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Abstract: The recent development of feature extraction algorithms with multiple layers in machine learning and pattern recognition
has inspired many applications in multivariate statistical process monitoring. In this work, two existing multi-layer linear approaches in
fault detection are reviewed and a new one with extra layer is proposed in analogy. To provide a general framework for fault diagnosis in
succession, this work also proposes the contribution propagation analysis which extends the original definition of contribution of vari-
ables in multivariate statistical process monitoring. In fault diagnosis stage, the proposed contribution propagation analysis for multi-
layer linear feature extraction algorithms is compared with the fault diagnosis results of original contribution plots associated with single
layer feature extraction approach. Plots of variable contributions obtained by the aforementioned approaches on the data sets collected
from a simulated benchmark case study (Tennessee Eastman process) as well as an industrial scale multiphase flow facility are presen-

ted as a demonstration of the usage and performance of the contribution propagation analysis on multi-layer linear algorithms.
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1 Introduction

The fast-developing feature extraction approaches in
machine learning and pattern recognition, such as neural
network and Bayesian network, are playing a more and
more important role in data-driven fault detection and
diagnosisl: 2, many of which have multiple layers of data
analysis so that the algorithm performance can be en-
hanced. In the meantime, multivariate statistical process
monitoring approaches, such as principle component ana-
lysisi3l, canonical variate analysisi4, Fisher discriminant
analysis®), independent component analysisl®l and their
kinl" 1], may also take the advantage of multiple layers of
learning in order to handle the complexities in process
data analytics and data-driven process monitoring. Exist-
ing complexities, such as nonlinearity, temporal correla-
tion, multimodality, and non-Gaussianity, may be reflec-
ted by process data especially when abundant measure-
ments are available for process data analytics while each
basic multivariate data analytic method may cope with
only some of them individually. Therefore, multi-layer
feature extraction structure is of interest for multivariate
statistical process monitoring and attention has been paid
to this establishment recently. For instance, Cao and
Samuell!2] have established a principal component analys-
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is PCA-enhanced canonical variate analysis (CVA) meth-
od for fault detection and applied it to the Tennessee
Eastman challenge process. The state-space independent
component analysis (ICA)13] was developed by combin-
ing CVA and ICA in order to handle both temporal cor-
relation and non-Gaussianity in process data. More ex-
amples of this establishment include CVA-fisher discrim-
inant analysis (FDA)® and ICA-PCA[4 based process
monitoring. Similar multi-layer approach has been pro-
posed for nonlinear process monitoringl!% 16 and hetero-
geneous data fusionl'®l, These findings inspire the invest-
igation of improving process monitoring algorithms with
extra layers of feature extraction, and the PCA-enhanced
state-space ICA approach proposed in this work is an ex-
ample.

An existing issue with these multi-layer algorithms is
their interpretability. The features obtained may be more
representative and sensitive to fault occurrence; the
transparency of algorithm, however, will be sacrificed due
to multiple layers of projection. As an example of data-
driven fault diagnosis methods, contribution plotsl!”) have
been extensively applied to identifying variables associat-
ing to a certain fault and locating the fault. The contri-
bution plots root in the idea that the process variable
that has a significant impact on the fault is supposed to
have larger contributions to the monitoring statistics.
Therefore, studies and applications of this idea are per-
sistent and profound[!8-20], The mathematical formulation
of contribution also provides flexibility for extensions in
different scenarios, such as generalized contribution
plots2l, reconstruction-based contributions(?2 and contri-
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bution rate23l. Nevertheless, how to extract contributions
from multi-layer algorithms is still not well understood.
This work exploits the usage of contribution plots in
faulty variable identification when multi-layer linear fea-
ture extraction algorithms are adopted in multivariate
statistical process monitoring. A general structure of con-
tribution propagation analysis is proposed accordingly.
This analysis takes a step back to the original definition
of contribution and investigates the way it propagates
between layers with respect to the mathematical formula-
tion of different multi-layer linear feature extraction al-
gorithms so as to quantify the influence of original vari-
ables on the final monitoring statistics. In the fault dia-
gnosis stage, once the contributions propagating through
the intermediate layers have been quantitatively ana-
lyzed, it is reasonable to infer that contribution of influ-
ential variables will be properly emphasized and these
variables can be identified. Applying the proposed analys-
is, the contribution propagation solution is derived for the
following linear multi-layer feature extraction algorithms:
PCA-enhanced CVA, state-space ICA, and PCA-en-
hanced state-space ICA.

