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A work efficient parallel algorithm for exact
Euclidean Distance Transform

Manduhu and Mark W. Jones

Abstract—A fully-parallelized work-time optimal algorithm is
presented for computing the exact Euclidean Distance Transform
(EDT) of a 2D binary image with the size of n X n. Unlike
existing PRAM and other algorithms, this algorithm is suitable
for implementation on modern SIMD architectures such as GPUs.
As a fundamental operation of 2D EDT, 1D EDT is efficiently
parallelized first. Specifically, the GPU algorithm for the 1D
EDT, which uses CUDA binary functions such as ballot(), ffs(),
clz() and shfl(), runs in O(logszn) time and performs O(n)
work. Using the 1D EDT as a fundamental operation, the fully-
parallelized work-time optimal 2D EDT algorithm is designed.
This algorithm consists of three steps. Step 1 of the algorithm
runs in O(logs2n) time and performs O(N) (IN=n?) of total
work on GPU. Step 2 performs O(IV) of total work and has an
expected time complexity of O(logn) on GPU. Step 3 runs in
O(logszn) time and performs O(IN) of total work on GPU. As
far as we know, this algorithm is the first fully-parallelized and
realized work-time optimal algorithm for GPUs. Experimental
results show that this algorithm outperforms prior state-of-the-
art GPU algorithms.

Index Terms—work-time optimal parallel algorithm, SIMD
architecture, 1D EDT, 2D EDT, binary operations on GPU.

I. INTRODUCTION

IVEN a binary image with n x n pixels each of them

either white or black, Euclidean Distance Transform
(EDT) computes the distance of each pixel to the nearest black
pixel which is termed site or feature point. The Euclidean dis-
tance transform is useful for a variety of applications including
image processing, computer vision, pattern recognition, shape
analysis and computational geometry [1][2][3]. Obviously, the
2D EDT can be computed in O(n*) time by an exhaustive
brute-force searching algorithm. Many efficient algorithms
have been proposed in the past. Breu et al. [4] proposed
the first O(n?) time (linear time) exact EDT algorithm based
on Voronoi Diagram Intersections. The following two survey
papers [5][6] compare and contrast many state-of-the-art se-
quential approaches for solving the problem in 2D and 3D,
mainly focusing on the computation of exact EDT.

Consider a parallel algorithm which solves a problem with
input size n in T,,(n) time using p processors. The amount
of work W (n) performed by the algorithm is defined as the
product p x Tp,(n). The algorithm is termed work-optimal
if W(n) € Q(T*(n)), where T*(n) is the running time of
the fastest sequential algorithm for the problem. The parallel
algorithm is termed work-time optimal [7] if it is work-optimal
and, in addition, its running time 7}, (n) is shortest among
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all work-optimal algorithms under the same parallel model.
A challenge of parallel algorithm design is to produce not
only work-optimal but, indeed, whenever possible, work-time
optimal algorithms.

The modern massively parallel architecture [8][9], which is
composed of hierarchical memory and SIMD (Single Instruc-
tion Multiple Data) capability, creates the potential for algo-
rithms to be transformed into efficient implementations. Es-
pecially, Graphics Processing Units (GPUs), enable solutions
to problems impossible with previous computing approaches.
When we design parallel algorithms for GPUs, we need to
consider not only the complexity of the parallel algorithm itself
but also the efficient utilization of the hierarchical memory
and SIMD capability of the GPUs [10][11]. In this paper, we
present a fully-parallelized work-time optimal algorithm for
the 2D EDT, which can be implemented efficiently on modern
SIMD architectures such as GPUs.

Early attempts for computing the EDT using graphics
hardware include the work of Hoff et al. [12]. By rendering a
right-angled cone for each feature pixel in the image, the ap-
proximation of the distance function is obtained. Then depth-
testing graphics hardware is used to compute the distance
map. Their method suffers from overdrawing and tessellation
error. Sud et al. [13] proposed a method to use the bilinear
interpolation equation to compute the distance vector on a
polygon. Their method can compute highly accurate distance
maps for complex models, but its complexity is dependent
on the number of sites in the image. Therefore, it is not
suitable for problems with many sites. Later, several efficient
GPU-based algorithms which are either work optimal or
time optimal have been proposed including JFA [14], SKW
[15], FastGPU [16], PBA [17] and Honda’s algorithm [18].
However, none of these algorithms are work-time optimal.

In this paper, we present a fully-parallelized work-time opti-
mal exact EDT algorithm which is suitable for implementation
on modern SIMD architectures such as GPUs. Following the
idea of PBA, the computation of the exact EDT is performed
in a dimension reduction manner. The computation is done in
one dimension (row wise) first, then in the second dimension
(column wise). The algorithm consists of three steps. The first
step of the algorithm runs in O(logsan) time and performs
O(N) of total work on GPU. The second step performs O(N)
of total work and has an expected time complexity of O(logn)
on GPU. The third step runs in O(logsan) time and performs
O(N) of total work on GPU. Clearly, this algorithm is a work-
time optimal algorithm. As far as we know, this algorithm
is the first fully-parallelized work-time optimal algorithm
for the GPUs. Experiments demonstrate that this algorithm
outperforms prior state-of-the-art GPU algorithms.
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II. LITERATURE
A. Exact EDT

Many algorithms for the exact EDT have been proposed.
Saito and Toriwaki [19] proposed a sequential algorithm based
on dimensionality reduction, since the squared Euclidean
distance value is separable, the distance transform can be
computed along each principal direction. Recently, Torelli et
al. [20] implemented Saito’s algorithm on a cluster using
MPI. However, Saito’s algorithm has a time complexity of
O(n?) and it will result in a poor performance in practice.
Meijster et al. [21] proposed a two-scan linear-time sequential
algorithm which follows the same concepts as described in the
Saito’s algorithm. Breu et al. [4] also proposed a linear-time
sequential algorithm with time complexity of O(n?). Since
each pixel of input image needs to be visited at least once,
these linear-time algorithms are time optimal. Later, Maurer
et al. [22] proposed a linear time sequential algorithm for
a binary image in arbitrary dimension using dimensionality
reduction strategy. Recently, Wang and Tan [23] proposed
a method in which perpendicular bisector line is used to
improve the locality of computation. They also extended it
to an arbitrary dimension [24]. Lotufo and Zampirolli [25]
showed a new way to compute the exact EDT based on gray-
scale mathematical morphology. In their algorithm, an erosion
procedure is repeatedly applied to each image column until
the column does not change.

To accelerate the computation of the EDT, various parallel
algorithms have been proposed on different parallel models.
The fastest parallel algorithm which runs in O(1) time using
O(n?) processors was proposed by Datta and Soundaralak-
shmi in [32]. Their algorithm was originally designed for
Reconfigurable Meshes which require each processor capable
of communicating with neighboring processors via intercon-
nection buses. Because of the number of processors needed
and the special requirement in the architecture, their method
is not suited to modern SIMD processors. There are also
many algorithms proposed for the PRAM (Parallel Random
Access Machine) model. Lee et al. [33] use the dimensionality
reduction approach to compute the exact EDT in O(log?n)
time using O(N) processors on an EREW (Exclusive Read
Exclusive Write) PRAM machine. Pavel and Akl [34] pro-
posed an algorithm running in O(logn) time using O(N)
processors on a EREW PRAM machine. However, these two
algorithms are not work optimal. Considering the computation
on each image row, Fujiwara et al. [35] proposed a work-
optimal algorithm running in O(logn) time using O(rogn)
processors on the EREW PRAM and in O( lol;lgo ’;n) time using
O(%ﬁg"b) processors on the CRCW PRAM. Later, Hayashi
et al. [7] proposed a more efficient algorithm running in
O(logn) time using O(,¢) processors on the EREW PRAM
and in O(loglogn) time using O( 7o) processors on the
CRCW PRAM. Since the product of the computing time and
the number of processors is O(n), these two algorithms are
work optimal.

