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Ground and Top of Canopy Extraction from Photon
Counting LiDAR Data Using Local Outlier Factor

with Ellipse Searching Area
Bowei Chen, Student Member, IEEE, Yong Pang, Zengyuan Li, Hao Lu, Luxia Liu, P.R.J. North, and J.A.B.

Rosette

Abstract—The future ICESat-2 is the next generation of
NASA’s ICESat (Ice, Cloud and land Elevation Satellite) mission
scheduled to be launched in 2018. The new photon counting
LiDAR onboard ICESat-2 introduced new challenges to the
estimation of forest parameters and their dynamics, the greatest
being the abundant photon noise appearing in returns from the
atmosphere and below the ground. To identify the potential forest
signal photons, we proposed an approach by using a local outlier
factor (LOF) modified with ellipse searching area. Six test data
from two kinds of the photon counting LiDAR data in the USA
are used to test and evaluate the performance of our algorithm.
The classification results for noise and signal photons showed
our approach has a good performance not only in lower noise
rate with relatively flat terrain surface but also works even for
a quite high noise rate environment in relatively rough terrain.
The quantitative assessment indicates that the horizontal ellipse
searching area gives the best result compared with the circle
or vertical ellipse searching area. These results demonstrate our
methods would be useful for future ICESat-2 vegetation study.

Index Terms—LOF, ICESat-2, photon classification, photon
counting LiDAR.

I. INTRODUCTION

ACCURATE estimation of forest height and biomass is
critically important for understanding the regional and

global carbon cycle and dynamic changes [1]. Successful
mapping of critical forest parameters using NASA’s GLAS
(the Geoscience Laser Altimeter System) onboard the ICESat
(Ice, Cloud and land Elevation Satellite) mission [2] showed
the potential in vegetation studies [3]–[6]. ICESat-2, which
is the next generation of ICESat missions, is scheduled to be
launched in 2018. In contrast to the previous waveform LiDAR
system, ICESat-2 will adopt a newly designed LiDAR sys-
tem named ATLAS (Advanced Topographic Laser Altimeter
System), a micro-pulse, multi-beam photon counting LiDAR
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system working at 532 nm [7]. To pre-validate the capability of
this new sensor, NASA designed several airborne and micro-
pulsed laser instruments, including SIMPL (the Slope Imaging
Multi-polarization Photon-counting LiDAR) and MABEL (the
Multiple Altimeter Beam Experimental LiDAR), and used in
flight campaigns over the past few years [8].

From the currently released data products [9], the photon
counting approach introduced abundant noise appearing in the
atmosphere and even below the ground, making it difficult to
extract the correct canopy and ground surface in vegetation
area [10]. A few studies have been done to detect the noise
and separate the signal, such as a spatial statistical detection
algorithm based on discrete mathematical concepts [11], an
ellipse search area based on DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) [12] and an automated
algorithm using the cumulative density of photons to identify
cut off points of canopy top and ground [13]. In addition,
a recent novel methodological framework to retrieve ground
and canopy height for both MABEL and simulated ICESat-2
data achieved good results for various nighttime and daytime
scenarios [14]. These studies showed good performance for
MABEL and simulated data, but further development of noise
filtering is still necessary to explore vegetation applications for
future genuine ATLAS data.

In this letter, an approach that is capable of identifying po-
tential forest signal photons by using local outlier factor (LOF)
algorithm modified with an ellipse searching area is proposed
for MABEL and MATLAS data. LOF is an unsupervised
outlier detection method which computes a score for a point
which indicates the local density around the given point to its
near neighbors [15]. Points which have substantially higher
scores will be considered as outliers. Our modified ellipse
searching area uses the different density between horizontal
and vertical directions, where the outliers will be detected
more accurately.