As an extension to a preliminary study on this
topicl24, in which a two-layer contribution analysis for
PCA-enhanced CVA was presented, this work has the fol-
lowing contributions. Firstly, a novel three-layer feature
extraction algorithm, PCA-enhanced state-space ICA, is
proposed as a more sophisticated and advanced feature
extraction approach; its application in multivariate stat-
istical process monitoring is presented along with PCA-
enhanced CVA and state-space ICA. Secondly, the contri-
bution propagation framework is proposed for faulty vari-
able identification by extending the contribution analysis
adopted for PCA-enhanced CVA based process monitor-
ing. By applying this framework, the applicability of con-
tribution-based fault diagnosis methods will be enhanced
and the interpretability of various multi-layer feature ex-
traction algorithms in process monitoring will be im-
proved significantly. Improved interpretability and faulty
variable identification results of proposed PCA-enhanced
state-space ICA and contribution propagation analysis
can be demonstrated via well-acknowledged benchmark
data set from Tennessee Eastman (TE) process; further-
more, these approaches are also feasible for real-life indus-
trial plant monitoring.

The organization of this paper is as follows. The gener-
al structure of fault detection algorithms based on multi-
layer linear feature extraction is revisited in Section 2.1
along with the formulation of PCA-enhanced CVA, state-
space ICA, and PCA-enhanced state-space ICA. For fault
diagnosis, contribution propagation analysis is proposed
for contribution plots calculation in these multi-layer lin-
ear feature extraction based monitoring techniques and
the solutions to these contribution plots in Section 3. Sec-
tion 4 presents two case studies: 1) The simulated case
study of Tennessee Eastman process; 2) A case study on
the benchmark data set collected from the multiphase

flow facility. The performance of identifying influential
variables based on their contributions using the following
linear algorithms are compared in succession: CVA with
ordinary contribution plots (single-layer)l8l; PCA-en-
hanced CVA, state-space ICA with contribution propaga-
tion (2-layer); and PCA-enhanced state-space ICA with
contribution propagation (3-layer). Section 5 summarizes
the findings in this work and illustrates potential direc-
tions of extension in future study.

2 Multiple layer linear algorithms for
process monitoring

Fig.1 represents the general formulation of multi-layer
linear feature extraction based fault detection algorithm.

statistics

Fig.1 Algorithm structure

X is the original data, Y; are the intermediate fea-
tures obtained by each feature extraction layer, Z and FE
are the representative features and residuals, respectively.
The monitoring statistic I is calculated using Z and E.

PCA-enhanced CVA, state-space ICA and the new
PCA-enhanced state-space ICA will be introduced next as
three examples of multi-layer linear algorithms shown in
Fig. 1.

2.1 PCA-enhanced CVA

According to [12], CVA fault detection algorithm is
enhanced by using latent variables extracted by PCA as
its input instead of the original measured variables.
Firstly, PCA projects the original measurement data in v-
dimensional variable space to a reduced r-dimensional
principal component space with maximum explanation of
variations in original variables. The model structure of
PCA is illustrated as follows:

Y =XP (1)

where X with zero mean and unit variance is the
standardized original data set in the Euclidean space
R™", Y € R™™" is the extracted principal components
and P € R"*" is the projection matrix. The projection
matrix P is obtained by eigenvalue decomposition of
sample covariance matrix XTX. Hence, the principal
component vector y is linear projection of original
variable vector .

CVA is a linear dynamic feature extraction method
from which the canonical variates with maximum correla-
tion between past and future vectors can be acquired. In-
stead of using original data matrix X, PCA-enhanced
CVA algorithm adopts the principal components Y ex-
tracted by PCA as the input to CVA and get canonical
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variate matrix Z € R"*? and residual matrix £ € R"*".

At certain time stamp ¢, past and future vectors y,(t)
and ys(¢t) are formed by (2) with fixed vector lengths p
and f:

Y =[5 (t =19 (t-2),--g (t—p)]"
yr)=[g" (1),g" (t+1),g" (t+ )" (2)
where g(t) =y(t) —y such that y is the mean of

principal components y over time.