To efficiently utilize hierarchical memory and SIMD ca-
pability of modern GPUs, a special SIMD-like programming
paradigm has to be employed. However, the PRAM algorithms

mentioned above are too complex to fit into such a paradigm.
Therefore, there are few algorithms to compute the exact EDT
on GPUs using either the sequential algorithms or the PRAM
algorithms for exact EDT. Zampirolli and Filipe [29] pro-
posed a GPU implementation of Lotufo’s [25] mathematical
morphological algorithm. However, in Lotufo’s algorithm, an
erosion procedure is repeatedly applied to each image column
until the column does not change, and it is computationally
inefficient. Later, Zampirolli and Filipe [16] proposed a raster-
scan based GPU algorithm termed FastGPU algorithm which
can efficiently utilize the hierarchical memory of GPUs. They
show that the time complexity of the proposed GPU algorithm
is O(n?/p) where p is the number of available processors. Man
et al. [30] proposed a SIMD-like algorithm and implemented
it on a Multi-core processor and a GPU, respectively. Since
the computation on each image row is performed by single
thread, their algorithm is with a higher time complexity of
O(n).

Cao et al. [17] proposed an exact EDT algorithm for
GPU termed Parallel Banding Algorithm (PBA). By solving
several programming issues of GPU including synchronization
cost, occupancy and the efficient utilization of texture cache,
the PBA achieved a very good performance. As reported in
their paper, the PBA outperforms most of the existing GPU
algorithms. The main idea of PBA is to partition an image
row into several bands and use a single thread to perform
the computation on each band independently. Then merge the
results of all bands to produce the final results. Their algorithm
consists of three steps, in the first step, 1D EDT is computed
along the band. In the second step, the band-wise computation
is performed to obtain all closest sites for each image row. In
the third step, the distance of each pixel to the closest site
is computed using the results of step 2. However, as shown
in their algorithm, they fail to fully parallelize the first and
the third steps of the algorithm. The time complexity of the
first step and the third step is O(m) and O(n), respectively,
where m is the band size. Especially, the total work the third
step performs is O(mK) where K is the number of closest
sites obtained in the whole image. Clearly, in the worst case,
it will increase to O(mN) (N = n?). Later, Leung et al. [31]
extended PBA to compute the EDT on a large 3D surface
by storing each binary pixel as a binary bit. However, they
have not improved the complexity of PBA. We have compared
Zampirolli’s GPU algorithm [16] with PBA, and experiments
show that, in most cases, Zampirolli’s algorithm is about 3
times slower than the PBA. In [36], Macedo et al. used the
exact EDT to compute the shadow map of 3D virtual scenes,
and they also pointed out that the PBA is faster than most of
the existing EDT algorithms on GPU.

B. Approximate EDT

Different approximate EDT algorithms which allow small
errors in result have been proposed in the past and most of
them use scan schemes to achieve linear time complexity.
Two widely used methods are Borgefors’s Chamfer distance
transform [37] and Danielsson’s Vector Propagation approach
[38]. Chamfer metrics are defined by local masks. The weights
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TABLE I: Different GPU algorithms for computing EDT

[ Reference [ Algorithm | Exactmess | Time [ Work |
Schneider et al. [15] SKW Approximate O(n) O(N)
Rong and Tan [14] JFA Approximate | O(logn) | O(Nlogn)
Yuan ef al. [26] based on JFA Approximate | O(logn) | O(Nlogn)
Rong et al. [27] based on JFA Approximate | O(logn) | O(Nlogn)
Schneider er al. [28] based on SKW Approximate O(n) O(N)
Zampirolli and Filipe [29] | morphological erosion Exact — -
Zampirolli and Filipe [16] FastGPU Exact O(n3/p) —
Man et al. [30] scan-based Exact O(n) O(N)
Cao et al. [17] PBA Exact O(n) O(mN)
Leung er al. [31] based on PBA Exact O(n) O(mN)
Honda et al. [18] based on SKW Exact O(n) O(N)
In this paper work-time optimal Exact O(logn) O(N)

of these masks are chosen to minimize the deviation from the
EDT. Chamfer DTs require two raster scans in the image. Tuan
Q. Pham [39] parallelized the Chamfer distance transform by
processing diagonal pixels simultaneously and implemented it
on a quad core processors using OpenMP. Danielsson’s algo-
rithm generates the EDT in a similar way as the raster scanning
of the Chamfer EDT. However, the propagated information is
the absolute value of the relative coordinates of the nearest
feature pixel, instead of only the relative distances. Therefore
the method propagates two values in the masks, instead of one.
Many improvements have also been proposed for Danielsson’s
algorithm [40][41][42][43]. Yamada [44] proposed a parallel
version of Danielsson’s algorithm by repeatedly applying a
mask on every pixel until no pixel changes its value. This
algorithm may be executed on all the pixels in parallel, but is
computationally inefficient.

Several GPU algorithms which use Danielsson’s vector
propagation strategy to compute the approximate distance
transform have been presented. Rong and Tan [14] proposed an
algorithm termed Jump Flooding Algorithm (JFA) to compute
Voronoi map and the EDT on GPUs. The JFA needs O(logn)
parallel steps and in each step, the information of a closest
site is diffused to 8 pixels in relative position. However,
the JFA performs a sub-optimal total work of O(Nlogn)
(N=n?), it runs fast only if the image size is small. Later,
Yuan et al. [26] improved the performance of JFA by storing
a site’s ID and coordinate separately. An extension of JFA
algorithm [27] was proposed to compute Centroidal Voronoi
Tessellation on 3D surfaces. However, these two papers have
not improved the complexity of JFA algorithm itself. Schneider
et al. [15] proposed a raster scan algorithm named SKW
based on Danielsson’s approach. The SKW allows concurrent
propagation for pixels in the same row or column. Later, the
SKW have been applied on different applications including 2D
image processing and 3D volume rendering [28]. The SKW
can be implemented on the GPU with O(N) of total work and
the generated distance transform is close to exact. However,
the SKW has a sub-optimal time complexity of O(n), and
usually does not run faster than JFA. This is because it can
only perform parallel propagation operation in one row (or
column) at a time. Clearly, the serial nature of the propagation
operation lays a restriction on further optimization of these
algorithms.