II. DATA AND METHODS

A. MABEL and MATLAS Data

Two kinds of the photon counting LiDAR data we used are
one from MABEL and five from MATLAS. MABEL is a dual-
wavelength (532 nm and 1064 nm) high-altitude system that
was specifically developed as a demonstrator and validation
instrument for ICESat-2 [16]. MATLAS data is generated by
adjusting existing MABEL data to be more similar to the data
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(a) MABEL data in Virginia (b) MATLAS data in Oregon

Fig. 1. Two examples of the photon counting LiDAR data used in this study: (a) the MABEL data collected in Virginia, USA, on September 20, 2012, with
relatively flat terrain along the transect and a lower noise rate. (b) the MATLAS data collected in Oregon, USA, on September 27, 2012, with relatively rough
terrain and a higher noise rate.

expected from the ATLAS system [17]. To produce MATLAS
data, first, the signal, solar noise and instrument noise levels
are adjusted based on NASA’s vegetation design case model.
Next, the spatial variation of signal and noise from the original
MABEL is preserved. Finally, a large footprint size is formed
by combining adjacent channels from the original MABEL
data.

Fig. 1a showed the MABEL data collected in Virginia,
USA, on September 20, 2012, with relatively flat terrain along
the transect and a lower noise rate. In the meantime, we
collected five MATLAS data from Oregon and West Coast
flight campaigns. Fig. 1b showed the MATLAS data collected
in Oregon, USA, on September 27, 2012, with relatively rough
terrain and a higher noise rate. Both data are converted to the
along track distance accordingly.

B. Methods

Fig. 2. Flowchart of the proposed LOF modified with ellipse searching area
method.

It is noticeable that the density of the signal photons is
different in terms of horizontal and vertical directions, the
method proposed in this letter is to utilize the unbalanced
distribution using range searching and a multi-window size

histogram filter to distinguish the noise and signal. It involves
the following three stages:

1) Signal Range Searching: Despite the numerous noise
returns randomly scattered above and below the canopy, Fig.
3 shows the unbalanced signal density in the vertical direction,
which will be used to get rid of the noise which is far away
from the signal center for faster and easier calculation.

Fig. 3. Histogram showed the unbalanced signal distribution in vertical and
horizontal directions of MATLAS data

We first count the number of photons within a 1 m interval
based on the histogram along the elevation. Next, we calculate
the mean value and standard deviation of the number of
photons at the beginning and end of 50 meters. Therefore the
background noise level is defined by the following equation:

N =
µ1 + 2σ1 + µ2 + 2σ2

2
(1)

where N represents the background noise level, µ1 and σ1
represent the mean value and standard deviation for the first
50 records along the elevation. µ2 and σ2 represent the mean
value and standard deviation for the last 50 records.

Along the elevation, the histogram showed that noise is
evenly distributed apart from the center, so we can use thresh-
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(a) Circle searching area (a = b) (b) Ellipse searching area (a < b) (c) Ellipse searching area (a > b)

Fig. 4. Illustration of distance matrix from different searching areas, where a represents the semi-major axis and b represents the semi-minor axis. The red
dot stands for point X7 and the blue dot stands for point X9. Figure (a) gives a circle searching area, (b) gives a vertical ellipse searching area and (c) gives
a horizontal ellipse searching area.

olds to get the signal range. The upper boundary threshold
is considered to be the first bin which reaches the condi-
tion that the number of photons in the following five bins
is continuously higher than the background noise level we
defined. Similarly, the lower boundary threshold is considered
to be the last bin which reaches the condition that the number
of photons in the previous five bins is continuously higher
than the background noise level. From the upper and lower
boundary threshold, we can remove the noise which is far
from the signal center.

2) Implementation of LOF algorithm with ellipse searching
area: Here we implement our modified LOF algorithm with
ellipse searching area and assign the class tag based on
the score which was returned. The basic idea for the LOF
algorithm is to compute a score for a point which indicates
the local density among the given point to its nearby neighbors,
where the outliers are considered to be the points which are
substantially lower than a threshold score compared with the
density level among their neighbors. Here we introduce an
ellipse searching area instead of the circle one due to the
higher spatial photon density in the horizontal direction. For
any given point p and q in our data, the ellipse searching area
is defined by the following equation:

distk(p, q) =

√
(xp − xq)2

a2
+

(hp − hq)2
b2

(2)

where x and h represent the along track distance and photon
height, a and b represent the major and minor axis of the
ellipse respectively. The different searching shapes and the
distance matrix are shown in Fig. 4. The searching shape is
determined by the ratio of the major and minor axis. In this
letter, we used an empirical ratio which is a:b = 6:1.