Furthermore, past and future Henkel matrices
Y, € R™P*™ and Yy € R™7*™ comprise of m=n—p—f+1
past/future vector pairs, making the time lagged data
matrices for feature extraction starting at time stamp p
(the minimal initial time point for constructing past vector):

Yp(p+m —1)]
Yrlptm =1L (3)

Y, = [yp(p)vyp(p"‘ 1)7 T
Yy = [ys(p),yr(p+1),---

The time lags, » and f, can be estimated by calculat-
ing the auto-correlation of time-lagged variable vectors.
Analogically to PCA, the quasi-covariance matrix H is
defined by covariance and cross-covariance matrices of Y,
and Yj:

Ypp = YLTYp;

Sir=Y7Yr =YY, (4

_1 _1
H= Eff2 ErpZipp - (5)

Consequentially, the projection matrices J and L are
the normalized results of singular value decomposition
result of H:

H=UAV" (6)

1 1
J=VaSp?, L=(I —VaVi)T,7. (7)
The canonical variate vector z and residual vector e
are both linear projections of past vector y, at time ¢:

2(t) = Jyp(t), e(t) = Lyy(t). (®)

2.2 State-space ICA

Another example of multi-layer linear feature extrac-
tion algorithms is the state-space ICA[3l. Following the
algorithm structure in Fig.1, CVA comes as the first lay-
er for handling process dynamics and ICA is conducted in
succession to both canonical variate space and residual
space to account for non-Gaussianity. These independent
components are used for monitoring statistics calculation.

In previous section, (8) have been derived for calculat-
ing canonical variates and residuals in CVA approach.
Further linear projection of canonical variate space and
residual space in order to maximize the independence
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between features are defined in (9) in state-space ICA:

s(t) = W.z" (t), q(t) = Wee' (t). (9)
The explicit solution to the projection matrices W,
and W,, such that the independence of individual com-
ponents is maximized, is not available; instead, iterative
optimization approaches like FastICA[2% may be used.

2.3 PCA-enhanced state-space ICA

The development of PCA-enhanced CVA and state-
space ICA indicates that applying multiple feature ex-
traction layers successively may improve the perform-
ance of monitoring algorithms. Therefore, PCA-enhanced
state-space ICA with 3 layers of feature extraction is pro-
posed as a further extension:

1) Apply PCA to the original data set for dimension-
reduced principal components.

2) Apply CVA to the Henkel matrix constructed by
principal components in order to handle process dynamics.

3) Apply ICA to the canonical variates and residuals
for extraction of representative features.

The structure of PCA-enhanced state-space ICA al-
gorithm can also be summarized using Fig. 1.

2.4 Fault detection stage

After features have been extracted from original data,
monitoring statistics are to be calculated using these fea-
tures and compared with their control limits for fault de-
tection. Qinl26] has studied a variety of monitoring met-
rics in data-driven process monitoring. The most widely
used ones among all are the T2 statistics for detecting
systematic variation using representative features (e.g.,
canonical variates in CVA and independent components
in ICA) and Q@ statistics for random error using residuals,
shown in (10).

(1) = 2" ()z(t), Qt) = e (e(t). (10)

Based on normal data, upper control limits with con-
fidence level a, ie., T¢cr (o) and Quer(a), of statistics
n (10) are defined as

P(T? > Tior(@) =a, P(Q>Qucr(a)) =a. (11)

Due to the potential non-Gaussianity of the process
variables, the distribution functions in (11) and corres-
ponding control limits are estimated via kernel density es-
timation[2”. In online fault detection, monitoring statist-
ics calculated with the real-time measurements are com-
pared with these control limits to determine the fault oc-
currence based on the condition shown in (12).

(T*(t) > Toer) || Q) > Quer) . (12)
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3 Contribution propagation analysis

This section discusses the general formulation of con-
tribution plots under multi-layer feature extraction
framework and derives the solution to PCA-enhanced,
state-space ICA, and PCA-enhanced state-space ICA
methods.