While these approximate algorithms are adequate for many

applications, there are cases for which the exact EDT is
needed. For instance, the mathematical morphology dilation
operator can be implemented as the threshold of a EDT, as
presented in [45]. The occasional errors in the approximate
EDT could lead to pixels missing from the dilated object.
Thus, morphological closing, a dilation followed by an erosion
with the same structuring element, could actually remove
pixels from the original object, which is in contradiction with
the basic properties of mathematical morphology. Satherley
and Jones [46] proposed a vector propagation followed by a
correction stage to compute an almost exact distance field.

Recently, Honda et al. [18] proposed a GPU algorithm
which performs the vector propagation operation the same
as SKW. A correction algorithm is then applied to correct
errors caused by the vector propagation. Therefore, Honda’s
algorithm can compute the exact EDT of an image. Their
algorithm also suffers from the sub-optimal time complexity
of O(n) as SKW does. Their algorithm is about 2 times
faster than PBA when 100 images are processed on GPU
simultaneously. Their algorithm achieved this performance by
increasing the occupancy of GPU. For single image, if the size
of image is larger than or equal to 8k x 8k, their algorithm
can achieve a speed up factor of 1.54 compared with PBA.
However, if the size of image is smaller than 8k x 8k, their
algorithm is slower than PBA.

Table I shows the time complexity and total work of related
GPU algorithms.

III. 1D EUCLIDEAN DISNTANCE TRANSFORM

The 1D EDT is a fundamental operation in the 2D EDT. In
this section we describe different parallel algorithms for the
1D EDT on EREW PRAM and GPU.

A. Preliminaries

The 1D EDT can be described as a 1D closest point
problem. In 1D space, given a set P = {p1,pa,...,pn} Of
n points in which points are sorted by their coordinates such
that coord(p1) < coord(pz) < ... < coord(p,), we assume
there are m (0 < m < n) feature points within P and
the distribution of these feature points are unpredictable. The
closest point problem of P is to find the closest feature
point for every point p; (1 < i < n) in P. If we use '1’
to represent the feature point and 0’ to represent the non-
feature point, we can obtain a binary sequence. Formally,
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let I : Q C Z' - {0,1} be a binary sequence where
Q = {1,...,n}, unless otherwise stated. Hence we have an
object O including all the feature points:

O={qefI(q) =1} (D
Formal definition of the 1D closest point problem is given as:

Definition 1. The closest point problem of a sorted point set
P in 1D space is the computation of a sequence C' whose
value at each point p is its closest feature point g from O,
where ¢ satisfies:

| coord(p) — coord(q) || < || coord(p) — coord(q) | 2

forall g€ O.

It is clear, the 1D closest point problem can be solved by
a sequential algorithm in O(n) time. As shown in Fig.1, all
’0’s of tnput sequence represent the non-feature points and all
’1’s represent the feature points. First we set V(i) to be oo’
if the corresponding point is a non-feature point, otherwise set
V(i) to index(i). All *1’s divide input sequence into several
segments and each segment leading by a 1’ and end before
next '1°. Each leading ’1’ corresponds to an index number in
V (4). If we process V (%) from left to right and replace all *c0’s
of a segment with the leading index number, then sequence
L(7) can be obtained. In the same way, sequence R(i) can be
obtained by processing V(i) from right to left. By selecting
the minimum between |index(i)— L(i)| and |index(i)— R(i)],
the final result can be computed, see output sequence.

index() 1 2 3 4 5 6 7 &8 9 10 11 12 13 14 15 16
iput| 0 [1[0Jo[1]0JoJo [z]o]o]o o 2]1]0]

Vil [] 2 [ o[ oo] 5[] o] o] 9 o] o] o] o [1a]15] |

tife]2]2]2]s5]5]5]5]9]9]9]9]9]14]15]15]

ri)[2]2]5]s[5]9]9]9]914][14]14]14]14]15] =]
R

ouput| 2] 2] 2] 5|5 ]5]5][9]9]9]9][14]24]14]15]15]

Fig. 1: Illustration of sequential algorithm for computing 1D
closest point problem

Observation 1. If a point ¢ in point set P is the feature point,
its closest feature point is itself.

Observation 2. For a non-feature point p in point set P, if a
feature point ¢ on the left side has been found and there exists
no other feature points between p and ¢, then g is the closest
feature point of p on the left side. The closest point on the
right side can be found in the same way.

The first observation means that if a point ¢ is the feature
point, we have no need to check other points. The second
observation implies that, if a point p is the non-feature point,
the search of its closest feature point can start from its nearest
point, once the closest feature point found, we have no need
to check further points. As shown in Fig.2, to find the closest
feature point of p on the left side, we first check the nearest
point py,, it is the non-feature point, then check ¢, and q is the
feature point, then stop checking further points.

Black dot : feature point
White dot : non-feature point

Fig. 2: Closest point in 1D space

B. Parallel algorithms on EREW PRAM

In this section we describe two parallel algorithms on
EREW PRAM. Before describing the algorithm, we define
an associative operator —e- which is the basic operation in
our algorithm.

Definition 2. For two variables a; and a;, the associative
operator —e- is defined as follows:

a;, o> a; =if (a; <ocoAaj=00) then a; < a; (3)
Definition 3. Group operation is defined as follows:
a; =0 (Ak, Qg1y ooey Aot ) =

’ )

(a; —o+ ag, a; —o> A1, ..., Q; —O> Qkyj)

where we call the variables on the left side of operator —e—+
as transmitter and the variables on the right side as receiver.

An example of the group operation is shown in Fig.3. The
parallelization of the group operation is straightforward.

a, ak+1 An ak+3 [ Qs As Ay
=[2]=][7]n[~]1]~

8
Input data l
Group operation a‘—9-> (ak1 ak+1' ak+2' ak+3' ak+4' ak+5' ak+61 a~k+7)

& . . Ay Az s Qs A Ay
outputdata [ 3| [3 ]2 [ 3] 7]12] 3 ]19] 3]

Fig. 3: Tllustration of group operation

We describe only the parallel algorithms computing the
closest feature point on the left side. The closest feature point
on the right side can be computed in the same way. We
describe two algorithms on the EREW PRAM, one is time
efficient and another is work efficient.

The time efficient parallel algorithm can be described by a
tree structure shown in Fig.4. Each node of the tree is a group
operation. In the lower level of the tree the receivers receive the
information from neighboring transmitters and in the higher
level, receive the information from transmitters further away.

{vge(Vg, V1o Va1, Va2, Vi3, Vigs Vis, Vi)

{vg® (Vs, Vg V7, Vg)} {v15® (Vi3, Vag V15, Vie)}

Voo (v3, V)b {veo vy, Vg)} fViges (Vig, Vio)HViges (Vis, Vig)}
{vioVvo KoV, Hvs® Ve Hv, 2 Vg vV g Hv, v Hv 2V Hv sovo 6}

Fig. 4: Computing tree of the time optimal algorithm
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Using n/2 processors, the proposed parallel algorithm can
perform the computation in O(logn) time. However, from the
tree, the total work of the algorithm is O(nlogn), and therefore
it is not work-optimal. The pseudocode of the algorithm is
given in Algorithm 1.

