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Abstract

The hyporheic zone (HZ) is an area of interaction between surface and ground
waters in riverbeds. It is characterized by a diverse fauna and by a bidirectional flow
(hyporheic exchange flow - HEF). HZ plays a significant role in river ecosystems as
location of major physical, biogeochemical and ecological processes. Yet, predicting
HEF in rivers and assessing its ecological effects is challenging due to physical and
biological process- interactions in time and space.

This thesis investigates HEF from a hierarchical scaling perspective and it has two
components: (i) physical, and (ii) biological. The first component includes discriminat-
ing and integrating the drivers of HEF across spatial scales and developing a multiscale
statistical method for river restoration planning. The second component consists of
testing the interaction between physical and biological processes on in-channel large
wood (LW), by quantifying, in the field, the effects on hyporheic and benthic inverte-
brates assemblages taxonomic structure and functional traits.

The multiscale approach shows that suitable areas for HEF-focused restoration em-
bed a summary of environmental information across the domains of hydrology, geo-
morphology, and ecology. Field results about invertebrates’ taxonomic and functional
metrics, demonstrate that the increased spatial and temporal variability of abiotic con-
ditions at LW sites drives changes in abundance, biomass, diversity and functional
traits of hyporheic meiofaunal assemblages. In contrast, benthic macrofaunal assem-
blages were less wood-impacted.

To support restoration targeting the HZ, this research emphasizes the need to (i)
recognize different spatial scales of HEF to identify the underlying processes; (ii) coordi-
nate approaches to pool hyporheic data and create long-term datasets to quantitatively
assess model predictions; and (iii) establish further knowledge on how LW effects HZ
in different valleys and river types.

Keywords: hyporheic zone, multiscale, functional traits, large wood, invertebrates, tax-
onomy
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Chapter 1

Introduction

Rivers are an essential element of Earth’s ecosystems and the health and survival

of billions of people. They are also intensively impacted systems by human activities:

urbanization, soil erosion, forest degradation, peatland and wetland drainage, have

impaired natural hydrological regimes and caused a widespread decline in river habitats

across Europe and an estimated worldwide ecosystem damage of US$ 6.3 trillion a year

(Ding et al., 2017).

The cumulative impact of all these changes suggests that there has never been a

more pressing moment to restore degraded rivers and their landscapes (Ding et al.,

2017; McDonald et al., 2016). This is the ambition of river ecological restoration,

which is “ the process of assisting the recovery of an ecosystem that has been degraded,

damaged, or destroyed ” (Society for Ecological Restoration International Science &

Policy Working Group, 2004).

Currently, best practice ecological restoration is underpinned by the principles of

“effectiveness”, “efficiency” and “engagement” (McDonald et al., 2016; Keenelyside

et al., 2012) that are adopted throughout the stages of planning, implementing, moni-

toring and evaluating restoration projects (McDonald et al., 2016). Key steps include

the choice of priority sites and of restoration measures (The River Restoration Centre,

2013) both at catchment or at reach scale. Accurate selection of priority sites enables

identifying the most effective set of variables to achieve restoration objectives and re-

duce the uncertainty when implementing the scheme, while the selection of appropriate

restoration measures maximizes restoration outputs (i.e. biodiversity).

However, restoration interventions in rivers are impaired by rapid environmental,

cultural, innovative and investment changes, and have often resulted in little improve-

ment of river hydro-ecological conditions (Palmer et al., 2010; Wohl et al., 2005). Part of

this failure stems from i) the lack of crafted goals derived by little interdisciplinary un-
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derstanding of the relationship between physical and biological factors (Schirmer et al.,

2014) and ii) the difficulty of defining prioritization and approaches from catchment

assessments as consequence of paucity of interdisciplinary supporting tool (Mendoza-

Lera and Datry, 2017; Hester et al., 2016; Hester and Gooseff, 2011, 2010; Palmer et al.,

2010). Hence, holistic approaches and cross-border cooperation to manage river ecosys-

tems have been advocated to keep river restoration open and flexible to the challenges

of restoring natural functioning of rivers in current times of changes (Higgs et al., 2018;

Wohl et al., 2015). In this direction, river restoration has been encouraged to adopt

more interdisciplinary approaches at the interface of hydrology, geomorphology and

ecology by including, for example, the hyporheic zone (HZ) in their planning (Hester

and Gooseff, 2010).

1.1 What is the hyporheic zone?

The term “hyporheic zone” (Orghidan, 1959) refers to “. . . saturated subsurface

including flow paths that originate from and return to surface water where interactions

occur within a temporal scale relevant to the process of interest, and processes of interest

occur continuously from the stream - subsurface interface to the hyporheic - groundwa-

ter continuum” (Ward, 2016) (Figure 1.1). The HZ is therefore the region where surface

and ground waters mix together, characterized by a diverse fauna (hyporheos) (Brunke

and Gonser, 1997) and a bidirectional flow of water known as hyporheic exchange flow

(HEF) (Tonina, 2012; Gooseff, 2010; Storey et al., 2003; Harvey et al., 1996). Being at

the interface of surface and subsurface waters, it is an active region of interlinked phys-

ical, chemical, and biological processes, and of key ecosystem functions (Ward, 2016;

Boulton et al., 1998).
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Figure 1.1: (a) Cross section of HZ across catchment, valley and reach. From origin and partitioning
of water between surface and subsurface flow at catchment scale, to flow through valleys and river
channels. (b) River cross-section representing the hyporheic zone and hyporheic exchange flow. Arrows
of different colours represent two possible stream conditions: losing and gaining stream.

The HZ underpins fundamental river ecosystem functions, “river liver” (Fischer

et al., 2005), due to the interaction between the hyporheic physical and biological

systems (Ward, 2016; Krause et al., 2011b; Brunke and Gonser, 1997; Findlay, 1995).

The physical system refers to the environment where the hyporheic mixing occurs

and to the exchange of water and solutes itself (Ward, 2016)(Figure 1.1). This hyporheic

flow is defined by the interaction between surface and groundwater, and regulated by

gradients (i.e. potential and kinetic energy) at the streambed interface that force surface

water to enter the hyporheic zone and to upwell in more gently slopes areas of the river
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(Boano et al., 2014; Cardenas et al., 2004; Elliott and Brooks, 1997; Packman and

Brooks, 2001).

As the HEF is driven by potential and kinetic energy gradients, several factors at

the river surface and subsurface influence the hyporheic physical system (Figure 1.2),

and therefore the occurrence of HEF, by changing the distributions of hydraulic head

(Boano et al., 2014). In fact, hyporheic exchange exhibits scale-dependency where HEF

at reach and sub-reach scales is influenced significantly by larger-scale hydrogeological

patterns and processes (Wörman et al., 2007). This fractal dimension to HEF means

that the higher the number of factors (i.e. hydrological, topographical, geological), the

higher HEF spatial variation and the more difficult it is to decipher the underlying

processes and drivers of HEF and to transfer findings on HEF from fieldwork to other

river types and at larger scales (>1 km).

Figure 1.2: On the y axis the spatial scales, on the x and secondary y axis the main factors spatially
related to the HEF. This diagram can be read from both directions: right to left (top down approach)
or left to right (bottom up approach). Black arrows indicate that processes have mixed drivers (i.e.
topography is the combination of geology and hydrology).
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The spatial and temporal variation of HEF in turn controls the types and rates of

physical (e.g. thermal regimes), chemical (i.e. nutrient attenuation, cycling of oxygen,

mineral dissolution and precipitation), geomorphological (i.e. sediment distribution and

transport) and ecological processes (i.e. secondary production) (Ward, 2016; Merill and

Tonjes, 2014; Krause et al., 2011b; Boulton, 2000; Brunke and Gonser, 1997). Many of

the hyporheic flow functions are indeed mediated by hyporheic communities that con-

stitute the biological system. The hyporheic zone hosts assemblages of invertebrates

that represent 58 - 81% of the total number of species in rivers (Robertson, 2000), are

important prey for fish (Schmid-Araya and Schmid, 2000), and grazers of algae and

bacteria (Borchardt and Bott, 1995; Perlmutter and Meyer, 1991). Perhaps, the best-

known examples of the interaction between physical and biological systems concern

bacterial respiration and organic carbon turnover (Stegen et al., 2016), the supply of

oxygen into the sediment (Corson-Rikert et al., 2016; Gibbins et al., 2016), bioturba-

tion (Boulton, 2007), and the microbial-mediated biogeochemical transformation (i.e.

denitrification and nitrification) (Mendoza-Lera and Datry, 2017; Heppell et al., 2014;

Nogaro et al., 2010; Wood and Armitage, 1999). As the HEF is highly variable, mosaics

of different ecological responses to HEF arise from site-specific interactions. A scientific

understanding of HEF driving factors is therefore needed to predict how these flows

generate and support river functioning.

Finally, river restoration aims to address physical habitat degradation to improve

biodiversity (i.e. species and ecosystem diversity), and, as hyporheic functioning under-

pins stream health, targeting the HZ in restoration plans would be a logical direction for

a holistic approach to river functioning (Hester and Gooseff, 2011). Many restoration

measures can induce or enhance HEF through the generation of hydraulic gradients,

creation of geomorphological heterogeneity (i.e. bedforms) and decrease of fine sedi-

ment load (Hester and Doyle, 2008; Schirmer et al., 2014; Gordon et al., 2013; Tuttle

et al., 2014), thus, they could be used at different scales to promote HEF. At present,

there are collaborative scientific initiatives for river restoration, embedding working at

a river catchment scale (Department for Environment and Affairs, 2013) and based on

the “naturalness criteria” (physical, hydrological, chemical and biological) for select-

ing priority habitats (Mainstone et al., 2014), but there is no framework representing
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the complexity of multiple inter-related and cross-scale processes affecting HEF, tak-

ing account of typical data availability for river restoration and planning. Therefore,

it is important to understand the drivers of HEF to determine potential benefits and

develop restoration strategies.

1.2 Knowledge gap and research needs

Prediction of HEF and quantification of biological responses to hyporheic flow is the

first step to assess the potential impact of HEF in rivers and for the development of ap-

propriate management strategies. However, to predict and quantify biological responses

to HEF, we need comprehensive knowledge of the main factors and interactions driving

hyporheic dynamics and their role in determining HEF spatial and temporal variations

(Figure 1.2). Therefore this research takes an inclusive view of the HZ and identified

two key research needs about its physical and biological components to support river

restoration.

First, there is a need for studies that identify and synthesise driving factors and

underlying processes for HEF across multiple spatial scales (Hester et al., 2017; Ward,

2016) (Figure 1.2). To date, the mechanisms driving this mixing of surface and ground-

water in the beds and banks of rivers are well understood from a theoretical perspective

and supported by empirical work at the reach scale (Harvey and Gooseff, 2015; Boano

et al., 2014). However, this research is limited by the number of sites, scale and the di-

versity of river types within which HEF has been quantified, making prediction difficult

based on direct measurements of HEF (Ward, 2016).

Second, to test the hypothesis about hyporheic flow and its ecosystem functions, we

also need more detailed information on how HEF affects the distribution, taxonomic-

based descriptors and functional traits of living biota (i.e. invertebrate). To date, most

studies have focused on HEF and hyporheic biota in single or multiple riffles (Mathers

et al., 2017; Descloux et al., 2014; Davy-Bowker et al., 2006) that have been confirmed

to drive HEF. Other in-channel geomorphological structures such as large wood (LW)

promote HEF (Sawyer et al., 2011) and lately have received particular attention in

river restoration because they are low-cost, time efficient and having more than a flow
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attenuation effect in rivers (Harvey and Gooseff, 2015). Research has demonstrated

LW increasing nutrient attenuation (Klaar et al., 2016), river respiration (Blaen et al.,

2018), species richness and biomass of macroinvertebrates assemblages (Pilotto et al.,

2016, 2014) but research has not investigated how LW influences taxonomic descriptors

and functional traits of HZ communities. The lack of hyporheic biotic data associated

with LW complicates our ability to identify the processes controlling HEF in wood sites,

the ecological functioning of the HZ, and emphasizes the need for further research to

generate an evidence base for river restoration plans.

1.3 Aim and objectives

This thesis aims to investigate the multi-scale drivers for spatial and temporal vari-

ation of HEF, and the effects of structure-induced HEF on hyporheic and benthic

biodiversity for river restoration planning. These findings provide a comprehensive

hydro-ecological knowledge of aquatic ecosystems across scales (Figure 1.3) and sup-

port river restoration prioritizing sites and approaches to target the HZ.

Objective 1: to discriminate and integrate the multi-scale factors driving the spa-

tial and temporal variation of HEF and propose a methodology to predict HEF for

river restoration planning (Chapter 2 and Chapter 3).

Objective 2: to quantify hyporheic and benthic biodiversity (community structure

descriptors and functional traits) in response to large wood (structure-induced HEF)

for river restoration planning (Chapter 4 and Chapter 5).
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Figure 1.3: Spatial scales comprised by this thesis in each chapter.

1.3.1 Thesis outline

The thesis has been written in a paper format therefore the main chapters are writ-

ten as individual scientific articles (Chapter 2 to 5). Chapter 2 and 3 were under review

at Hydrology and Earth System Sciences (HESS) and Environmental Modelling & Soft-

ware respectively at the time of writing. Chapter 4 and 5 were submitted to Freshwater

Biology and to Functional Ecology respectively at the time of completion of this thesis.

Please note that due to the format of the thesis, repetition in data description occurs

in Chapter 4 and 5. All original work was carried out by the author of this thesis, and

the contributions of the co-authors are stated in Table 1.1.

Chapter 2 presents an up-to-date critical review of the main factors controlling spatial

and temporal variability of HEF in rivers. It provides new theoretical knowledge regard-

ing HEF by drawing together published literature from different disciplines (catchment

hydrology, fluvial geomorphology and ecology) and summarising for the first time how

factors across a range of spatial and temporal scales influence its expression in rivers

(Obj. 1).
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Chapter 3 describes a novel and transferable multiscale method for identifying areas

with potentially significant hyporheic exchange combining environmental information

at reach, segment, and catchment scales, for use in restoration priority planning (Obj.

1). The method uses a deductive approach and avoids the reliance on detailed site-

specific data of HEF which is spatially limited. The chapter is a base for a holistic

process-based approach to use in river restoration.

Chapter 4 reports on a field study investigating the effect of in-channel large wood

on invertebrate taxonomic-based structural descriptors and the ecological responses to

wood-driven processes (Obj. 2). This chapter outlines the effects of LW, as geomorpho-

logical feature driving HEF on benthic and hyporheic invertebrate abundance, biomass

and taxonomic diversity and provides initial insights on the potential effects on wood-

based restoration design in the hyporheic zone.

Chapter 5 presents a field study investigating the link between wood-driven processes

and the variation of invertebrates functional traits (Obj. 2). The chapter highlights

the close relationships between species traits and local LW environmental conditions,

providing further understanding on the functional role of LW in rivers.

Chapter 6 discusses how the results presented in the previous chapters contribute to

identifying the underlying factors and process interactions controlling HEF variation

towards improving prediction and quantification of biological responses to HEF and sup-

porting the development of hyporheic-targeted river restoration strategies. The chapter

outlines recommendations for further research and river restoration recommendations

based on the findings and limitation of this research.

Finally, Appendices are included at the end of the document following References and

provide more detail on data, methodologies and statistical approaches used in each

Chapter.
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Table 1.1: Authors’ contributions to Chapter 2, 3, 4 and 5 already submitted for publication in peer-
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Chapter 2

Toward a conceptual framework of hyporheic exchange

across spatial scales
1

Abstract

Rivers are not isolated systems but continuously interact with the subsurface from

headwaters to large river valleys. In the last few decades, research on the hyporheic

zone (HZ) from multiple perspectives has increased appreciation of the hydrological im-

portance and ecological significance of connected river and groundwater systems. While

recent reviews, modelling and field studies have explored hydrological, biogeochemical

and ecohydrological processes in the HZ from bedform to reach scales, a comprehensive

understanding of the interactions driving hyporheic exchange flows (HEF) at larger

scales is still missing. In particular, there is only fragmentary information on how

hydrological, topographical, hydrogeological, ecological and anthropogenic drivers in-

teract to drive hyporheic exchange flows at larger scales. Therefore, this review aims

to conceptualize the factors at catchment, valley and reach scales that interact and

control spatial and temporal variations in hyporheic exchange flows. The implications

of these drivers are discussed for each scale, and co-occurrences across scale are high-

lighted in a case study. By using a multi-scale perspective, this review connects field

observations and modelling studies to identify process driving patterns and dynamics of

HEF. Finally, the case study illustrates how understanding of local hydrogeological and

geomorphological context can help to explain patterns in bedform-driven HEF. This

conceptual framework will aid the development of approaches to interpret hyporheic

1An early version of this Chapter in paper format, is available as HESS-discussion paper here

https://doi.org/10.5194/hess-2016-683
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exchange across scales, infer scaling relationships, and inform catchment management

decisions.

Keywords :hyporheic zone, multi-scale, catchment, valley, reach, conceptual framework

2.1 Introduction

Hyporheic zones (HZ) are unique components of river systems that underpin fun-

damental stream ecosystem functions (Ward, 2016; Harvey and Gooseff, 2015; Boano

et al., 2014; Merill and Tonjes, 2014; Krause et al., 2011b; Boulton et al., 1998; Brunke

and Gonser, 1997; Orghidan, 1959). At the interface between rivers and aquifers, hy-

porheic zones are the expression of vertical and lateral connection of rivers with flood-

plains and the underlying aquifers, and are defined by the interchange of surface and

ground waters through hyporheic exchange flows (HEF) (Lautz et al., 2010; Cardenas

and Wilson, 2007; Gooseff et al., 2007; Boano et al., 2006; Wondzell, 2006; Wörman

et al., 2006; Malard et al., 2002; Elliott and Brooks, 1997). HEF plays a significant role

in biogeochemical cycling (e.g., carbon and nutrient availability and transformation),

ecological food webs, and habitat for diverse organisms (Ward, 2016; Merill and Tonjes,

2014; Krause et al., 2011b; Boulton et al., 1998; Brunke and Gonser, 1997).

HEF is driven by potential and kinetic energy gradients near the streambed that

change hydraulic head and force surface water to flow into, through and out of the bed

(Boano et al., 2014; Cardenas et al., 2004; Elliott and Brooks, 1997). Both hydrostatic,

i.e. sum of elevation head, and hydrodynamic forces, i.e. sum of velocity head, of

the hydraulic head contribute to HEF variations within rivers and floodplains (Boano

et al., 2014; Cardenas et al., 2004; Packman and Brooks, 2001; Elliott and Brooks, 1997).

Turbulence and (i.e. gravel bed substrate) and biological processes (i.e. bioturbation)

also can drive HEF but less studied in steams and rivers (Boano et al., 2014).

The hierarchical and heterogeneous nature of river and floodplain systems creates

complex spatial and temporal patterns of exchange flows (Cardenas, 2008; Wörman

et al., 2007). There are strong gradients of structure and flow conditions formed by the

drainage network that result from: (i) the temporal and spatial scales of the stream sys-

tem from upstream to downstream, vertically and laterally (i.e. flood spates, overbank
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flows-(Minshall et al., 1985; Newbold et al., 1982, 1981), and (ii) complex geomorpholog-

ical structures (armoring, bedforms, bars and other lateral variability within channels,

braiding, meanders and floodplain deposits). Therefore, understanding and predicting

HEF dynamics requires a consideration of the hydrological, topographical, hydrogeo-

logical, anthropogenic and ecological processes operating across a spectrum of spatial

and temporal scales (Ward, 2016).

Previous work has identified multi-scale HEF processes, but has focused primarily

on individual processes and controls within river corridors (Ward, 2016; Harvey and

Gooseff, 2015; Boano et al., 2014). Existing information has not been synthesized to

assess the multiple factors and characteristics that control HEF at catchment scales

across geographic regions (Tables 1,2,3 to download from public link 2). Similarly,

earlier reviews have furthered our understanding of the ecological and functional signif-

icance of HZ (Krause et al., 2011b; Boulton et al., 1998; Brunke and Gonser, 1997), the

range of mechanisms and biogeochemical implications that influence HEF (Boano et al.,

2014; Merill and Tonjes, 2014; Dent et al., 2001), and the challenges and perspectives

to support interdisciplinary river research (Datry et al., 2017; Ward, 2016; Harvey and

Gooseff, 2015). Despite this intensive investigation of HEF processes, there has been

little investigation of hyporheic processes at catchment scale rather than at individ-

ual geomorphic units (Ward, 2016; Harvey and Gooseff, 2015; Krause et al., 2011b).

Recently, Ward (2016) recognized that hyporheic science is still facing the challenge of

enabling cross-site comparisons of findings. One of the reasons is the absence of concep-

tual frameworks to translate patterns of hyporheic flows across scales, enable multi-scale

assessment of process controls, and enable identification of common variables.

Therefore, this paper reviews the state of knowledge of HEF with respect to two

primary topics. With respect to the drivers of HEF, Sections 2.3-2.7 discuss five main

drivers, hydrological, topographical, hydrogeological, ecological and anthropogenic, and

how spatial and temporal variability in these drivers controls HEF. In the context of

multiscale interactions, Section 2.8 discusses how these drivers interact to create spatial

and temporal heterogeneity in HEF direction and magnitude. Both sections highlight

knowledge gaps that are important in terms of fundamental understanding and man-

2https://goo.gl/QVNFcE

https://goo.gl/QVNFcE
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agement of hyporheic zones. The review follows a hierarchical spatial approach, from

reaches to catchment, and provides a structure upon which to explore the individual

and interaction effects of factors on HEF and to upscale and downscale across spatially

and temporally variable hyporheic processes (Figure 2.1, 2.2).
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Figure 2.1: Illustration of catchment complexity: scales and features that influence hyporheic exchange
flows. Spatial changes in surface topography, land use and vegetation, drive geomorphological and
hydrological changes at valley and reach scale. At catchment scale, variations in surface topography
shapes valleys and channel types. Feature 1 refers to confined valleys characterized by straight channels,
meandered and braided, and the following floodplain features: scour holes and gravel splays (a). The
straight channel presents in-channel cascades (b) geomorphic features. Feature 2 refers to braided
channel morphology with multi-thread channel, an undulating floodplain of bars and islands. In-
channel geomorphic units are several types of bars (e), such as mid and lateral bars, and vegetated
islands (f). Feature 3 represents a sinuous-meandering floodplain with occasional oxbow lakes and
backwater swamps (m, n, k) and in channel: longitudinal bar (c), transverse bar (d), counterpoint bar
(h), pond-riffle (i), point bar (l), chute channel (j). Feature 4 indicates an anabranching valley with
multi-thread channels including abandoned channels (o) and backwater swamps (p). The channel can
be quite deep and include islands covered with vegetation. The symbol * refers to irrigation system of
the adjacent agricultural fields.
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2.2 Concepts and terminology

The term “hyporheic zone” has been defined variously in the literature, and some

confusion still exists within the wider research community about the extent and nature

of the HZ. To help facilitate the integration and presentation of results from a large

number of studies spanning a range of disciplines in this review, we will use a simplified

and standardized terminology for the HZ and hyporheic exchange flows (HEF).

Herein, we follow the “flexible” definition of HZ, as reported by Ward (2016): “sat-

urated subsurface including flow paths that originate from and return to surface water

where interactions occur within a temporal scale relevant to the process of interest, and

processes of interest occur continuously from the stream subsurface interface to the

hyporheic groundwater continuum”. In terms of hyporheic exchange, we recognize that

a continuum of hyporheic flow paths is associated with different hydrologic residence

times (Boano et al., 2014; Cardenas, 2008; Wörman et al., 2007).

In the context of multi-scale exchange, HEF is related to large-scale groundwater

surface-water exchange (GSE), but the terms are not synonymous (Ward, 2016). HEF

is an interchange between surface and subsurface waters occurring in short time scales

(i.e. minutes to weeks), whereas GSE flows occur at a much larger scale and may take

long times to return to the stream (i.e. months to millennia) (Toth, 1980). At the scale

of HEF, GSE can be considered as unidirectional exchange (i.e. losing, river recharges

the aquifer, and gaining flow conditions, the river is fed by the aquifer). HEF and GSE

can act in opposite directions (Stonedahl et al., 2012; Sawyer et al., 2009; Cardenas

and Wilson, 2006). For example, a reach under losing condition due to groundwater

(GW) recharge can have superimposed HEF occurring simultaneously (Fox et al., 2014;

Stonedahl et al., 2012). Consequently, this review considers large-scale GSE in addition

to HEF. We also refer to hyporheic “extent” when the HZ expands or contracts in

the horizontal (“lateral extent”) or vertical (“vertical extent”) directions, respectively.

Finally, we use the term bank storage exchange for the case where lateral HEF between

the river and floodplain is induced by the rise and fall of river water levels (Cranswick

and Cook, 2015; Pinder and Sauer, 1971). Vegetation (i.e. vegetation density, riparian

and in-channel vegetation) is considered in this review as the main ecological factor that
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influences HEF (Heppell et al., 2009; Corenblit et al., 2007). Although not reported in

this paper, we acknowledge that other ecological factors such as hyporheic freshwater

invertebrates and biofilm have a major role in interacting with HEF (Peralta-Maraver

et al., 2018).