3.1 Contribution propagation
Equation (13) formulates the structure of a general

2-layer linear feature extraction based fault detection
method.

y = Px
z=Jy, e=Ly
T°=2"2, Q=c¢€"e (13)

where

x: original measured variable vector;

P: first layer projection matrix;

y: intermediate features from first layer;

J: second layer projection matrix for feature variables
representing systematic error;

L: second layer projection matrix for residuals repres-
enting random error;

z, e: features from second layer representing systemat-
ic and random error;

T2, Q: monitoring statistics for systematic and ran-
dom error.

In this formulation, the original data set
X = [x(1),2(2),---,«(n)]" is initially processed by the
first feature extraction method to obtain the intermedi-
ate feature data Y = [y(1),y(2), -, y(n)]T. Y is further
processed by the second layer of feature extraction meth-
od to attain the feature variables Z = [z(1), z(2), - - -, 2(n)]*
and residual variables E = [e(1),e(2),---,e(n)]T. The fi-
nal monitoring statistics are based on z and e. It is obvi-
ous that aforementioned PCA-enhanced CVA and State-
space ICA fall into this category.

The objective of contribution plots-based fault dia-
gnosis is to gain the contribution of original process vari-
ables to the final monitoring statistics such as 7?2 and Q.
In order to do so, Fig.2 illustrates the propagation of
variable contributions under this multi-layer feature ex-
traction framework.

When the number of intermediate layers increases, the
propagation procedure of contributions will remain the
same. Hence, this framework also applies to PCA-en-
hance State-space ICA algorithm which has three layers
of feature extraction.

The following equations hold for individual variables
i1 Conta, y; = Yj;

25:1 conty; =, = zk; cont, p2 = 2zt zr. Analogy can be

T; € x, Y €Y and 2 € z:
made for the contribution plots to ) statistics. The gen-

eral philosophy behind is to calculate the weighted com-

cont, p,cont, ,

Fig. 2 Illustration of 2-layer contribution propagation in 72

bination of the contributions of intermediate features to
the final statistics (cont,; 72 and conty; q), in which the
weighting coefficients are the contribution of original
variable to the intermediate features (conta, y ;).

In general, the individual contributions of single vari-
ables are displayed in (14), where P;; and J;  are inter-
mediate coefficients with respect to y; and zi, respect-
ively.

contzi,yj =z;F;;

Contijzk =y;Jjk

contzi,zk = sz‘z]j,kpi,j' (14)

Jj=1

PCA, CVA and ICA are all linear layers; therefore, a
close form solution to the complete contribution plots of
original variables to monitoring statistics can be derived
explicitly.

3.2 Contribution calculation for PCA-en-
hanced CV A-based monitoring

Following the general formulation proposed previ-
ously, the contribution plots of this PCA-enhanced CVA
algorithm can be derived in 4 steps.

1) Contribution of the original process variable vector
x to the principal components y.

The general process model of PCA is

yT =xTP= inpi (15)
=1
where ® = [z1,22, - ,mU}T and xz; is the ¢-th process

variable, whilst p; € R" is the i-th row vector of P.
Therefore, for each variable z;, its contribution to the
entire principal components y is calculated by (16):

contz, y(t) = x:(t)ps. (16)
2) Contribution of principal components ¥ to canonic-
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al variates z and residuals e: Based on the original defini-
tion of contribution, the contributions of the j-th princip-
al component y; to the k-th canonical variate z; and re-
siduals e, at time t are calculated by decomposing zj; and
en into summation of individual contributions.

P
conty, =, (t) = D 175,k (¢ = 1)
=1
p
conty, e, (t) = |Ljy.ny;(t — 1) (17)
=1

where Jj, , is the coefficient of the j-th principal
component y; with time delay ! with respect to the k-th
canonical variate zx. J and L are the projection matrices
obtained by CVA.

