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Drowning in diversity? A systematic way of
clustering and selecting a representative set of new
psychoactive substances†

Mire Zloh, * Eleftherios G. Samaras, Jesus Calvo-Castro, Amira Guirguis,
Jacqueline L. Stair and Stewart B. Kirton *

New psychoactive substances (NPS) can be generally described as a set of compounds that have been

designed to mimic the effects of illegal recreational drugs, but are not subject to restriction or control

with respect to existing regulations and legislation. In recent years, the number and chemical diversity of

emergent NPS has increased substantially, and regulators have struggled to develop methods for

accurate detection of NPS at the same rate. Existing approaches to NPS classification are pragmatic and/

or semi-systematic and do not lend themselves to objective spectroscopic classification of emergent

NPS. As such, this research discusses the identification of a systematic NPS classification based on

chemical structures. A set of 478 NPS were grouped according to the similarity between their chemical

structural features using hierarchical clustering and a maximum common substructure of 9 atoms, which

included both hydrogen and heavy atoms. The rationale for including hydrogen atoms is that accurate

spectroscopic identification of NPS will be dependent upon variations in substitution patterns in the

molecules. This analysis generated 79 clusters, arising from 21 superclusters. The medoid substances of

each cluster were used to form a dataset that was representative of the chemical space encompassed by

known NPS. Subsequent categorisation of a test set of NPS showed that the test substances were

assigned to an appropriate cluster when the Tanimoto similarity coefficient between the cluster medoid

and the test substance was at least 0.5. This indicates that the cluster medoids could be used for

assignment of emerging NPS to systematically-defined categories based on chemical structure. These

medoids will also aid in the prediction of spectroscopic properties for emergent NPS, which will be

invaluable for structure-based classifications and development of methods for detection of emerging NPS.

Introduction

New psychoactive substances (NPS), also inaccurately known as
‘legal highs’ or ‘designer drugs’, are dened by the United
Nations Office on Drugs and Crime (UNDOC) as “substances of
abuse, either in a pure form or a preparation, that are not
controlled by the 1961 Single Convention on Narcotic Drugs or
the 1971 Convention on Psychotropic Substances, but which
may pose a public health threat”.1 NPS are designed with the
intention to imitate the pharmacological effects of controlled
substances such as cocaine, heroin and methamphetamine by
slightly modifying the molecular structure of these existing
controlled compounds, thus bypassing legislation to prevent

their distribution, possession and consumption.2–4 According to
the UNODC, the numbers, and rate, at which NPS are entering
themarket is increasing, and the chemical diversity of emergent
NPS also continues to expand.4 As of 2016, more than 700 types
of NPS had been reported by 109 countries.1

Existing NPS are frequently rebranded i.e. the names and
composition of the product are altered, and marketed as
superior, but legal, alternatives to the banned substances they
purport to replace or supplement,5–7 which results in added
complexity to the NPS problem. The fact that NPS are being
used for recreational purposes,8 are not fully risk assessed, and
are not yet completely controlled by international drug
conventions identies them as a possible serious threat to
public health.9 For this reason, a number of countries have
recently introduced NPS legislation. For example, the UK
recently enforced the Psychoactive Substance Act, a blanket ban
on the supply, possession with the intention to supply,
possession in custodial environments, production and impor-
tation of all substances that produce a psychoactive effect.10,11

As a result of this legislation, it is imperative that new tools and
approaches are developed to more effectively tackle current NPS
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abuse, production and supply, given that these compounds will
now be reaching users through more clandestine routes. The
current state of the art for the detection of NPS includes “wet”
laboratory-based techniques such as chromatography, mass
spectrometry, nuclear magnetic resonance spectroscopy, gas
chromatography-mass spectrometry and liquid chromatog-
raphy mass spectrometry. Solid-state laboratory techniques
including attenuated total reectance Fourier transform
infrared (ATRF-IR) and Raman spectroscopy have also gained
popularity as techniques for identifying NPS, and recent studies
have highlighted the importance and utility of handheld Raman
devices for detection of NPS “in the eld” (see e.g. (ref. 12) for
a more in-depth discussion).

According to the International Narcotic Control Board, the
growth in production and distribution of NPS is ‘escalating out
of control’.13 The EMCDDA (European Monitoring Centre for
Drugs and Drug Addiction) has stated that the number of NPS
detected in Europe is rising, as demonstrated by a Europe-wide
early warning system that detected 100 NPS in 2015.14 This
explosion of NPS onto the market is causing a major challenge
to drug control, as regulators struggle to monitor the
compounds at the same pace as they appear, especially given
the lack of information on chemistry, pharmacology and toxi-
cology for new analogues. The number of known NPS, the rate
of emergence and the oen transient nature of some
compounds are such that it is difficult to obtain the complete
information on physicochemical and biological properties for
all NPS to be able to inform relevant stakeholders.