Figure 2.2: Conceptual diagram of the key drivers of the hyporheic exchange across scales. This
diagram can be read from the centre to the outer part and viceversa as indicated by the black arrows.
Dashed lines represent hidden boundauries between scales. Colour gradient, from light to dark, follows
the hierarchical approach of this review from channel-scale to reach-scale to catchment-scale.
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2.3 Hydrological drivers

Hydrological drivers influence HEF by changing surface- and ground-water flow

regimes and distributions of hydraulic head. In this section, we provide a summary of

how groundwater and river level fluctuations control the spatial and temporal distri-

bution of hydraulic heads to affect HZ and HEF paths at reach (Section 2.3.1), valley

and catchment scale (Section 2.3.2).

2.3.1 Groundwater and stream discharge at reach scale

HEF responds systematically to changes in hydrological conditions at the reach

scale. Together, river flow regime and event based fluctuations of groundwater levels

control reach-scale hyporheic exchange by changing the distributions of hydraulic head

(Boano et al., 2014).

Several studies report that seasonal (i.e., spring-summer and summer-fall transition)

and event-based changes in the gradient between river water and groundwater levels

cause HZ to expand or contract (Malzone et al., 2016, 2015). In both losing and gaining

flow conditions, the volume of the hyporheic zone contracts under a relatively small flux,

while hyporheic residence times decrease moderately (Fox et al., 2016). In particular,

during gaining conditions, steep stream-ward hydrologic gradients limit the extent of

the HZ (Fox et al., 2014; Wondzell and Gooseff, 2013; Cardenas, 2009a; Cardenas and

Wilson, 2007; Malcolm et al., 2005; Storey et al., 2003; Wroblicky et al., 1998; Harvey

and Bencala, 1993). Conversely, the extent of the HZ and the hyporheic residence time

increase during floods (Drummond et al., 2017; Zimmer and Lautz, 2014; Swanson

and Cardenas, 2010; Wondzell et al., 2010; Poole et al., 2006). This enlargement is

caused by the increases in stream stage and velocity, that in turn increase the exchange

rate during the flood and drive water farther from the channel (Bhaskar et al., 2012;

Malcolm et al., 2004). Conversely, inconsistent patterns of HZ have been observed

in response to changes to stream discharge (Ward et al., 2013; Wondzell, 2006). In

mountainous streams, the HZ has been found to expand in small streams at lower

base flow discharge (Q <0.01 m3 s−1) compared to higher-discharge streams (Wondzell,
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2011). This behaviour has been interpreted to result from increasing hydrostatic head

gradients associated with flow around channel morphological elements at low flow, such

as development of lateral channels and flow around bars (Wondzell, 2006).

Consistently with the above findings, HEF paths do not respond uniformly to stream

discharge and groundwater flow at reach scale. Groundwater discharge reduces HEF

flux and flow path residence time and length, while stream discharge alone does not

significantly affect HEF length and residence time (Schmadel et al., 2017; Gomez-Velez

et al., 2015; Boano et al., 2008; Cardenas and Wilson, 2007). In spatially heterogeneous

reach morphology, these responses are exacerbated by the presence of reach morpholog-

ical features ((Dudley-Southern and Binley, 2015; Zimmer and Lautz, 2014); Figure 4

in (Schmadel et al., 2017)). Schmadel et al. (2017) observed that flow paths generated

by large hydraulic gradients (i.e. bedforms) are less sensitive to changes in hydrological

conditions than those generated by the larger context of the valley gradient (Schmadel

et al., 2017).

Such complex interactions between groundwater and river regimes generally makes

it difficult to identify the dominant drivers of HEF without considering multiple spa-

tial scales. To develop frameworks with improved spatio-temporal resolution of HEF,

comprehensive understanding of the valley hydrological condition is required.

2.3.2 Groundwater and stream discharge at large spatial scales

Interactions at the reach scale between the factors described in Section 2.3.1 often

results in heterogeneous responses of HEF that require the consideration of processes

at a larger scale.

HEF and residence time in river reaches are affected by the relationship between

hillslope structure and hillslope water table (Hoagland et al., 2017; Torres et al., 2015;

Godsey, 2014; Jencso et al., 2010). To date, model simulations have showed that diel

fluctuations of hillslope water tables affect both the length and the residence time of

HEF. These fluctuations, which occur due to the temporal lag between stream and

aquifer responses, produce a wide range of hydraulic gradients (Wondzell et al., 2010,

2007) and affect HEF by several orders of magnitude. Longer hyporheic flow paths
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result in locations with larger hydraulic conductivity, large stream amplitude and large

hillslope amplitude with respect to the stream (Schmadel et al., 2017, 2016).

Given the diverse geomorphology of river valleys and the seasonal responses of hills-

lope water table fluctuations to large scale controls (e.g., precipitation), the relationship

between dynamic hydrological valley conditions and HEF remains an area of active re-

search (Schmadel et al., 2017; Bergstrom et al., 2016; Schmadel et al., 2016; Nippgen

et al., 2015; Wondzell and Gooseff, 2013; Jencso et al., 2009).

Recent studies have started to consider precipitation inputs to the catchment to

enable cross-catchment comparisons of HEF (Hoagland et al., 2017; Jasechko et al.,

2016). The drivers discussed in Section 2.3.1 and 2.3.2 vary within and among catch-

ments depending on catchment topography, geology and finally geography (Hoagland

et al., 2017; Jasechko et al., 2016). For example, steep, headwater catchments re-

spond rapidly to rainfall because of their small storage capacity (Penna et al., 2016;

Gomi et al., 2002; Woods et al., 1995). Rainfall is strongly correlated with seasonal

groundwater fluctuations in catchments dominated by transmissive soils (Bachmair and

Weiler, 2012). Conversely, in headwater catchment with low permeability soils, rainfall

is only a secondary control, after topography, on the response time of groundwater lev-

els (Rinderer et al., 2016). On the other hand, lowland catchments usually have slower

response to rainfall (days to weeks), although heavy precipitation events can cause local

flooding (Monincx, 2006).

Finally, the relationship between groundwater, stream discharge and HEF is dy-

namic in nature, depending on the cross-scale interaction of hydrological gradients.

Thus, HEF findings at reach scale may not be representative when major changes, e.g.,

seasonal variations, occur in valley- or catchment-scale characteristics.

2.4 Topographical drivers

Topography is one of the primary drivers of spatial HEF variability. From bedforms

to catchments, topographic gradients cause nested hyporheic flow paths (Cardenas,

2008; Wörman et al., 2007). In order to understand how HEF varies spatially within the

catchment and how these variations in turn affect temporal variations, we will discuss
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HEF at scales within channel topography (individual bedforms and bedforms sequences:

Sections 2.4.1.1 and 2.4.1.2), within a valley hydrological (bedforms in valley context:

Section 2.4.2) and geomorphological context (valley confinement: Section 2.4.3) and

then within the catchment (Section 2.4.5).

2.4.1 In-channel bedforms

Over the last decades, a range of studies have demonstrated that hydrodynamic and

hydrostatic forces generated by in channel bedforms have large effects on the variability

of HEF from cm to m scale. In this section, we provide a concise summary of the main

effects on HEF by single bedforms (i.e. steps, riffles and bars) and bedforms sequences

(i.e. step-pool, pool-riffle). We considered bedforms that induce hydrodynamically-

driven HEF, i.e. ripples and dunes (Section 2.4.1.1), and larger topographic features, i.e.

steps, riffles and bars, that contribute to hydrostatically-driven HEF (Section 2.4.1.2)

(Boano et al., 2014).

2.4.1.1 HEF generation by an in-channel bedforms

Head pressure gradients created by the channel bedforms drive advective pore water

flow into, though, and out of the bed (Elliott and Brooks, 1997).

Most of the current knowledge of hyporheic fluxes and their spatio-temporal vari-

ability in submerged bedforms has been obtained from simulations and laboratory ex-

periments, owing to the difficulties in making high-resolution subsurface measurements

within stream channels (Boano et al., 2014; Fox et al., 2014; Irvine et al., 2014; Trauth

et al., 2014; Stonedahl et al., 2013; Janssen et al., 2012; Cardenas and Wilson, 2007;

Tonina and Buffington, 2007; Glaser et al., 2004; Elliott and Brooks, 1997).

Bedforms develop characteristic shapes due to the interplay of stream flow and bed

sediment transport. Dunes and ripples are characterized by a smooth water surface

profile (Packman et al., 2004) implying that the spatial variation of water surface to-

pography is minimized and the pressure profile strongly depends on dynamic pressures

(Marion et al., 2002; Elliott and Brooks, 1997).
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In the case of hydrostatical-driven HEF, the flow is a function of the head gradient,

the size and the hydraulic conductivity around the bedform (Hester and Doyle, 2008;

Gooseff et al., 2006). High channel slope will normally result in deeper HEF and higher

HZ depth (Hester and Doyle, 2008; Gooseff et al., 2006). Riffle-scale exchange, for

example, is possible only when high permeability materials surround the stream channel.

Hyporheic flow structure is controlled by the spatial relationship of bedforms to high-

and low-permeability regions of the streambed (Stonedahl et al., 2018; Pryshlak et al.,

2015; Sawyer and Cardenas, 2009; Packman et al., 2004; Salehin et al., 2004). Water

upwells where permeability or depth of gravel decreases in the direction of streamflow

and where the longitudinal bed profile is concave (Buffington and Tonina, 2009; Elliott

and Brooks, 1997; Harvey and Bencala, 1993). Water downwells where permeability

or depth of gravel increases, in the direction of streamflow, or where the longitudinal

bed profile is convex (Buffington and Tonina, 2009; Elliott and Brooks, 1997; Harvey

and Bencala, 1993). Modelling studies have showed that flow paths and exchange rate

vary in the alluvium around riffles across seasons and with the extent of groundwater

discharge (Stonedahl et al., 2018, 2012; Storey et al., 2003). Gravel bars are also

functionally equivalent to riffle bedforms for HEF; the hydrologic retention in gravel

bars is strongly influenced by bar structure and stream water levels (Trauth et al.,

2015; Tonina and Buffington, 2007; Marzadri et al., 2010; Boulton et al., 1998). Unlike

fully submerged features, recent findings by Trauth et al. (2015) suggest that HEF

in partially submerged gravel bars decreases with increasing stream discharge as the

hydraulic head gradients across the bedform decrease, leading to long residence times

under low flow conditions.

In conclusion, an in-channel bedform can have significant effects on its own on HEF

and on its residence time distributions. More complex interactions are expected to

occur across the spectrum of topographic features (Stonedahl et al., 2010).
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Figure 2.3: Conceptual representation of seasonal variation of hydraulic gradient with water stages
in a upland environment. Development of hyporheic exchange in a riffle considering extension and
contraction of hyporheic sediment.

2.4.1.2 In-channel bedform sequences

The complexity of nested hyporheic flows will increase with the number and diversity

of bedforms in the channel. Local-scale variation of bedforms size will drive longitudinal

patterns of upwelling and downwelling, along with multiscale distributions of HEF at

reach scale (Stonedahl et al., 2015, 2013, 2010; Gooseff et al., 2006).

Step-pool morphology behaves differently than pool-riffle and dune-like bedforms

(Hassan et al., 2015; Marzadri et al., 2010; Tonina and Buffington, 2007; Storey et al.,

2003). HEF will develop around a pool-riffle sequence only where hydraulic gradients

toward the stream from the sides and beneath are less than or near than the longitudinal

hydraulic gradient between the upstream and downstream ends of the riffle (Storey

et al., 2003). In gravel bed pool-riffle sequences, significant hydrostatic forces across the

channel, high permeability of sediment and low submergence time generate substantial

large-scale hyporheic flow (Tonina and Buffington, 2011, 2007; Buffington and Tonina,

2009; Wondzell and Swanson, 1996).
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A detailed case study on a upland, gravel-bed river with a riffle-pool bedform se-

quence showed that, although the expected pattern of downwelling and upwelling con-

ditions were generally observed along the bedform sequence, seasonal variations in hy-

porheic fluxes occurred because of asynchronous local ground water recharge relative

to flow regime (Gariglio et al., 2013). At the riffle-pool scale, this is consistent with

previous studies reporting seasonal variations in hyporheic temperature dynamics, with

stream topography, sediment stratification, and groundwater interaction all affecting lo-

cal upwelling and downwelling in riffle-pool systems (Krause et al., 2013; Hannah et al.,

2009).

Dune-ripple complexes are less influenced by hydrostatic forces than riffle-pool se-

quences (Tonina and Buffington, 2011); gradients are much lower than for riffle/pool

and step/pool sequences and little affected byspatial and temporal changes in water

surface elevation. Simulations have also shown that dunes contribute more than me-

anders and bars to reach-scale HEF (Stonedahl et al., 2013). Further, the volume of

water exchanged and the hyporheic residence time across bedforms is not linearly ad-

ditive (Stonedahl et al., 2013). Instead, hyporheic exchange is maximized when one

topographic feature dominates (Stonedahl et al., 2013). In lowland rivers, the lower

slope, finer sediments and more constant flows favour the development of dune-ripple

sequences (Elliott and Brooks, 1997; Marion et al., 2002) characterized by high relative

submergence and smooth water surface profiles (Packman et al., 2004). Under these

conditions, the spatial variation of water surface topography is minimized and HEF is

induced primarily by dynamic pressure variations.

These findings suggest that in-channel bedforms often control HEF, although these

local exchange flows are still strongly modulated by stream and groundwater dynamics

at reach and valley scale.

2.4.2 Alteration of in-channel bedform induced HEF by valley

hydrology

The patterns of HEF generated by individual bedforms and bedform sequences are

altered by the hydrodynamic conditions of the valley. Longitudinal valley gradients
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create hydrostatic head gradients that influence water moving cross and down valley

and thus HEF (Harvey and Bencala, 1993).

Schmadel et al. (2016) suggested that valley slope primarily controls the timing of

HEF while cross-valley slope and down-valley slope determine net gaining or losing con-

ditions. When bedforms are analyzed with respect to channel gradient, it can be seen

that gentle slopes of lowland rivers generate slower currents with deeper flows, lower

relative roughness, and less valley confinement, resulting in less bedform-induced ex-

change (Tonina and Buffington, 2007) (Figures 2.4). For example, dune-ripple streams

that occur in lowland rivers, typically exhibit less spatial and temporal variability in

water surface elevation than riffle-pool streams (Tonina and Buffington, 2011). In

higher-gradient valleys, the flow is predominantly down-valley and spatial variations of

hydraulic gradients are paired with changes in cross-sectional areas of the valley and

with the hydrodynamic head gradients generated by in-channel bedforms to induce

water downwelling into the HZ (Wondzell, 2012; Cardenas et al., 2004). In this set-

ting, hydrogeological properties can have a major role in controlling valley hydrologic

exchange: Ward et al. (2012) and Anderson et al. (2005) observed that in steep and

constrained sections of his study area, the HEF in step-pool sequences is limited by the

underlying bedrock rather than by hydraulic gradients.

In conclusion, both positive and negative relationships between hyporheic zone ex-

tent and down- and cross- valley gradients have been reported in literature, suggesting

that detailed resolution of hydraulic gradients and knowledge about the valley setting

are necessary to understand controls on HEF (Ward et al., 2012).

2.4.3 Valley confinement

The extent of valley confinement indicates different process domains and determines

the capacity of the river to adjust in planform (Table 2.1).

Several studies have linked HEF to valley confinement, and showed that HZ depth is

restricted, HEF is reduced, and hyporheic residence time is decreased in highly confined

valleys (Buffington and Tonina, 2009; Wright et al., 2005; D’angelo et al., 1993; Stan-

ford and Ward, 1993)(Table 2.1). While GSE and HEF are both limited in confined
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valleys, bedrock fractures and fissures may allow some hyporheic exchange, depending

on their degree of connectivity with the aquifer (i.e. bedrock and colluvial channels

in straight and sinuous planforms) (Gurnell et al., 2016; Graham et al., 2010; Freer

et al., 2002; McDonnell et al., 1997, 1996). Certainly, the coupling of small changes in

water table elevation and bedrock topography can have a large impact on the hyporheic

flows (Oxtobee and Novakowski, 2002). For example, HEF transport is expected to be

more uniform when the water table is continuous on the bedrock than when the water

table falls and interacts directly with bedrock topography (Ward et al., 2012). Bedrock

outcrops at valley margins can have opposing impacts on HEF. On one hand, they can

limit the infiltration of the stream water into the subsurface and restrict the hyporheic

zone (Kasahara and Wondzell, 2003). Indeed, bedrock outcrops can constrain valleys

where steep positive vertical hydraulic gradients results from discontinuities of super-

ficial deposits permeability and shallow bedrock (Ibrahim et al., 2010). In this case

the HEF can be limited to superficial layers of the riverbed. On the other hand, the

irregularities of bedrock projections favour changes in the alluvium volume (Buffington

and Tonina, 2009), thus driving stronger hyporheic exchange from the subsurface to

the stream and preventing deeper GSE. In fact, the interchange between bedrock and

alluvial valleys favours HEF, because of increased downwelling and upwelling where a

thin layer of alluvial deposits overlies shallow bedrock (Ward et al., 2012; Wondzell,

2012).

Conversely, in unconfined valleys, floodplain sediments typically represent a mosaic

of coarse and fine sediments that originate from hillslopes, bed material (i.e. bed-

load) and suspended sediment deposited during overbank flooding, within the context

of channel adjustment over time (e.g., migration and avulsion) (Nanson and Croke,

1992)(Table 2.1). Tonina and Buffington (2009) classified channel types by examining

how bedforms generate hydrodynamic pressure variations and drive hyporheic exchange

(Figures 2.4). Generally, unconfined channels have smaller vertical hydraulic gradients

and discharges than confined channels, caused by the lower channel gradients and by the

heterogeneity of sedimentary deposits (Ibrahim et al., 2010). We synthesize available

information on underlying geology, in-channel sediment, valley confinement at valley

and reach scales in Table 2.1, where for different channel planforms, geomorphic units
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and floodplain characteristics potential HEF response is indicated.

In conclusion, empirical and modelling studies not only suggest the dominance of

hydrologic exchange flows by small geomorphic features but also that lateral exchanges

of water affect movement of material and energy between rivers and floodplains.
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2.4.4 Channel planform

As with valley confinement (Section 2.4.3), channel planform is an indicator of

lateral HEF interactions with floodplains. Sinuosity is often used as a measure of

channel complexity and has been found to be directly correlated with lateral hyporheic

exchange in meander bends, and in the parafluvial zone beneath the streambanks (Kiel

and Bayani Cardenas, 2014; Cardenas, 2008; Boano et al., 2006; Wroblicky et al., 1998;

Holmes et al., 1996). Sinuosity establishes pressure gradients across meanders that

induce HEF (Boano et al., 2008, 2006) and influences the amount of water exchanged

within a river segment (Han and Endreny, 2013; Gomez et al., 2012; Cardenas, 2009a;

Brunke and Gonser, 1997).

High sinuosity rivers (e.g., multi-thread or single/sinuous meandering) are less prone

to a reduction of the hyporheic volume with depth, and maintain the HZ under both

losing and gaining conditions (Cardenas, 2009a) (Table 2.1). Meander planimetry drives

hyporheic flows and influences hyporheic residence times by creating differences in the

elevation head of surface water around a meander bend, with spatial and temporal

variations as meanders evolve (Stonedahl et al., 2013; Boano et al., 2008; Revelli et al.,

2008; Boano et al., 2006). Naturally forced by the longitudinal head gradient, the

hyporheic exchange flows through the meander neck as river water infiltrates into the

hyporheic zone at the upstream half of the meander and returns to the river along

its downstream half (Kiel and Bayani Cardenas, 2014; Boano et al., 2006; Cardenas

et al., 2004). This pattern becomes more complex with the inclusion of floodplain

sediment and channel geomorphic features. Lateral hyporheic residence time is short in

areas with coarse floodplain sediments and high sediment hydraulic conductivity, and

increases in meanders with fine-textured sediments (Boano et al., 2006). In multi-thread

planforms, simulations have identified the importance of hyporheic flow paths beyond

the active channels toward secondary channels and across the floodplain (Kasahara

and Wondzell, 2003) (Table 2.1). Along laterally unconfined valleys, meander creation,

extension and cutoff allow significant river adjustment and river-floodplain interactions,

causing both in-stream and off-channel geomorphic features to drive lateral hyporheic

exchange (Boano et al., 2006).
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In conclusion, studies of valley setting, confinement and sinuosity suggest that valley

topography provides important clues about disconnection within catchments and can be

potentially used as a quantitative and quantitative predictor of HEF. As demonstrated

by the above studies, the source of spatial complexity of HEF is not only the result of

single geomorphic structures but of the topographical structure of the valley and of the

whole catchment.

Figure 2.4: Representation of channel planforms. Sinuosity influences water exchange within a river
segment. Hyporheic exchange increases with sinuosity due to hydraulic gradients in the meander neck
(Section 2.4.4).
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2.4.5 HEF in the catchment topography context

Studies have suggested that catchments with larger surface areas have greater hy-

porheic exchange fluxes (Bergstrom et al., 2016; Laenen and Bencala, 2001; Harvey

and Wagner, 2000). Greater variation in water stage correlates on average to greater

hyporheic fluxes, but few direct observations are available to support or refute this

assumption. The catchment topographic slope defines the direction of flow by creat-

ing discontinuities and localized groundwater flow paths (Jencso and McGlynn, 2011;

Jencso et al., 2009; Wörman et al., 2006; Winter, 1998).

Emerging upscaling models have started incorporating the information of the catch-

ment area, channel network structure, and head variations of surface topography. These

models include i) the first order control of water inputs and groundwater head distribu-

tion (Caruso et al., 2016; Jencso and McGlynn, 2011; Laudon et al., 2007), (ii) indica-

tions of subsurface flow (Caruso et al., 2016; Jencso and McGlynn, 2011; Jencso et al.,

2009; Wörman et al., 2006); and (iii) discretizing the catchment into sub-catchments and

identifying topographically contributing recharge and discharge areas (Wörman et al.,

2007, 2006). These studies indicate that linking topographic complexity to HEF is likely

to be an important priority area of research. Patterns of upwelling and downwelling

within reaches were observed to occur where the stream profile is concave and convex,

respectively and used to predict patterns of HEF in high-gradient headwater mountain

streams (Anderson et al., 2005). While upwelling zones do not show a significant trend

with increasing catchment area, the length of downwelling zones increases with stream

size, spacing of channel slope and decrease of water surface concavity (Anderson et al.,

2005).

These findings encourage interdisciplinary efforts to provide supporting evidence

that link HEF across the continuum of headwater, mid-order and lowland streams as a

result of systematic changes in hydrogeomorphological characteristics along the stream

network.
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2.5 Hydrogeological drivers

Geology affects both the distribution of groundwater in aquifers and HEF flows. In

this section hydrogeological effects on HEF are summarized into: i) channel sediment

impacts on bedform-induced HEF (Section 2.5.1), ii) floodplain sediment impacts on

GSE between the valley aquifer and the channel (Section 2.5.2), and iii) bedrock and

aquifer type impacts on valley geomorphology (Section 2.5.3).

2.5.1 Channel sediment and bedform-induced HEF

Sedimentological properties strongly control HEF at reach scale. Water flowing

through the river bed is affected by sediment grain size, sediment heterogeneity, and

depth, promoting spatially diverse hyporheic exchange (Packman et al., 2004).

Given the direct coupling of stream and pore water flow, exchange is generally

greatly enhanced in coarser sediments (Packman et al., 2004). As mentioned in Section

1, high velocity gradients and turbulence generated at the surface of coarse sediment

beds can also increase diffusion processes which can produce considerable exchange

even when the bed surface is flat and no flows are induced by bed topography (Marion

et al., 2008; Packman et al., 2004). The presence of high hydraulic conductivity layers

in the streambed increases dispersive mixing between hyporheic water and groundwa-

ter (Hester et al., 2013) and creates preferential HEF, either short or long paths, by

controlling the ability of the sediment to support advective pumping (Pryshlak et al.,

2015; Cardenas, 2009a, 2008; Salehin et al., 2004).

Dye injections have shown that hyporheic flow patterns are controlled by the spatial

relationship of high and low permeability regions of the streambed, resulting in faster

near-surface transport and shallower penetration and a shorter mean residence time

(Salehin et al., 2004). Further, longer hyporheic flow paths are generated in streams

having greater connectivity of sediment strata (Pryshlak et al., 2015) despite that in

coarser bed material, fine sediments accumulate and clog pores (Hartwig and Borchardt,

2015; Bardini et al., 2012; Brunke and Gonser, 1997).