3) Contribution of canonical variates z and residuals e
to monitoring statistics: According to (10), the monitor-
ing statistics can be decomposed into summations of
squared terms of individual features, as shown in (18).

cont,, r2(t) = zp (t)
conte, o(t) = en(t). (18)

4) Contribution of the i-th process variables z; to
monitoring statistics: Noticing that based on (16), the
contribution of x; to y; at time ¢t —1 is conty,,y, (t —1) =
z;(t — l)pi,j, the contribution of variable z; to 72 and Q
at time ¢ can be obtained by (19) and (20).

d p
cont,, p2(t) =33 ’zT(t)lecontzi,yj (t—1)| =

j=11=1

|=7(®)] 171 ews ) (19)

conty, zo(t) = Z 3 ‘ZT(t)le cont,y, (t—1)| =
=7 ®)] 111ei ()] (20)

where the ¢; ,(t) € RP is the t-th column vector of past
Hankel matrix C;;, of x;p; which is constructed the same
way as Yp.

3.3 Contribution calculation for state-
space ICA based monitoring

Similarly, the contribution propagation for state-space
ICA can be obtained:

1) Contribution of the original process variable vector
x to the canonical variates z and residuals e: Similarly to
the second step in PCA-enhanced CVA, (21) defines the
contribution of the i-th process variable to the k-th ca-
nonical variate z, and the h-th residual ep:
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p
conte,; =, (t) = Z |J’iz;kxi(t - l)|
=1
P
conta, e, (t) = > |Liy nzi(t —1)]. (21)
=1

2) Contribution of z and e to independent compon-
ents s and r: Since both CVA and ICA are linear projec-
tions of original features, the contribution calculation re-
sembles the procedure in (16).

contz, s(t) = zx(t)ws i
conte, »(t) = en(t)wrp (22)

where w, » and w, , are column vectors of W, and We.

3) Contribution of s and r to monitoring statistics:
The contribution of s,, a-th independent component in
canonical space, to T2 and the contribution of rg to Q) are

cont, r2(t) =
contr, q(t) = ra(t). (23)

4) Contribution of original variables to monitoring
statistics: The contribution of variable x; to 72 and Q at
time ¢ can be obtained by (24) and (25).

cont,, r2(t) = s (1) Y > |weaJiyxi(t — 1) (24)

a 1=

conts, Q(t) =" () Y Y |JwepLyzi(t =) (25)
8 1=1

where w... and w3 are row vectors of W, and W-.

Note that due to the mathematical formulation of
CVA and ICA, the covariance matrix of extracted fea-
tures is diagonal. Therefore, the cross terms of canonical
variates/independent components do not exist in monit-
oring statistics and these statistics can be easily decom-
posed into summation of contributions of individual fea-
tures. In other linear algorithms of which the covariance
matrix is not diagonal, the contribution propagation
framework will result in an approximated solution.

3.4 Contribution calculation for PCA-en-
hanced state-space ICA based monit-
oring

Similarly to PCA-enhanced CVA and state-space ICA,
contribution propagation analysis calculates the contribu-
tions propagated in each layer and estimates the contri-
bution of original variables to final monitoring statistics
by synthesizing the propagated contributions when PCA-
enhanced state-space ICA is adopted. To be brief, the
procedure is summarized as follows:

1) Contribution of original process variables to prin-
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cipal components;

2) Contribution of principal components to canonical
variates and residuals;

3) Contribution of canonical variates and residuals to
corresponding independent components;

4) Contribution of independent components to monit-
oring statistics;

5) Contribution of original process variables to monit-
oring statistics.

3.5 Algorithm summary

To summarize, the online fault detection and diagnos-
is procedure based on multi-layer linear feature extrac-
tion techniques is follows:

1) Retrieve the new sample vector «* and calculate
the intermediate features y* with the first layer of fea-
ture extraction algorithm;

2) Continue the calculation until the monitoring fea-
tures z* and residuals e* are obtained;

3) Calculate the monitoring statistics using z* and e*;

4) If the monitoring statistics exceed their control lim-
its, calculate the contribution of all zj to the monitoring
statistics propagated through multiple layers so as to
identify the influential variables.

4 Case studies

In this section, the proposed contribution propagation
framework will be validated using two case studies: a sim-
ulated benchmark case study of the Tennessee Eastman
process and a benchmark data set collected by experi-
ments on a multiphase flow facility.

4.1 TE plant

4.1.1 Process description
As a simulated case study, the Tennessee Eastman
process (TEP) has been widely acknowledged as a bench-

mark for development and validation of process monitor-
ing and control algorithms. The process configuration of
TEP used in this work is inherited from [28]. Simulated
data set consisting of 22 measured variables is used for
training and validation; the tag names and descriptions of
these variables are presented in Table 1.