Current classications of NPS are pragmatic and non-
systematic. They are either based on their chemical scaffold
and/or pharmacological/clinical effect. NPS classied according
to their chemical structure include phenethylamines, pipera-
zines, synthetic cathinones and tryptamines. Conversely, clas-
sication of an NPS as a synthetic cannabinoid is based on its
pharmacological action on the cannabinoid receptors, and
therefore this class contains very structurally diverse molecules,
as illustrated in Fig. 1. Whilst classication of NPS according to
pharmacological action could be useful, it can be argued that it
is not optimal from a systematic point of view. This is due to the
relative promiscuity of a number of known NPS, and a relative

dearth of knowledge around these substances with respect to
their explicit pharmacological action (see e.g. (ref. 15)). For
example, the cathinones exhibit a number of pharmacological
responses including stimulant, empathogenic and antidepres-
sant effects.16 This is thought to be related to the interaction of
these compounds with a number of biological receptors
including tyrosine and tryptophan hydroxylases.17,18 In addition,
cathinones, like a number of other NPS classes, inhibit the re-
uptake of the neurotransmitters dopamine, serotonin and
norepinephrine by their respective monoamine transporter
(MAT) proteins of the synaptic cle, and induce the release of
newly synthesised neurotransmitters to the synaptic cle.19–21

Even for cases where the interaction between receptor and NPS
appears less ambiguous, such as the interaction between
synthetic cannabinoids and the CB1 receptor, the explicit
pharmacological action can be difficult to determine as it is
difficult to determine whether the NPS is acting as a full or
partial agonist.22

To add a further layer of complexity, clinical classications
aimed at the effective treatment of NPS intoxication also exist
outside of the chemical scaffold/pharmacological effect classi-
cations. Whilst the classication of NPS as hallucinogenics,
stimulants, synthetic opioids, GABA A/B receptor agonists,
dissociatives or depressants is useful for clinicians,23,24 these
categories are not well dened as several NPS can have over-
lapping actions between more than one of these clinical
categories.25

The approaches outlined above do not provide a consistent,
systematic method for NPS classication. Consequently, only
cursory assessments can be performed for emerging NPS, which
may not provide enough information to assess their potential to
cause harm for either clinicians or regulatory bodies. This
means it is essential to explore new ways of efficiently and
systematically identifying and classifying existing and emerging
NPS.

One strategy to achieve this would be to group NPS according
to their structural similarity, as structurally similar compounds
are likely to have similar biological activities26 and exhibit
similar spectroscopic behaviour. However, the increasing
complexity and diversity of NPS prevents systematic classica-
tion with respect to their structural similarity by visual inspec-
tion alone. Hence, it is essential to process this information
computationally in order to maximize the speed and accuracy at
which results can be generated, and to provide an accessible
mechanism by which the classication system can be iteratively
updated as new chemical scaffolds emerge. In addition,
systematic analyses could be used to identify mechanistic
similarities and use them to accelerate screening and classi-
cation of NPS according to their physicochemical properties or
mechanism of action.27

Although it is preferable to acquire a complete information
set for every known NPS, this would be difficult to achieve
because of limitations with respect to time constraints and the
availability and costs of reference standards. Therefore, a cred-
ible alternative strategy would be the creation of a diverse subset
comprising a number of molecules that serve as ‘representa-
tives’ of the physicochemical properties of known NPS.

Fig. 1 Exemplar chemical structures of some of the subcategories of
known synthetic cannabinoids, demonstrating the structural diversity
of this class of compounds.
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Selecting structural representatives would reduce the number of
molecules that need to be analysed, whilst retaining maximum
information about the structural diversity of the whole dataset.
Such a subset would have inherent variety due to the highly
diverse chemical space that NPS cover, but be representative of
known NPS.28 The results from the analysis of representative
molecules would be used to infer the properties of structurally
similar NPS29 and have the potential to identify and classify NPS
emerging onto the market – a key point of interest for law
enforcement agencies and associated scientic bodies
worldwide.