To date, few studies have addressed the effect of sediment heterogeneity on HEF
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variability at scales larger than the bedform, although recent works have showed strong

impact of sand and gravel deposits on HEF at the reach scale (Zhou et al., 2014) and

identified sediment heterogeneity as one of the main drivers of lateral connectivity as

well (Pryshlak et al., 2015). In river segments dominated by gravel beds, such as in

confined high-energy braided rivers, the hydraulic conductivity is generally high but

also highly variable because it depends on the sorting of sediments in the floodplain

and on the amount of silt and clay present (Table 2.1 and Figures 2.4). Highly per-

meable riverbed sediments allow surface water to penetrate easily into the HZ, causing

vertical hydraulic gradients (VHG) to change strongly with local sediment permeability

(Packman and MacKay, 2003; Wroblicky et al., 1998; Vaux, 1968).

2.5.2 Hydrogeology in river and floodplain type

Channel planforms respond not only to changes in regional physiography and hy-

drology (Section 2.4.4) but also to sediment loads (Table 2.1) (Gurnell et al., 2016;

Nanson and Croke, 1992). Differences in particle sizes in river planforms result in fact,

from longitudinal, lateral, spatio-temporal variation of river flows and sediment supply

(Bridge, 2009; Baldwin and Mitchell, 2000).

Sediment permeability allows varying hyporheic residence time responses accord-

ingly to finer or coarser deposits (Hester et al., 2016; Pryshlak et al., 2015; Azinheira

et al., 2014; Brunke and Gonser, 1997) (Figure 2.4). Braided channels (Section 2.4.4)

can occur across a range of valley slopes depending on the grain size of the bed mate-

rial in transport, and present either a pool-riffle morphology or a bar-riffle morphology

(Gurnell et al., 2016). HEF tends to be very dynamic and spatially varying; steep head

gradients between channels create cross-valley head gradients that control the location

and direction of flow paths through the HZ (Figure 2.4, Section 2.4.4) (Malard et al.,

2002; Ward and Stanford, 1995). This transverse exchange evolves with migration and

river sediment transports processes (Stonedahl et al., 2010; Boano et al., 2006; Kasahara

and Wondzell, 2003). In sinuous, medium energy meandering floodplains, HEF is also

usually driven by variations in head gradients (advection processes), which are greater

than diffusive transport by two or more orders of magnitude (Elliott and Brooks, 1997;
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Larkin and Sharp, 1992). This type of floodplain typically presents vertically accreted

fine sediments (silt and clay). These local low-permeability units and thick sequences of

unconsolidated deposits become more compact and less permeable with depth (Winter,

1998) thus they are characterized by localized groundwater flows and restricted HEF

(Angermann et al., 2012; Krause et al., 2012; Stonedahl et al., 2012).

In lowland settings with abundant fine sediment load, reduction of groundwater

up-welling due to low sediment conductivity layers causes surface water to downwell

and induces horizontal hyporheic flow into shallow streambed sediments above low

conductivity strata (Angermann et al., 2012; Stonedahl et al., 2012). Spatial variations

in the thickness of fluvial-alluvial deposits increased local gradients around clay lenses,

therefore creating locally confined conditions (Ellis et al., 2007).

All of these studies indicate that the thickness of superficial deposits controls the

extent and rate of hyporheic exchange (Tonina and Buffington, 2011; Buffington and

Tonina, 2009; Anderson et al., 2005).

2.5.3 Hydrogeology in the catchment: bedrock and aquifer

type

From reach to regional scale, geology affects the distribution of groundwater in

aquifers and the spatial variability of GSE and HEF via the aquifer geometry and hy-

drogeological properties. Lithologic types and structure, weathering history of bedrock

and types of aquifers, impact HEF by altering the distribution of hydraulic conductiv-

ities (Fox et al., 2014; Gomez-Velez and Harvey, 2014; Angermann et al., 2012; Krause

et al., 2011a; Hiscock, 2007; Woessner, 2000; Morrice et al., 1997; Winter, 1998).

Bedrock exerts vertical and lateral constraints on river forms and processes, by con-

trolling the interaction of GSE and HEF subsurface flows and defining valley confine-

ment (Section 2.4.3). Different relationships appear depending on whether the struc-

ture is consolidated or semi-consolidated, and on the primary and secondary porosity of

rock deposits including limestone, dolomite, shale, siltstone, sandstone, and conglom-

erate (e.g., pores and fractures) (Binet et al., 2017; Hoagland et al., 2017; Jencso et al.,

2010; Sear et al., 1999). For example, hyporheic studies in chalk catchments have shown
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the importance of groundwater in supporting surface-subsurface exchange at catchment

(Lapworth et al., 2009; Grapes et al., 2005), valley and reaches scales (Griffiths et al.,

2006; Grapes et al., 2005), although vertical hyporheic exchange in these systems is

often restricted by local low-conductivity superficial deposits (Allen et al., 2010; Pretty

et al., 2006) (Section 2.5.1).

In addition to the characteristics of the bedrock, the degree of confinement of the

aquifer due to impermeable layers would prevent or limit GSE and HEF to local inter-

actions (Gurnell et al., 2016). In confined aquifers, which are separated from the surface

by aquitards with low hydraulic conductivities, GSE would likely be prevented (Winter,

1998). If the confinement is due to the presence of near-surface bedrock, HEF would

also be prevented by the lack of highly porous alluvium and the low permeability of

the bedrock (Buffington and Tonina, 2009; Kasahara and Wondzell, 2003). In confined

bedrock, colluvial channels, and confined alluvial channels, GSE and HEF are limited

by the local structure of the local sediment (e.g., coarse or fine particles) and the rock

structure (e.g., continuous or discontinuous confinement) (Table 7.5 in Gurnell et al.

(2016)).

In unconfined aquifers, generally groundwater is easily conveyed in all directions

leading to high opportunity for both vertical and lateral HEF exchange (Winter, 1998).

However, in unconfined alluvial channels, GSE and HEF can be prevented or limited to

local interactions depending on local sediment (e.g., coarse or fine particle size) (Table

7.5 in Gurnell et al. (2016)).

In conclusion, HEF from reach to catchment scales is highly related to bedrock lithol-

ogy and superficial sediment. The complexity of geological properties at the catchment

scale results in spatio-temporal variations in HEF, in the channel and throughout the

river network. A point upstream in the catchment may exhibit HEF dynamics driven by

entirely hydrogeological processes compared to the catchment outlet. These differences

are especially heightened in catchment with mixed land use and anthropogenic pres-

sures (e.g., dams) for which comprehensive understanding is required of the timescales

of water and solute flux with different geologies.
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2.6 Ecological drivers

Vegetation has long been known to exert a strong control on land surface hydrology

by moderating streamflow and groundwater recharge (Section 2.3.2). By altering hydro-

logical processes on channel banks, floodplains and the wider catchment, vegetation-

induced feedback on the temporal variability of HEF and likely increase the spatial

heterogeneity of this ecological- hydrological relationship. This section describes in-

channel (Section 2.6.1), bank and floodplain vegetation by focusing on two key ecolog-

ical functions: riparian vegetation (Section 2.6.3) and large in-channel wood (Section

2.6.2).

2.6.1 In-channel vegetation

In-channel vegetation controls HEF directly through channel-scale flow resistance

and indirectly through sediment and streambed permeability (Jones et al., 2008). A

variety of herbs, shrubs and trees grow in stream channels, increase bed roughness and

alter flow velocities. They produce a mosaic of hydrodynamic conditions with low flows

in vegetation patches and high flows between patches (Corenblit et al., 2007).

Vegetation also alters stage-discharge relationships that affect hyporheic flow, where

higher water levels and faster in-channel flows are maintained in mid-summer (Heppell

et al., 2009; Harvey et al., 2003). Jones et al. (2008) demonstrated that in-channel

vegetation restructures hyporheic flow patterns by creating temporally dynamic devia-

tions of hydraulic gradients. In-channel vegetation increases the friction factor (Harvey

et al., 2003) and create low flow areas that increase water residence time (Kjellin et al.,

2007; Ensign and Doyle, 2005; Wörman and Kronnäs, 2005; Salehin et al., 2003). This

aspect has been observed especially in streams with extensive vegetation where flow

can decrease to nearly zero within dense vegetation stands (Ensign and Doyle, 2005;

Salehin et al., 2003). Further, the reduction of flow velocity within plant stands leads to

increased sediment deposition and the development of plant-mediated sediments that

are typically finer-grained than the bed material with more organic material and lower

permeabilities (Corenblit et al., 2007), which also reduces HEF.
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In conclusion, both field and laboratory studies have suggested that vegetation

shapes transient storage in streams channels, even though there are still difficulties in

understanding the feedback of mixing due to vegetation and to induced HEF at reach

scale. The role of vegetation on patterns of HEF at larger spatial scales is still unex-

plored. In particular, bank vegetation needs to be considered in terms of hydrological

connection between riparian vegetation and the stream (Duke et al., 2007) (Section

2.6.3).

2.6.2 In-channel wood

Within stream channels and valleys, wood deposits drive physical complexity of

the river network by altering flow resistance, channel-floodplain connectivity, vertical

and lateral accretion of floodplain (Davidson and Eaton, 2013; Wohl, 2013; Phillips,

2012; Jeffries et al., 2003; Mutz, 2000; Sear et al., 1999; Piégay and Gurnell, 1997).

Wood affects channel hydraulics and induces deeper HEF by increasing the variability

in vertical head and imposing greater hydraulic resistance (Lautz and Fanelli, 2008;

Mutz et al., 2007; Mutz, 2000). Wood generally has a comparable effect to other in-

channel structures (Section 2.7.1) and channel roughness elements (Section 2.4.1.2) by

driving water into the subsurface, where it travels along short hyporheic flow paths

(Boano et al., 2006; Lautz et al., 2006). The impact of wood on HEF varies with valley

topographic gradient (lowland and upland), groundwater dynamics (gaining and losing)

and sediment transport (Gregory et al., 2003; Jeffries et al., 2003).

In lowland rivers, where flow velocity is slow and gradient low, wood induces less

HEF and also has less effect on spatial patterns of HEF (Krause et al., 2014). Tempo-

rally, Wondzell (2006) observed that, although lowland streams are sensitive to changes

in wood delivery, and wood decreases HEF at short time-scales, large-scale channel

adjustments reverse the effect of natural wood removal over longer time-scales, causing

higher HEF fluxes. Over the long term, wood removal results in longer mean hyporheic

residence times, which impacts many hyporheic functions including temperature, nutri-

ent retention, and oxygen concentrations (Sawyer and Cardenas, 2012; Stofleth et al.,

2008).
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In upland rivers, wood typically creates steeper head gradients that drive hyporheic

flow paths (Krause et al., 2014). Interactions between flow and wood also produce

spatial heterogeneity in deposits of sediments and organic matter (Osei et al., 2015b,a;

Sear et al., 2010; Latterell et al., 2006; Gregory et al., 2003; Naiman et al., 2000). Fines

and organic-rich sediments are retained, eventually driving higher spatial heterogeneity

in HEF (Section 2.5.2 and 2.7). However, Kasahara and Hill (2006) observed little

impact of a large wood-constructed step on oxygen concentrations within the hyporheic

zone, presumably due to siltation (Parker et al., 2017; Wohl et al., 2016; Menichino and

Hester, 2014).

At the valley scale, wood delivery depends on short- and long-term patterns of land

use and geomorphology, often establishing floodplain geomorphology as the dominant

control on wood storage in river systems (Benda and Bigelow, 2014). Indeed, one

of the variables influencing wood transport and storage is valley geometry. Several

studies have documented the importance of woody debris in shaping channel patterns

and floodplain evolution in a variety of environments (Collins et al., 2012; Millington

and Sear, 2007; Abbe and Montgomery, 2003; Jeffries et al., 2003; Collins et al., 2002;

Piégay and Marston, 1998; Sear et al., 2010). However, relatively few studies have

examined patterns of wood distribution relative to valley geometry or HEF responses

to morphological changes induced by large wood at valley scale (Wohl and Cadol, 2011).

2.6.3 Riparian vegetation

At valley scale, riparian vegetation is well known to shape patterns of GSE by

affecting riverbank filtration and altering water-table elevations via transpiration (Jones

et al., 2008; Chen, 2007). Vertical and lateral hyporheic flow patterns are characterized

by non-linear spatial variations with both vegetation composition (i.e., species) and

water consumption (i.e., ET, (Larsen et al., 2014; Wondzell et al., 2010; Martinet et al.,

2009).

The ET from riparian vegetation can increase hyporheic fluxes by 1-2 orders of

magnitude at time scales of weeks to months (Larsen et al., 2014). The effect of ET

on HEF is especially significant in low-energy environments, where ET drives mixing
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comparable to that of molecular diffusion and that varies at different times of the year

(Bergstrom et al., 2016; Larsen et al., 2014; Iturbe and Porporato, 2004; Porporato

et al., 2004). Conversely, in high-energy environments where turbulent mixing and

bedform-induced pumping are very rapid (Section 2.4.2 and Figure 2.4), the effect

of ET will be lower. On the daily time scale, evapotranspiration changes groundwater

gradients with riparian zone vegetation creating the lowest water table in the afternoon,

promoting surface water infiltration and hyporheic exchange (Wondzell et al., 2010;

Loheide and Lundquist, 2009). Duke et al. (2007) observed a seasonal correlation

between transpiration and stream flow with hyporheic gradients. During winter, the

correlation is very strong and high water tables and hillslope vegetation lead to negative

hyporheic gradients and to high hydraulic head at the bank surface. Conversely, in

summer the stream channel has less surface flow and less active exchange within the

HZ, and deep flow paths are very important in this period (Duke et al., 2007).

At valley scale, the effect of riparian vegetation has been observed to greatly in-

fluence energy inputs to the stream by controlling channel complexity, resulting in

increased retention by increasing residence time and contact between stream water and

hyporheic zone. This hydrological interaction has been studied in arid catchments (i.e.

Sycamore Creek, a Sonoran Desert stream (Schade et al., 2005, 2002)) where soils

are often highly impermeable and the presence of riparian vegetation is dependent on

stream flows and shallow groundwater tables (Schade et al., 2005, 2002; Stromberg

et al., 1996).

Most of these studies have been performed in arid environments, and information

on the effects of ET on HEF in humid environments is lacking.

In conclusion, the direct and indirect effects of riparian vegetation on HEF at flood-

plain/catchment level are poorly studied relative to effects of morphology and ground-

water recharge/discharge, although the studies mentioned above provide a foundation

for evaluation of groundwater-dependent riparian vegetation on the HZ.
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2.7 Anthropogenic drivers

Humans have extensively modified many river systems, and these changes impact

the natural factors and processes that control HEF. Alterations to catchments, valleys,

and river channels affect the hydrology (e.g., river stage fluctuations), hydraulics (e.g.,

altering vertical hydraulic gradients) and physiographic setting (e.g., geology, morphol-

ogy). Effects of three main anthropogenic factors on HEF will be discussed: (i) river

stage fluctuations due to in-channel structures and (ii) valley-spanning dams, and (iii)

changes in sediment delivery and channel complexity due to land use and land man-

agement.

2.7.1 In-channel structures

Channel structures (e.g. weirs, log dams) that control change flow conditions by

obstructing the flow and dissipating energy have positive and negative impacts on HEF

(Daniluk et al., 2013; Hester and Doyle, 2008; Lautz et al., 2006).

Upstream of the control structure, a decrease in channel velocities and bedform size,

combined with an increase in water depth and channel cross-sectional area are usually

observed and associated with a reduction of turbulent hyporheic exchange in coarser

sediments (Blois et al., 2014; Boano et al., 2010; Jin et al., 2009) and advective HEF

by ripples, dunes, and bars (D’angelo et al., 1993).

Downstream of control structures, a decrease in sediment loads, scour, and turbulent

fluxes in coarser sediment are usually observed (Hester et al., 2009). Weirs induce HEF

upstream of the obstruction, flow beneath it, and upwelling on the downstream side (Jin

et al., 2009; Hester and Doyle, 2008). The effect of these structures is complicated and

may vary under different flow conditions. Conservative tracer experiments at reach scale

have showed that the cumulative effect of multiple weirs increased the cross-sectional

area of the surface stream and of the transient storage zones behind weirs, while HEF

decreased (Rana et al., 2017). As a consequence, multiple weirs reduce short and fast

HEF while inducing long and slow-moving hydrostatically-driven hyporheic flow paths

(Rana et al., 2017). Hence, the evaluation of potential effects of channel-spanning
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structure on HEF requires rigorous analysis with respect to channel flow variation.

The various effects of these measures are complicated and include disruption of

downstream flux of sediment with critical consequences for the alluvial structure and

on HEF at streambed or meander scale (Poole and Berman, 2001).

2.7.2 Dams

Large valley-spanning obstructions such as dams can affect HEF by ponding water,

disrupting sediment transport, altering vertical hydraulic gradients and varying flow

dynamics (Schmadel et al., 2016; Gerecht et al., 2011; Fritz and Arntzen, 2007; Arntzen

et al., 2006). The daily stage fluctuation from hydroelectric dams for example, regulate

the size of the hyporheic zone and the magnitude and frequency of HEF (Sawyer et al.,

2012; Gooseff et al., 2006; Lautz et al., 2006; Harvey and Bencala, 1993). In case of

dam-induced water levels changes, a temporal lag occurs between stream stage and

aquifer water; HEF is transient and penetrates several meters into the riparian aquifer

with residence times of hours (Sawyer et al., 2009). Schmadel et al. (2016) predicted

HEF and residence times from the timing and magnitude of diel fluctuations and valley

slope, and found that minimal exchange occurs when the magnitude of stream level

fluctuations coincide with the hillslope water table, while maximum exchange occurs

when stream stage is out of phase with the hillslope and therefore larger amplitude in

stream and hillslope occur.

Studies using thermal sensors have reported differences of HEF within the subsur-

face upstream and downstream of dams, attributed to the overall hydraulic behaviour

around the dam and to the changes in topography induced by the dam (Hester et al.,

2009; Fanelli and Lautz, 2008). Upstream and downstream pools created by pond-

ing and channel degradation, respectively, have the potential to drive bedform-scale

exchange flow. Temperature results suggest that highest hyporheic exchange rates oc-

cur downstream of dams, while HEF is limited in upstream pools where fine sediment

deposits yield low hydraulic conductivities (Fanelli and Lautz, 2008).
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2.7.3 Land management and use: impacts on sediment deliv-

ery, channel complexity and hydrological regime

Land cover and management impacts on HEF through several pathways, as it im-

pacts on the quality (i.e. sediment delivery and channel complexity) and quantity

(i.e. discharge, infiltration, evapotranspiration (ET)) of groundwater and surface water

(Santos et al., 2015; Carrillo-Rivera et al., 2008).

The relationship between land use, sediment delivery and HEF remains an area of

active research, but in general both urbanization and agriculture significantly modify

channel morphology, streambed sediment size, and hydraulic conductivity by compet-

ing effects from increasing fine sediment inputs (which decrease streambed hydraulic

conductivity) and stream discharge (which increases advective HEF) (Emanuel et al.,

2014; Ryan et al., 2010; Kasahara and Wondzell, 2003; Morrice et al., 1997; D’angelo

et al., 1993).

First, decreased porosity and permeability of streambed sediments, e.g., due to

increased sediment loads from agriculture, is usually connected to decrease of in chan-

nel storage and hyporheic exchange flows (Packman and MacKay, 2003; Brunke and

Gonser, 1997).

Secondly, water abstraction often include both pumping stream surface and ground-

water, which can increase groundwater levels and thereby increase groundwater dis-

charge to streams and/or decrease stream water flow to groundwater (Winter, 1998).

Lower water tables generally reduce the vertical extent of the HZ by increasing water

losses from the stream and reducing the hydraulic gradients that drive HEF (Hancock,

2002). Not only the magnitude but also the length of the hyporheic exchange flows are

affected: tracer experiments conducted on several reaches within a single land use type

showed a reduction of transient storage as a function of the surrounding land use due

to lower geomorphological complexity in agricultural streams, promoting the formation

of low-flow zones but reducing HEF (Gooseff et al., 2007). However, little research

has been carried out on HEF in urban rivers where low morphological complexity and

anthropogenic factors have impacted streams substrates and planforms (Drummond

et al., 2017; Gooseff et al., 2007; Grimm et al., 2005; Groffman et al., 2005; Walsh
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et al., 2005).

2.8 Case study: the River Tern

While previous sections described how individual factors influence HEF, these fac-

tors interact across spatial scales to produce a high degree of spatial and temporal het-

erogeneity in HEF. To illustrate the challenges in resolving hyporheic exchange across

scales, we use the River Tern (UK) as a case study. We first review previously published

research on HEF in this stream, and then discuss the multi-scale factors that influence

HEF based on the review presented previously in Sections 2.3 to 2.7.

HEF has been studied in great detail at the sub-reach scale in the River Tern (Krause

et al., 2013; Angermann et al., 2012; Krause et al., 2011a; Hannah et al., 2009). Results

indicate that that spatial variations in surficial geology of the floodplain and temporal

variations in groundwater levels control local river-aquifer interactions, and dictate the

rates and patterns of HEF. Strong correlations between rainfall and groundwater levels

indicate that the river acted as a recharge boundary, and pumping tests suggest that

hydraulic continuity of bedrock with the River Tern is greater at high flows than at

low flows (Streetly and Shepley, 2005). At more local scales, Hannah et al. (2009) and

Angermann et al. (2012) found that spatial heterogeneity in HEF is controlled by both

topography and streambed strata. Heat tracer studies identified inhibition of hyporheic

flow in peat and clay lenses below the stream (Angermann et al., 2012). Given this

structure, hyporheic flow paths in riffles did not coincide with the patterns expected

from topography-induced head distributions, and instead seem to be driven by locations

of confining peat and clay strata Angermann et al. (2012). Temperature data indicated

that advected surface water or groundwater control heat transport within the hyporheic

zone (Hannah et al., 2009). Hannah et al. (2009) and Anibas et al. (2012) showed that

the local hydrogeological and geomorphological context explains the observed seasonal

thermal differences between riffles: increased downwelling at riffle tails during winter

results from greater groundwater influence and high water stage (Figure 2.3).

These results highlight the need to integrate interpretations of observed rates and

patterns of hyporheic exchange with hydrogeological and geomorphological context. As
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a starting point, valley type can be used to predict the development and extent of

lateral hyporheic exchange. We illustrate the generic nature of valley confinement for

the River Tern considering the headwater valley of the Tern at Norton-in-Hales and

including the 150 m reach considered in previous studies (Hannah et al., 2009).

The catchment is low-lying, with average elevations between 50 and 120 m, and the

area is predominantly agricultural, with croplands and pastures accounting for the ma-

jority of the land area (Fuller et al., 2002). The valley section has an elevation ranging

from 91 to 114 m, a low channel gradient between 0 and 0.2% and is laterally uncon-

fined. The River Tern and its tributaries are underlain by Permo-Triassic sedimentary

rocks (sandstone and conglomerate interbedded), which dominate river-aquifer interac-

tions at regional scale (Allen et al., 1997). This permeable geology supports unconfined

highly, moderately-productive aquifers characterized by intergranular flows. However,

most of the surficial geology of the catchment is from the Pleistocene age, ranging from

sand and gravel to diamicton, peat and clay. The thickness varies spatially across the

catchment, with thicker areas in the western part of the catchment comprising up to 30

m of till (Streetly and Shepley, 2005). Throughout the length of the selected section,

the river is fringed by wet woodland, predominantly Alnus glutinosa. The bedrock is

mainly sandstone and mudstone, whereas the superficial geology is sand and gravel

with some silt, clay and diamicton. The valley was divided into reach sections of 850 m

and analyzed the confinement according to the framework of Fryirs et al. (2016). Some

reaches are laterally constrained by anthropogenic structures (roads, houses) in one or

both sides (Table 2.2, Figure 2.5). The anthropogenic confinement is most prominent

in proximity to the town, where the active floodplain is artificially disconnected by en-

gineered structures. Given that the channel planform is mostly meandering, and is not

constrained by bedrock (Section 2.4.3), lateral hyporheic flows will likely occur predom-

inately in unconfined areas, where the planform can adjust to its sinuous-meandering

shape (i.e. reaches 1, 4, 5, 6, 7, 8, 9, 10 in Table 2.2). According to the hydroge-

ology of the area (Section 2.5.1), hydraulic conductivities are expected to be highly

variable as consequence of the sediment sorting and HEF will likely vary within reaches

when arenaceous and rudaceous lithologies dominate on argillic and peat sediments (i.e.

reaches 2, 4, 5, 6, 8, 9 in Table 2.2). Finally, differences along the general gradient of
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the network (Sections 2.4.4 and 2.4.5) are expected where the conjunction of increase

of riverbed slope, meander bends, and bedforms (Section 2.4.1.2) will likely increase

hydraulic head gradients and induce HEF (i.e. reaches 4, 5, 7, 8 in Table 2.2).