Algorithm 1 Time efficient parallel algorithm

input[0 : n — 1]: input binary sequence
for i <~ 0,n — 1 do in parallel
Vi] + oo
if input[i] = 1 then
Vi i
end if
end for
for i «— 2,n by 2°T! do
for j <~ 0,n —1 do in parallel
from <« |7/(i/2)] xi+1i/2 -1
dstn < [j/(i/2)] x i+i/2+ (j mod (i/2))
if (V[dstn] = oo) A (V[from] # o) then
V]dstn] < V[from)|
end if
end for
end for

R A A A

—
—_

Now we describe the work efficient parallel algorithm which
performs O(n) total work on the EREW PRAM. This algo-
rithm is similar to the parallel prefix sum algorithm proposed
in [47]. But here we extend it to calculate 1D EDT. It consists
of two phases, the reduction phase and the down-sweep phase,
each phase can be described by a tree structure, see Fig.5
and 6. The reduction phase traverses the tree from leaves to
root computing intermediate results at internal nodes in the
tree. The down-sweep phase traverses the tree computing final
results from the intermediate results obtained in the reduction
phase. To build a balanced binary tree for easy description,
we add some empty nodes in the down-sweep tree where
no operation is executed. Readers can refer to [47] for more
details.

{vgovyel

v 2vg} {v13® vi6}

{Vig®V1,} {vigovieh

N

{vi# v Hvs® v Hvs o Ve Hv, 2 Vg Hvg®v o Hv 2 Vi Ky 2V, Hv g2 vigh

{Vz'e’V4} {V6-9>V8}

Fig. 5: Computing tree of reduction phase

This algorithm can complete the computation in O(logn)
time. From the tree structures, the total work of the algorithm
is O(n). Thus it is not only time efficient but also work
efficient parallel algorithm. The pseudocode of the algorithm
is given in Algorithm 2.

C. Super efficient parallel algorithm for GPU

1) Multi-levels of parallelism on GPU: CUDA (Compute
Unified Device Architecture) enabled GPUs expose three

{empty node)

{empty node} {vgo vy,

{empty node} {V4'9’V6} VlO} {Vl V14}

/\/\/\A

{empty node v, V3 Hv, 2V HVe® v, HVg® Vo HV1 3V HV, Vi HV 1 2 V1s}

Fig. 6: Computing tree of down-sweep phase

Algorithm 2 Work efficient parallel algorithm

1: input[0 : n — 1]: input binary sequence

2: for 7 < 0,7 — 1 do in parallel

3 Vi] + o0

4 if input[i] = 1 then

S: V[Z] —1

6 end if

7: end for

8:

9: /* The reduction phase of the algorithm */

10: for ¢ <~ 0,logon — 1 do

11:  for j < 0,n — 1 by 2°*! do in parallel

12: if (V[j+27 —1]=00)A(V[j+2" —1] # 0)
then

13: V[j+2H — 1)« V[j + 2" — 1]

14: end if

15: end for

16: end for

17:

18: /* The down-sweep phase of the algorithm */

19: for ¢ < logan — 2,0 do

20: for j < 0,n — 1 by 2¢+1 do in parallel

21: if (V[j+3-20—1] =oc0)A(V[j+21 —1] # )
then

22: V[j+3-20—1]« V[j+ 2 —1]

23: end if

24: end for

25: end for

levels of parallelism to users [48]. The first level is represented
by Warp. The warp is a group of 32 contiguous threads which
execute in SIMD fashion. Threads within a warp are referred
as Lanes. Each thread of a warp can have its own local
memory called Registers. Other threads have no access to these
registers. Threads can exchange data within a warp using the
Shuffle intrinsic.

The second level is represented by Thread Blocks, each
of which can hold up to 1024 threads in modern GPUs.
All threads in a block can access on-chip memory called
Shared Memory, which allows them to exchange data at L1-
cache speed. However, such data exchanges typically require
synchronization. CUDA provides a synchronization intrinsic
for this purpose. The shared memory consists of several banks
and each bank cannot be accessed by multiple threads simul-
taneously. This Bank Conflict is an important programming
issue in practice.
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The third level is represented by Grid, which consists of
a number of thread blocks. Threads from different blocks
can only communicate via an off-chip memory called Global
Memory. If threads from the same warp simultaneously access
words in the global memory that lie in the same aligned
128-byte segment, the hardware merges these 32 reads or
writes into one coalesced memory transaction that is as fast
as accessing a single word. There is no explicit grid-wide
synchronization provided. Communication through the global
memory is supported by a shared L2-cache. However the size
of this cache is very limited.

The following built-in variables are used in CUDA program-
ming relating the thread hierarchy of CUDA:

o warpSize returns the number of threads in a warp.

« threadldx.x, threadldx.y, threadldx.z returns the thread
ID in the x-axis, y-axis, and z-axis of the thread which
is belonging to a particular CUDA block.

o blockDim.x, blockDim.y, blockDim.z returns the num-
ber of threads in a CUDA block in the x-axis, y-axis, and
Z-axis.

« blockldx.x, blocklIdx.y, blocklIdx.z returns the block ID
in the x-axis, y-axis, and z-axis of the block which is
belonging to a particular CUDA grid.

2) Super efficient parallel algorithm for GPU: Algorithm 2
demonstrates that the 1D closest point problem can be solved
similar to the parallel prefix sum algorithm. As shown in Al-
gorithm 2, each element of the sequence receives information
from all elements on the left side (or right side). However,
Observation 2 shows that, for the 1D closest point problem,
each element has no need to receive information directly from
all elements on the left side (or right side). The search of
its closest feature point can start from its nearest point, once
the closest feature point is found, we have no need to check
further points. For the 1D closest point problem, we can
design a parallel algorithm simpler than the parallel prefix
sum algorithm on the GPUs.

Because of the importance of binary operations [49], CUDA
provides some warp-level binary operations for improving
GPU’s efficiency. These operations allow the threads of a warp
to compute cooperatively. The binary operations used in this
work are shown as follows. Using these operations we can
design a super efficient GPU algorithm for the 1D closest point
problem.

« int __ballot (int p) returns a 32-bit integer in which bit
k is set if and only if the predicate p provided by the
thread in lane k& of the warp is non-zero.

e int _ clz (int x) counts Leading Zeros: Returns the
number of consecutive zero bits beginning at the most
significant bit of the 32-bit integer z.

o int _ ffs (int x) finds the position of the first (least
significant) bit set to 1 in x, where the least significant
bit position is 1.

o int __shfl (int x, int srclane) copy variable x from the
thread indexed by srclane.

We use a simple example to explain the warp operations for
computing the closest point on the left side, see Fig.7a. For
easy description, we assume warpSize is 8 and Integers just

mput T T T ]

ThreadsinaWarp 1, 7, T, T, T, T, T, T,
S s EER
LA R A L G L
VotingvariableX\ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ Y \ 0 ‘X=_ballot()

To[oJoJoJoJoJo[o]o] clz(x&mask)
id

No closest point on theleft side
,Jo[1]oJofo]o]o] o] cl(x&mask
TClosest point on theleft side

Tz\o\:\o\o\o\o\o\o\le(x&mask)

[o]1]oJoJo]oo]o]clzix&mask)
1

TJo]1[oJo[1]o]0o]0]_ clz(x&mask)
t

r,Jo[1JoJo]1]o]o] o] clz(x&mask)

TJol1]o]o]1]o] o] o] clz(x&mask)

rJoJ1JoJoJ1]o] o] o] clz(x&mask)

Lower bit Higher bit

(a) Warp operations for finding the thread which holds the closest
site; Gray cells represent masked bits; The blue arrow indicates
the result of warpSize-1-clz() on X & mask, which is the closest
point on the left side for that thread.

