0.05 (McNemar test).
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4.5. Experiments with other feature representations
To strengthen the message that including conditional prior

probabilities improves the restricted set classification (RSC),
we extracted two additional feature spaces from the image
data: the local binary feature descriptors (LBP) [20] and his-
togram oriented gradients (HOG) [8]. Both feature spaces are
orientation-invariant, and very useful descriptors for object’s
shape and texture. The experimental protocol is the same as
with the grey scale intensity data but this time we did not tune
specifically the power constant β. We set it at β = 0.1 for all
experiments. Again, the classifier was trained onD2 and the ac-
curacies AP and AT for the four scenarios were calculated on the
unseen testing data D3. The results for AP and AT are reported
in Tables 2 and 2, respectively. Statistical tests were carried out
again to determine whether the accuracies obtained through the
proposed method RSC(D + P) are indeed significantly higher
than those of D, D + P, and RSC(D). Paired right-tailed t-test
was applied for AP, and McNemar test for AT . All differences
in favour of AP for both feature spaces were found to be sig-
nificant. On the other hand, statistical significance was not ob-
served as often for AT . Still, we note that all values of AT for
RSC(D + P) were strictly greater than those for the other three
methods (apart from LBP and Random subspace where the val-
ues are the same).

Overall, LBP feature space was less successful than HOG.
HOG showed similar accuracies to the ones obtained with the
grey scale intensity features.

This experiment reinforces our observation that including the
conditional prior probability improves RSC, and this improve-
ment is not tied up to a serendipitous choice of a specific feature
space.

Table 2: Partial accuracy AP in % for the four scenarios and the two feature
spaces. All statistical tests (right-tailed t-test) confirmed that RSC(D+P) is sig-
nificantly better than the other three scenarios.

CL FS D D + P RSC(D) RSC(D+P)
LDC LBP 81.94 88.48 82.50 89.53

HOG 96.27 96.63 96.80 97.16
1nn LBP 85.23 87.61 86.17 89.38

HOG 94.86 95.33 95.08 95.66
BAG LBP 84.30 89.33 84.98 90.28

HOG 94.22 95.47 94.52 95.84
RS LBP 84.38 88.88 85.06 89.81

HOG 96.22 96.70 96.66 97.06
RF LBP 84.47 89.33 85.17 90.41

HOG 93.98 95.38 94.56 95.84

Notes: CL = classifier model, FS = feature space.

4.6. Sensitivity to sample size
The proposed extension would work if there is a substantial

data resource from which we can calculate good estimates of
the conditional priors PP(ωi|θ). To evaluate the sensitivity of
the method to different data sizes, we carried out the following
experiment. The prior probabilities were calculated from data

Table 3: Total accuracy AT in % for the four scenarios and the two feature
spaces. The values found to be not significantly different from RSC(D+P) by
the McNemar test are shown in boxes.

CL FS D D + P RSC(D) RSC(D+P)
LDC LBP 0.00 0.00 0.00 3.00

HOG 0.00 8.00 15.00 18.00
1nn LBP 0.00 0.00 0.00 1.00

HOG 0.00 5.00 7.00 10.00
BAG LBP 0.00 0.00 0.00 2.00

HOG 0.00 6.00 5.00 14.00
RS LBP 0.00 0.00 0.00 0.00

HOG 0.00 13.00 13.00 17.00
RF LBP 0.00 0.00 0.00 2.00

HOG 0.00 8.00 6.00 13.00

of sizes K taking values: 1000, 5000, 10000, 50000, 100000,
200000, and 300000. We chose the linear discriminant classi-
fier with the HOG feature space as this combination was found
to be the most accurate one in Section 4.5. Figure5 shows AP as
a function of K. The quality of the estimates improves and lev-
els off with the size, and so does the classification accuracy AP

of D + P and RSC(D + P). For D and RSC(D), the accuracy is
constant as they do not depend on the estimated prior probabil-
ities. As before, we depict with triangles the accuracies which
are not significantly different from AP of RSC(D) according to
the right-tailed paired t-test.

Figure 5: Partial accuracy AP as a function of the number of instances from
which the prior probabilities PP(ωi |θ) were calculated. The experiments were
carried out with HOG features and LDC classifier.

This experiment indicates that in order to take advantage of
the RCS extension, we need access to large data or accurate
probability estimates obtained from other sources.

5. Conclusions

In this study we extend the Restricted Set Classification
(RSC) approach. We propose that including prior probabili-
ties related to the set of instances X being classified together

7



improves on the overall accuracy of the set classifier. The pa-
per proposes a formal way of including these probabilities and
weighting their contribution.

Our hypothesis is tested on a real-life instance of an RSC
problem: recognising the pieces on a chessboard from a top-
view image. Our experiment demonstrated that including prior
probabilities improves significantly the performance of RSC,
which in itself is a better solution to the RSC problem compared
to an independently applied classifier D. This improvement was
found to be robust with respect to the classifier model used as
D, and also with respect to the image resolution.

The practical aspect of the case study is that, by using an
extended RSC approach, we can achieve a good classification
accuracy where this was deemed impossible in the literature:
classification of the pieces on a chessboard from a single top-
view image, without knowing the game moves leading to the
current position, and without marking or modifying the chess
board and the pieces in any way.

The extended RSC approach can be applied for any repre-
sentation of the objects, not only the top-view squares. A side-
view sub-image could be added to the top-view representation
of each square, or the features extracted from the different im-
ages could be concatenated.

It will be interesting to extend the RSC approach further, in at
least two directions. First, the posterior probabilities for the in-
dependent classifier D can be honed by incorporating evidence
from the past success of D in assigning a given label. Second,
relationships between the instances in X can be useful for the
overall assignment of the labels. For example, suppose that we
are recognising the individual students in a class from head-
and-shoulder snapshots. Suppose that we know that Peter and
John are best friends, and are usually both present or both ab-
sent. The posterior probabilities can be altered based on this
piece of knowledge.
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tute of Physics â€“ Sri Lanka 27, 76–83.

[11] Khosla, A., Hamid, R., Lin, C.J., Sundaresan, N., 2013. Large-Scale
Video Summarization Using Web-Image Priors. Proc. IEEE Comp. Soci-
ety Conf. on Comp. Vision and Pattern Recognition (2013) , 2698–2705.
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