Previous research suggests that the mosaics of hyporheic exchange in the River Tern

are induced by spatial variations in streambed topography and sediment permeability

and temporal variations in groundwater recharge. Through the discussion of this case

study, we illustrated that assessment of the geological and morphological context for

the river channel can help to explained observed patterns in bedform-driven HEF. This

work outlines the opportunity to build HEF scaling relationships from basic patterns

of channel morphology, valley confinement, and hydrogeological properties.
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Figure 2.5: Examples of reaches of the River Tern analysed for HEF (Table 2.2).The river is subdivided
into reaches based on their planform morphology (sinuosity units: when the overall direction of the
planimetric course changes) and classified in Table 2.2. The figure represents for each reach, the
main river, surficial and bedrock geology in a buffer area of 50 m from the main channel. Surficial
and bedrock geology are represented as greater the connectivity within sediment strata and higher
the HEF. Vertical HEF will be restricted by low permeability units and unconsolidated deposits and
lateral HEF by grain size material, river sinuosity and cross-valley head gradients.
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Table 2.2: Case study about the river Tern, UK (Section 2.8). The table describes the 10 reaches
sections (RS) obtained by dividing the river channel into sinuosity (S) units based on changes in
the axis of the overall planimetric course. The units that differed in sinuosity by more than 10%
were considered separate reaches. Surface geology and valley type are evaluated with respect to the
extent of lateral hyporheic exchange. The sections are enumerated and described from upstream to
downstream. Information of geology extracted from the British Geological Survey website.

RS
Underlying
geology

In-channel
sediment

Description
Channel
Gradient
(%)

S

1

Sandstone-conglomerate
bedrock of Triassic period.
Superficial geology,
sedimentary substrate of
quaternary period.
Alluvial, fluvial and
glacigenic sediments

Min grain is clay.
Max grain is gravel.
Mixed argillic and
arenaceous grains.

Unconfined valley on
both banks. The river
is meandering and
the riparian vegetation
is abundant

0.001 1.089

2

Mudstone and sandstone
bedrock of Triassic period.
Superficial geology,
sedimentary substrate
of quaternary period.
Alluvial and glacio-
fluvial sediments.

Predominant min grain
is sand and max grain
is gravel. Dominant grain
is sand. Arenaceous
-rudaceous grains.

Partially confined valley
due to industrial plants
and homes on the right
bank of the river.The
river is sinuous with
the presence of a
big meander and
abundant riparian
vegetation

0 0.487

3

Bedrock: mudstone and
sandstone interspersed.
Sedimentary geology
of Triassic period.
Dominance of
fluvial sediments.

Min grain mud and clay
and max grain is gravel.
Dominant grain sand
and mud. Argillic -
rudaceous grains.

Partially confined valley
due to homes on
the right bank of
the river. The river is
overall sinuous with
the presence of
small meander and
very abundant
riparian vegetation

0.052 0.537

4

Bedrock: sandstone.
Superficial geology,
sedimentary substrate of
Triassic period.
Dominance of
fluvial deposits.

Min grain is mud,
max grain is gravel.
Dominant grain is sand.
Arenaceous
rudaceous grains.

Mostly unconfined valley,
presence of homes on the
right bank of the river.
The river is meandering
and abundant
riparian vegetation

0.261 1.962

5

Superficial geology of
quaternary period.
Dominance of glacio-
fluvial deposit.

Min grain is clay,
max grain is gravel.
Dominant grain is sand.
Arenaceous
-rudaceous grains.

Mostly unconfined valley,
presence of homes on
the left bank of the
river. The river is
forming small meanders
and abundant riparian
vegetation

0.030 0.718

Continued on next page
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Table 2.2 – Continued from previous page

RS
Underlying
geology

In-channel
sediment

Description
Channel
Gradient
(%)

S

6

Superficial geology of
quaternary period.
Dominance of glaciofluvial
and glacigenic deposit.

Min grain is clay,
max grain is gravel.
Dominant grain is sand.
Arenaceous
-rudaceous grains.

Unconfined valley
on both banks. The river is
meandering and riparian
vegetation is present
throughout its length
but mostly on the left bank.

0.011 0.600

7

Superficial geology of
quaternary period.
Dominance of glacio-
fluvial and glacigenic
deposit.

Min grain is clay,
max grain is gravel.
Dominance of clay
with gravel. Mixed
argillic and
rudaceous grains.

Unconfined valley on both
banks presence of a small
bridge. The river is
meandering and riparian
vegetation is present.
Throughout its length
although more scarce
with comparison
to previous sections.

0.06 1.870

8

Superficial geology of
quaternary period.
Dominance of glacio-
fluvial and alluvial
deposits.

Min is clay and
max is gravel.Mixed
arenaceous and
argillic grain.

Mostly unconfined valley,
presence of industrial plant
on the left bank
of the river.
On the left bank there
are two ponds.
The river is forming small
meanders, riparian vegetation
is present.

0.05 1.060

9

Superficial geology of
quaternary period.
Dominance of glacio-
fluvial and alluvial
deposit.

Min is clay and max
is gravel. Predominance
of sand grains.

Unconfined valley on
both banks.The river is
meandering and riparian
vegetation is present
and abundant
on the left bank.
Presence of pond.

0.003 0.943

10

Superficial geology of
quaternary period.
Dominance of glacio-
fluvial and fluvial
deposits.

Min grain is clay
and max grain is
gravel with presence
of silt. Mix of
arenaceous and
rudaceous grains
with peat and argillic.

Unconfined valley on
both banks.The river
is mostly sinuous
and riparian vegetation
is abundant
on both banks.

0.012 0.826

2.9 Conclusion

Information on the underlying drivers of HEF across space and time, and unrav-

elling the process interactions between them, is essential to predicting HEF patterns
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in catchments. However, we are currently unable to fully capture the extent of the

interaction between factors that drive HEF.

This review highlighted the factors operating over multiple spatial and temporal

scales that govern HEF, and summarise how they interact to determine HEF. Predictive

relationships are needed to enable upscaling to catchment scales or downscaling to sub-

reach-scales, as well as the response of HEF to changing hydrological, topographical,

geological, ecological and anthropogenic conditions. The ability to understand the

temporal and spatial dynamics of HEF depends on the holistic perspective suggested

here, which considers co-variations between flow, slope, valley confinement, catchment

area, sediment size, and river planform and bedforms morphology. Direct data on HEF

at larger scale than reaches are severely limited.

By summarizing the factors responsible for rates and patterns of HEF in river sys-

tems this review provides a comprehensive understanding and evaluate the characteris-

tics of hyporheic flows in conjunction with and embedded within catchment and valley

characteristics.

Acknowledgements

This work was supported by the Marie Sk lodowska-Curie Action, Horizon2020

within the project HypoTRAIN. Grant agreement no: 641939.



Chapter 3

A multiscale statistical method to identify poten-

tial areas of hyporheic exchange for river restoration

planning

Abstract

The hyporheic zone (HZ) is an area of interaction between surface and ground wa-

ters present in and around river beds. Bidirectional mixing within the HZ, termed

hyporheic exchange flow (HEF), plays significant roles in nutrient transport, organic

matter and biogeochemical processing in rivers. The functional importance of the HZ

in river ecology and hydrology suggests that river managers should consider the HZ in

their planning to help compromised systems recover. However, to date available river

restoration planning tools fail to take the HZ into account. This paper describes a novel

multiscale transferable method for identifying areas with potentially significant HEF,

combining environmental information at different scales, for use in restoration priority

planning. It uses a deductive approach that is suited for data-poor cases, given the very

limited data on the spatial occurrence of areas of hyporheic exchange. Results on nine

contrasting European rivers, demonstrate its potential to inform river management.

Keywords : multiscale, hyporheic zone, geostatistics, clustering analysis, river manage-

ment
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Figure 3.1: Conceptual model of the hyporheic classifiers, i.e. “1” or “0” in every spatial scale and
the related environmental hyporheic drivers. The classifier of one scale informs on the classifier on the
first smaller scale.

3.1 Introduction

The hyporheic zone (HZ, Orghidan (1959)) is a region where surface and ground

waters mix together within the bed and banks of a river. It is characterized by a diverse

fauna and by a bidirectional flow of water known as hyporheic exchange flow (HEF,

Robertson and Wood (2010)). A large body of scientific literature has shown that both

the physical and the biological components of the HZ play a major role in river function-

ing (Krause et al., 2011b; Brunke and Gonser, 1997; Findlay, 1995). HEF is important

for nutrient transport and cycling (Battin et al., 2008; Triska et al., 1993), stream

water temperature variation (Dugdale et al., 2018), contaminant deposition and break-

down (Palumbo-Roe et al., 2017; Fuller and Harvey, 2000), organic matter processing

(Danczak et al., 2016; Drummond et al., 2014; Zarnetske et al., 2011; Sobczak and Find-

lay, 2002) and the distribution and abundance of ecological communities (Battin et al.,
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2016; Dole-Olivier et al., 2014; Boulton, 2007). Perhaps, the best-known examples of

the importance of HEF on driving ecological processes concern the supply of oxygen

into the sediment (Corson-Rikert et al., 2016; Gibbins et al., 2016) and the modula-

tion of biogeochemical transformation (i.e. denitrification and nitrification processes)

(Mendoza-Lera and Datry, 2017; Heppell et al., 2014; Nogaro et al., 2010; Wood and

Armitage, 1999). As result of the scientific evidence for HEF supporting ecosystem

level processes in river systems, restoration practitioners have started to incorporate

measures that promote HEF to mitigate water quality impacts, support biodiversity

and increase ecological resilience (Mendoza-Lera and Datry, 2017; Hester and Gooseff,

2011).

Restoration measures can induce or enhance HEF through the generation of hy-

draulic gradients, creation of geomorphological heterogeneity (i.e. bedforms, sediment

sorting) and decrease of sediment load (Tuttle et al., 2014; Gordon et al., 2013; Schirmer

et al., 2014; Hester and Doyle, 2008). However, at present there is little guidance on

appropriate siting of restoration measures to locations where HEF has the greatest po-

tential to be enhanced, and most of the hyporheic-restoration work has focused on in-

channel factors. As HEF is defined by the interaction between surface and groundwater,

both surface and subsurface conditions influence the occurrence of HEF at multiple spa-

tial scales (Boano et al., 2014). In fact, hyporheic exchange exhibits scale-dependency

where HEF at reach and sub-reach scale is influenced significantly by larger-scale hy-

drogeological patterns and processes (Aubeneau et al., 2015; Stonedahl et al., 2010;

Cardenas, 2008, 2007; Wörman et al., 2007; Boano et al., 2006).

This fractal dimension to HEF means that the occurrence, rates, spatial patterns

and temporal variability of HEF are determined by the interaction of physical, chemical

and biological processes in the river valley and catchment (Ward, 2016; Boano et al.,

2014).There are a large number of factors that influence these processes, which can be

divided into three broad and overlapping categories: (1) hydrological, (2) hydrogeolog-

ical, (3) topographic, (4) anthropogenic and (5) ecological (Table A.1, Table 3.1, Table

3.2).

Currently no framework exists to represent the complexity of multiple inter-related

and cross-scale processes affecting the importance of HEF, taking account of typical
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data availability (Ward, 2016), in river restoration prioritization and planning. There-

fore restoration measures could be used at different scales to promote HEF but the

difficulty of prioritizing restoration sites and selecting approaches (i.e. measures) from

catchment assessments is caused by the lack of supporting tools for explicitly targeting

the HZ and monitoring its physical and ecological responses (Mendoza-Lera and Datry,

2017; Hester et al., 2016; Hester and Gooseff, 2011; Palmer et al., 2010). A critical

step forward would be the development of methods to assist practitioners (Hester and

Gooseff, 2011).

In this paper we propose a novel and transferable method to identify potential areas

of HEF in river networks by combining and evaluating environmental data at reach, seg-

ment, and catchment scales. The multiscale method combines statistical analyses with a

priori knowledge on the processes controlling the HEF and their relationships to provide

an assessment of HEF across broad spatial scales and where the availability of mea-

sured or modelled hyporheic data is scarce or absent. This deductive approach, using

high-quality hydrologically-relevant environmental datasets that relate to the processes

that enhance or limit HEF, avoids the reliance on detailed site-specific information of

HEF, which is rarely available for most rivers, to inform restoration prioritisation and

planning.

3.2 Material and Methods

In this research, we developed and applied a multiscale statistical method to identify

potential suitable areas for HEF-focused restoration (Figure 3.2). The term suitable

refers to conditions where factors indicate that HEF has the potential to exist.

The method is used in hierarchy and consists of a supervised system that classifies

HEF at three spatial scales (catchment, segment and reach). It is based on environ-

mental factors that hydrological theory suggests be related with hyporheic flow (Table

3.1, 3.2 and Table A.1) but which association to diagnose HEF in river systems has not

been studied. The multiscale method represents a deductive approach to HEF classi-

fication that is geographically independent and depicted by a mosaic of factors across

the catchment. It uses readily available spatially comprehensive datasets rather than
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extensive hyporheic data as inputs, cause those are often not available at scales of anal-

ysis greater than sub-reach and reach scale (>100 m), and finally expert knowledge. In

this paper we present the application of the method to three scales, but the formulae

and the rationale explained are applicable to a finer resolution of scales.

The multiscale statistical approach involves a series of steps applied sequentially to

the harmonized data at catchment, segment and reach scales (Figure 3.2):

1. Step 1: Variable subsetting- the definition of several subsets of variables from

factors that are identified as linked to HEF (Section 3.2.2). The outcome of Step

1 is a set of testable datasets.

2. Step 2: Variable selection - uses exploratory data mining techniques (PCA and

X-Means cluster analysis) to reduce the dimensionality of the input space from

Step 1 and to identify factors that are the most related to potential HEF. The

outcome of Step 2 is several clusters from each of the tested subsets from Step 1

(Section 3.2.3).

3. Step 3: Hyporheic classifier - the semantic characterization of clusters and the

assignment of a classifier 1 (i.e., suitable) and 0 (i.e., unsuitable) for every cluster

in each tested subsets by an expert (Section 3.2.4).

4. Step 4: Classifier merger - uses a mathematical combination function to merge

the classifier produced for each cluster and each subset by Step 3 (Section 3.2.5).

The output of Step 4 is a single dataset of the merged cluster classifiers across

subsets.

5. Step 5: Large scale information merger - the final step involves the application of

a mathematical combination function to join the output of Step 4 from one scale

with the next larger scale (Section 3.2.6). The output of Step 5 is a single dataset

of the merged cluster classifiers across scales.

The end result of the classification is a binary classification of suitable and unsuitable

areas of HEF for clusters of unique variable combinations at each spatial scale (Figure

3.2). The algorithm was developed using the R scripting language (R Core Team, 2015)
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and relies on the implementations of X-Means 1 running on the D4Science 2 services

(Coro et al., 2013, 2015)(Figure 3.2).

1https://i-marine.d4science.org/group/biodiversitylab/data-miner?OperatorId=org.

gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.clusterers.

XMEANS
2https://i-marine.d4science.org/group/biodiversitylab/data-miner

https://i-marine.d4science.org/group/biodiversitylab/data-miner?OperatorId=org.gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.clusterers.XMEANS
https://i-marine.d4science.org/group/biodiversitylab/data-miner?OperatorId=org.gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.clusterers.XMEANS
https://i-marine.d4science.org/group/biodiversitylab/data-miner?OperatorId=org.gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.clusterers.XMEANS
 https://i-marine.d4science.org/group/biodiversitylab/data-miner


Chapter 3. A multiscale statistical method to identify potential areas of
hyporheic exchange for river restoration planning 56

Variable

1

River 1 Value 1 Value 2 Value n

Value nValue 2Value 1River 2

...

Variable

2

.........

Variable

n

Variable

7

River 1 Value 1 Value 2 Value n

Value nValue 2Value 1River 2

...

Variable

2

.........

Variable

n

Variable

5

River 1 Value 1 Value 2 Value n

Value nValue 2Value 1River 2

...

Variable

3

.........

Variable

n

Variable

2

River 1 Value 1 Value 2 Value n

Value nValue 2Value 1River 2

...

Variable

1

.........

Variable

n

Vs1,1 Vs1,2 ... Vs1,k

C1, C2, ...Ck’

1/0 1/0

1/0

1/0

C1, C2, ...Cm’ C1, C2, ...Cn’

Vs2,1 Vs2,2 ... Vs2,m Vs3,1 Vs3,2 ... Vs3,nVariable

selection

PCA & Clustering PCA & Clustering PCA & Clustering

Hyporheic

classi!er

Classi!er 

merger

Large scale merging

Best cluster Best cluster Best cluster

Cluster description

& classi!er

Cluster description

& classi!er

Merged cluster classi!ers

across subsets

Merged cluster

classi!ers across scales

Cluster description

& classi!er

Environmental data

Temporal & Spatial 
continuos

mean, range, sd

Spatial & Fuzzy Spatial & Categorical 

B; 0.5

A; 0.5
low; 1
medium; 2

high; 3

Variable 

subsetting Subset 1 Subset 2 Subset 3

s
t
e
p    

0

s
t
e
p    

1

s
t
e
p    

2

s
t
e
p    

3

s
t
e
p    

4

s
t
e
p    

5

CatchmentSegmentReach

1/0

1/0

CatchmentSegment

Merged cluster classi!ers

across subsets

Figure 3.2: Main steps of the method including Step 1 “Variables subsetting” (Section 3.2.2), Step 2
“Variables selection” (Section 3.2.3), Step 3 “Hyporheic classifiers” (Section 3.2.4), Step 4 “Classifier
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3.2.1 Environmental Data

3.2.1.1 Selection of environmental data

The environmental data used to develop our method consisted of factors identified

in the literature as potential influencing HEF within detailed studies. The association

of these factors to diagnose hyporheic conditions in river system has not been studied

before. Data were retrieved from remotely sensed and national datasets and consisted

of hydrological, hydrogeological, topographic, anthropogenic and ecological factors (Ta-

ble 3.1, Table 3.2). Hydrological factors related to the quantity of water entering and

flowing through the catchment, and expression of surface and groundwater flows, in-

cludes river and groundwater discharge (Voltz et al., 2013; Ward et al., 2012; Dragoni

and Sukhija, 2008). Hydrogeology encompasses factors that affect the distribution of

groundwater in aquifers and subsurface flows: geologic properties (porosity, grain size,

hydraulic conductivity), heterogeneity of rocks, type of aquifers and soils (Hartwig and

Borchardt, 2015; Kasahara et al., 2013; Bardini et al., 2012; Jones et al., 2008; Packman

et al., 2006; Kasahara and Wondzell, 2003; Brunke and Gonser, 1997). Topographic

factors were included because topography produces discontinuities in the direction of

groundwater flows, thus determining areas of groundwater discharge and recharge, and

of stream gradient and channel sinuosity (Caruso et al., 2016; Wörman et al., 2007;

Boano et al., 2006; Wörman et al., 2006; Anderson et al., 2005). Similar to topog-

raphy and hydrogeology, anthropogenic factors influence HEF at multiple spatial and

temporal scales. For instance, land cover and use (e.g. agricultural practices) were

included as a factor because directly impacting on evapotranspiration, surface runoff,

soil compaction, and erosion at valley scale, all of which significantly impact on river

hydrology and might represent a sediment source to reduce HEF (Didoné et al., 2014;

Ryan et al., 2010).

Finally, ecological factors related to the river-valley lateral and vertical hydrological

connectivity include riparian, in-channel vegetation, and in-channel wood. Vegetation

dynamics can potentially feedback on the temporal variability of HEF and likely increase

the spatial heterogeneity of this ecological- hydrological relationship.
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Table 3.1: Environmental data for the UK case studies.

Variables Dataset Format Resolution Source

Elevation
DTM,
LIDAR

ASCII
GRID

5 m
1 m

Digimap

Bedrock;
Superficial
Geology

Bedrock
Superficial
Geology

Shapefile
1:50,000
1:625,000

BGS50
BGS625

Soils;
Aquifers

European
Soil Database;
Groundwater
Resources maps
of Europe

Shapefile
1:1,000,000
1:500,000

ESDAC
JRC

Vegetation
Land Cover 2007
River Habitat
Survey

GeoTIFF
raw data

25 m
CEH
EA

Precipitation
Gridded
monthly
1981-2010

ASCII
GRID

5 km MetOffice

Air Temperature
Gridded
daily
1981-2010

ASCII
GRID

5 km MetOffice

River Flows Mean daily Discharge
Point
data

EA,
CEH

Bank;
in-channel
geology

River Habitat
Survey

Raw data,
miscellaneous

SPoint
data

EA

Land Cover
and Use

Land Cover 2007
River Habitat
Survey

GeoTIFF 25 m
CEH
EA

http://digimap.edina.ac.uk/webhelp/os/osdigimaphelp.htm#data_information/os_products/os_terrain5_dtm.htm
https://www.bgs.ac.uk/products/digitalmaps/DiGMapGB_50.html
https://www.bgs.ac.uk/products/digitalmaps/DiGMapGB_625.html
http://eusoils.jrc.ec.europa.eu/ESDB_Archive/groundwater/gw.html
https://esdac.jrc.ec.europa.eu/content/groundwater-resources-maps-europe-0
https://catalogue.ceh.ac.uk/documents/a1f88807-4826-44bc-994d-a902da5119c2
https://data.gov.uk/dataset/river-habitat-survey
http://www.metoffice.gov.uk/climatechange/science/monitoring/ukcp09/download/longterm/fivekm_monthly.html
http://www.metoffice.gov.uk/climatechange/science/monitoring/ukcp09/download/longterm/fivekm_monthly.html
https://data.gov.uk/data-request
http://www.ceh.ac.uk/data/nrfa/
http://apps.environment-agency.gov.uk/wiyby/
https://catalogue.ceh.ac.uk/documents/a1f88807-4826-44bc-994d-a902da5119c2
https://data.gov.uk/dataset/river-habitat-survey
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Table 3.2: Environmental data for the Polish case study.

Variables Dataset Format Resolution Source

Elevation DTM ASCII GRID
25 m,

10 cm

EEA

BNP

Bedrock;

Superficial

Geology

Bedrock &

Superficial

Geology

Shapefile
1:250,000 GeoLog

BNP

Hydrogeology;

Aquifers

Polish

Geological

Institute;

National

Research

Institute

Shapefile 1:50,000
PSH

BNP

Precipitation
Gridded daily

1951-2013
GeoTIFF 5 km

BNP

(Berezowski et al., 2016)

Air

Temperature

Gridded daily

1951-2013
GeoTIFF 5 km (Berezowski et al., 2016)

River Flows Discharge Row data Point data (Byczkowski and Fal, 2004)

Groundwater

flows

Groundwater

levels
Row data Point data BNP

Soils;

peat depth

Soil type,

peat depth
Shapefile BNP

Land Cover CORINE GeoTIFF 25 m EEA

3.2.1.2 Spatial discretization and data transformation

Data pre-processing included spatial delineation of catchments segments and reaches

for our case of study. At first, catchment boundaries were delineated using the Hydrol-

ogy toolset of the Spatial Analyst Toolbox of ArcGIS 10.2. Secondly, segment units, as

sections of river that experience similar valley-scale influences and energy conditions,

were delineated based on discontinuities in the gradient along the longitudinal profile of

the river network and in sub-catchment areas. The number of segments in a catchment

http://www.eea.europa.eu/data-and-maps/data/eu-dem
https://www.biebrza.org.pl/
http://m.bazagis.pgi.gov.pl/cbdg/#/main?config=http:%2F%2Fm.bazagis.pgi.gov.pl%2Fgeolog_conf%2Fmgp500k.json
https://www.biebrza.org.pl/
http://psh.gov.pl/en/phs_databases/hydrogeological-map-of-poland-first-aquifer-extent-and-hydrodynamics,strona,2.html
https://www.biebrza.org.pl/
https://www.biebrza.org.pl/
https://www.biebrza.org.pl/
https://www.biebrza.org.pl/
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-2


Chapter 3. A multiscale statistical method to identify potential areas of
hyporheic exchange for river restoration planning 60

was related to the increase in catchment area due to tributary confluences. The con-

fluence was deemed significant when the sub-catchment area drained by the tributary,

was greater than 20% of the main stem catchment area immediately upstream of the

junction (Gurnell et al., 2014). River reaches were delineated based primarily on their

channel planform. The river channel was divided into sinuosity units based on changes

in the axis of the overall planimetric course. The units that differed in sinuosity by

more than 10% were considered separate reaches.

Continuous temporal and spatial variables (i.e. temperature and elevation) were

summarized by summary statistics (mean, standard deviation, minimum and maxi-

mum) (Figure 3.2, Table A.2 and Table A.3). For spatial fuzzy variables (i.e. bedrock

geology) the relative contribution of each bedrock class (i.e. chalk geology) was ex-

pressed as percentage of occupied surface area with respect to the variable overall area

and then scale in the range 0 and 1 (Figure 3.2, Table A.2 and Table A.3). Spatial

categorical variables such as permeability classes, were numerically ranked according to

the number of classes (i.e. very high=4, high=3, low=2, very low=1)(Figure 3.2, Table

A.2 and Table A.3).