Feature points
In shared memory[ =[]

=[=fa]=[=]=~]

Left-side m” T2l 2T allalala

closestpoint 7 -t T, T, T, T, T, T,

(b) Communication between threads using the shared memory

Fig. 7: Finding the closest site with ballot() and clz() intrinsic

consist of 8 bits. First, each thread reads the corresponding
input point, and votes the corresponding bit of a integer
variable accordingly, see Fig.7a (readers can imagine that all
threads are now operating on the same variable). Each thread
sets the corresponding bit of the integer variable as 1 if the
corresponding point is a feature point, otherwise set the bit
as 0. The voting procedure can be implemented using the
ballot() intrinsic of CUDA. The ballot() intrinsic can pack
all voting bits from all threads in a warp into a single 8-bit
integer variable and returns this variable to every thread. Now
every thread holds a copy of the voting variable. Since the
left-side closest point must locate on the left of the current
point, the higher (warpSize-lane-1) bits of the variable should
be masked with 0. For example, for thread T3, its lane is 3,
thus the higher 4 bits of the variable are masked by 0. Then
clz() intrinsic is used to count the leading zeros in the masked
value. It is clear the lane of the thread which holds the closest
point can be computed by (warpSize-clz()-1). For thread T3,
intrinsic clz() returns 6 leading zeros, therefore its closest point
is held by thread T} . Each thread holding a feature point writes
the index of the feature point into the corresponding shared
memory place, see Fig.7b, the first row. All threads then read
the corresponding shared memory place to obtain the left-
side closest point according to the thread lane obtained from
previous step. CUDA provides some special intrinsics such
as shfl() to support the register-level communication between
threads of a warp. Using this intrinsic, we can avoid the use
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Fig. 8: Computing tree for the reduction phase of the super efficient GPU algorithm
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Fig. 9: Computing tree for the down sweep phase of the super efficient GPU algorithm

of shared memory. Access to the shared memory is slower
than access to the register memory. Each thread obtains the
closest feature point using the shfl() intrinsic which performs
communication between the current thread and the thread
which holds the closest feature point. The closest feature point
on the right side can be computed by masking the lower
(lane+1) bits with 0 and using ffs() instead of clz().

According to Observation 2, each position has no need to
receive information from all positions individually on the left
side (or right side). Therefore the warp operation can be used
in each level of the computing tree of the reduction phase,
see Fig.8. The computing tree is a balanced multi-branch tree.
Each parent node has multiple children, where the number of
children is equal to the warp size, i.e. it is 32. If we assume
all warps of all CUDA blocks can be executed simultaneously,
the depth of the tree should be logzon. As described in the
previous section, we also add some empty nodes in the down-
sweep tree where no operation is executed in the empty nodes,
see Fig.9. Initially, the empty node is inserted at the root of the
tree. On each level, each child node is generated by applying
the group operation —e— to the values from the reduction phase
and the values from the parent node. The size of each group
is 32, i.e. the warp size.

Algorithm 3 shows the operations inside a CUDA block,
readers can extend it for a CUDA grid. The number of threads
each CUDA blocks holds is 1024. The code is for finding the
closest feature point on the left side. By reading the input data
in the opposite direction or using the ffs() intrinsic instead of
clz(), the code can be changed for finding the closest feature
point on the right side.

If we assume all warps of all CUDA blocks can be executed
at the same time, the time complexity of the algorithm is
O(logsan) and the total work is O(n).

The final closest point is computed by selecting the min-
imum between the left-side closest point and the right-side
closest point. The algorithm needs to pass through twice, once
for the computation of left-side closest point and another for
the right-side closest point.

One-Pass Closest Point We now introduce a modification
that allows us to make just one pass. The right-side closest
point can be computed from the left-side closest point directly
using this approach. Instead of the mask (Fig. 7a) being the
higher (warpSize-lane-1) bits we mask the higher (warpSize-
lane) bits of the voting variable.

Step One: Figure 10, row LN Each thread writes the thread
index of its closest left neighbor that is not itself using _clz(X
& mask) where mask is the higher (warpSize-lane) bits.

Step Two: Figure 10, row RN Each thread checks if it is
a black pixel. If it is, get ¢ such that i = LN [thread] ori =0
if LN[thread] = co. Now write its thread number to RN |[q].
For example, for thread T+, its left-side closest point is stored
in LN[7] = 4. Now T writes its own index 7 to RN[LN|7]]
i.e., RN[4] = 7. There is at most one thread which is holding
a black pixel and its nearest point according to LN is at *o0’.
This thread will write its own index to RN[0] (see thread T5).

Step Three: Figure 10, row CS Each thread can now
evaluate its closest point to both the left and right. If the pixel
is black, its closest point is itself. For white pixels, the closest
left point is given by LN[thread]. The closest right point is
given by RN[LN[thread]] or RN[0] if LN[thread] = oo
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For example, for thread Tg, its left-side closest point is
stored in LN[8], and its right-side nearest point is stored in
RN[LNI8]]. For thread Ti, its left-side closest point is at
’o0’, and its right-side closest point is stored in RN[0]. C'S

Thread To T T, T3 Ta T3 Te T, T3 Ty T, T

mput L T T

Closest point on left side
N1 [=[=]= ]2 2] s 4[4 [/ [/ 7]

Each black pixel writes its thread index
to RN[LN[thread]] (RN[O] if LN[thread] = =)
NI [2[=[ [ 7 [ ] =] 0] ] =[] ]

Closest point of each pixel
Csl.1[2]2]2[2]4]4]7][7]7]w]w0]w]

Fig. 10: One pass computation of closest point

is calculated from the decision on which of the left and right
points is closest per thread. The algorithm requires only simple
instructions per thread and can be independently processed for
each thread using the warp instructions.

IV. 2D EUCLIDEAN DISTANCE TRANSFORM
A. Definition

Given a 2D binary image, its Euclidean distance transform
computes the distance of each pixel to the closest black pixel
termed site. Formally, let I : Q C Z* - {0, 1} be a 2D binary
image where the domain (2 is convex and, in particular 2 =
{1,...,n} x{1,...,n}, unless otherwise stated. By convention,
0 is associated to white pixel, and 1 to black pixel. Hence we
have an object O including all the black pixels:

O={qeQ|I(g) =1} (5
Formal definition of the 2D EDT is given as:

Definition 4. Euclidean Distance Transform of a 2D binary
image is the transformation that generates a map D whose
value in each pixel p is the smallest distance from this pixel
to O:

D(p) :=min{d(p,q) | ¢ € O} = min{d(p,q) | I(q) = 1}
(6)

where the distance metric is Euclidean distance.

B. Computation of closest site

The closest site of each pixel in the same column can be
obtained by 1D EDT algorithm presented above. The results
of 1D EDT provide a set of candidate sites to each row of the
image. However not all of them are the closest site of the row.
As shown in Fig.11, each circle dot represents the closest site
(black pixel) of each pixel in the same column. By drawing
voronoi diagram (blue line) of these black pixels, the dominant
area of each black pixel can be exhibited. It is clear, only c;,
¢4, ¢5 and c7 have a dominant interval on image row j. This
provides us a way to compute the closest sites for each row
of the image. The same as PBA, three rules are applied for
the computation of closest sites.