Cluster analysis is an appropriate tool to help guide the
identication of this diverse NPS dataset. Clustering techniques
are generally employed as versatile data mining approaches to
create groups of (structurally) similar molecules within a given
set of compounds30 and to nd molecules that hold central
positions in the chemical space occupied by a cluster (i.e.
medoids).31 Clustering followed by medoid identication
provides a comprehensive and systematic way of grouping
known NPS according to chemical structure and identifying
those molecules that best represent the dataset as a whole. In
this work, we demonstrate, for the rst time, the use of hier-
archical clustering and similarity calculation techniques to
group NPS, with an aim to aid the development of novel tools
for NPS detection and classication. This wealth of NPS struc-
tural data currently available provides an opportunity to explore
how structural patterns might manifest and be used for the
prediction of emergent NPS to help research scientists, legal
authorities and healthcare professionals identify and classify
them.

Experimental
Acquisition and preparation of NPS data

In January 2015, a list of 478 NPS molecules was obtained from
the European Monitoring Centre for Drugs and Drug Addiction
(EMCDDA).32 A list of emergent NPS that appeared on the
market between February 2015 and March 2016 were subse-
quently supplied by the EMCDDA, and these 98 molecules
became the test compounds used to interrogate the model
generated. The majority of new analogues that appeared on the
market belonged to three EMCDDA/EDND classes: synthetic
cathinones (24), synthetic cannabinoids (24) and phenethyl-
amines (10), whilst the rest were distributed almost evenly
between the remaining classes. Both lists contained informa-
tion including synonym names, systematic names and the NPS
class for each molecule. The list was cross-checked with avail-
able information in the literature to ensure accuracy and
completeness. For entries in the EMCDDA/EDND that record
products comprising herbal extracts, such as NPS Kawa and
Kratom, the active ingredients of these products were identied
and added to the dataset. Such entries were labelled as “not
present” in the initial list of NPS provided by EMCDDA, in order
to highlight that they had arisen from manipulation of the
dataset.

The dataset was expanded by inclusion of the SMILES
(Simplied Molecular Input Line Entry System) strings for each

molecule, which were acquired from ChemSpider33 and the New
Synthetic Drugs databases.34 A unique identier was given for
each NPS in the dataset to facilitate easier identication of
molecules at later stages.

Hierarchical clustering (hydrogen atoms included)

A maximum common substructure (MCS) based approach,
a well-established set of algorithms based on graph theory and
used to identify structural overlap in chemical databases35 was
used to identify structurally similar NPS. The NPS set repre-
sented by text le with SMILES strings for each molecule was
used to carry out hierarchical clustering. The clustering was
achieved by ChemAxon LibMCS [2] using normal mode and the
‘jcsearch’ algorithm, and the default settings (i.e. MCS mode ¼
fast, minimal MCS size ¼ 9, matching atom types ¼ true, bond
type ¼ true, charge ¼ true, keep rings ¼ true, required cluster
count¼ 1, maximal level count ¼ 10). The effect of the common
substructure composition on the number of clusters was eval-
uated by varying the MCS setting to include only heavy atoms,
and to include all atoms. ChemAxon LibMCS uses chemical
hashed ngerprints (a linear ngerprint that uses hashing to
create the binary representation of the ngerprint) and the
Tanimoto coefficient for the clustering of molecules. Although
ChemAxon does have other similarity metrics that could have
been exploited in these studies (e.g. Euclidean distances and
variants of Tversky metrics), Tanimoto was chosen as it is
a recognised industry standard, which has been shown to be
amongst the best performing similarity metrics in a recent
study.36 The recognition of a substructure that is common to
a pair of molecules results in disjoint subsets, where one
molecule becomes a member of a single cluster only. The
outliers, molecules that do not share common scaffolds with
the rest of the set, are classied as singletons and therefore do
not impact on the appropriate clustering of the remainder of
the set.

Building representative molecules and classication of
emerging NPS

The representative structures for each of the clusters found
using hierarchical clustering were identied using dissimilarity
calculations. A dissimilarity matrix for molecules was calculated
for each cluster using the JKlustor tool from ChemAxon.37 The
mean dissimilarity score was calculated for every molecule
against all members of its cluster. The NPS with the lowest
mean dissimilarity score in a cluster was selected as a repre-
sentative molecule (medoid) for that cluster.

The set of emerging NPS was then combined with the set of
representative NPS and a second dissimilarity matrix calcu-
lated. The emerging NPS were assigned to the class to which the
medoid with which it shared the lowest dissimilarity score
belonged.