3.2.2 Step 1- Variables subsetting

The full set of data containing the environmental variables for all case of study,

is manually subset into groups of variables. This is a necessary preliminary step to

statistical discriminant analysis, otherwise not directly applicable given the large set of

information reporting dependent variables, noise or missing data. Furthermore, there

are usually more variables than rivers that cause difficulties in identify similarity be-

tween variables of each group of rivers and minimize the similarity between groups

using statistical discriminant analysis. These subsets can contain overlapping variables

(e.g. sharing one variable) and can be semantically driven (e.g. subset of aquifer type

or temperature ranges) (Figure 3.2). The subsets will be analysed independently. At

the end, the independent analysis of multiple variable subsets will provide information

about discarded variables that are not correlated with HEF in either Step 2 or Step 4.
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3.2.3 Step 2- Variables selection

In Step 2, the variable subsets are analysed independently using principal com-

ponent analysis (PCA) to explore patterns in data variability among rivers and then

complemented by cluster analysis to identify combinations of variables possibly indi-

cating hyporheic responses in a given river area. First, a PCA is performed to reduce

the dimensionality of the input space (Jolliffe, 2002). By selecting only the principal

components associated with the largest eigenvalues, new vectors are obtained in the

transformed-space that have smaller dimensions. These vectors are associated to the

largest variance directions of the principal components and hence selected for the cluster

analysis (variables selection) (Figure 3.3). Discarded variables can still be included and

analysed in other variable subsets or scale, if the presence of those variables is known

to be important for HEF.

At this stage, the reduced dimensional space is optimized with respect to the in-

formation (variance) contained in the data, thus facilitating the application of cluster

analysis to the PCA output (Ding and He, 2004). Our method uses the distance- based

X-Means algorithm (Pelleg et al., 2000) a variant of the most common K-Means (Mac-

Queen, 1967). The X-Means algorithm was chosen after testing the DBScan density-

based clustering algorithm (Ester et al., 1996), which did not produce meaningful group-

ing of the case studies, i.e. in most of the cases vectors were all classified as outliers.

In contrast to K-Means, XMeans requires indicating a minimum and a maximum num-

ber of clusters (Kmin and Kmax). The algorithm applies KMeans to the data for all

the possible K values in the indicated range. KMeans finds the best assignment of

the vectors to the K clusters and produces a score for this assignment, based on the

average squared distance of the points to their clusters centroids (distortion measure).

XMeans reports the output of the KMeans execution that produced the best score. The

associated K is the best number of clusters. XMeans is also more efficient with respect

to KMeans, because it uses kd-trees (Bentley, 1975) and blacklisting as support to the

processing.

The X-Means algorithm (Pelleg et al., 2000) is applied to the PCA-transformed

vectors, generating optimal grouping (clusters) of vectors according to their distances.



Chapter 3. A multiscale statistical method to identify potential areas of
hyporheic exchange for river restoration planning 62

Clustering the dimensionally-reduced, PCA-transformed vectors helps to find the best

grouping in this space, since the vectors belonging to the same cluster are close in

the PCA-transformed space (Ding and He, 2004). Each cluster produced by XMeans

is characterized by a centroid, which is a representative vector of the cluster. In our

method, the centroid is interpreted as a summary of the characteristics of the clus-

ter in the PCA-transformed space. Re-projecting the clusters centroids to the original

space allows obtaining the coordinates of the centroids expressed in terms of the origi-

nal variables. Re-projection is mathematically possible although the PCA transformed

space has reduced dimensionality with respect to the original space. However, dur-

ing this step, some information is lost, hence our method analyses the distribution of

the variables onto the re-projected centroids. Specifically, we calculate the distances

between the variable value and the coordinates of the re-projected centroids for each

variable. The number of times a centroid coordinate is closest to a real-data value is

also recorded. A tolerance threshold of 25% is applied, before the final clustering, on

the features having the most uniform distributions over the centroids. This step allows

the selection of variables that are equally distributed over the centroids, and accounts

for the loss of information during re-projection.

The following example illustrates the criteria used to retain or discard the variables.

Suppose 2 data clusters are identified for 8 rivers, defined by vectors of elevation, channel

gradient and temperature. If 4 elevation values are determined to be closest to cluster

A and the other 4 to cluster B, the elevation variable would be retained, because the

25% tolerance threshold is exceeded (i.e. >2 rivers assigned to a cluster). If 2 channel

gradient values were assigned to cluster A and 6 to cluster B, the channel gradient

variable would be discarded because the threshold (>2) is not exceeded. And, if 5

temperature values were assigned to cluster A and 3 to cluster B, temperature would

be retained in the analysis. In conclusion, by construction of the PCA algorithm,

if the variables are independent and carry high variance, then the PCA-transformed

space would correspond to the original space. Thus, the centroids would take all of the

variables into account, resulting in equal distributions of the vectors coordinates on the

centroids coordinates (Ding and He, 2004). A variable that is not assigned to a cluster

does not indicate a missing value for that cluster, but it has been discarded during the
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clustering analysis.

Figure 3.3: The distribution of the vectors of two variables, average elevation and slope of UK rivers
and their related PCAs. The new axes identify the largest variance directions (explained var.); the red
circle represents highly correlated points that mostly contribute to the correlation matrix. The values
are scaled as requested by the PCA.

3.2.4 Step 3- Hyporheic classifiers

The unique combinations of variables that are generated by the cluster analysis

(Step 2), and their centroids are used to assess suitable and unsuitable areas for HEF-

restoration for a river area using human expertise. The expert provides a semantic

description to each cluster in each subset using the centroid of the cluster and then

assigns an hyporheic classifier, 1 (suitable) or 0 (unsuitable), which indicates if the en-

vironmental conditions depicted by the clusters lead (i.e. 1) or not (i.e. 0) to HEF.

The use of expert knowledge is required because empirical data on HEF is not available
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for all of these unique combinations. The expert bases this assignment on the variable

types, the distribution of the variables in each cluster and on the knowledge of the hy-

drological, hydrogeologic, topographic, anthropogenic and ecological factors that yield

HEF following the relationships summarized in Table A.1. At the end of the Step 3,

the initial set of variables has been factored into clusters, semantically described and

labelled. The next section explains how these clusters are combined, which corrects

errors in the cluster label assignment and cluster analysis.

3.2.5 Step 4- Classifier merger

Classifiers for each cluster and subset are merged together using a mathematical

combination function. The criterion used for the mathematical combination function

is to indicate that areas of HEF are suitable only if over half of the hyporheic classi-

fiers indicate that it is suitable. The mathematical combination function allows us to

account for errors in the hyporheic classifiers due to mis-labelling of the clusters. The

combination function is the normalized sum of all the sub-classification for each case

study:

Cs(r) = ∑
N
i=1Csi(r)
N

C(r) =
⎧⎪⎪⎨⎪⎪⎩

1, Cs(r) > 50%

0, otherwise

where r is the complete set of variables associated to a river area; si is the i-th (of

N) variable subset; Csi(r) is the i-th binary hyporheic classification over the si variable

subset; Cs(r) is the normalised sum of all the sub-classifications for the river area r

and C(r) is the final classification function. If Cs(r) is higher than 50%, the river area

r is classified as suitable, otherwise the classifier assesses unsuitable. This threshold was

set after heuristic evaluation of a small (20%) subset of our data.
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3.2.6 Step 5- Large scale merging

To increase the accuracy of predictions as the spatial scale becomes finer, the last

step of the method is to combine the binary classifiers from different scales using a

downscaling approach. The rationale behind the combination function is the following:

if the system predicts that HEF areas are suitable in a river at a large spatial scale,

then it is more likely to present suitable areas at smaller spatial scales nestled within

the larger area. For example, a positive (binary “1”) classification at catchment scale

suggests that suitable environmental conditions exist for HEF in the catchment area.

At this scale of analysis, the accuracy of the classification is generally higher because it

is not required to precisely identify the specific location of hyporheic exchange. Hence,

a smaller-scale classifier can use the information from a larger-scale classifier because it

represents the presence of factors that drive HEF. Our method embeds this approach

using a “bonus function” (20% weighting in the equation) that combines the output

of a classifier with the output of the next-largest-scale classifier. The classification is

recalculated for finer scales as follows:

Clarge(r) = Cs(r) + 20%Clargescale(r)

C(r) =
⎧⎪⎪⎨⎪⎪⎩

1, Clarge(r) > 50%

0, otherwise

Where Cs(r) is the normalized sum of all the sub-classifications for river area r,

and Clargescale(r) is the dichotomic score of the first larger scale. Also in this case,

the threshold (50%) has been set after heuristic analysis on a small (20%) subset of our

data.

3.3 Results

This section reports the results of the application of the multiscale statistical method

to the nine test catchments. The cluster results were compared to expert opinion

(Section 3.3.1) and discussed at each spatial scale (Section 3.3.2).
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Table 3.3: Selected Rivers in Europe. Coordinates (WGS84) refer to the downstream-most point in
the case studied rivers, which was used for catchment delineation.

River
catchment

Latitude
Longitude

Catchment Area
(km2)

Bedrock
Geology

Dove
53.207;
-1.928

212.154
Carboniferous
Limestone

Wye
53.327;
-1.851

270.776
Carboniferous
Limestone

Exe
51.160;
-3.830

103.162
Permo-Triassic
Sandstone

Tone
51.088;
-3.380

461.857
Permo-Triassic
Sandstone

Frome
50.835;
-2.652

467.610
Cretaceous
Chalk

Piddle
50.835;
-2.431

202.471
Cretaceous
Chalk

Tern
52.945;
-2.336

852
Permo-Triassic
Sandstone

Rother
51.087;
-0.926

379.795
Greensand
Sandstone

Biebrza
54.188;
22.625

7062.618
Marl
Sands
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Figure 3.4: Panels A and B represent the locations of the two cases of study UK (A) and Poland
(B). Panels C,D,E represent the River Dove in UK and the examined spatial scales: catchment (C),
segments (D), reaches (E). In panel A the numbers refer to: (1) the River Wye,(2) the River Dove,
(3) the River Tern, (4) the River Exe, (5) the River Tone, (6) the River Frome, (7) the River Piddle,
(8) the River Rother, (9) the River Biebrza. The yellow points in panel E refer to literature studies
carried out on that particular reach of the catchment by Dunscombe (2011).
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3.3.1 Validation and reliability of the classification results

The X-Means algorithm identified three optimal clusters in all the three spatial

scales considered in the study. To evaluate whether the developed multiscale statistical

approach could identify suitable and unsuitable areas for hyporheic exchange to occur,

the reliability of the identified clusters was evaluated by examining the representative-

ness of the variables among the clusters against human expertise by the authors. In the

assessment, the lead author manually assigned one of the interpretations of the XMeans

clusters (i.e. 1 or 0) to each river catchment (i.e. 8 catchments and 118 variables for

the UK case of study; 86 variables for the Polish case study), segment (51 segments and

48 variables for the UK case of study; 10 segments and 35 variables for the Polish case

study) and reach (135 reaches and 59 variables for the UK case of study; 11 reaches

and 74 variables for the Polish case study). At this stage, the expert evaluation differs

from the expert information within the model (Step 4) because it is performed on the

original environmental data (Section 3.2.1) and not on the clusters. A confusion matrix

was used to assess the agreement between the expert assignment (binary “1” and “0”)

and X-means clusters as the percentage of matching assignments (absolute percentage

of agreement). Furthermore, the Cohen’ s Kappa (Cohen, 1960) was calculated to es-

timate the agreement between the expert and the model compared to purely random

assignments. The X-Means results agreed generally with expert opinion indicating re-

liable semantic interpretations of the categories identified in the clusters variations. At

the catchment scale the absolute percentage of agreement is 88% and 75%, at segment

75% and 78% and at reach 74% and 82% for the UK and Polish case studies respectively

(Table 3.4, Table 3.5).
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Table 3.4: UK case study: confusion matrix for classification at the catchment, segment and reach
scale.

Clustering Catchment scale

Expert Classifier 1 Classifier 0 Total

Classifier 1 4 1 5

Classifier 0 0 3 3

Total 4 4 8

Agreement 4 3 7

By Chance 2.51 1.50 4.01

Fleiss Landis-Koch

Kappa 0.75 Good Substantial

Absolute % of agreement 88%

Clustering Segment Scale

Expert Classifier 1 Classifiers 0 Total

Classifier 1 16 7 23

Classifiers 0 6 22 28

Total 22 29 51

Agreement 16 22 38

By Chance 9.92 15.92 25.84

Fleiss Landis-Koch

Kappa 0.48 Good Moderate

Absolute % of agreement 75%

Clustering Reach scale

Expert Classifier 1 Classifier 0 Total

Classifier 1 25 7 32

Classifier 0 27 70 97

Total 52 77 129

Agreement 25 70 95

By Chance 12.90 57.90 70.80

Fleiss Landis-Koch

Kappa 0.42 Good Moderate

Absolute % of agreement 74%
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Table 3.5: Polish case study: confusion matrix for classification at the catchment, segment and reach
scale.

Clustering Catchment scale

Expert Classifier 1 Classifier 0 Total

Classifier 1 1 1 2

Classifier 0 0 2 2

Total 1 3 4

Agreement 1 2 3

By Chance 0.52 1.53 2.31

Fleiss Landis-Koch

Kappa 0.5 Good Moderate

Absolute % of agreement 75%

Clustering Segment scale

Expert Classifier 1 Classifiers 0 Total

Classifier 1 24 9 33

Classifiers 0 7 7 7

Total 24 16 40

Agreement 24 7 31

By Chance 19.81 2.82 22.61

Fleiss Landis-Koch

Kappa 0.48 Good Moderate

Absolute % of agreement 78%

Clustering Reach scale

Expert Classifier 1 Classifier 0 Total

Classifier 1 3 0 3

Classifier 0 2 6 8

Total 5 6 11

Agreement 3 6 9

By Chance 1.36 4.36 5.72

Fleiss Landis-Koch

Kappa 0.62 Good Substantial

Absolute % of agreement 82%

As the binary classifiers for each scale in Step 5 take account of the information

from the next-largest scale (i.e. catchment classifiers influencing segment classifiers) to

represent the scale dependence in HEF, the model performance is expected to increase
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within decreasing scale. In the UK case of study, the catchment scale effectively added

information to the segment scale (Step 5) because the agreement increases of 1 percent-

age point (Table 3.6). However, in the Biebrza application, no performance increase

was detected (Table A.4).

Table 3.6: UK case study Step 5: confusion matrix segment agreement with enrichment of 20% using
the information of the catchment.

Clustering Segment-Catchment

Expert Classifier 1 Classifier 0 Total

Classifier 1 22 1 23

Classifier 0 11 17 28

Total 33 18 51

Agreement 22 17 39

By Chance 14.88 9.88 24.76

Fleiss Landis-Koch

Kappa 0.54 Good Moderate

Absolute % of agreement 76%

3.3.2 Prediction of HEF at different spatial scales

HEF suitable and unsuitable areas were predicted at all three spatial scales for the

examined rivers (Figure 3.5, Table 3.3). At catchment scale, unsuitable conditions

for HEF are predicted for the Rivers Dove, Exe, Tone and Wye (Figure 3.5). These

rivers are predominantly characterized by confined or semiconfined aquifers, poorly

sorted superficial deposits, from coarse sand to silt and clay (>50% cover over the

catchment). In contrast, for the Rivers Frome, Piddle, Tern and Rother, the semi-

automatic classification method predicts suitable areas for HEF to occur. The clusters

for these rivers depict predominantly complex aquifers with flows though fractures and

discontinuities, terrigenous deposits with sorted sand and gravel (30 to 45%), silt and

clay deposits less than 20% of cover on the catchment.

At the segment scale, HEF was found to be characterized by suitable areas for all
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the identified segments in the Rivers Piddle, Tern, Wye and the Biebrza River (Figure

3.5, Table 3.3). Conversely, HEF is predicted to be low for all the segments in the

Rivers Dove, Rother and Tone. The Rivers Exe and Frome are predicted to have a

mixture of suitable and unsuitable HEF areas in different segments. Where suitable HEF

condition is predicted, the clusters are mainly characterized by sandstone geology, a low

fraction fine sediments (between 10 and 30% cover over the segments), large fraction

of sorted gravel and sand deposits (between 20 and 50% cover over the segments),

channel sinuosity of ≥ 1.2 and low channel gradient (0.002). In segments with unsuitable

conditions for HEF, the clusters describe mudstone and sandstone geology, low channel

gradients, high percentage of clay and fines (>55% cover) and high percentage of arable

and grassland (>70% cover) within 150 m of the river channel. For the Biebrza River,

the segments which are predicted to have suitable HEF conditions are characterized by

sinuosity ≥ 1.3, high percentage of gravel and sand deposits ( >40%), high percentage

of productive aquifer, and low percentage of pasture lands (<10%) within 150 m of the

main river channel.

Table 3.7: Frequency of the categories, suitable “1”, unsuitable “0” HEF in the catchments, segments,
reaches.

River
Catchment Segment Reach

1 0 1 0 1 0

Biebrza 1 - 10 - 5 6

Dove - 1 - 8 - 19

Exe - 1 3 4 - 16

Frome 1 - 5 1 37 1

Piddle 1 - 4 - 15 6

Rother 1 - - 10 - 11

Tern 1 - 4 - - 9

Tone - 1 - 6 - 10

Wye - 1 6 - - 11

Finally, at reach scale, the multiscale statistical method predicted suitable HEF

areas for 3 rivers of the 9 evaluated: the Frome, Piddle and Biebrza (Figure 3.5, Ta-
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ble 3.3). Generally, the clusters indicating suitable conditions for HEF exhibit a low

percentage of in-channel vegetation (2-10% of the reach), gravel substrates (>10%),

very low percentage of silt and clay deposits (<1%), presence of pools and riffles (5-

10%), and a low percentage of poached or overgrazed river banks (<5%). Cluster

indicating unsuitable HEF areas are mainly described by poached river banks, presence

of in-channel emergent vegetation and reeds, low percentage of gravel substrates, low

number of pools and riffles, and low mean flow velocity. In the Biebrza River, clusters

indicating suitability relate to superficial geology dominated by peat (80% cover on the

entire reach) and mud (10%), while those indicating unsuitability were dominated by

mud (60%) and peat (<10%) deposits, low percentage of sand and gravels, and high

percentage of unsorted till deposit (>50%) and pasture lands.
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Figure 3.5: Grey-scale coded maps of the case study rivers based on suitable “1” (grey scale) and
unsuitable “0” (white) areas of HEF. a) the Biebrza River, b) the Dove River, c) the Exe River, d)
the Frome river, e) the Piddle River, f) the Rother River, g) the Tern River, h) the Tone River, i) the
Wye River. Yellow points refer to field data of HEF from Dunscombe (2011); Anibas et al. (2012);
Krause et al. (2011a)
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3.4 Discussion and Conclusion

The multiscale statistical method was developed and applied to nine rivers across

Europe to identify suitable and unsuitable reaches, segments and catchments for HEF-

focused restoration. The results of the classification showed good to moderate agree-

ment (Cohen’ s Kappa) with expert opinion, indicating reliable categories and semantic

interpretations of the clusters. Reasonable agreement is also observed with in-situ em-

pirical data from previous studies, given the unavoidable differences in scale between

these detailed local research studies (1 m- 1 km) and our broad scale approach. In this

section we discuss the results of the classification against field observations of actual

HEF, the major predictors of suitable and unsuitable areas (Section 3.4.1) and finally

the domain of application of the method (Section 3.4.2).

3.4.1 Linking processes to factors

At each spatial scale, catchment, segment and reach, cluster results show groups of

predictors that influence the determination of suitable and unsuitable areas for HEF-

restoration. Hydrological factors (i.e. groundwater level, discharge) influence HEF by

changing surface water flow regimes and distributions of hydraulic head. Hydrogeolog-

ical factors affect water flowing through the river bed by sediment grain size, sediment

heterogeneity, and depth, therefore promoting spatially diverse hyporheic exchange

(Packman and Salehin, 2003) (Table A.1). Topographic factors, such as catchment

gradient, individual bedforms and bedforms sequences, valley confinement, author hy-

drodynamic and hydrostatic forces that affect the variability of HEF from cm to km

scale (Table A.1). Anthropogenic factors, as in-channel structures (i.e. weirs, dams),

land management and land use, impact HEF by modifying river stage fluctuations,

changing sediment delivery and channel complexity, and by altering vertical hydraulic

gradients (Table A. 1). Also vegetation has long been known to exert a strong control

on land surface hydrology by moderating streamflow and groundwater recharge (Table

A.1). As ecological factor, vegetation feedbacks on the temporal variability of HEF and

likely increase the spatial heterogeneity of this ecological hydrological relationship. This
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section presents the different factors affecting suitable and unsuitable HEF-restoration

areas and compares the HEF predictions at reach scale to in-situ empirical data from

previous studies.

High percentages of poached banks, emergent in-channel vegetation, improved grass-

land, and low geomorphological complexity, and low number of pool-and-riffle se-

quences, were associated with unsuitable reaches in the Frome (1 reach) and in the

Piddle catchments (15 reaches). Dunscombe (2011), observed weak vertical hydraulic

gradients (VHGs) at the head and tail of riffles in both the Rivers Frome and Piddle,

indicating little to no HEF at this scale. This is a finer scale than the prediction of our

model which overall classifies that reach as unsuitable (Figure 3.5e). These neighboring

catchments are found in the south of England and are underlain by chalk bedrock.

Chalk has a high secondary porosity, and groundwater flows easily through fractures

and fissures in the bedrock to these gravel-bed rivers (Waters and Banks, 1997). The

combination of a permeable chalk geology and coarse sediment would be expected to

strongly support HEF (Hiscock, 2007; Morrice et al., 1997). However, there are several

reasons for unsuitable conditions in these rivers: (i) the pronounced groundwater flows

create strongly gaining and losing conditions in reaches, which drive contraction (gain-

ing) or expansion (losing) of HZ and shortening of HEF paths (Malzone et al., 2016,

2015; Fox et al., 2014; Wondzell and Gooseff, 2013); ii) the rivers have few instream

geomorphic features that would generate advective pore water flow into, through and

out of the river bed (Tonina and Buffington, 2009; Elliott and Brooks, 1997); and iii)

high fine sediment loads have led to clogging of the coarse gravel bed (Boulton and

Hancock, 2006; Pretty et al., 2006). Several studies have shown that chalk rivers in

England have elevated fine sediment loads, derived principally from cultivated agricul-

tural land (Grabowski and Gurnell, 2016; Collins and Walling, 2007; Walling and Amos,

1999) and grazing pressure (Bilotta et al., 2010; Bilotta and Brazier, 2008; Trimble and

Mendel, 1995). Also, in-channel vegetation appears be an important factor at this scale

of analysis. While vegetation patches have been shown to narrow the active channel,

increasing water velocities and mobilizing the gravel bed (e.g. Cotton et al. (2006)), the

low flows within patches promote depositions of sediment and organic matter, decreas-

ing bed permeability and reducing or eliminating HEF (Corenblit et al., 2007; Ensign
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and Doyle, 2005; Salehin et al., 2004). The result of the statistical method for the Wye

River agreed with Dunscombe (2011) observations (weak VHGs), while for the Rivers

Tone, Dove, the predictions did not match with collected field data. Our method pre-

dicts unsuitable areas for HEF at the reach scale along the Tone and the Dove, while

Dunscombe (2011) observed strong patterns of up- and downwelling flows at the head

and tail of riffles on both rivers. For the River Tern, all reaches were identified as

unsuitable areas by our method, however empirical HEF data at a pool-riffle-pool se-

quence showed temporal flow patterns occurring around this geomorphic feature at the

sub-reach scale (Krause et al., 2011a; Hannah et al., 2009).

Suitable areas for HEF were predicted consistently across all spatial scales for the

Rivers Dove and the Tone, but not for the Tern, Wye, Rother, Piddle, Frome, Exe and

Biebrza. At catchment scale, the clusters for the Dove and Tone are characterized by

well distributed variables: sandstone is mixed with mudstone and siltstone bedrock geol-

ogy and clay and silt superficial deposits represent more than the 50% of the catchment.

Similarly, the hydrogeology is dominated by unconfined but low-producing aquifers.

While the sandstone bedrock would normally support surface-subsurface exchange (His-

cock, 2007), the low-conductivity superficial deposits characterizing the clusters (more

than 50% of the catchment area) would likely limit or restrict vertical hyporheic flow.

Indeed, the role of local sediment deposits in preventing or limiting groundwater flows

has been also observed under unconfined alluvial channels (Gurnell et al., 2014). At

segment scale, clusters characterized by low slopes, high percentage of in-channel fine

sediments, and extensive arable lands around the river channel are depicted in the clus-

ters, possibly suggesting an impact of sediment delivery from the surrounding lands

and simplification of landscape complexity (Boano et al., 2014; Gooseff et al., 2007).

At reach scale, suitable conditions for HEF were predicted in some reaches of the

Biebrza, Frome and Piddle (Figure 3.5). For the Biebrza River, the reaches identified

as suitable (Figure 3.5a) in our classification corresponded in spatial extent to one

reach of our analysis which were previously observed to have upwelling and sections of

recharge (Anibas et al., 2012). These reaches were characterized mainly by a geology of

peat and peat mixed with mud. Our clusters identified peat as an important variable

controlling HEF at the reach scale. This reflects the underlying process controls, as the
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physical structure and stratigraphy of peat has pronounced influence on the dynamics

of water retention, storage and solute transport (Rezanezhad et al., 2016).Anibas et al.