Algorithm 3 Super efficient GPU algorithm

: index < blockldx.x x blockDim.x + threadldx.x
X ¢ 00 > All variables are in Register memory
. if input[index]=1 then
X < index
end if

/********* The reduction phase *********/

: voted_x <— __ballot(x< 00)

: masked_x < mask higher (warpSize - lane - 1) bits of
voted_x with O

10: count_zeros < __clz(masked_x)

11: closest_index < oo

12: if count_zeros < warpSize then

13: closest_p < warpSize - count_zeros - 1

14: end if

15: closest_index < __shfl(x,closest_p)

16: if lane = warpSize - 1 then

R AN A R ol

17: shared[|threadIdx.x/warpSize]] < closest_index
18: > shared[] is in Shared memory
19: end if

20: synchronize threads

21:

22: if threadldx.x < warpSize then
23: X < shared[threadldx.x]

24: voted_x < __ballot(x< oc0)

25: masked_x <— mask higher (warpSize - lane - 1) bits
of voted_x with 0

26: count_zeros < __clz(masked_x)

27: if count_zeros < warpSize then

28: closest_p < warpSize - count_zeros - 1

29: end if

30: shared[threadldx.x] < __shfl(x,closest_p)

31: end if

32: synchronize threads

33:

34; [FFFFEEEEE The down-sweep phase *¥##*k¥k%/

35: if |threadldzr.z/warpSize] >0 A closest_index=00
then

36: closest_index < shared[|threadIdx.z/warpSize]-
1]

37: end if

38: output[index] <— closest_index

c3e
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Fig. 11: Voronoi diagram of all black pixels
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Fig. 13: Special cases where both intersection points lay
between two successive pixels

We first consider a general case. As shown in Fig.12a, there
are three sites a(i1, j1), b(i2, j2), c(is, j3) where i1 < iy <
i3. We draw perpendicular bisector line Iy, of a(i1,j1) and
b(iz, j2), lpe of b(ia, j2) and c(is, j3). The line I, intersects
with the image row j at point pg,(v,j) and the line I, at
Doe(u, ). It is clear if v < u then site b(iz, j2) has a dominant
interval on the image row. However if v > w then site b(iz, j2)
has no dominant interval on the image row. We delete the site
b(is, jo) from the candidate set.

We remember that now we are computing the closest site of
each pixel of a binary image where all pixels are with integer
coordinates. If both intersection points p, (v, j) and ppe(u, j)
lay between successive two pixels, see Fig.13, no matter what
position relation both intersection points hold, the site b(iz, j2)
should be deleted from the candidate set, even v < w, since
there is no pixel where its closest site is b(ia, j2).

Rule 1. Given an image row j and three candidate sites
a(i1, j1),b(iz2, j2), c(is, j3) where i1 < iy < i3. The perpen-
dicular bisector line Iy, of a(i1,71) and b(ia,j2) intersects
with the image row j at point p,;(v, j) and the perpendicular
bisector line Iy of b(is, j2) and c(is, j3) at point ppe(u, j). If
[v] > [u] then site b(i2, j2) has no dominant interval on the
image row and it can be deleted from the candidate set.

All closest sites of a row of the image can be obtained by
stack operations. The push and pop operations of the stack is
based on Rule 1.

Let p(v,j),q(u,j) be two pixels of image row j where
v < u. If site c(i1,71) and ¢/ (i3, j3) are the closest site of
p and ¢ respectively, then we have 71 < i3. The order of all
dominant intervals is exactly same with the order in which
the corresponding closest sites appear. Based on this, a binary
search operation can be used to reduce the amount of stack

Top of stack—_, ¢, Cs
Cy ° [ °
L .
C% c%
c c
)y ¢ e ¢
1
* Adding point™ 1o R
rowj rowj
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(d) All closest sites obtained
after stack operation with
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(c) Binary search to mid po-
sition of the stack and check
whether the corresponding
site can be deleted or not

Fig. 14: Deletion of unnecessary sites with binary search on
Stack

operations. As shown in Fig.14a, there 5 sites ¢y, ..., c5 already
in the stack and now we want to add cg to the stack. We first
check the top of the stack, that is c5, whether it can be deleted
from the stack or not, see Fig.14b. If c5 can be popped from
the stack, then the forward binary search is used to find the
next site cs, and check it, see Fig.14c. If c3 can be popped from
the stack, then the forward binary search is applied again to
find the next site to check (it means all candidate sites between
c3 and c5 can be popped from the stack without checking).
Otherwise the backward binary search is applied to find the
next site to check. The combination of the binary search and
stack operations is applied until there is no site can be popped
further, see Fig.14d.

Rule 2. Assume there k sites ¢y, ca, ..., ¢i already exist in
the stack and now we are adding a new site cj, to the stack.
If the top of the stack, cg, can be popped from the stack, the
next site to check is c|;/2)+1 whose index can be obtained by
the binary search.

However, the performance of stack operations with the
binary search depends on the number of closest sites among
all candidate sites. If the number of closest sites among all
candidate sites is small, then the stack operations with the
binary search can achieve a high performance. Otherwise, the
performance of stack operations will decrease significantly
because a large number of binary searches will be performed.

Now we consider the merge of two independent stacks one
named S; and another named S;. The merge of two stacks
is an important operation in the second step of our parallel
algorithm. We add sites from the bottom of Sy (we call it the
sending stack) to the top of S7 (we call it the receiving stack).
It is clear, during merging procedure, once there are two sites
on the top of 57 that are from S5, and neither of these two sites
can be popped from .57 further, then we can add the rest of S
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to S1 without checking. However, in practice, data movement
is with heavy cost. Therefore, to avoid moving data, a linked
list can be used to connect two stacks to create a new larger
stack, as proposed in [17]. Then the rest of S5 has no need to
be moved to S.

Rule 3. We merge two independent stacks S; and S5 by
adding sites from the bottom of Ss to the top of S;. If there
are two sites from Ss in the top of Si, and neither of these
two sites can be popped from S; further, then we can add the
rest of Sy to S7 without checking.

C. Farallel algorithm for 2D Euclidean Distance Transform

We describe a fully-parallelized work-optimal 2D EDT
algorithm in this subsection.

Step 1: Compute the closest site of each pixel in the same
column using the 1D EDT algorithm. The results of
1D EDT will be stored in a 2D array named R;p.
Compute closest sites for each row of the image using
the stack operation.

Step 2:

Step 2.1: The creation of the stacks. Partition each
row of R; p into n/3 groups each with 3 el-
ements. Each processor performs the stack
operations to the corresponding group fol-
lowing Rule 1.

The merge of the stacks. Merge every two
stacks using a processor following Rule
2 and 3. In the merging procedure, we
add sites from the bottom of one stack to
the top of the another. Repeat the merging
procedure until one stack left.

Step 2.2:

Step 3: For each pixel, find the closest site and compute the

distance between them.