NMR spectroscopy

NMR spectra of the selected NPS in deuterated methanol
(Sigma-Aldrich, as received) were acquired using JEOL EX-400
NMR spectrometer (1H operating frequency 400 MHz) at

This journal is © The Royal Society of Chemistry 2017 RSC Adv., 2017, 7, 53181–53191 | 53183
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298 K. NMR data were processed using JEOL Delta soware and
1H chemical shis were referenced against residual solvent
peak (CD3OD at 3.31 ppm). 5F-PB-22, BB-22 and DOM reference
standards materials were purchased from Chiron AS (Trond-
heim, Norway). In turn, 5-APB reference standard was
purchased from LGC group (Teddington, UK). In all cases,
reference standard materials were used as supplied without any
further purication.

Results and discussion

The EMCDDA's European Database on New Drugs (EMCDDA/
EDND) classication32 of the 478 NPS compounds used in this
study is based on chemical scaffold and/or pharmacological/
clinical effect. Similar classications are used by the United
Nations Office on Drug and Crimes (UNODC).1 Fig. 2 shows the
478 NPS in the dataset grouped according to these existing
classications along with their relative abundance. The selec-
tion of representative NPS structures could have been based on
identifying characteristic molecules from the EMCDDA/EDND
classications. However, more than 40% of NPS belong to the
structurally diverse groups of ‘cannabinoids’, ‘opioids’, and
‘others’, that do not permit a straightforward classication by
chemical structure. Furthermore, there is an overlap between
the existing EMCDDA/EDND categories arising from similari-
ties in chemical structures and scaffolds. For example, the
phenylethylamine scaffold also exists as a substructure within
the arylalkylamine and synthetic cathinones classes and in the
derivatives of the psychedelic 2C-B series of compounds such as
the phenylethylamine 25H-NBOMe analogues and ‘others’
class.

In order to select a representative number of molecules from
the 478 NPS dataset, specic criteria need to be considered.
Exploring the diversity of large libraries and selection of
representative structures for screening using in vitro assays are
commonly based on the molecular properties38 and pharma-
cophoric features39 of the molecules. Also, structural and spec-
troscopic studies such as infrared,40 NMR, Raman or GC-MS,
used in the classication of NPS would benet from

clustering of compounds based on their chemical ngerprints.
The similarity of observed spectroscopic properties for
compounds will most likely depend on the presence of func-
tional groups and their relative chemical environments,
including substitution patterns. Thus, hierarchical clustering
and selection of representative NPS according to the chemical
structural properties of the molecules in the dataset was carried
out.

Application of hierarchical clustering techniques

Hierarchical clustering provides a compact representation of
the NPS chemical space while preserving the relationships
between members of the datasets in the form of dendrograms.41

It is oen used in combination with the maximum common
substructure (MCS) approach to group molecules with
a common scaffold into one cluster.42 Hierarchical clustering
was carried out through LibMCS,43 implemented in the JKlustor
and JChem soware.37 The minimal size of the maximum
common substructure was set to an empirical threshold of 9
atoms, but crucially this included hydrogen atoms in addition
to the heavy atoms normally considered when clustering
compounds (referred to herein as the all-atom model). The
rationale for including hydrogen atoms in the determination of
clusters that may demonstrate similar spectroscopic patterns,
was that substitution patterns in a molecule will inuence the
spectra generated, and the exclusion of the relative positions of
H atoms when grouping molecules would have the potential to
introduce error into these sets. The results of the clustering
using anMCS with aminimal threshold of 9 atoms are shown in
Table 1 with the identied MCSs for superclusters shown in
Fig. 3.

The all-atom clustering, which aims to group compounds
together that are likely to have similar spectroscopic features,
resulted in 21 superclusters, 79 clusters and 13 singletons.
When compared to the heavy atom clustering alone (48 super-
clusters, 112 clusters and 19 singletons), it is clear that the all-
atom approach provides a reasonable balance between the
number of possible representative NPS and the diversity of
structures in the clusters. The lower number of representatives
and singletons arising from the all-atom approach is also better
suited for future experimental studies when taking into
consideration practical constraints such as availability of NPS
reference standards and their costs. Therefore, the result of the

Fig. 2 Graphical representation of the relative abundance of the 478
molecules in the initial dataset classified according to EMCDDA/EDND
categories.

Table 1 Distribution of NPS according to supercluster and clusters
generated using LibMCS with a maximum common substructure
containing at least 9 atoms

MCS composition Heavy atoms All atoms

Number of superclusters 48 21
Number of clusters 112 79
Total number of clusters containing
on compound (‘singletons’)

19 13

Number of clusters containing
2 compounds

55 40

53184 | RSC Adv., 2017, 7, 53181–53191 This journal is © The Royal Society of Chemistry 2017
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all-atom NPS dataset clustering was used to identify the repre-
sentative NPS subset.