(2012)described two main types of peat soils that showed different behaviors in driving

HEF flows at the sediment-water interface; soil I has a loose structure, covered in reed

vegetation and characterized by high flow fluxes, while soil II is more compact and has

lower flow fluxes. In our data for the Biebrza, peat characteristics are heterogeneous

across reaches, varying from loose, similar to soil type I (Anibas et al., 2012), to more

compact and mud-dominated, similar to soil type II (Anibas et al., 2012). Therefore,

the overall assessment and spatial distribution of HEF predictions at reach scale in the

Biebrza catchment are supported by the findings of Anibas et al. (2012).

A possible reason of the difference in outputs between the predicted HEF conditions

by the multiscale approach and in-situ observations is the diverse spatial and temporal

resolution. In-situ observations are commonly limited to square meters measurements

and are often influenced by temporal variations that are not considered in the proposed

approach. Moreover, the resolution of geomorphological data used in these case studies

is coarser than the detailed, sub-reach-scale observations of HEF. River Habitat Survey

(RHS) data was used as point estimates of in-channel conditions. While RHS data

is ideal for this type of analyses in many ways (e.g. UK-wide coverage, reach survey

scale), it is a visual appraisal of river habitats and geomorphic features, and does not

involve topographical or hydrogeological measurements (Raven et al., 1996). Therefore

RHS does not able to resolve the sub-reach-scale geomorphological features that were

surveyed in the empirical studies. The limitation linked to the spatial resolution can

explain differences by scale where suitable areas for HEF to occur are predicted only at

spatial scales larger than the reach scale (i.e., River Tern and River Rother).

Finally, results in Table 3.6 depicted a scale-dependence effect between catchment

and segment. The small increment in the confusion matrix suggests that upper hierar-

chical levels inform on general conditions at low resolution and exert constraints on the

lower level, which informs at higher resolution and provides mechanistic explanation

for higher levels.
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3.4.2 Application to river restoration planning

This study proposes a multiscale statistical method to identify where HEF poten-

tially occurs at catchment, segment, and reach scale, i.e. a it is suitable for HEF-based

restoration. The approach and results herein presented use readily available environ-

mental datasets enabling the method to be transferable to other catchments. Restora-

tion practitioners are increasingly considering the HZ in their management plans be-

cause of the crucial role it plays in river biogeochemical processing and the transferring

of solutes and oxygen between surface waters, groundwater and the HZ (Mendoza-Lera

and Datry, 2017; Nogaro et al., 2010; Findlay, 1995). Thus, there is a strong need to

provide river managers and restoration practitioners with a tool that can be applied to

any catchment, and which is flexible enough to work with the data sources available in

different regions and countries. We chose to structure the method around the multiple

scales because it allows broader restoration planning that considers catchment-scale

solutions (Merill and Tonjes, 2014; Wortley et al., 2013; Hester and Gooseff, 2011).

To assist river restoration practitioners, we propose that this multi-scale statistical

process be run as a preliminary assessment step in restoration planning to identify

and possibly prioritize restoration actions (i.e. reach locations) across a catchment.

Restoration managers can benefit from the classification at any stage of the analysis.

First by looking directly at the clusters (Step 2), that describe: i) environmental and

hyporheic-drivers on the targeted areas, ii) identify areas with the same hydrological,

hydrogeological, topographical and ecological context, and iii) are spatially unique.

Second by looking at the final confusion matrices (Step 4), which embed a summary of

knowledge across the domains of hydrology, geology, and hyporheic theories and their

related environmental data, and provide insights into the spatial variability of HEF in

a catchment. Finally, by looking at multi-scale assessment (Step 5), the results at each

spatial scale can be used a posteriori to define what processes management actions are

important for each reaches and then feedback to management actions.

Considering the above information, river managers can choose between a “passive”

and an “active” approach. For example, some of the factors depicted in the clusters will

be intrinsic (i.e. bedrock geology) and cannot be changed by management measures
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while others will be dynamic (i.e. land use, vegetation, channel geomorphology) and

therefore might become a target for river management. If suitable HEF conditions are

predicted, a passive approach will likely be preferred and include measures that do not

directly address hyporheic conditions but that take advantage of HEF to preserve and

maintain, for example, habitat diversity. The passive approach would include in-situ

evaluation to verify that the method predictions are representative of local conditions.

Conversely, if unsuitable HEF conditions are predicted, an active approach can be

adopted and local restoration measures applied accordingly to the factors involved.

In our opinion, the identified factors for HEF have intuitive general validity, but we

expect that in other applications the method would be tailored to site-specific charac-

teristics and applied to other factors. At reach and sub-reach scales, the classification

is generally limited by the resolution and quality of the available data. This is a gen-

eral issue when using environmental surrogates of hydrological processes, especially due

to the coarse resolution of the data (Olden et al., 2012). We qualitatively compared

the prediction of the method on available empirical hyporheic evidence that was i)

spatially and temporally limited to local scales, ii) collected using multiple methods,

and iii) focused on specific geomorphic features, such as bedforms, that likely trigger

local advective HEF even when catchment conditions limit larger-scale flows. In the

future, we expect this evidence-based problem to be overcome by technology and more

complete and uniform metadata associated with hyporheic studies.

Finally, existing scientific literature suggests that knowing how and what to priori-

tize in restoration actions for aquatic ecosystems are fundamental to effective restoration

planning (Wohl et al., 2005). There is an increasing emphasis on addressing hyporheic

zones into restoration to allow more comprehensive hydro-ecological understanding of

aquatic ecosystems; our model can support restoration as a first-order assessment to

target HZ and thus provide the greatest benefits to restoration plans.
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Chapter 4

Large wood effects on river invertebrates

Abstract

Large wood (LW) is a key element of river channels. Field results have suggested

diverse hydrological, physical and ecological effects on river processes and forms. Stud-

ies on taxonomy-based descriptors of benthic macroinvertebrate assemblage structure

have supported these findings, but evidence of the importance of LW on hyporheic in-

vertebrates remains rare. One of the hypothesised benefits of LW on the hyporheic zone

(HZ) is an increase of hyporheic exchange flow (HEF) which drives ecological diversity,

although this connection has not been well evidenced in empirical studies.

We examined the effects of active and partial wood jams on the hyporheic and

benthic zones. The hypotheses (i) “LW sites would differ in abundance, biomass and

taxonomic richness from control sites” and (ii) “these differences are related to envi-

ronmental variables at wood sites”, were tested on meiofaunal and macrofaunal assem-

blages. Streamflow, sediment size, water chemistry, wood morphology and invertebrates

assemblages were surveyed seasonally in the Hammer stream (UK).

Assemblages responded differently across sites (wood, control). Multivariate anal-

yses revealed a different taxonomic structure in abundance and biomass of hyporheic

meiofaunal assemblage in LW, whereas macrofaunal assemblages did not show signif-

icant differences between LW and control. Assemblage abundance and biomass were

driven by physical and sedimentological predictors revealing the tight coupling between

these assemblages of organisms and LW habitat.

Our results suggest that naturally occurring wood plays an important role in the

ecological functioning of the hyporheic zone in a lowland river through changing sed-

iment and physical dynamics and despite its limited hydromorphological impact on

hyporheic flows. This study has given field-based evidence of the spatial impacts of
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LW on the whole river invertebrate community and has provided initial insights on the

potential effects of wood-based restoration design on the hyporheic zone.

4.1 Introduction

Large wood (LW) is an essential component of fluvial processes and ecosystems

(Wohl and Scott, 2017; Gurnell, 2013). LW is living or dead wood in simple or complex

structures, where individual pieces are >1 m length and >10 cm diameter (Wohl et al.,

2010; Thevenet et al., 1998). A large body of literature has showed the profound

effects of LW on river hydrological, physical and ecological processes, as a result of its

interaction with water and sediment (Wohl, 2013; Phillips, 2012; Jeffries et al., 2003;

Gregory et al., 2003; Abbe and Montgomery, 2003). In ecology, studies on taxonomy-

based structural metrics of benthic macroinvertebrates have supported the role of LW

to promote biodiversity and physical habitat complexity, but evidence regarding the

hyporheic zone (HZ) remains rare.

LW leads to a mosaic of habitat patches varying in porosity, permeability, and

physicochemical conditions that result in the patchy distribution of invertebrates (Pi-

lotto et al., 2014; Lancaster et al., 2009; Loreau et al., 2003; Beisel et al., 2000). In

upland and lowland rivers, highly variable distributional patterns have been observed

for wood-dwellers and benthic macroinvertebrates on and around wood (Benke and

Wallace, 2003; Hoffmann and Hering, 2000; Gerhard and Reich, 2000; Hilderbrand

et al., 1997; Wallace et al., 1995). These studies have suggested that assemblage com-

position differs significantly between wood and no-wood sites, and that the observed

higher macrofaunal abundance, diversity or biomass associated with LW are linked to

increased mesohabitat heterogeneity of wood sites (Pilotto et al., 2014). Research has

also demonstrated that both benthic and hyporheic invertebrate distribution can be

attributed to patterns of variation within the river channel imposed by factors such as

flow (Wood et al., 2000), temperature regimes (White et al., 2017), sediment grain size

(Dunscombe et al., 2018; Jones et al., 2015, 2012), and nutrients (De Castro-Català

et al., 2015).

Although LW has been gradually integrated into management strategies as a means
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of improving the biodiversity of rivers (Kail et al., 2007; Erskine and Webb, 2003;

Larson et al., 2001), very few studies have considered the impacts of LW on hyporheic

communities (Wagenhoff and Olsen, 2014; Smock et al., 1992).

Field and experimental studies have demonstrated that LW benefits the hyporheic

zone (Orghidan, 1959), the region below the riverbed where surface and ground waters

mix. LW affects the bidirectional flow of water occurring in the HZ, known as hyporheic

exchange flow (HEF) by driving changes in hydraulic head and imposing high hydraulic

resistance (Krause et al., 2014; Hester, 2008; Fanelli and Lautz, 2008; Mutz et al., 2007;

Lautz et al., 2006; Mutz and Rohde, 2003; Mutz, 2000). The effects of LW are similar

to other in-channel roughness elements that create shallow upwelling and downwelling

zones and drive water into the subsurface, where it travels along short hyporheic flow

paths (Boano et al., 2007; Lautz et al., 2006). The positive role of wood-driven HEF has

been demonstrated for nutrient retention (Gomez-Velez et al., 2015; Krause et al., 2013,

2009; Bernot and Dodds, 2005), sediment deposition (Elosegi et al., 2017), sediment

hydraulic conductivity (Hess et al., 1992), oxygen concentration (Krause et al., 2013;

Kaller and Kelso, 2007; Naegeli and Uehlinger, 1997) and water temperature (Sawyer

and Cardenas, 2012). These studies demonstrated the importance of wood-driven HEF

in structuring the physical and the ecological compartments of river systems, although

substantial gaps remain in our understanding and ability to quantitatively predict inter-

actions among wood and hyporheic biotic communities. Wood-driven HEF is spatially

and temporally dynamic because HEF is defined by the interaction between surface and

groundwater and thus both surface and subsurface conditions influence the occurrence

of HEF at multiple spatial scales (Boano et al., 2014). Therefore, the magnitude of

wood- driven HEF largely depends on short and long-term patterns of land use and

geomorphology, valley topographic gradient (i.e. lowland and upland), valley geometry

(i.e. wood transport and storage), groundwater dynamics (i.e. gaining and losing),

channel morphology (i.e. orientation, stability of the LW and the volume of wood in

the channel) and sediment transport (Gregory et al., 2003; Jeffries et al., 2003; Collins

et al., 2002). ). In lowland rivers for example, where the gradient is low and flow

velocity is slow, wood induces less HEF and has less effect on spatial patterns of HEF

(Krause et al., 2014), but it still significantly influences total hyporheic residence time
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by creating low velocity zones within the channel (Shelley et al., 2017; Stofleth et al.,

2008).

In conclusion, wood-driven HEF impacts on nutrient, sediment and oxygen dy-

namics, processes that have important consequences on both hyporheic and benthic

communities. As the HZ plays a key role in the life cycle of many benthic invertebrates

(Robertson and Wood, 2010; Marmonier et al., 1993), a better scientific understanding

of the role of LW on the HZ is necessary to improve our ability to identify the processes

controlling the ecological functioning of the HZ, and emphasizes the need for further

research to generate on evidence base for river restoration plans.

The aim of this study is to investigate taxonomy-based descriptors (abundance,

biomass, richness, diversity) of hyporheic and benthic invertebrates in LW sites of a

UK lowland river, and to link descriptor responses to environmental variables at LW

sites. We hypothesize that:

1. taxonomic structure, in terms of (a) taxonomic richness, (b) total abundance and

composition, and (c) total biomass, is greater in wood sites compared to sites

without wood (no wood control sites) (H1).

2. hydrological (i.e. discharge), physical (i.e. dissolved oxygen) and chemical vari-

ables (i.e. ammonia) will be significant predictors of (a) abundance and (b)

biomass in wood sites. Sedimentological (i.e. medium grain size, d10) and chem-

ical variables (i.e. nitrate) will be significant predictors of the same invertebrate

descriptors in control sites (H2).

4.2 Material and Methods

4.2.1 Study area and experimental design

The study was carried out between October 2016 and August 2017 in the Hammer

stream, a major tributary of the River Rother, West Sussex, UK (Figure 4.1). It is

a woodland stream characterized by chalk and Cretaceous greensand geology (BGS,

2018; SDNPA, 2015; Evans, 1990) and un-impacted by major abstractions, dams or
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diversions (baseflow around 0.16 m3/s; (EA, 2018)) Two reaches, with different dom-

inant bed sediment types (gravel and sand) were selected. Four sites with in-channel

LW and four control sites (no LW) were selected in each reach. The study sites were

selected on relatively straight stretches to avoid confounding effects of channel geomor-

phology on potential HEF. LW sites were separated by distances >150 m (>20 x the

channel width) to avoid spatial dependencies. LW were natural (i.e. not part of any

engineered restoration measures), submerged, channel-spanning, stable logs (deflector

jams or dam jams) that were not transported downstream or re-oriented throughout

the study period. Previous studies reported that hyporheic flow in the sand reach

of the Hammer stream was dominated by downwelling surface water and bank flow

contribution (Shelley et al., 2017).
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1

Figure 4.1: Diagrammatic representation of the location of the study area and sampling design. The
figure shows the eight sampled LW sites, and the control sites (yellow dots). For each LW information
about length, diameter, bankfull width (BW) wetted width (WW) and blockage ratio are displayed.
The blockage ratio (B) was estimated as the partial cross-sectional area occupied by each piece of
LW and computed as B = L d/A, where A is the cross-sectional area, d is the diameter of the LW
piece, and L is the projected length of the LW against the flow (Gippel et al., 1996). On the right, an
illustration of the colonization pot: a) pot is positioned into the river bed, b) during the extraction,
cable is pulled vertically, driving the wire-reinforced tops to the surface and extending the tarpaulin
bags, c) minipiezometers for collection of pore water before extraction, d)wood stakes.
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4.2.2 Sampling protocol

Hyporheic and benthic invertebrates were sampled three times over the year using

colonization pots and a Surber sampler (0.05 m2, mesh size = 500 µm), respectively.

Three replicates each for wood and control were taken at each sampling site, zone

(benthic and hyporheic), for each campaign, and sampling method (144 pots and 144

Surber samples). At LW, invertebrates were sampled upstream, downstream and lateral

to the structure (Figure 1). Hyporheic samples were collected using colonization pots

(Figure 4.1; 15 cm high, 8 cm diam., mesh size 1 cm2), following a procedure described in

Crossman et al. (2013). To minimize the water loss, each colonization pot was equipped

with a tarpaulin bag with reinforced top and cable. Holes were excavated by shovel to

ca. 25 cm deep, and each colonization pot was packed with sediment in stratigraphic

order and left in-situ for six weeks (Coleman and Hynes, 1970). The colonization pots

were also equipped with a minipiezometer for pore water analysis and wooden stakes

(Figure 4.1a, c).

Wooden stakes of untreated Pinus pinaster were used to estimate vertical patterns

of interstitial oxygenation following the protocol of Marmonier et al. (2004).

Hyporheic and benthic samples were collected on the same day after the six weeks

colonization period. Immediately after collection the samples were preserved in 90%

ethanol. Samples were returned to the laboratory (Cranfield University), where they

were rinsed and filtered through a set of sieves. For the colonization samples, the 500 µm

sieve was used to retain larger individuals, herein considered the hyporheic macrofauna.

The rest of the sample was filtered through a 45 µm sieve and the retained invertebrates

constituted the hyporheic meiofauna dataset. Meiofaunal samples were preserved in

100% ethanol and stained with Rose Bengal and sorted within a few days following

collection. Surber samples were sieved with a 500 µm sieve and the retained individuals

formed the benthic macrofauna dataset. Macrofaunal samples were preserved in 80%

ethanol.

During identification, individuals were measured to the nearest micrometer using

either an Olympus BX50 (Olympus Optical) microscope or a dissecting microscope.

Preserved samples were processed and identified at genus or species level under a
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stereomicroscope using the following keys: Chironomidae (Cranston, 1982); Crustacea

(Gledhill et al., 1982); Gastropoda (Macan, 1994); Trichoptera (Wallace et al., 2003);

Ephemeroptera (Elliott and Humpesch, 2003). For meiofauna taxa such as Nematoda,

Oligochaeta, Cyclopoida, Acari, Anomopoda, Copepoda, Ctenopoda, Ostracoda were

identified at order or class level (Tachet et al., 2002; Dobson et al., 2012). Measurements

were converted to dry mass using published body length and biovolume regressions and

conversion factors (Table B.1).

4.2.3 Hydrological, physical, sedimentological and chemical

data

Three replicates of hydrological, physical, sedimentological and chemical measure-

ments were taken from every sampling site on each sampling occasion (Table 4.1).

Velocity measurements were taken before and after LW using a Flow Tracker Acoustic

Doppler Velocimeter (SonTek) at each sampling site. Channel width and water depth

were also recorded, and discharge was calculated using the velocity-area method. Spot

samples at time of placement and removal of colonization pots of temperature (T, °C),

pH, dissolved oxygen (DO, %), electric conductivity (EC, µS cm-1) were measured with

a multiparameter probe (Hannah HI98196). Continuous measurements of T, EC and

water levels in the river were collected using CT2X probes (INW) installed at the be-

ginning of every sampling event and for the following 6 weeks to record any possible

flooding event. The locations of the LW pieces were surveyed using a total station

(TS06 Leica) and georeferential GPS (GS08plus, Leica Viva). Mean channel width, the

channel area, and the orientation angle of each LW relative to the channel, the length

and diameter of each large wood were calculated using ArcGIS 10.1 (Figure 4.1).

Sediment samples were retrieved using sediment cores (diameter 5 cm, depth 25 cm)

and analysed for grain size and loss on ignition analysis (Blott and Pye, 2001; Heiri

et al., 2001). Median grain size, sorting coefficient, skewness and cumulative percentile

values (i.e. D10, D90) were calculated from the dry weight of the different fractions

using the geometric Folk and Ward (1957) method (GRADISTAT program (Blott and

Pye, 2001)).
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Concentration of nitrate, nitrite, ammonium and phosphate were measured in sed-

iment pore water, following a procedure described in Lewandowski et al. (2011). Sed-

iment pore water was collected using minipiezometers. Pore water samples were ex-

tracted before collecting the colonization pots, samples were filtered using syringe fil-

ters (28 mm, 0.2 µm) directly into 5 mL sample vials, discarding 1.5-2 times the inner

volume of the tube. A new filter was used for each sample. After filtration, the sam-

ples were acidified by addition of a few drops of 2 M HCl and pH paper was used to

check that the pH was ca. 2. The whole procedure of filtration and acidification was

conducted within 30 minutes of collection of each sample.
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Table 4.1: Mean hydrological, physical, sedimentological and chemical variables (±sd) recorded at wood
and control sites in the Hammer stream between October 2016 and August 2017. Mean Water Depth
(MW), Discharge (Q), Conductivity (EC), Dissolved Oxygen (DO), Temperature (T), Median Grain
Size (MDGS), Sorting Coefficient (SO), Skewedness (SK), Sediment Organic Matter (OM), Oxygen
Depth (OD), Ammonium NH4

+, Nitrate NO3
−, Nitrite NO2

−, Phosphate (SRP). Detection limit of
0.1 mg N L−1 for Nitrate, 0.01 mg N L−1 for Nitrite, and 0.3 mg N L−1 for Ammonium.

Wood ± sd Control ± sd

Hydrological Variables

MW (m) 0.30 ±0.11 0.23 ±0.12

Q (m3/s) 0.08 ±0.04 0.06±0.03

Physical variables

EC (µS cm−1) 233.44 ±29.87 243.7 ±20.98

DO (%) 94.60 ±37.31 90.45 ±23.83

pH 6.85 ±0.47 7.04 ±0.55

T (○C) 12.14 ±3.13 12.67 ±3.05

Sedimentological variables

D10 (µm) 2170.5 ±4857.5 475.8 ±883.7

D90 (µm) 17148.2 ±18043.4 6858.8 ±7497.5

MDGS (µm) 7240.4 ±9428.7 2237.7 ±2621.9

SO (µm) 2.5 ±1.1 0.92 ±0.5

SK (µm) -0.1 ±0.3 -0.1 ±0.2

OM (%) 6.35 ±9.04 1.40 ±2.44

OD (cm) 5.85 ±3.90 5.13 ±4.55

Chemical variables

NH4
+ (mg N L−1) 0.32 ±0.48 1.01±1.53

NO3
− (mg N L−1) 3.95 ±4.03 3.87 ±4.12

NO2
−(mg N L−1) 0.01 ±0.02 0.02 ±0.02

SRP (mg PO4 L
−1) 0.16 ±0.31 0.32 ±0.49

4.2.4 Data analysis

4.2.4.1 Ecological data

Hyporheic samples, macrofauna and meiofauna, and benthic macrofauna were anal-

ysed separately. Preliminary analysis of faunal abundances showed that there were

differences between sampling methods (colonisation pots vs Surber samples) and be-



Chapter 4. Large wood effects on river invertebrates 92

tween ecological zones (benthic vs hyporheic). The resultant data were therefore anal-

ysed separately. Organisms were merged by reach x treatment (wood vs control) x site

(wood 1-4 in Figure 4.1) x sampling campaign (period) (n = 48 samples). Data were

log-transformed (x+1) and rare taxa (<5 individuals per sample) were removed. Rare

taxa were kept for taxonomic diversity calculations.

First, the Within Reach x Campaign Analysis (Within-Class Analysis- WCA, wca

function of the R package ade4, (Dray et al., 2017)) was performed to assess whether

abundance and biomass was identical in wood and control sites. The Within Reach x

Campaign Analysis (WCA) was used to perform a particular case of Correspondence

Analysis (CA; (Benzécri, 1983)) with respect to the variable of interest (i.e. wood

vs control in this study). This is a powerful multivariate method that eliminates the

effects of confounding variables (i.e. reach and sampling campaign in this study) in

the analysed dataset (Dolédec and Chessel, 1987) and allows studying the variability

related to between-sites and between-treatment variation.

Second, the Conditional Inference Tree Approach (CIT) (ctree function R pack-

age party,(Hothorn et al., 2017)) was applied to examine groups of sites with similar

or significantly different abundances and biomasses. The CIT approach is similar to

traditional regression trees and a commonly applied technique to infer quantitative re-

lationships in ecology and predict ecological status (Zeng et al., 2015; Villeneuve et al.,

2015; Kwik and Yeo, 2015; Mondy and Usseglio-Polatera, 2014; Johnstone et al., 2014).

It is a form of binary recursive partitioning, presenting several advantages in deal-

ing with nonlinear relationships and collinearity of predictors (Jarošık, 2011; Breiman,

2017; De’ath and Fabricius, 2000). The CIT approach splits repeatedly a dataset into

binary groups to generate a decision tree, based on the association between the input

variables (i.e. wood and control sites) and response variable (i.e. taxon abundances or

biomass in this study). CITs stopping criteria are based on adjusted p-values (Hothorn

et al., 2006). In our study, CIT was tested using Bonferroni permutation test (9999

permutations, α = 0.01).

Based on taxonomic abundances, diversity metrics (i.e. Shannon-Wiener, Taxo-

nomic Richness) were computed using the R package vegan (Oksanen et al., 2018) and

their significance tested using Mann-Whitney-Wilcoxon Test (n=48).