To validate, a training set of 1000 samples is collec-
ted in normal operating condition. For validation, two ex-
tra data sets of 1000 samples each are generated under in
presence of two fault scenarios (IDV(11) and IDV(13) in
[28]), respectively. The fault descriptions are provided in
Table 2. The faulty period starts at Sample 200 and ends
at 1000.

4.1.2 Fault diagnosis results

It has been demonstrated in previous works that
PCA-enhanced CVA and state-space ICA can improve
fault detection performance on the TEP data set by com-
paring with CVA and dynamic extensions of PCA and
ICA[2, 13|, Therefore, this section focuses on the fault dia-
gnosis performance obtained by contribution propagation
framework used in multi-layer linear feature extractions
and the ordinary contribution plots applied to CVA-
based monitoring.

The contribution plots of all 4 monitoring algorithms
for both faults are presented in Figs. 3 and 4 in the order
of the number of layers increases.

Table 3 further summarizes the influential variables
identified by their contributions in CVA, PCA-enhanced
CVA, state-space ICA, and PCA-enhanced state-space
ICA. The union set of variables that rank the top 2 in
their contributions to T2 and @ statistics is identified as
influential variables. A more systematic way of identify-
ing influential variables using the control limits of vari-
able contributions2!l can be considered as a potential ex-
tension.

For IDV(11), it has been agreed by the contribution
plots of all 4 algorithms that XMEAS(9), the reactor
temperature, is the most directly influenced variable
when the reactor cooling water inlet has large random

Table 1 Process variables

Number Variable name Number Variable name
XMEAS (1) A feed (stream 1) XMEAS (12) Separator level
XMEAS (2) D feed (stream 2) XMEAS (13) Separator pressure
XMEAS (3) E feed (stream 3) XMEAS (14) Separator underflow
XMEAS (4) A and C feed XMEAS (15) Stripper level
XMEAS (5) Recycle flow XMEAS (16) Stripper pressure
XMEAS (6) Reactor feed rate XMEAS (17) Stripper underflow
XMEAS (7) Reactor pressure XMEAS (18) Stripper temperature
XMEAS (8) Reactor level XMEAS (19) Stripper steam flow
XMEAS (9) Reactor temperature XMEAS (20) Compressor work
XMEAS (10) Purge rate XMEAS (21) Reactor water temperature
XMEAS (11) Separator temperature XMEAS (22) Separator water temperature
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Fig.3 Contribution performance: IDV(11)

Table 2 Fault specification in TEP case study

Process variable Type
IDV(11) Reactor cooling water inlet Random variation
IDV(13) Reaction kinetics Slow drift

variation; moreover, the reactor water temperature
(XMEAS(21)) will also be influenced. This conclusion can
be justified by reasoning with respect to the process con-
figuration: Since the reactions in this plant are all exo-
thermic?9, the large variations of coolant will cause vari-
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ations in the temperature measurements associated to the
reactor; large variations in XMEAS(9) and XMEAS(21),
therefore, are the cause of monitoring statistics exceeding
their thresholds. This observation can further assist locat-
ing the fault.

IDV(13) is more difficult to diagnose since it is hard
to quantify the reaction kinetics directly. Since the react-
ants are all gas and resultants are all liquids in reactions
of this plant[29, the pressure drop in the system will be a
good indicator of reaction kinetics, which is reflected in
reactor pressure (XMEAS(7)). Since after the condenser,
gas resultants will liquefy and the pressure is no longer
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Table 3 Fault isolation

IDV(11)
CVA XMEAS (9), XMEAS (21)
PCA-CVA XMEAS (9)
SS-ICA XMEAS (9), XMEAS (21)
PCA-SS-ICA XMEAS (9), XMEAS (21)
IDV(13)
CVA XMEAS (11), XMEAS (18), XMEAS (22)
PCA-CVA XMEAS (11), XMEAS (15)
SS-ICA XMEAS (7), XMEAS (11), XMEAS (18)
PCA-SS-ICA XMEAS (10), XMEAS (11), XMEAS (18)

dominant in the separator or stripper, the pressure vari-
ation in the stripper will be less significant. Instead, the
stripper level (XMEAS(15)) will be influenced owing to
the insufficient reaction. Variations in temperature also
propagates from reactor (XMEAS(11)) to the stripper
(XMEAS(18)) due to the exothermic nature of this reac-
tion. These variables indicate that this fault impacts the
condition in reactor and other components downstream
and therefore restrain the area of fault existence. Fig.5
visualizes the trend plot influential variables identified by
state-space ICA (XMEAS(7) and XMEAS(11)) and a
clear trend of variation can be observed after the fault
was seeded.