Inspection of the distribution of NPS shows that superclu-
sters 2, 4 and 5 have the largest number of members (67, 57 and
197, compounds respectively: Fig. 4 and Table S1†). This is not

surprising as their MCSs are fragments that are commonly
observed in NPS (Fig. 3). The EMCDDA/EDND classication was
not well conserved aer the all-atom hierarchical clustering
based on chemical structure was completed. Molecules
belonging to one particular EMCDDA/EDND class are oen
observed grouping into two or more superclusters. For example,
molecules belonging to the aminoindanes, benzodiazepines,
piperazine derivatives and opioids are split between two or
more different superclusters. The exceptions to this observation
are NPS from the ‘piperidines & pyrrolidines’ and ‘arylalkyl-
amines’ class, which group together into one supercluster
(supercluster 5).

Cannabinoids, the largest and most structurally diverse
group in the initial dataset are distributed across 11 superclu-
sters, with the majority found in superclusters 3, 4 and 5.
Supercluster 5 contains the greatest spread of molecules with
respect to EMCDDA/EDND classication (with all classes rep-
resented). This is attributable to the supercluster 5 MCS (a tri-
substituted benzene ring) which is commonly observed in
known NPS.

Detailed analysis of cluster membership was carried out
using calculated pairwise dissimilarity values between cluster
members using ChemAxon's JChem soware suite.37 The
maximum pairwise dissimilarity coefficient observed between
individual members of a supercluster varied between 0.19 and
0.84. Unsurprisingly, higher pairwise dissimilarity values were
oen observed for superclusters that had the largest number of
members and/or a greater range of EMCDDA/EDND classes
represented within them (e.g. 0.82 was the maximum pairwise
dissimilarity coefficient observed in supercluster 5, a superclu-
ster containing 197 NPSs from all EMCDDA/EDND classes).
However, it was not anticipated that superclusters containing

Fig. 3 Dendrogram to illustrate the relationship between superclu-
sters, clusters and cluster membership for the all atom analysis con-
ducted on the NPS dataset (478 molecules). The fragments of
structure containing the MCS that define the superclusters (excluding
singletons) are given. Hydrogen atoms that can contribute to the MCS
are shown explicitly.

Fig. 4 Illustration of the proportion of compounds according to the EMCDDA/EDND NPS categories found in each of the dendrogram's
superclusters. The relative size of each box is proportional to the number of compounds contained in the supercluster.

This journal is © The Royal Society of Chemistry 2017 RSC Adv., 2017, 7, 53181–53191 | 53185
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a small number of members would also exhibit high pairwise
dissimilarity values (e.g. a dissimilarity value of 0.84 was
observed for supercluster 13, where the three members all
contain a variant of the piperazine ring dened the supercluster
parent fragment but then diversify to become considerably
different with respect to molecular size and extended chemical
structure).

It is notable that a maximum pairwise dissimilarity value of
<0.5 was observed for 87% of all clusters. This suggests that for
the majority of the clusters there is a genuine structural rela-
tionship between cluster members. For the superclusters con-
taining the greatest number of NPS (superclusters 2 and 5), the
maximum pairwise dissimilarity coefficient observed was
higher than 0.5 in three cases only (clusters 2.8, 5.14 and 5.18).
However, these three clusters account for 65% and 75% of the
members for superclusters 2 and 5, respectively. As this is
a possible limitation of our approach, future work could be
carried out on further decomposition of clusters with large
membership into smaller groups, in order to establish a ner-
grained representation of NPS chemical space.

Selection of a representative subset of molecules from the NPS
dataset of 478 molecules

The medoid is the member of a set whose dissimilarity to
other members in the set is, on average, the lowest. As such,
the medoid is normally chosen as a representative for that
set. For each of the 79 all-atom clusters, a dissimilarity matrix
was generated using JKlustor by calculating pairwise

dissimilarity scores for each of the compounds, and the
compound with the lowest overall mean dissimilarity score
was identied as the medoid. The medoids for each cluster
were selected to form a subset of NPS representative of
known NPS chemical space.