Chapter 4. Large wood effects on river invertebrates 93

4.2.4.2 Environmental data

Environmental data was tested for correlation using Pearson’s test, and Principal

Component Analyses (PCA) was performed on uncorrelated variables (48 samples, 17

parameters, Table 4.1) to check abiotic differences between LW and control sites. A

Canonical Correspondence Analysis (CCA, dudi.coa function, R Package ade4 (Dray

et al., 2017)) was performed to determine the correlations between environmental vari-

ables and invertebrate assemblages. For this analysis, hyporheic macrofauna and meio-

fauna were considered together. CCAs model significance in wood and control sites and

for each assemblage were tested by permutation test (anova.cca function R package ve-

gan; 1000 permutations, α = 0.01 (Oksanen et al., 2018)) and by evaluating canonical

coefficients (Ter Braak, 1986).
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4.3 Results

4.3.1 Hyporheic and benthic diversity, abundance and biomass

A total of 58, 72 and 69 taxa were identified, respectively for meiofauna and hy-

porheic and benthic macrofauna (Table B.2). Among these taxa identified, 34 (hy-

porheic meiofauna), 59 (hyporheic macrofauna) and 46 (benthic macrofauna) taxa were

found in both wood and control sites (Table 4.2).

Table 4.2: Number of taxa common and exclusive for hyporheic and benthic invertebrates in wood
and control sites

Hyporheic

meiofauna

Hyporheic

macrofauna

Benthic

macrofauna

wood 24 6 16

control 4 9 7

common 30 57 46

total 58 72 69

The hyporheic meiofaunal assemblage showed significant differences in taxonomic

richness and Shannon Wiener Index between wood and control sites (Wilcoxon’s test,

adjusted p-value <0.001) and values were higher in wood. However, these metrics did

not differ significantly between wood and control sites for macrofaunal assemblages,

both hyporheic and benthic (Figure 4.2).
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Figure 4.2: Taxa richness and Shannon-Wiener diversity index in control and wood sites for hyporheic
and benthic assemblages(Wilcoxons test adjusted p-value <0.001).

The total abundance and composition of hyporheic meiofaunal assemblage was dif-

ferent in wood and control sites, and abundances higher in wood. This is confirmed

by the Within Reach x Campaign Analysis (F1=21.4%, F2= 19.9% of explained vari-
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ance, Figure 4.3a) and the Conditional Inference Tree Approach (CIT; Figure 4.3b).

The CIT analysis split most of the control and wood sites (coordinates <-0.018 and

>-0.018, respectively) along the second WCA axis (p = 0.009, Figure 4.3b), illustrated

by the distribution of wood and control samples in each terminal node (Figure 4.3b).

Node 2 (n= 26, F2 <-0.018) gathered about 80% of the control samples whereas node 3

consisted of about 80% of wood samples. In contrast, the taxonomic structure in terms

of abundance and composition of the macrofaunal assemblages for both the hyporheic

and benthic zones did not differ between sites (Figures B.1 and B.3).

Biomass exhibited similar results; meiofaunal biomass differed between wood and

control sites and was higher in wood (F1 34.6%, Figure 4.4), whereas the hyporheic

and benthic macrofaunal assemblages were not different in terms of biomass (Figures

B.2 and B.4).

Chironomids (i.e. Diamesinae and Tanytarsini), microcrustaceans (i.e. Cyclopoida)

and Nematoda accounted for over 60% of the total meiofaunal abundance and biomass

in wood sites (Figure 4.5) while “others” (macrofaunal instars) corresponded to about

30% of the total biomass. In contrast, control sites were characterized by the Oligochaeta

group which contributed 25% in abundance and more than 60% in biomass. In both

wood and control sites, Diptera comprised 30% of hyporheic macrofaunal abundance

and Trichoptera comprised 80% of total biomass (Figure B.5). Over 50% of total ben-

thic macrofaunal abundance in wood sites consisted of Diptera (Chironomidae) and

Ephemeroptera (Figure B.6). These groups were also abundant in control sites (35%)

but here Plecoptera and Trichoptera were numerically dominant (50%). Trichoptera

and Diptera comprised about 60% of benthic macrofaunal biomass at wood and control

sites (Figure B.6).
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Figure 4.3: Hyporheic meiofauna abundances (log-transformed) per taxon among wood and control
sites. (a) First factorial plane of the WCA gives the locations of the meiofaunal taxa (48 samples)
in wood and control sites. The percentage of the total variance explained by each axis is indicated.
(b) Conditional inference tree (9999 Bonferroni permutations; α = 0.01) testing the significance of
differences in wood and control sites locations on the second WCA factorial plane (response variables:
coordinates of samples along F1 and F2). P-values corresponding to significant wood and control sites
differences and the axis coordinates best separating groups of samples (control and wood) indicated
at each node of the tree, n = number of samples. See Appendix B for taxa codes.
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Microcrustacean

Nematoda

Oligochaeta
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Figure 4.5: The relative contribution in percentage to mean abundance and mean biomass of hyporheic
meiofaunal groups found in the Hammer Stream on sampling occasions from October 2016 to August
2017. “Others” includes the taxa Amphipoda, Arhynchobdellida, Coleoptera, Diptera, Ephemeroptera,
Plecoptera, Rhynchobdellida, Trichoptera, Tricladida, Trombidiformes, Truncatelloidea, Veneroida.

4.3.2 Environmental predictors of meiofaunal and macrofau-

nal assemblages

Environmental parameters varied between reaches (Figure 4.6b), and to a smaller

degree between wood and control sites (Figure 4.6d). Differences between reaches were

not of primary interest in this study, thus samples were nested in reaches. The PCA

revealed that the first axis (F1 = 29.3%; Figure 4.6a) was driven by nutrients (i.e. phos-

phate, ammonia, nitrate), organic matter and sediment (i.e. median grain size, sedi-

ment sorting and skeweness), whereas the second axis (F2 = 11.1%) reflected within-site

(wood, control) variability (i.e. temperature, dissolved oxygen). Wood sites grouped on

the left part of the factorial plane, corresponded to high concentrations of nitrates, me-

dian grain size and sediment sorting (Figure 4.6c). In contrast, control sites grouped on

the right side of the factorial plane, corresponding with high concentrations of ammonia

and phosphate and high percentages of organic matter (Figure 4.6c).
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Figure 4.6: Ordination of the environmental samples with principal component analysis (PCA) applied
to 48 ” sites x date’ samples x 17 parameters. (a) Correlation circle giving the correlations of the
parameters with the two-first principal components of the PCA; (b) First factorial plane of PCA
giving the locations of the 48 samples gathered by reach (sand and gravel). Each reach is located
at the weighted average (i.e. the centre of the star) of corresponding samples (solid circles); (c)
First factorial plane of PCA giving the locations of the 48 samples gathered by site. Grey triangles
refer to wood sites, and white ones to control sites. Each site is located at the weighted average of
corresponding samples; (d) First factorial plane of PCA giving the locations of the 48 samples gathered
by wood and control. Wood and control are located at the weighted average (i.e. the centre of the
star) of corresponding samples (solid circles). Lines link samples to the mean location of their site.
The percentage of the total variance explained by each component is indicated. The ellipse of inertia
indicates the 95% of confidence interval around the centroids.
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Species abundance and biomass of both hyporheic (meiofauna and macrofauna) and

benthic (macrofauna) assemblages were influenced by river temperature, pH, sediment

organic matter, grain size (median, D10, D90) and nitrates (Table 4.3). Assemblages

responded differently across sites (wood, control). Physical variables (conductivity,

temperature and pH), and sedimentological variables (D90, skewness), had a significant

influence on abundance of the hyporheic zone assemblage in wood sites. Organic matter

was significant only for HZ abundance in control sites whereas smaller sized sediments

(D10) affected significantly both abundance and biomass in control sites. Nitrite was

the only chemical variable to correlate with hyporheic community biomass in control

sites. Benthic macrofaunal abundances and biomass were not statistically different in

control sites for the measured environmental parameters. Conversely, physical variables

(conductivity, temperature, pH) were significant for both descriptors in wood sites, and

dissolved oxygen was particularly significant for biomass. Sedimentological variables

affected benthic macrofaunal abundances in wood sites. They also affected biomass,

but to a lesser extent. Organic matter marginally influenced the assemblage descriptors.
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4.4 Discussion and Conclusion

This study assessed abundance, biomass, diversity and richness of both benthic

and hyporheic zone invertebrate communities around LW in a lowland river to provide

field-based evidence of the spatial impacts of LW on the whole river invertebrate com-

munities. General patterns emerged in terms of the relative contribution of groups to

overall abundance and biomass, although the analysed descriptors did not always differ

between wood and control sites (e.g. macrofaunal abundances). Several of the environ-

mental parameters that influenced taxa descriptors were common across hyporheic and

benthic assemblages. Here we discuss the effects of LW on the hyporheic and benthic

zone (Section 4.4.1) and the major environmental predictors of abundance and biomass

descriptors (Section 4.4.2).

4.4.1 Effects of LW on hyporheic and benthic zone assem-

blages

Assemblages responded differently across sites (wood, control). Hyporheic meio-

fauna was more abundant, taxonomically diverse and with higher biomass in wood

sites, whereas macrofaunal assemblages did not show significant differences. Our first

hypothesis (H1), that wood and control sites have benthic and hyporheic assemblages

with differing taxonomic richness (a), abundance and composition (b), and biomass

(c), was partly supported. Hyporheic meiofaunal assemblages in wood had significantly

higher taxonomic richness and Shannon Wiener indices than in control sites supporting

H1(a). Also multivariate analysis (WCA and CIT) upheld H1(b) for hyporheic meio-

faunal assemblages, indicating that abundances and composition in wood sites differed

from control sites. To our knowledge, only one other study has investigated hyporheic

abundance and richness around LW (Wagenhoff and Olsen, 2014). They observed higher

density and lower diversity of hyporheic invertebrates in streams with LW. They also

found that the distribution of hyporheic invertebrates in LW was primarily controlled

by opposing effects of increased sediment stability and decreasing oxygen concentra-

tion, and that native New Zealand taxa benefited from increased percentage of fines in
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LW via increased surface area for microbes, and hence food sources. The taxonomic

resolution in our study is too coarse to detect species-level preferences for LW. How-

ever, the meiofaunal assemblage in wood sites was characterized by detritivore taxa

(Tanytarsini, Diamesinae), suggesting an increase of fine particulate food supplies and

moderate flow velocities around LW (Collier, 1993; Munn and Brusven, 1991; Armitage,

1987). This assemblage was also characterized by microcrustacean Cyclopoida that in-

habit hard substrata covered by a thin layer of silt/clay and detritus in gently flowing

waters (Robertson, 2000; Dole-Olivier et al., 2000; Robertson et al., 1995; Shiozawa,

1991).

Taxonomic richness, abundance and biomass did not show significant differences be-

tween wood and control sites for macrofaunal assemblages for either hyporheic or ben-

thic zones. Therefore our first hypothesis H1(a, c) was not supported. This contrasts

with previous studies on benthic macroinvertebrates in lowland rivers that correlated

higher density and diversity at wood sites with changes in organic matter storage (Pi-

lotto et al., 2016; Benke and Wallace, 2003; Smock et al., 1989). In our study, organic

matter had only a marginal effect on macrofaunal assemblages, perhaps because it was

so abundant in the sediments of the Hammer stream (Shelley et al., 2017). In both

hyporheic and benthic zones, macrofaunal assemblages in wood sites were characterized

by taxa such as Gammarus pulex, Diamesinae, Tanytarsini and Oligochaeta, that are

typical of habitats with high detritus content and feeding on settling seston in low flow

areas around LW (Cashman et al., 2016; Pilotto et al., 2014; Spänhoff and Meyer, 2004;

Collier, 1993). Ephemera danica was also present at wood sites. Previous research

on fatty-acid analysis at LW sites has observed that this species has a fatty-acid pro-

file with signatures to bryophytes and periphyton suggesting a wood and leaf oriented

diet (Cashman et al., 2016). In the benthic zone, control sites were characterized by

high abundances of Hydropsyche spp and Limnius spp taxa. Some species of the Tri-

choptera family are known to require stable substrates for attaching nets and maximize

their food capture (Pilotto et al., 2014; Schröder et al., 2013). Control sites in the

hyporheic zone were characterized by Diamesinae and Oligochaeta taxa. Finally, in our

study biomass differed between wood and control sites for only the hyporheic meiofauna

assemblages, therefore confirming H1(c). Previous studies have shown higher biomasses
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in LW than in riverbed sediment habitats (Thompson et al., 2018; Benke and Wallace,

2003; Hoffmann and Hering, 2000; Smock et al., 1992, 1989). However, our study found

no significant differences in the biomass of macrofaunal assemblages between hyporheic

and benthic zones, or between wood and control sites, perhaps because macrofaunal

biomass was mainly linked to the most abundant and common taxa in all sites (e.g.

Diptera, Crustacea).

4.4.2 Linkages between environmental variables and assem-

blages abundance and biomass across sites

Invertebrate responses to LW were mediated by the interaction among physical and

sedimentological variables, and to a lesser extent by chemical and hydrological variables.

Previous research has shown that grain size is an important driver of invertebrate

community structure and that sediment colmation reduces community abundance in

both benthic and hyporheic environments (Descloux et al., 2013; Jones et al., 2012;

Olsen et al., 2010; Bilotta and Brazier, 2008; Olsen and Townsend, 2003; Strayer et al.,

1997; Boulton et al., 1997; Wood and Armitage, 1997). In our study, sediment size

is a common predictor of abundance and biomass for benthic assemblages in wood

sites and for hyporheic assemblages (macrofauna and meiofauna) in control sites. LW

affects sediment distribution by altering local water velocities (Sawyer et al., 2011)

and we hypothesised that the effect of wood on the HEF would have increased local

sediment hydraulic conductivities and associated hydrological, physical and chemical

variables, resulting in a different taxonomic structure (abundances and biomass) for

both assemblages. However, in the Hammer stream wood sites were characterized by

finer sediments than control sites, and hydrological and physical variables had a low

explanatory power for site variation (Figure 4.2).

A recent study on sandy sections of Hammer stream reports that LW in this low-

land environment has a limited impact on the hydrodynamic forcing of surface water

and results in little hydraulic variation and high deposition of fine grained sediments

(Shelley et al., 2017). This might explain why in our study hydrological variables are

not significant predictors of benthic and hyporheic descriptors in wood sites whereas
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the small size fraction of the substrate is. Most of the physical variables were significant

predictors of abundances in wood sites for both assemblages possibly suggesting that

LW increased the physical gradient and the spatial variability of river habitats (Pilotto

et al., 2016; Collins et al., 2012). Previous empirical research has observed that nutri-

ent dynamics (i.e. denitrification) in riverbed sediments can be affected by wood-driven

HEF (Gomez-Velez et al., 2015; Krause et al., 2009; Bernot and Dodds, 2005) but in our

study chemical variables were marginal predictors of abundances and biomass descrip-

tors for both macro- fauna and meiofauna in LW. In lowland rivers, little denitrification

processes might occur at wood sites as a consequence of the short hyporheic residence

time (Shelley et al., 2017). Control sites in our study were characterized by lower oxy-

gen penetration and higher concentration of ammonium whilst nitrite was similar and

nitrate was lower than in LW. Also, the higher percentage of fine sediments in control

sites compared to LW, particularly in the sandy reach, positively correlate with an in-

crease in anoxic conditions that altered nutrient dynamics in favour of denitrification.

This may explain why taxa that are tolerant to hypoxia, such as Oligochaeta, were more

abundant in control sites (de Crespin de Billy et al., 2000), whereas taxa with a low tol-

erance for hypoxia were less abundant (Ding et al., 2016; Saloom and Duncan, 2005).

Ecological responses of benthic invertebrates to nutrient levels are also documented

(Marmonier et al., 2012; Krause et al., 2011b), but again little is known about the

responses of hyporheic meiofauna. Certain groups of invertebrates are good indicators

of moderately eutrophic rivers (e.g. caddisflies Philopotamidae and Leptoceridae and

Hydropsychidae with higher pollution sensitivity in Philopotamidae) (Pacioglu et al.,

2016). In our study Philopotamidae and Leptoceridae were abundant in sites with lower

nutrient concentrations, whereas Hydropsyche spp was very abundant in control sites.

Other taxonomic groups (e.g. chironomids, oligochaetes, nematodes, and amphipods)

that were widespread in both wood and control sites in our study showed high tolerance

to nutrients in other studies (Pacioglu et al., 2016).
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4.4.3 The way forward

The role of large wood in driving HEF, sediment sorting and redistribution, and

as a resource for river restoration, is almost certainly enhanced by the valley and the

channel planform (Gurnell, 2013; Gurnell et al., 2000; Gurnell and Sweet, 1998). Yet,

there is limited understanding of the underlying effects of LW on hyporheic invertebrate

assemblage structure despite their importance for the resilience of river systems (Benke

and Wallace, 2003).

Our study on a UK lowland river has shown that LW contributes to increased abun-

dance, biomass and diversity of hyporheic assemblage, mainly for meiofauna, through

changing sediment and physical dynamics, thus suggesting that LW does impact the

HZ. In the Hammer Stream, a typical example of a lowland river, we found that natu-

rally occurring LW played an important role in the ecology of the hyporheic zone despite

the limited hydromorphological impact on hyporheic flows (Shelley et al., 2017). These

results suggest that LW likely to lead to a higher resilience to disturbance and to an in-

creased ecological connectivity between hyporheic and benthic zones, thus emphasizing

the ecological potential of river restorations using large wood. To conclude, our study

will help inform the decision-making of restoration practitioners and encourage them to

address the HZ by implementing LW solutions in lowland rivers thereby reaping multi-

ple ecological benefits. Although we have examined the effects of habitat structure and

complexity on taxonomic-based descriptors, further research needs to be undertaken to

understand the impact of LW on functional invertebrate attributes and to disentangle

the relative importance of abiotic and biotic interactions to shape spatial patterns of

functional trait diversity.
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Chapter 5

Hyporheic and benthic invertebrates’ functional traits

reflect large wood-driven hydro - geomorphological

processes

Abstract

Trait-research holds promise to disentangle eco-hydrological processes and functions

in the hyporheic zone (HZ) although functional approaches have been rarely adopted

on hyporheic invertebrates.

In-channel large wood (LW) is a geomorphic structure widely studied in hydrol-

ogy because driving hydrological (hyporheic exchange flow-HEF) and geomorphological

(sediment deposition and sorting) processes, and commonly used in river restoration

as promoting biodiversity. LW ensures vertical and lateral hydrological connectivity

in rivers but its role in shaping invertebrate multiple functional traits has not been

investigated yet in the benthic or in the hyporheic zone.

We selected 17 functional traits and predicted LW sites to be associated with dif-

ferent trait modalities than no-wood sites in relation to wood-driving processes and

conditions (i.e. hyporheic exchange flow, oxygen availability, temporal stability, organic

matter, hydraulic conductivity). The variation of traits was also studied as function of

hydrological, sedimentological, physical and chemical variables, representing important

attributes of the LW environment.

Biological (i.e. aquatic stages, reproduction), physiological (i.e. dispersal, feeding

habits) and behavioural (i.e. substrate preferences) trait utilization by the hyporheic

meiofauna differed between LW and control sites. Significantly different wood-related

traits included aquatic active dispersal, aquatic eggs and hard substrate preferences,

suggesting an increase of physical-sedimentological constraints at LW sites. In wood
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sites, hydrological, physical, sedimentological and chemical variables similarly con-

tributed to meiofaunal-trait variation. Macrofaunal benthic and hyporheic functional

traits were only marginally dissimilar between wood and control sites indicating similar

functioning of these assemblages at the surface-subsurface interface.

We have highlighted the close relationships between species traits of both benthic

and hyporheic assemblages and local LW environmental conditions, providing further

understanding on the functional role of LW in rivers. Both hydrological and ecological

connectivity promoted by LW are crucial to river functionality and to river management.

5.1 Introduction

Species are continuously subjected to stress in river environment, whether from the

swift flow of water, the movement of sediment, or by altered physico-chemical parame-

ters. They migrate or resist to changing environmental conditions. Species adaptations

appear in functional traits, a series of morphological, physiological, phenological and

behavioural attributes that have an effect on the community fitness (Carmona et al.,

2016). How and what species’ functions respond to the interplay of abiotic and biotic

factors across spatio-temporal scales is one big challenge in ecology.

The study of functional traits is of paramount importance to ecologists because

reflecting ecological responses to spatial and temporal environmental gradients and

ecosystem changes (Statzner and Beche, 2010; Townsend and Hildrew, 1994). So, trait-

based approaches have been advocated as a mechanistic alternative to traditional tax-

onomic descriptors and have been successfully used to develop environmental river

assessment indices and tools potentially linkable to processes (Gagic et al., 2015; Dı́az

et al., 2007) and pressures (Mondy and Usseglio-Polatera, 2013; Mouillot et al., 2013;

Usseglio-Polatera et al., 2001, 2000).

Trait-research holds promise to disentangle eco-hydrological processes and functions

in the HZ (Orghidan, 1959), although functional approaches have been rarely adopted

on hyporheic invertebrates (Dunscombe et al., 2018; Descloux et al., 2014). The HZ

is the area of interaction between surface and ground waters within river beds, char-

acterized by a diverse fauna and by a bidirectional flow of water known as hyporheic
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exchange flow (HEF). The HZ is crucial to hydrological and ecological connectivity

in rivers (Kondolf et al., 2006; Ward et al., 1999). For example, HEF was observed

to play a big role in determining the distribution of hyporheic fauna (Mathers et al.,

2017, 2014), in increasing nutrient retention and denitrification processes (Gomez-Velez

et al., 2015; Krause et al., 2013, 2009; Bernot and Dodds, 2005), oxygen concentration

(Krause et al., 2013; Kaller and Kelso, 2007; Naegeli and Uehlinger, 1997), and miti-

gating water temperature (Menichino and Hester, 2014; Sawyer et al., 2012). HEF is

regulated by potential and kinetic gradients at the stream bed interface (Boano et al.,

2014) and therefore enhanced by catchment (i.e. gradient) and streambed topographic

variations (i.e. bedforms, large wood). In the last decades, research on geomorphic

structures (i.e. riffles and large wood) and HEF has increased broadly and allowed to

understand the impact of bedforms on flow and ecology (Mathers et al., 2017; Käser

et al., 2009). In particular, studies on large wood (LW; length >1 m; diameter >10

cm; Wohl et al. (2010); Thevenet et al. (1998)) have gained a lot of interest (Wohl and

Scott, 2017; Gurnell, 2013), first because LW triggers hydrological, geomorphological,

chemical and ecological processes (Wohl and Scott, 2017; Gurnell, 2013) and second for

its wide use in river restoration (Cashman, 2015; Kail et al., 2007; Larson et al., 2001).

LW drives HEF by creating shallow upwelling and downwelling zones and imposing high

hydraulic resistance and changing in hydraulic head (Hester and Doyle, 2008; Fanelli

and Lautz, 2008; Mutz et al., 2007; Lautz et al., 2006; Mutz and Rohde, 2003; Mutz,

2000). By enhancing HEF and other processes, LW increases vertical connectivity of

river systems (Kondolf et al., 2006) and would likely have an impact on hyporheic com-

munities. However, to date the relationship between LW and hyporheic communities

has not been investigated under a taxonomic or functional perspective. The majority of

research on wood and species has focused on aspects and changes of macroinvertebrate

community structure (i.e. abundance, diversity and biomass) (Thompson et al., 2018;

Pilotto et al., 2016; Benke and Wallace, 2003; Hoffmann and Hering, 2000) and very

little on functional traits (i.e. mainly feeding groups) in the benthic zone (Flores et al.,

2017; Pilotto et al., 2016; Johnson et al., 2003).

Only Wagenhoff and Olsen (2014) has investigate taxonomic metrics of hyporheic

communities (i.e. abundance, diversity) and no information is available on species
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functional traits as response variables to LW in river systems. Studies on hyporheic

functional traits and LW will help unraveling the existing connections between physical

and biological systems in the HZ (Boulton et al., 1997). LW and the multiple associated

processes would likely trigger stronger variations in invertebrate trait modalities or favor

the expression of certain traits. For example, behavioural features encompass traits that

would be likely affected by HEF in larger extent and by organic matter and hydraulic

conductivity (Table 5.3). Locomotion adaptations and current velocity preferences for

example, would likely be constrained by both surface and subsurface water flows (Table

5.3) as wood-driven upwelling and downwelling flows will not occur in absence of wood

and if surface velocities and shearing forces are low (Matthaei et al., 1999; Boulton

et al., 1998; Statzner and Borchardt, 1994; Lancaster and Hildrew, 1993) (Table 5.3).

Therefore, sites where wood is absent, HEF is likely reduced or low, and sediment

hydraulic conductivity low, will further promote the presence of crawlers, burrowers,

interstitial locomotion and substrate attachment (Descloux et al., 2014; Boulton, 2007)

(Table 5.3).

Also, the substrate preferences will likely reflect the presence of organic detritus,

litter and roots in LW sites and possibly silt, in bare and compact sites in absence

of wood (Table 5.3). Biological features include traits that are affected mainly by

temporal stability (i.e. lower variability of environmental parameters) and HEF (Table

5.3). Decreasing temporal stability and increasing HEF at LW sites would promote

multivoltine species (i.e. number of cycles/yr >1) and higher species fecundity as

species might invest more energy in reproduction (Benke, 1993) (Table 5.3).