Step 3.1: Find the dominant interval for each closest
site. If we draw the perpendicular bisector
line between each pair of closest sites, this
line may intersect with the image row at a
point. It is clear, each pair of such intersec-
tion points decides a dominant interval for
a closest site, see Fig.15. We allocate a 1D
array of size n where n is the row size of
input image, and initialize each element of
the 1D array with tuple (0o, 00). Assume
the perpendicular bisector line of two sites
¢(ig,51) and ¢, (i, j) intersects with the
image row j at a point p(v,j). We then
fill [v]*" element of the 1D array with
(i1,71) which is the coordinate of site ¢;,
see Fig.15. (Rule 1 guarantees that at most
one intersection point appears between two
successive pixels.)

Compute the distance of each pixel to the
closest site. The closest site can be found
by solving the right-side closest point prob-
lem on the 1D array.

Step 3.2:

Cs (ig, jg).
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Fig. 15: Presentation of each interval on 1D array

D. GPU implementation

Considering the coalesced access of the global memory of
the GPU, Step 1 is implemented along each row of the input
image. The One-pass algorithm described in Section III-C2
is employed. If the shared memory is capable of storing the
whole image row, then the global memory just needs to be
accessed twice, one for read and another for write.

In Step 2, the output of Step 1 is partitioned into many
tiles and a CUDA block is assigned to a tile, see Fig.16a.
Each CUDA block reads the global memory along column and
creates the stacks in the shared memory. It is clear the access to
the global memory is coalesced. The creation of stacks in the
shared memory is also without bank conflicts. Each CUDA
block writes the created stacks back to the global memory
in a transposed location, see Fig.16b. For example, CUDA
block{0, L} reads the left-bottom corner of the input array,
see Fig.16a, and writes the created stacks back to the right-top
corner of the output array, see Fig.16b. For this specific step,
the read of the shared memory has a bank conflict. However, it
still can achieve a better performance, since an explicit matrix
transpose [30] is avoided. The binary search on each stack
is not applied. Since experiments show that, in most cases,
the use of binary search will lead to a poor performance. To
make a trade-off between the creation cost and the merging
cost of stacks, the size of initial stack should be larger than
3. The merge of stacks are implemented in global memory
directly. For each stack, we use two pointers, one indicates the
bottom of the stack and another the top of the stack. During
the stack merging procedure, we just move these two pointers.
The merge of two stacks terminates once two sites are added
to the receiving stack, and are not popped from the receiving
stack further, see Rule 3. This avoids the addition of the rest
of the sending stack to the receiving stack, as the GPU is
sensitive to memory operations.

In Step 3, one thread warp is assigned to one stack to
compute the perpendicular bisector lines, where the stack is
indicated by a pair of pointers (remember that the final stack
consists of many small stacks each of them is indicated by
a pair of pointers, here we assign a thread warp to a small
stack). The 1D array mentioned in Step 3.1 is allocated in
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Fig. 16: Creation of stacks using the shared memory

the shared memory. Finally we transpose the results of Step 3
using the shared memory following the algorithm of [50].

Now we give a brief discussion on how to implement
the algorithm outside CUDA, for example in OpenCL (Open
Computing Language) [51] or Vulkan [52]. The main program-
ming issues would be in the GPU implementation of Step 1.
OpenCL provides equivalent functions of clz() and shfl() of
CUDA, but the current version does not provide an equivalent
function to ballot(). User can emulate ballot() using the
atomic_or(operandl, operand2) function of OpenCL, which
performs bit-wise or-operation on two operands operandl
and operand2 and stores the result in operandl. These two
operands are unsigned integers in our work. The operandl
should be in Local Memory of OpenCL (which is equivalent
to the shared memory of CUDA). For each thread, the corre-
sponding bit of operand2 is set to 1 if the current thread
holds a black pixel, otherwise 0. Other bits of operand2
are set to 0. Since each thread needs to wait for all other
threads to finish the atomic operation, there should be a
synchronization between atomic_or() and clz(). Vulkan is a
graphics and compute API that provides low-overhead, cross-
platform access to modern GPUs. Latest version of Vulkan
is integrated with SPIR-V (Standard Portable Intermediate
Representation) [53] which is an intermediate language for
parallel compute and graphics by Khronos Group. SPIR-V
(version 1.3) provides a corresponding function to ballot().
SPIR-V Extended Instructions for GLSL (OpenGL Shading
Language) [54] provides a function FindUMsb() which finds
the most significant bit in a unsigned integer. SPIR-V also
provides an equivalent of the shfl() function.

E. Complexity analysis

We now analyze the complexity of the GPU implementation
of the algorithm. We assume all CUDA warps of all CUDA
blocks can be executed simultaneously.

Fact 1. Step 1 takes O(logsan) time and O(N) of total work
on GPU.

Proof. The height of the computing tree shown in Fig.8 and
9 is logsan, it yields the time complexity claimed. In each
level of the computing tree, the number of threads computing
is n/32™ where m (0 < m < logsan — 1) is the height of

current level of the tree. Therefore the total work of Step 1 is
O(N)(N = n?). O

Fact 2. The expected time complexity of Step 2 is O(logn).
The total work Step 2 performs is O(N).

Proof. The height of the merging tree is O(logn). If the
distribution of closest sites among candidate sites allows all
processors to perform the same amount of work, then Step
2 will run in O(logn) time. It yields the time complexity
claimed.

For an image row, suppose there are k(k < n) candidate
sites obtained and kyon (knon < k) sites among them are not
the closest sites of the image row. These k., sites will be
popped from the stacks on each level of the merging tree.
Suppose the number of sites which will be popped from the
stacks on ith (0 < ¢ <logn — 1) level of the merging tree is
ki . we have

non?
0
knon =k

logn—1
non k

non

+ kKt

non

ot Koo et

When we add (push operation) one site, which is from the
sending stack, to the receiving stack, it may cause one or more
pop operations on the receiving stack. On the other hand, we
remember that the merge of two stacks will terminate once
there are two sites in the receiving stack that are from the
sending stack and they cannot be popped from the receiving
stack further. It means that, if &/ ,, pop operations are executed
in 7th level of the merging tree, the number of push operations
executed is at most k¢, +2 x n /2%, where n/2" is the number
of threads computing in ¢th level of the merging tree. These
threads will add (push operation) at least two sites into the
receiving stack. Therefore the total number of push operations
in all levels of the merging tree is:

(K2 on +2x1/2%) + (Kt +2 x n/2Y) + .t

(kpon +2 X 1/2%) + oo+ (ki ™ + 2 x n/20771) =
(Knon + Fnon + -+ Ko + - + kgt ™)+
2xnx (1/2° +1/21 + ..+ 1/20 + ..+ 1/2l9n—1) <
kpon +4 xn <
dXmn=

O(n)

O

Fact 3. Step 3 takes O(logsan) time and O(N) of total work
on GPU.

Proof. The intersection points between the image row and the
perpendicular bisector lines of each pair of closest sites can be
computed in O(1) time and O(n) of total work on GPU. The
right-side closest point problem can be solved in O(logzan)
time and O(n) work on GPU (as proved in Fact 1). It yields
the complexity claimed. O

F. Evaluation

The evaluation is performed on a machine with an Intel Core
i7-6700 CPU (3.40GHz) and a NVIDIA GeForce GTX1080
graphics card with 8GB of video RAM. The programming
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environment is Visual Studio 2015 with CUDA 8.0 running
on Windows 10.