Of the 79 clusters identied, 13 were orphan clusters or
‘singletons’ (clusters that contained only one molecule). At the
time of writing, this indicated that, there were no other known
NPS with similar chemical structures, it was deemed reasonable
to exclude them from the representative dataset. The medoids
for the remaining clusters were selected to represent the
diversity of NPS chemical space. In the cases where a cluster had
only two molecules, both molecules could be considered as
equally representative, and in these cases the “medoid” mole-
cule was selected based on criteria including its perceived
availability, the current level of interest in the NPS research
community for that molecule, and cost. For clusters having two
or more molecules with identical mean dissimilarity scores,
the same criteria were applied. Examples of selected represen-
tative NPS are shown in Fig. 5. All representative NPS, including
singletons, are illustrated in S1–S21.†

The majority of the EMCDDA/EDND classes are exemplied
in the set of representative structures (Fig. 6) although it should
be noted that classes with smaller number of members
(opioids, piperidines & pyrrolidines, and piperazine derivatives)
do not have representatives in the selected set. This is not
unexpected, as most of their members (89%) were assigned to
supercluster 5, specically to clusters 5.14 and 5.18, while the

Fig. 5 Selected representative NPS for each supercluster containing at least two compounds. The supercluster fragment is shown in blue.
Hydrogen atoms present in the supercluster fragment are not shown explicitly.
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remainder were assigned to clusters 12 and 13. As clusters 5.14
and 5.18 are two of the largest clusters in the set (with 80 and 62
members, respectively), it may be desirable to expand the set of
representative molecules by inclusion of the most representa-
tive piperidines & pyrollidines, piperazines and opioids espe-
cially if an increase in their popularity amongst users of the
latter is considered.44 However, at this stage, our systematic
approach based on chemical structure alone indicates that
explicit inclusion of compounds from these categories is not
strictly necessary.

In contrast, it is interesting that the aminoindanes appear
relatively overrepresented in the medoid dataset. 1-Indanamine
and 2-indanamine were both selected to be part of the dataset.
However, this is because 1 and 2-indanamine are sorted into
different clusters, as a consequence of the hierarchical clus-
tering strategy employed. This indicates that a single change of
the position of substitution can result in signicant dissimi-
larity between two molecules (dissimilarity coefficient of 0.35),
which impacts on the clustering results and the objective
selection of representative structures. This lends credence to
the all-atom approach to clustering, which specically
considers substitution patterns.

In order to further interrogate the outcome of the all atom
clustering methodology, the largest pairwise dissimilarity value
between the medoid and the other cluster members was iden-
tied. In 28 clusters (42% of the total number of clusters that
were not singletons), the largest dissimilarity found for any
cluster member with respect to the medoid was less than 10%.
This number increased to 37 (56% of clusters that were not
singletons) with a threshold for the largest dissimilarity
between the medoid and individual cluster members was
increased to 20%.

Clusters characterised by greater pairwise dissimilarities
between cluster members and the medoid were also examined.
6 clusters (9%) contain a compound with greater than a 70%
pairwise dissimilarity value with respect to the medoid. The
largest dissimilarity was found in cluster 5.18, where an 87%
dissimilarity was calculated between 4-MEC (medoid) and 1-
harmine. The level of dissimilarity within clusters can be
reduced by increasing the minimal number of atoms in the

maximum common substructure from 9. However, this would
skew the balance between identifying enough structures to be
representative of the NPS chemical space, whilst maintaining
a sufficiently low number so that these structures could be ob-
tained and analysed. Consequently, it was concluded that
hierarchical clustering and chemical similarity can be used for
the identication of representative compounds, one from each
cluster, which will represent the diversity of the chemical
structural space of known NPS. In addition, the striking simi-
larity observed between the members of each cluster in most
cases (vide supra) despite the large complexity and diversity of
the initial dataset, indicates that the choice of representatives
can be extended to cluster members other than medoids.

Aer the selection of the cluster representatives, the
dissimilarity matrix between the 79 molecules identied was
calculated. These molecules are, as expected, very structurally
diverse, which is reected in the range of pairwise dissimilarity
scores (0.654 to 0.942). This suggests that the structural diver-
sity of the initial NPS dataset was maintained in the represen-
tative subset. These studies suggest that a structure-based
hierarchical clustering method using an MCS approach has
identied molecules that could rationalize structural and
molecular properties of known NPS chemical space. For
example, the structural features that are present in the MCS of
a supercluster can lead to characteristic signals in spectra that
can be replicated in the spectra of the cluster members.

It has been shown that similarity between complex proteins
can be established using their NMR ngerprints.45 Such studies
can be extended into identication of substances by conrming
the presence of peaks and specic multiplicity patterns found in
the NMR spectra of MCSs and compared to those found in the
NMR spectra of other NPS. The expansion of 1D 1H NMR spectra
of selected representative NPS andmembers of their clusters are
shown in Fig. 7 to support this statement. Although the number
of peaks in the NMR spectrum of 5F-PB-22 differs from the
number of peaks present in BB-22 (a representative of super-
cluster 12), associated to their distinct number of inequivalent
hydrogen atoms, the specic pattern of quinolin-8-yl 1H-indole-
3-carboxylate substructure can be observed in both spectra. The
comparison of the NMR spectra of DOM (di-2,5-dimethoxy-4-
methylamphetamine, a representative of the cluster 2.8) and
5-APB indicates that the alkylamine moiety of these two mole-
cules have similar positions and splitting patterns. Such infor-
mation can be utilised to develop pattern recognition
algorithms to compare the spectra of NPSs and aid their
classication.