2 810 T T T T 85
—Reactor pressure (kPa)
-- Separatgr temperature (°C)
2 800 1 84
2790 ; : : : : 83
0 200 400 600 800 1000 1200

Samples

Fig. 5 Trend plot of influential variables

It can be concluded that, in this simulated case study,

the proposed contribution propagation framework
provides a fault isolation approach for PCA-enhanced
CVA, state-space ICA, and PCA-enhanced state-space
ICA and identifies influential variables. While the fault
detection performance is improved by multiple layers of
feature extraction, the contribution of original measured
variables can still be estimated via contribution propaga-

tion and hence facilitates fault diagnosis afterwards.

4.2 Multiphase flow benchmark

4.2.1 Process description
The multiphase flow facility in the Process System

Engineering Lab of Cranfield University is a unique in-
dustrial-scale rig for researches and experiments on meas-
uring, monitoring and control of multiphase flows. Water,
oil and air are supplied from individual pipelines; by con-
verging and intersection of pipelines, 3-phase flows are
mixed, making a multiphase flow with liquid and gas.
The multiphase flow is transported, measured, separated
and recycled successively afterwards. Being fully auto-
mated, this facility can operate in multiple normal oper-
ating conditions as well as simulate various faulty scen-
arios with manually seeded faults. It is also well equipped
with measurement instrumentations which contain both
regular process variables such as pressure and temperat-
ure, and mechanical condition variable such as pump cur-
rent. All measurement data are collected in real-time and
recorded by DeltaV system for further analysis. A more
detailed description of this benchmark case study and
previous work on statistical monitoring of it can be found
in [4] and [30].

The schematic with the layout of measurement instru-
mentations of this facility is shown in Fig.6. A total of 23
process variables are measured and recorded in the
benchmark data set and variable descriptions are
provided by Table 4.

4.2.2 Fault diagnosis results

In the preliminary fault detection step, CVA, PCA-en-
hanced CVA, state-space ICA, and PCA-enhanced state-
space ICA algorithms are used for calculating the monit-
oring statistics separately; the propagated contributions
of original variables to final monitoring statistics in multi-
layer algorithms are calculated with respect to Section 3.
The results obtained from proposed framework are com-
pared with those obtained directly by CVA-based monit-
oring using original contribution plotsi4l. Fig.7 compares
the contribution plots of all variables obtained by CVA,
PCA-enhanced CVA, state-space ICA, and PCA-en-
hanced state-space ICA in Fault 1. Their results in Fault 2
are compared in Fig.8. To summarize the fault diagnosis
results suggested by contributions, Table 5 shows the in-
fluential variables identified by contributions of variables
using different monitoring algorithms.

For Fault 1, pipeline blockage is mimicked by turning
the control valve on the input pipeline to top riser (VC404)
gradually. According to the contribution plots, PCA-en-
hanced CVA and PCA-enhanced state-space ICA sug-
gest the differential pressure over VC404 (V7) is the most
influential variable while sate-space ICA and CVA both
identify the riser top pressure (V3) as an influential vari-
able too. Noticing that the valve opening of VC404 is not
involved as process variable, the pressure drop over this
valve and pressure measurements in adjacent to it will be
the proper indicator of pipeline blockage. Therefore, the
influential variables, which the deviation and original
contribution plots both agree upon, are the most relev-
ant ones among all with respect to Fault 1 and the res-
ults of contribution-based fault diagnosis are convincing.
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Fig. 6 Schematic of the multiphase flow facility