1) Comparison with PBA step by step: Both PBA and
our algorithm consist of the same steps. We compare two
algorithms step by step varying the density of sites. Examples
of input images are shown in Fig.17. We use the original
source code of PBA which is available online at PBA’s project
web site for comparison.

(©) 30%

) 90%

(d) 50%

(e) 70%

Fig. 17: Input images with different densities of black pixels

Table II shows the running time of each step of two
algorithms. The size of input image is 8k x 8k. As shown
in the table, the speedup factor of Step 1 is always more than
2, since the time complexity of Step 1 of our algorithm is
only O(logsan). Also, Step 1 of our algorithm is implemented
by the one-pass approach which just needs to go through the
data once, see Section III-C2 and Section IV-D. To access the
global memory with coalescing, a matrix transpose is needed
in PBA following Step 1. However, our algorithm has no need
to perform this transpose since the transpose is hidden in
Step 2, see Section IV-D. There is no significant difference
between two algorithms in Step 2, our algorithm is slightly
faster than PBA. The performance of PBA is dominated by
Step 3 and the main difference between two algorithms also
appeared in this step. Since, the PBA needs O(n) time in this
step, versus O(logson) time of our algorithm. Finally, both
algorithms perform the matrix transpose again to get correct
results.

2) Comparison with PBA varying geometric structure of
input image: Both PBA and our algorithm are very sensitive
to the content of the input images. Therefore we use images
with different geometric structure to test them. Images used
in experiments are shown in Fig.18. The first three images
contain different geometric shapes. These three images are
chosen since geometrical characters of the input image may
impact the performance of algorithms. The last three images
contain real objects. We choose these three images since which
have been universally used as impartial benchmarks for image
analysis algorithms. The size of the images is 1k x 1k. Our
algorithm always outperforms the PBA, see Fig.19, no matter
how complex the input images are.

(b) Circle area

(a) Square area

Y

(d) Lena

(e) Mandrill (f) Walk bridge

Fig. 18: Input images with different geometric structure
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Fig. 19: Performance comparison between PBA and our algo-
rithm with images containing different geometric structure

3) Comparison with other algorithms: In the absence of
source code availability from Honda [18], we compare our
work with JAF, PBA and Honda’s algorithm using the data
presented in [18] which was created by testing the various
approaches on the same GPU (NVIDIA GeForce GTX 1080).
The following four images are used in the experiments: an
image with 0.01% of black pixels (the location of black pixels
is chosen randomly), an image with 1% of black pixels, an
image with 50% of black pixels and the image of Lena. The
size of image varies from 512 x 512 to 16k x 16k. As shown
in Table III, for smaller images, the JFA can achieve a better
performance comparing with PBA and Honda’s algorithm. The
PBA is faster than JFA and Honda’s algorithm for the images
with the size smaller than 8% x 8k. Honda’s algorithm can
achieve a better performance for the images with size larger
than or equal to 8k x 8k. Our algorithm outperforms all three
algorithms in every case, see Table III. The maximum speedup
factor is 4.67, 2.86 and 6.64 compared with JAF, PBA and
Honda’s algorithm, respectively.

V. CONCLUSION

In this paper, we present a fully-parallelized work-time op-
timal exact EDT algorithm. Compared to the existing PRAM
algorithms and other algorithms, this algorithm is suitable for
implementation on modern SIMD architectures such as GPUs.
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TABLE II: Running time (milliseconds) of each step of two algorithms varying the density of sites

Density of sites | Algorithm | Step 1 [ Transpose | Step 2 [ Step 3 [ Transpose | Total | Speedup
» PBA 7.86 341 122 | 1238 551 [ 838 ] g,
o Ours 320 = 1067 | 3.40 354 [ 2081 :
0% PEA 778 356 1492 | 14.93 355 [ 474 5.0
o Ours 339 - 120 | 321 349 [ 21.30 :

PBA 708 344 402 | 1590 347 | 44810

30% Ours 339 = 1254 | 349 353 o5 |

o PBA 8.03 34 324 | 164 3404447 | o

° Ours 337 = 1272 3.55 3.54 23.18 :

PBA 7385 353 1250 | 1834 346 | 4577

70% Ours 335 - 1239 | 3.75 348 297 %
PBA 781 345 1237 | 1651 347 | 361

90% Ours 332 = 1192 | 362 351 237 M

TABLE III: Running time (milliseconds) of different algorithms with different input images

Input image [ Algorithm [ 512 x 512 1k x 1k 2k x2k 4k x4k 8k x8k 12k x 12k 16k x 16k
JFA 0.2114 0.9257 3.967 18.00 81.48 193.6 364.8
0.01% random PBA 0.1275 0.3737 1.396 5.904 25.7 58.61 106.5
Honda’s 0.66 1.233 2.9 7.567 23.83 55.16 95.25
Ours 0.0987 0.2914 1.071 4.432 19.26 45.97 78.02
JFA 0.2117 0.9366 3.966 18.00 81.49 194.8 364.9
1% random PBA 0.2072 0.5816 2.006 7.644 33.1 74.33 133.6
Honda’s 0.6758 1.276 2.965 7.84 24.9 57.24 99.75
Ours 0.1002 0.399 1.304 5.327 20.81 47.36 81.42
JFA 0.2095 0.9719 3.977 18.15 82.00 197.3 367.1
50% random PBA 0.2714 0.8552 2.70 10.62 43.37 94.79 170.1
Honda’s 0.6517 1.343 3.12 8.446 27.32 62.81 109.9
Ours 0.1035 0.4658 1.541 6.162 23.18 51.74 89.89
JEA 0.1936 0.8169 3.168 13.53 58.23 137.2 252.9
Lena PBA 0.3059 0.8473 2.40 8.523 33.86 75.92 134.5
Honda’s 0.7081 1.463 3.171 8.028 24.73 57.26 94.5
Ours 0.1066 0.423 1.435 5.671 22.05 48.21 86.01

As a fundamental operation, 1D EDM is efficiently paral-
lelized first. Three different algorithms are proposed for the 1D
EDT on the EREW PRAM and GPU. Specifically, the GPU
algorithm for the 1D EDT, which uses CUDA binary functions
such as ballot(), ffs(), clz() and shfl(), runs in O(logzan) time
and performs O(n) work. Using the 1D EDT as a fundamental
operation, we propose a fully-parallelized work-time optimal
2D EDT algorithm. This algorithm consists of three steps. The
first step of the algorithm runs in O(logsen) time and performs
O(N) of total work on GPU. The second step performs O(N)
of total work and has an expected time complexity of O(logn)
on GPU. The third step runs in O(logsan) time and performs
O(N) of total work on GPU. Clearly, this algorithm is a work-
time optimal algorithm. As far as we know, this algorithm
is the first fully-parallelized work-time optimal algorithm for
the GPUs. Experiments show that this algorithm outperforms
most of the state-of-the-art GPU algorithms. Currently, this
algorithm is the fastest 2D EDT algorithm with the lowest
complexity on GPUs.
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