Assignment of emerging NPS to clusters

The number of NPS recorded by the EMCDDA/EDND increased
by 98 during the period from February 2015 until March 2016.
In order to test the proposed all atom structural classication,
the structural diversity of these new analogues (which we have
termed “test compounds”) have been explored. This was ach-
ieved by calculating pairwise dissimilarity scores (a) for all
molecules in the test set, compared to all other molecules in the
test set and (b) between each of the test molecules and the 79

Fig. 6 Graphical representation showing the relative abundance of
molecules grouped according to the EMCDDA/EDND classification
system that are present in the set that contains the 79 NPS identified by
the all atom clustering method.
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representative molecules of the NPS subset. The analysis indi-
cated that some of the test compounds were similar to one
another. For example the pairwise dissimilarity score for two
cannabinoid analogues in the test set (5F-EMB-PINACA and
AMB-CHMINACA) was 0.05. Conversely, others in the test set
were unique in comparison to the rest of the set (e.g. the mean
dissimilarity score of DMBA with respect to the remainder of the
test set was 0.82).

This chemical diversity and rate of emergence of NPS may
present difficulty when developing tools for monitoring and
identifying new analogues. Therefore, the test compounds were
compared to the 79 representative molecules from the initial
NPS dataset. The range of pairwise dissimilarity values for the

compounds in the test set resulted in a minimum dissimilarity
of 65% and a maximum dissimilarity of 92%. This demon-
strates the chemical diversity in emergent NPS, which helps to
contextualise the challenge in developing tools to quickly and
accurately identify these compounds. This spread in diversity is
close to that for the representative NPS subset of 79 molecules
(pairwise dissimilarity ranges between 65% and 94%) which
was specically selected to be as diverse as possible.

The lowest pairwise dissimilarities between the 79 repre-
sentative NPS and the test compounds was observed for mole-
cules that belong to the EMCDDA/EDND synthetic cathinone
and cannabinoid classes, whilst the maximum pairwise
dissimilarity was observed for test compounds that were

Fig. 7 1D 1H NMR spectra of representative NPS (green) and the members of their respective clusters (brown). Full spectral range for 5-APB and
DOM available in ESI.†
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classied as synthetic cannabinoids and ‘others’ (dissimilarity
coefficients between the test and representative molecules
ranging from 0.65 to 0.76). This observation is not surprising as
the synthetic cannabinoids and ‘others’ NPS classes are highly
variable in their origin and chemical scaffolds (vide supra).

The calculated dissimilarity coefficients between the test set
compounds and the cluster representatives were used to predict
the supercluster/cluster classication the test compounds
would belong to. The cluster to which a test compound was
assigned was based on the NPS from the representative set with
which it had the lowest pairwise dissimilarity coefficient
(highest similarity). Any discrepancies between the classica-
tions of the test compounds according to the all atommodel, as
compared to that classication given by the EMCDDA/EDND
were noted. In order to be considered as correctly classied
test compounds had to demonstrate pairwise dissimilarity
coefficients lower than 0.5 when compared to a medoid in the
representative sample from the same EMCDDA/EDND class.
Test compounds that showed a dissimilarity value below the
threshold for a substance from a different EMCDDA/EDND
class was deemed to be misclassied. 67 out of the 98 (66%)
test compounds were grouped in agreement with their
ECMDDA/EDND classication i.e. the test compounds were
most similar to an NPS from the representative dataset that
belonged to the same class as that assigned to the emergent
molecules by the EMCDDA/EDND.