Next, a reachability distance from point p to q is estimated
using equation 3, which is the maximum value between the
KNN distance of point q and the distance from point p and q.

reachdist(p, q) = max{(distk(q), dist(p, q)} (3)

Next, the inverse of the average reachability distance of
point p from its neighbors is used to calculate the local

reachability density, and then the LOF score is defined as the
average local reachability density of the neighbors divided by
point p’s own local reachability density. A point with a lower
value of LOF score indicates that this point is closer to its
neighbors, so it would not be an outlier; on the contrary, a
point with a higher value would be identified as the outlier.
Here the threshold to separate the signal and outlier is based
on the distribution of the LOF score values.

Fig. 5. Histogram of the LOF score from MATLAS data. The green line
presents the peak value; the red line presents the threshold to define noise
and signal.

Finally, the cutting point is defined as twice the distance
between the beginning and peak of the histogram shown in
Fig. 5. All points with LOF scores less than the threshold are
tagged as signal photons, and the rest are labeled as noise
photons instead.

3) Histogram filter and surface detection: Although most
of the noise could be removed after the two steps discussed
above, there can still be some dense cluster centers within the
noise photons, resulting in some noise misclassified as signal
photons. In order to assign the correct classification label to the
remaining noise clusters, a histogram filter was implemented
to detect these noises. Here we divide the whole area into small
parts from the along track distance, then the signal center could
be calculated, and any photons above or below the defined
distance from the center will be considered as noise. The
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(a) MABEL data in Virginia (b) MATLAS data in Oregon

Fig. 6. The results of forest signal extraction from two example datasets used in the study. The red points stand for the top of canopy photons (TOC), blue
points stand for ground photons, the green points stand for photons between the canopy and the ground, and the black ones stand for noise.

last part is to detect the points which belong to the top of
the canopy (TOC), ground and within the canopy. Finally, we
use a 20 m moving window to find the local maximum and
minimum value within the signal photons detected as signal
and ground photons respectively, then apply a 50 m moving
window to obtain the canopy surface and ground surface.

C. Results Assessment

To quantitatively assess our results, four statistical indicators
known as accuracy, kappa coefficient, specificity, and F1 are
computed based on the confusion matrix. They are defined
as follows: accuracy is the proportion of the total number of
photons which are identified as signal and noise correctly;
kappa coefficient measures the instances classified by our
algorithm matching the data labeled as ground truth; specificity
is the proportion of photons considered as noise photons
that are correctly identified as such, and the F1 score is
the harmonic mean of precision and sensitivity, in which the
precision is the fraction of true signal photons from all points
identified as photons and sensitivity is photons considered as
signal photons that are correctly identified as such.

We use two kinds of reference data here to evaluate our
classification results. The first one is the photon classification
flags from the data products themselves given by NASA; the
second one is our manually assigned class labels, which are
visually adjusted and corrected based on the classification flags
from the data products.

III. RESULTS AND EVALUATION

The result of forest signal extraction from MABEL data
is shown in Fig. 6a and the result of MATLAS data is in
Fig. 6b. It can be seen from the results that our method
could separate the forest signal from the noise effectively. In
the meantime, it is noticeable that our approach could do a
proper classification for signal and noise photons, and extract
the canopy and ground surface from a quite high noise rate

environment in relatively rough terrain for the MATLAS data
here. It can be seen that the photons that belong to the TOC,
ground and within the canopy are well detected.