Table 4 Measured variables in multiphase flow facility

Number Description Location  Number Description Location
1 Air delivery pressure PT312 13 Top riser density FT407
2 Riser bottom pressure PT401 14 Top separator output density FT406
3 Riser top pressure PT408 15 Input water density FT104
4 Top separator pressure PT403 16 Top riser temperature FT407
5 3 phase separator pressure PT501 17 Top separator output temperature FT406
6 Differential pressure (PT401-PT408) PT408 18 Input water temperature FT104
7 Differential pressure over VC404 PT403 19 3 phase separator gas-liquid level L1504
8 Input air flow rate FT305 20 Valve position of VC501 VC501
9 Input water flow rate FT104 21 Valve position of VC302 VC302
10 Top riser flow rate PT403 22 Valve position of VC101 VC101
11 Top separator level L1405 23 Water pump current PO1
12 Top separator output flow rate FT406

For Fault 2, due to the insufficient air/water supply,
liquid accumulates at the bottom of the riser and blocks
the gas transportation, causing the bottom pressure to in-
crease. The liquid level will continue rising until blocked
gas penetrates and results in liquid blow out at the riser
top. Remaining liquid will fall back to the riser bottom
and accumulate again. From process data perspective, the
slugging fault will cause large fluctuations in process vari-
ables, such as pressure, flow rate and density, at both
riser top and riser bottom. However, unlike single vari-
able faulty scenario, the identified influential variables
from different algorithms in slugging condition are no
longer unified. For instance, the differential pressure
between riser bottom and top (V6), riser bottom pres-
sure (V2), and riser top density (V13) are identified com-
monly while variables in vicinity, such as riser top flow
rate (V10) and riser top pressure (V3), are also sugges-
ted by different algorithms. Roughly speaking, all vari-

@ Springer

ables with large contributions are in line with the fact
that variables at riser top and bottom will be mostly in-
fluenced when slugging occurs; while the contribution of
specific measurements will be determined by the corres-
ponding feature extraction algorithm applied.

It can be concluded that the proposed contribution
propagation framework is capable of estimating the con-
tribution of original variables in monitoring statistics
when multi-layer linear feature extraction method is em-
ployed in monitoring statistics calculation; therefore it is
suitable for fault diagnosis and isolation of relevant vari-
ables in these situations. The fault diagnosis performance
can be maintained as the fault detection performance is
improved by substituting simple feature extraction meth-
ods with multi-layer feature ones. In the meantime, vari-
ations may exist in diagnosis results due to different fea-
ture extraction methods applied, especially in presence of
complicated fault that influences multiple process vari-
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Table 5 Influential variables identified
Fault 1 Fault 2
CVA V3,V7 V3,V2, V6
PCA-CVA v V10, V13
SS-ICA V3, V7 V6, V2, V13
PCA-SS-ICA v7 V10, V13

ables, as observed from this case study.

4.2.3 Discussions

The case study further demonstrates the fault isola-
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tion ability of proposed contribution propagation ap-
proach for PCA-enhanced CVA and state-space ICA in
data set collected from real process. Moreover, the solu-
tion can be visualized and interpreted the same way as
the ordinary contribution plots in basic feature extrac-
tion approaches. On the other hand, there still exists po-
tential of improvement for detection and diagnosis of the
slugging fault.

5 Conclusions and future work

In this work, we proposed contribution propagation
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analysis, which is a novel fault diagnosis approach based
on the original contribution concept, for fault diagnosis
and influential process variable identification that applies
when multi-layer linear feature extraction algorithms are
used for fault detection. As a more advanced example of
multi-layer linear algorithms, PCA-enhanced state-space
ICA has also been proposed in addition to existing PCA-
enhanced CVA and state-space ICA. By the validation of
the TE data and the multiphase flow facility data, it has
been demonstrated that this contribution propagation
analysis is compatible with various types of multi-layer
feature extraction algorithms and the interpretability of
the monitoring results obtained by these existing al-
gorithms has been improved significantly.

The gap of contribution plots-based fault diagnosis
still exists in this multi-layer contribution propagation
framework for monitoring of processes and faults with ex-
tra complexity due to the mathematical complexity of
nonlinear approaches adopted, such as kernel transforma-
tion. Therefore, it is worthwhile considering the propaga-
tion of contribution plots in context of “kernelized” and
other advanced feature extraction methods so as to
provide a general solution to the contribution plots of
variables for different monitoring techniques in the fu-
ture.
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