The anticipated classication was achieved for most of the
test compounds, including the diverse cannabinoid structures
(selected examples are shown in Table 2) e.g. an emergent
cannabinoid, CBL-018 was assigned to cluster 6.2, as its calcu-
lated dissimilarity coefficient to cluster medoid, PB22, was 0.1.
Similarly, the test compound, AB-CHMFUPPYCA was correctly
assigned as a synthetic cannabinoid. Although its dissimilarity
coefficient to AB-Fubinaca, the medoid of cluster 3.1, was 0.49,
this was the lowest pairwise dissimilarity recorded by the test
compound with respect to the 79 molecules in the representa-
tive subset, and was considered a successful classication.
Other examples of successful classications of test set
compounds include molecules classied as synthetic cath-
inones, indolalkylamines (Table 2), phenethylamines, arylcy-
clohexylamines and benzodiazepines (data not shown). The
only “misclassied” test set compound was 4-uo-
romethylphenidate, which was classied into piperidines &
pyrrolidines by the EMCDDA/EDND, compared to a synthetic
cathinone (dissimilarity score of 0.48) using the all atom clus-
tering approach presented in this paper. This could be due to
the fact that there is no molecule from the “piperidine & pyr-
rolidine” class in the set of objectively identied representative
NPS, which may indicate a limitation of the rst iteration of this
classication system.

The remainder of the test compounds (30 out of 108 mole-
cules) were not denitively assigned to a cluster as a result of

Table 2 Examples of agreement between predicted cluster membership and EMCDDA/EDND classification for a selection of the test set
molecules

Cluster representative Emergent NPS
Dissimilarity
score

Cluster
allocation

Predicted EMCDDA/EDND
classication

Agreement between
classication systems

0.10 6.2 Cannabinoids Y

0.11 3.9 Indolalkylamine Y

0.29 5.18 Synthetic cathinone Y

0.49 3.1 Cannabinoids Y

0.48 2.3 Synthetic cathinone N
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this experiment, and were deemed to be unclassied. These
molecules had pairwise dissimilarity coefficients greater than
0.5 when compared to the set of 79 representative NPS. 15 (50%)
of these unclassied molecules were from the EMCDDA/EDND
class “others”, which by its nature is a catch-all class used to
pragmatically assign a label to emergent NPS that otherwise
defy labelling. As such the expectation that these compounds
could be classied correctly using the clustering approach
outlined here is ambitious, and it is unsurprising that there is
such a high failure rate for these molecules.

It is acknowledged that the clustering approach has some
limitations, which arise mainly due to the small size of the
subset identied to represent the complex chemical space of
different and diverse NPS classes. These limitations can be
overcome by an incremental increase of the number of
compounds in the set of representative structures. These can be
identied using the all atom clustering approach on molecules,
which have emerged onto the market since January 2015 and
which are currently unclassied by the model.

However, it is also noted that the molecular similarity
calculated can be used to correctly classify NPS whose structural
features are present in the set of representative molecules. The
robustness of the approach used in the selection of represen-
tative molecules ensured that the majority of the chemical
features of the diverse NPS chemical scaffolds in the initial set
are successfully mapped to the representative subset. Based on
this, successful classication, it can be postulated that a repre-
sentative subset can be used to represent structural and
molecular properties of the larger NPS chemical scaffold and
predict some of the properties of the emerging NPS.

Conclusions

The aim of this work was to identify a ‘representative’ subset of
NPS that could be used in future experimental studies to
exemplify the entire NPS chemical space known to date. This
aims at reducing the number of NPS needed to be studied for
purposes of accurate and efficient identication, whilst retain-
ing maximum physicochemical diversity between the members
of the subset. The all-atom hierarchical clustering method
proved to be a suitable approach to group the whole dataset of
NPS into clusters with distinct maximum common substruc-
tures. Clustering of the dataset showed that NPS from different
EMCDDA/EDND classes were grouped, such that none of the
clusters formed exclusively from a single EMCDDA/EDND-
dened class of NPS. This is most likely due to their similar
molecular properties, activity against similar targets in the
central nervous system (CNS) and presence of common struc-
tural features. This experiment resulted in the selection of 79
compounds that can be used to represent the NPS dataset as
a whole. Although there are clusters that display higher degrees
of structural diversity between individual cluster members, it
was demonstrated that for 73% of the clusters identied the
maximum pairwise dissimilarity score between any two cluster
members was below 0.5. This would allow the development of
new approaches for classication and identication of emer-
gent NPS e.g. it was demonstrated that common patterns exist

in the NMR spectra of selected representative NPS and cluster
members. Furthermore, the ab initio classication of 98 test
compounds that were not present in the initial set was explored
by calculating dissimilarity scores between test compounds and
the 79 representative molecules. It was observed that structural
dissimilarity between the test molecules and a representative
NPS t of less than 0.5 can be used as a criterion for accurately
classifying emergent NPS to the anticipated EMCDDA/EDND
class, as long as the structural features of that class are con-
tained in the set of representative molecules. In addition, it can
be postulated that the representative subset can be used to
illustrate structural and molecular properties of the larger NPS
set and predict some of the properties of emerging NPSs.
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