In addition, we quantitatively assessed the sensitivity re-
garding different shapes of searching areas as demonstrated
in Table I. The exact ratios of the major and minor axis for
the horizontal, vertical and circular searching areas are 6:1,
1:6 and 1:1 respectively. It can be seen from the table that
for assessment based on manual labeling, the overall mean
accuracies are 0.89, 0.87 and 0.84 for the horizontal ellipse,
circle, and vertical ellipse searching area respectively. The
overall mean kappa coefficients are 0.76, 0.71 and 0.67. These
two indicators show that our approach has good results to
detect the signal from noise, especially the kappa coefficient
reported the good agreement between the two classes. Further-
more, the overall mean specificity values are 0.87, 0.82 and
0.78, while the F1 measures are 0.85, 0.83 and 0.81 for the
vertical ellipse, circle, and horizontal ellipse searching area
respectively. From the results based on the classification flags
from the data products themselves, we can see that there is a
good consistency with results from manually assigned labels.

It is obvious that the shape of the searching area is sensitive
to the final result. For all five test sites of MATLAS data, the
horizontal ellipse searching area always gives the best result
compared with the circle or vertical ellipse searching area in
terms with the four statistical indicators we calculated above.
The possible reason behind this could be the unbalanced
information distribution, which would be quite useful for the
photon classification.

It should be stated that the accuracy assessment using the
presented method is not a sufficiently objective strategy, as
manual labeling can vary from the experience of the users.
Besides, the classification flags from the data products over
vegetation can still be improved although they have been visu-
ally checked. The results could be better convincing if airborne
laser scanning data can be precisely registered to simulation
data or real ICESat-2 data for delineating the ground and



IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 5

TABLE I
FOUR STATISTICAL INDICATORS OF MATLAS DATA BASED ON THE CIRCLE, HORIZONTAL ELLIPSE, AND VERTICAL ELLIPSE SEARCHING AREA, H

STANDS FOR HORIZONTAL ELLIPSE, V STANDS FOR VERTICAL ELLIPSE AND C STANDS FOR CIRCLE

Test sites Reference
Accuracy Kappa coefficient Specificity F1 score

H C V H C V H C V H C V

MATLAS, Oregon Manual 0.91 0.85 0.86 0.81 0.69 0.70 0.90 0.80 0.81 0.87 0.8 0.81
MATLAS, West Coast Transit 2 Manual 0.93 0.94 0.91 0.87 0.87 0.81 0.89 0.88 0.82 0.94 0.94 0.92
MATLAS, West Coast Transit 3 Manual 0.88 0.82 0.79 0.71 0.61 0.57 0.89 0.82 0.74 0.80 0.75 0.72
MATLAS, West Coast Transit 4 Manual 0.92 0.89 0.87 0.83 0.78 0.74 0.85 0.78 0.74 0.93 0.91 0.90
MATLAS, West Coast Transit 5 Manual 0.81 0.83 0.78 0.58 0.62 0.54 0.84 0.83 0.78 0.72 0.75 0.71

Mean values in 5 test sites Manual 0.89 0.87 0.84 0.76 0.71 0.67 0.87 0.82 0.78 0.85 0.83 0.81

Mean values in 5 test sites NASA 0.91 0.87 0.85 0.79 0.73 0.68 0.87 0.82 0.77 0.87 0.83 0.81

canopy surface. Furthermore, potential signal photons after
filtering can still include some outliers in the current work,
and it remains a challenge to distinguish these outliers from
those photons. Another one is that the accuracy of separating
photons into ground and canopy is still limited to an extent,
we will further explore a method by using some adaptive
algorithms to better identify the ground and canopy photons
[14], and test it with various noise levels and atmospheric
moisture conditions in future work.

IV. CONCLUSION

In this letter, an approach that is capable of identifying
potential forest signal photons by using LOF modified with
ellipse searching area is proposed for MABEL and MATLAS
data. The quantitative assessment using accuracy, kappa coef-
ficient, specificity, and F1 measurement proved our algorithm
works well regarding these indicators. Also, we found that
the final results are sensitive to the shape of the searching
area. The horizontal ellipse searching area gives the best result
compared with the circle or vertical ellipse searching area.
We tested our method not only with flat terrain in low noise
situations but also verified with rough surface at high noise
level with MATLAS data. These results demonstrated that the
method we proposed could be of use for future ICESat-2 data
vegetation applications.
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