Also, larva and small-bodied organisms (i.e. “aquatic stages” and “maximal poten-

tial size” traits) would likely characterize LW sites as organisms might invest the avail-

able energy more in reproduction than in somatic development in response to decreasing

temporal stability and increasing HEF (Thompson, 2014) (Table 5.3). Morphological

features cover traits that are likely affected by HEF and hydraulic conductivity (Table

5.3). Cylindrical and spherical body forms have been associated to clogged sediment

(Descloux et al., 2014), which could likely occur in reduced HEF conditions (i.e. sites

without LW). As for body form and locomotion traits, more highly flexible invertebrate

bodies would likely occur in sites where wood is absent to cope with food search and low
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hydraulic conductivity sediments (Table 5.3). Lastly, physiological features incorporate

also traits that are likely affected by HEF, oxygen and organic matter availability and

denitrification processes (Table 5.3). Organic matter availability (CPOM) would likely

drive the presence of shredders in LW sites (Pilotto et al., 2016, 2014).

Filter-feeding and dispersal should be more affected by HEF, which will promote

passive dispersal in LW as resilient response to flow (movements achieved by use of

flow as an external agent) and active dispersal in sites without wood (Bilton et al.,

2001). Finally, mainly spiracle and gill respiration could possibly characterize LW

sites as higher oxygen availability is locally associated to wood-driven HEF while high

proportions of invertebrates with tegumental respiration have been already found in

low conductivity sediment (Larsen et al., 2011; Tomanova et al., 2008). Understanding

the relationships between LW and trait combinations of invertebrate assemblages in

both benthic and hyporheic zones will have particular relevance for determining the

fuller ecological and conservation implications of river restoration using large wood to

mitigate water quality pressures, support biodiversity and increase ecological resilience.

Therefore, the aim of this study is to examine hyporheic and benthic invertebrates

functional traits in response to LW-driving processes (Table 5.1). We investigated the

functional traits of both benthic invertebrate macrofauna (individuals retained by 500

µm sieve) in the benthic zone, and hyporheic invertebrate macrofauna (retained by 500

µm) and meiofauna (retained by 45 µm) in the hyporheic zone.

Functional traits utilization is expected to differ in LW and control sites (no-wood),

taking into account LW-conditions and driving processes: i.e. increasing vertical hy-

porheic exchange, sediment hydraulic conductivity, oxygen and organic matter avail-

ability, and decreasing temporal stability (i.e. lower variability of environmental param-

eters in control than LW) and denitrification (Table 1). Specifically, we hypothesized

that: (i) the trait profiles of both macrofaunal and meiofaunal assemblages would dif-

fer between LW and control sites; (ii) selected behavioural, biological, morphological

and physiological trait-modalities would differ in LW and control sites as in Table 2

for both macrofaunal and meiofaunal assemblages; and (iii) trait variation in LW and

control sites would be explained by a set of hydrological, physical, sedimentological and

chemical environmental variables responding to LW-driven processes (Table 5.3).
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Table 5.1: Processes-based predictions in wood and control sites.

Processes & Conditions Wood Control

1. Hyporheic exchange flow + -

2. Oxygen Availability + -

3. Temporal Stability - +

4. Organic Matter + -

5. Denitrification - +

6. Hydraulic Conductivity + -

5.2 Material and Methods

5.2.1 Study area and survey design

The study was conducted in the Hammer stream, in West Sussex, UK (Figure 5.1).

Four in-channel LW and four control sites (with no LW) were selected in the gravel and

sand reach respectively. LWs were natural and stable structures, active or complete

jams, and were not transported downstream or re-oriented during the study period.

LW sites were >150 m ( >20 x the channel width) apart to avoid spatial dependencies.

Control sites were chosen in bare areas of the riverbed without woody material. Both

LW and control sites were selected on relatively straight areas of the channel to avoid

confounding effects of channel geomorphology on potential hyporheic exchange flow.

5.2.2 Sampling protocol

Each sampling site was sampled in three occasions, in November 2016, May 2017

and August 2017. Three replicates of hyporheic and benthic samples were taken within

1 m distance: i) upstream, downstream and laterally the LW and ii) in control sites

(Figure 5.1).

Hyporheic samples were collected using colonization pots (Crossman et al., 2013)

placed between 5 cm and 25 cm deep in the sediment (Figure 5.1), while benthic samples

were taken using a Surber sampler (0.05 m2, mesh size = 500 µm) from the sediment
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surface. Pots were left in-situ for six weeks to allow invertebrates sufficient time for

colonization (Coleman and Hynes, 1970).Hyporheic and benthic samples were collected

on the same day.

Immediately after collection the samples were stored in plastic jars with 90 % ethanol

and returned to the laboratory, where they were rinsed with water and filtered over a set

of sieves. For the colonization samples, the 500 µm sieve was used to retain hyporheic

macrofaunal individuals; the rest of the sample was filtered thought a 45 µm sieve

for meiofauna and preserved in 100% ethanol and stained with Rose Bengal. These

meiofaunal samples were sorted within five days after collection (Stead et al., 2003).

The Surber samples were sieved with a 500 µm sieve and benthic meiofauna was not

sampled given the mesh size of the Surber net. All macrofauna samples were preserved

in 80% ethanol.

Preserved samples were sorted and identified to the lowest taxonomic level possi-

ble, genus or species, under a stereomicroscope or an Olympus Bx50 (Olympus Op-

tical) microscope and the following keys: Chironomidae (Cranston, 1982); Crustacea

(Gledhill et al., 1982); Gastropoda (Macan, 1994); Trichoptera (Wallace et al., 1990);

Ephemeroptera (Elliott and Humpesch, 2003). Due to the quantity of fine sediment

which might have damaged hard-bodied organisms, some invertebrates were poorly

preserved and thus only identified to family level. Meiofaunal taxa such as Nematoda,

Oligochaeta, Cyclopoida, Acari, Anomopoda, Copepoda, Ctenopoda, Ostracoda were

identified at order or class level (Dobson et al., 2012; Tachet et al., 2002).

5.2.3 Environmental data

Three measurements of environmental data were taken from every sampling site on

each sampling occasion (Table 5.2). Temperature (T; ○), pH, dissolved oxygen (DO;

% ), electric conductivity (EC; µ S cm-1) were measured with a multiparameter probe

(Hannah HI98196). Velocity measurements were taken using a Flow Tracker Acoustic

Doppler Velocimeter (SonTek) upstream and downstream LW and used with the channel

width and water depth to calculate discharge (velocity-area method).

Sediment cores (diameter 5 cm, depth 25 cm) were collected for sediment grain
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size analysis (Blott and Pye, 2001) and organic content estimation by loss of ignition

(incinerated at 550○C for 5 h) (Heiri et al., 2001). Median grain size, sorting coefficient,

skewness and cumulative percentile values (i.e. D10, D90) were calculated from the dry

weight of the different sediment fractions using the geometric (Folk and Ward, 1957)

method (GRADISTAT program, (Blott and Pye, 2001)). Wooden stakes of untreated

Pinus pinaster, were part of colonization pots and used to estimate vertical patterns of

interstitial oxygenation (Marmonier et al., 2004).

Finally, sediment pore water was collected from minipiezometers (Lewandowski

et al., 2011) for measurements of nitrate, nitrite, ammonium and phosphate, discard-

ing 1.5 to 2 times of the inner volume of the minipiezometer tube before filtering the

sample. The samples were filtrated using syringe filters (28 mm, 0.2 µm) into 5 mL

sample vials, and a new filter was used for each sample. After filtration, the samples

were acidified (2 M HCl, pH ca. 2). Filtration and acidification were conducted within

30 minutes after the sample collection (Lewandowski et al., 2011) .
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5.2.4 Trait description and predictions

The traits used in this study consisted of behavioural, biological, morphological

and physiological features identified in literature as reflecting organismal performance

and adaptations to environmental pressures (Table C.1) (McGill et al., 2006; Usseglio-

Polatera et al., 2001, 2000). Each trait was described by 2 to 9 modalities (Table C.1).

The taxa of the benthic (71 taxa) and hyporheic (72 macrofaunal and 59 meiofaunal

taxa) zones were coded, at genus or family level, according to their affinity to each

category of a trait, using a fuzzy coding approach (Chevene et al., 1994). Taxa such as

Nematoda, Oligochaeta, Cyclopoida, Acari, Anomopoda, Copepoda, Ctenopoda and

Ostracoda were described as mean trait profiles of their potential families in the cor-

responding biogeographic area (Descloux et al., 2014). The affinities of taxa for the

modalities of a trait were converted into relative abundance distributions so that the

sum of the trait modality affinity scores for an individual trait and a given taxon equals

one.
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Table 5.3: Trait-based predictions in both benthic and hyporheic invertebrate communities according
to the processes reported in Table 5.1. The table indicates only the trait modalities expected to
be significantly enhanced by the habitat conditions in the corresponding site type (LW or Control).
Characters in bold indicate processes that are considered having a stronger influence in driving the
predicted trait modality.

Traits Processes Wood Control

Behavioural Locomotion 1, 6

interstitial,

burrowers,

crawlers,

attached

Substrate

preferences
1, 4, 6

organic detritus,

litter, roots
mud, silt

Velocity

preferences
1 fast/medium slow, null

Biological Aquatic Stages 1, 3, 2 larva, egg adult, nymph

Nb Cycles/yr 1, 3 >1 ≤ 1

Reproduction

techniques &

resistance forms

3
high fecundity,

resistance stages

low fecundity,

none or few

resistance stages

Size 3 small

Morphological Body form 1, 6
flattened,

streamlined

cylindrical,

spherical

Body Flexibility 1, 6 low/intermediate high

Physiological Dispersal 1 aquatic passive aquatic active

Feeding Habits 1, 4, 5
filter feeders,

shredders

deposit

feeders

Food 4, 5
microphyte,

dead plants ≥ 1 mm

detritus <1 mm

microorganism

Respiration 2 spiracle, gills tegument
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5.2.5 Data analysis

5.2.5.1 Biological data

Hyporheic macrofauna, hyporheic meiofauna, and benthic macrofauna were anal-

ysed separately because preliminary Correspondence Analysis of faunal abundances

showed that there were significant differences between sampling methods (colonisation

pots vs Surbers) and between ecological zones (benthic vs hyporheic) and the resultant

data were therefore analysed separately.

Abundances of all identified taxa were merged by reach, treatment (wood vs control)

and sampling campaign (period). The mean trait profile of sample assemblages was

obtained by weighing the individual trait profiles of corresponding taxa by their log-

transformed (x+1) abundances in the sample. Rare taxa (< 5 individuals over the whole

sampling design) were removed.

Then, Within Reach x Campaign Analysis (Within Class Analysis, WCA) (wca

function of the R package ade4, (Dray et al., 2017)) was performed to assess whether

trait composition in i) hyporheic meiofauna and macrofauna, and ii) benthic assem-

blages was identical in wood and control sites. The Within Reach x Campaign Anal-

ysis (WCA) performs a particular case of Principal Component Analysis (PCA) with

respect to the variable of interest (i.e. wood vs control in this study) (Benzécri, 1983).

It is an effective method to eliminate the effects of confounding variables (i.e. reach and

campaign date in this study) in the analysed dataset (Dolédec, 1989). WCA was chosen

after testing the Fuzzy Correspondence Analysis (FCA, (Chevene et al., 1994)), which

did not produce meaningful results due to the between-reach and between-campaign

variability of log-transformed trait profiles of faunal assemblages in samples.

Subsequently, the Conditional Inference Tree Approach (CIT) (ctree function R

package party, (Hothorn et al., 2017, 2006)) was applied to distinguish groups of sites

with significantly different combinations of trait profiles, based on their coordinates

along the successive factorial axes in WCA. CIT is a recursive, non-parametric, parti-

tioning method that: i) tests the independence between the input variables (i.e. wood

and control sites) and the response (i.e. trait profiles), ii) stops if this hypothesis cannot
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be rejected or select the variable with the strongest association to the response; iii) ap-

plies binary split to the selected input variables; iv) repeats recursively previous steps

(Hothorn et al., 2006). In our study, CIT was tested using Bonferroni permutation

test (9999 permutations, α = 0.01). Finally, taxon trait-profiles among wood and con-

trol sites (n = 48) were compared using non-parametric Wilcoxon Signed-Rank Tests.

Bonferroni corrections (p-value < 0.001) were applied for selecting trait modalities with

significant differences between LW vs control sites.

5.2.5.2 Environmental- traits relationships

The relationship between environmental data and taxon traits was investigated by

applying the Partial Least Squares (PLS) Path Modelling (Wold, 1982) using the plspm

function of the R package plspm (Sanchez et al., 2017).

PLS was applied to link hydrological, physical, sedimentological and chemical vari-

ables to the variations of invertebrate trait modalities (Figure C.1). PLS is a statistical

method that quantifies the relationships between observed manifest (indicators or items)

and latent variables (indirectly measured - LVs) in a system of multiple linear regres-

sions (Grace et al., 2010; Vinzi et al., 2010). In the last few years, this approach has

experienced an explosive growth in a wide range of disciplines including econometrics,

social sciences and ecology (Villeneuve et al., 2018; Memon et al., 2017; Bizzi et al.,

2013; Vinzi et al., 2010).

First, the PLS approach includes the estimation of the latent variables as linear

combinations of their respective blocks of manifest variables (Tenenhaus et al., 2005).

This first step is an iterative process in which the latent variables are calculated as

the weighed sum of their manifest variables till convergence of the weights is reached

(Tenenhaus et al., 2005). The calculations are performed on the outer model, which

links the manifest variables to the corresponding latent variables (Vinzi et al., 2010).

At the end of the first step, the method calculates the path coefficients between latent

variables by ordinary least square regressions on the inner model, which accounts for

the relationships between latent variables (Tenenhaus et al., 2005). The last step of

the PLS analysis involves the computation of the loadings by simple correlations in the
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outer model. In this study, hydrological, physical, chemical and sedimentological latent

variables were standardized and expressed as formative indicators (manifest variables

form the latent variables) while the latent trait-based variables (i.e. “trait modalities”)

were measured in a reflective way (manifest variables are considered as being caused by

the latent variables) (Tenenhaus et al., 2005) (Figure C.1). PLS analysis was executed

on a sub-set of significant trait modalities (Section 5.2.5.1). The quality of the model

was assessed using R2 determination coefficients (Croutsche, 2002) and bootstrap vali-

dation (number of resamples: 1000) was used to validate the parameter estimates. All

the coefficients presented in this work were significant at 95% confidence interval (Götz

et al., 2010).

Finally, the latent variables were evaluated with respect to trait modalities by look-

ing at the effects (direct and total) of each construct on the trait variation (Sanchez,

2013). The contributions in percentage of direct and total (direct + indirect) effects

were calculated in wood and control conditions, for each significant trait modality.
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5.3 Results

5.3.1 Hyporheic and benthic trait profiles between wood and

control sites

The functional trait profiles of the hyporheic meiofauna differed between wood and

control sites, as confirmed by the Within Reach x Campaign analysis (F1 = 12.8%,

F2 = 10.0% of explained variance; Figure 5.2a) and the Conditional Inference Tree

Approach (CIT) (Figure 5.2b).
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Figure 5.2: Hyporheic meiofauna trait profiles among wood and control sites. First factorial plane
of WCA gives the locations of the 48 samples gathered by wood and control. In (a), wood and
control are located at the weighted average (i.e. the centre of the star) of corresponding samples (solid
circles). Lines link samples to the mean location of treatment category. The percentage of the total
variance explained by each axis is indicated. The ellipse of inertia indicates the 95% of confidence
interval around the centroid of wood and control sites. (b) Conditional inference tree (9999 Bonferroni
permutations; α= 0.01) testing the significance of differences in wood and control sites locations on
the first WCA factorial plane (response variables: coordinates of samples along F1 and F2). P-values
corresponding to significant wood and control sites differences and the axis coordinates best separating
groups of samples (control and wood) indicated at each node of the tree, n = number of samples.
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The ordination plots of single trait modalities showed that many trait modalities

were differently expressed in wood and control sites (Figure 5.3), but these differences

were statistically significant for only six of them: aquatic active dispersal, aquatic

eggs, aquatic nymphs, and preferences for twigs and roots, sand and hard substrates

(Wilcoxon’s test, adjusted p-value < 0.001, Figure 5.4, Table C.2). Conversely, the

functional trait profiles of both hyporheic and benthic macrofauna did not differ between

wood and control sites (F1 =11.0% and 9.1%, F2 =10.3% and 8.8% of explained variance

for hyporheic and benthic macrofauna, respectively; Figures C.2, C.3) and no trait

modalities exhibited statistically significant differences between control and LW sites

(Wilcoxon’s test, adjusted p-value < 0.001, Figure C.4, Table C.3).
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After applying Bonferroni corrections to the Wilcoxons test results, some other

modalities of the corresponding traits (i.e. preferences for mud or macrophytes as

substrate, aquatic passive dispersal, adult and larval stages) and of five additional

traits (i.e. food and velocity preferences, resistance forms, body form, respiration)

were considered as not differently expressed in wood vs control (because exhibiting p-

values only in the range [0.001 - 0.01]; Table C.2). Wood-related traits included aquatic

eggs, aquatic active dispersal and preferences for hard substrates (i.e. flags, boulders,

cobbles and pebbles) (Figure 5.4). Control sites were characterized by specific substrate

preferences (i.e. twigs and roots and sand) and aquatic stages (i.e. nymph). Finally,

macrofaunal assemblages were characterized by trait modalities marginally (0.01 < p-

value < 0.05) dissimilar in LW and control sites (Figure C.4).
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Figure 5.4: Boxplots of the trait modality relative frequency utilization by the hyporheic meiofauna in
control vs LW sites. Only significant trait modalities exhibiting significant differences (Wilcoxon’s test,
adjusted p-values <0.001) between control and LW sites are presented. The corresponding traits are
provided into brackets. See Annex D for further details on the full labels of traits and traits modalities.

5.3.2 Links with environment

PLS analysis was applied to the six significant meiofaunal traits and showed that

LVs explained 47 % of trait variation in wood sites. The PLS inner model showed

moderate prediction capacity of meiofaunal trait modality utilization (R2: 47 % in
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wood and 55 % in control) (Figure 5.5). Sedimentological and chemical variables were

well explained in both control and wood sites (55% <R2 values <61%, 40 <R2 values

<62%, Figure 5.5). Physical variables were, little and moderately, explained by the

model with R2 values varying from 14% to 35%. Sedimentological and physical LVs

had the greatest effects on trait modalities (25%-44%, 22%-43%) despite the response

patterns differed between sites (Figure 5.6).
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Figure 5.5: Models derived from PLS path modelling for hyporehic meiofauna in wood and control sites.
Each latent variable is represented by an ellipse box and each direct effect from this latent variable to
another is represented by an arrow. R2 of each internal model are represented in red. Contributions of
latent variables to the variation of trait modalities explained by a model (in percentages of the model
R2) are represented in black.

Wood sites showed a major direct effect of physical variables (43%) and similar

effect importance of sedimentological and hydrological LVs (25%, 20%; Figure 5.6). In

control sites, sedimentological and chemical LVs explained most of trait variation (44

% and 31%) whereas hydrological variables had only a minor effect (3%).
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Figure 5.6: Relative contribution (%) of latent variables (LVs) to the variation of core trait modalities
(Wilcoxon’s test p-value adjusted p-value <0.001) values explained by the model taking into account
direct effects only or total effects (direct + indirect effects) for wood and control sites in hyporheic
meiofauna.

When looking at total effects, the contribution of LVs to trait variation changed,

due to indirect effects (Figure 5.6). A higher effect of hydrology (36%, 32%) and a

decrease of sedimentological variables (26%, 18%) are shown in both control and wood

sites (Figure 5.6). Finally, sedimentological and physical LVs showed higher impact (50-

80%) in control sites on substrate preferences (i.e. sand and twigs/roots) and aquatic

stages (i.e. egg, nymph) variation (Figure 5.7). In wood sites, the relative contribution

of the LVs to the trait variation is similar among modalities (Figure 5.7).
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Figure 5.7: Direct effects of LVs on hyporheic meiofauna core trait modalities (Wilcoxon test p-value
adjusted p-value <0.001)

5.4 Discussion

This study is, to the authors’ knowledge, the first attempt to assess multiple func-

tional traits of meiofaunal and macrofaunal invertebrates around large wood in rivers.

Wood and control site assemblages exhibited different profiles of traits and general

patterns emerged in terms of responses to wood processes. In this section we discuss

wood-related traits in the hyporheic and benthic zone (Section 5.4.1) and the major

environmental predictors of trait modality variation (Section 5.4.2).
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5.4.1 Wood-related traits of the meiofauna and macrofauna in

LW habitats

Our study shows that some meiofaunal functional traits differed in wood and con-

trol sites, thus upholding our first hypothesis that LW would affect the trait profiles of

the hyporheic meiofauna. Significant differences between sites were recorded for single

biological, physiological and behavioral meiofaunal modalities, partly supporting our

second hypothesis that multiple functional traits would be affected by LW (Table 5.3).

Wood-trait significant modalities included aquatic active dispersal, aquatic eggs and

hard substrate preferences. These trait modalities relate strongly to temporal instabil-

ity, flow disturbance and sediment hydraulic conductivity. Counter to our expectations

(Table 5.3), active aquatic dispersal was recorded as significant physiological feature for

meiofaunal assemblages in LW, suggesting that hyporheic hydrology might not play a

strong role in determining where meiofaunal species occur both spatially and temporally

(see also Section 5.4.2).

Active aquatic dispersal entails self-generating organism movements often associ-

ated to flightless aquatic invertebrates observed to display an active behaviour triggered

by changing and unstable environmental conditions (Stubbington et al., 2017; Tonkin

et al., 2017; Ponder and Colgan, 2002). Achieving active aquatic dispersal in unstable

environment as LW might likely be a sensible strategy, although, generally the cues

that trigger aquatic and hyporheic insects to disperse are poorly understood (Tonkin

et al., 2017; Bilton et al., 2001). Findings have also indicated that some invertebrates

can achieve temporal dispersal in variable habitats by differential egg hatching regimes

(Brock et al., 2003; Zwick, 1996), possibly supporting the presence of more organisms

with aquatic eggs in LW. Wood meiofaunal assemblages also showed substrate prefer-

ences for cobbles and pebbles, possibly due to more heterogeneous habitat conditions

and patches of much coarser sediment around LW (Table 5.2) (Pilotto et al., 2014).

Our first and second hypotheses that trait profiles of macrofaunal and meiofaunal

assemblages differ between LW and control sites and as in Table 5.3, were not upheld

for hyporheic and benthic macrofaunal assemblages as the functional traits did not

significantly differ across sites. This result might suggest that the functional traits of
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the dominant macrofaunal species (hyporheic and benthic) exhibited similar combina-

tion of traits (the mass ratio hypothesis (Grime, 1998))and as result, at the scale of

both benthic and hyporheic zones, similarly driving functional processes. Correspond-

ing assemblages could have rather similar functioning and functional divergence, in the

study site (Villéger et al., 2008). Results might also suggest a relatively stable taxo-

nomic diversity for macrofaunal assemblages at wood vs control scale and a decrease in

functional space with possibly the loss of specialist species with narrow niches between

benthic and hyporheic zones (Villéger et al., 2008).

5.4.2 Environmental drivers of hyporheic meiofauna trait vari-

ation

Trait variation in LW and control sites was explained by sedimentological and phys-

ical variables although their relative contributions changes among sites. Wood-related

physical LVs (i.e. pH, conductivity, dissolved oxygen, temperature) were most impor-

tant in explaining the overall variation of taxon traits, implying that these exhibit strong

relationships to local environmental conditions when viewed at reach scale. In agree-

ment with our expectations (Table 5.1), the relative contribution of LVs to wood-trait

variation is similar among modalities, underscoring a higher level of temporal instabil-

ity in LW than control sites (Table 5.1) as contribution of multi-environmental drivers

and to similar structuring of abiotic conditions (i.e. abiotic filters) on trait selection in

LW assemblages, living in more unstable habitats (Statzner and Beche, 2010; Gurnell

et al., 2002).

Control sites exhibited more homogenous responses for sedimentological variables

suggesting an increase in temporal stability and a reduction of wood-driven physical

constraints (Table 5.1). Sedimentological variables explained more than half of trait

variation for all significant modalities, chemical variables and physical LVs explained

the remaining 50% in aquatic stages, dispersal and substrate preferences respectively.

Sedimentological variables largely explained variation in hyporheic meiofaunal traits

in control sites, although significant trait- modalities did not reflect alone a strong sed-

imentological impact. This finding is supported by other studies that have observed
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weaker effects of sediment size on hyporheic trait profiles (Descloux et al., 2014, 2013).

Also chemical LVs explained much of the variation of traits for hyporheic assemblages

in control sites. Actually, the sandy reach of the Hammer stream was observed to

have nitrate-rich riverbed as LW sites are characterized by short hyporheic flow-paths

which inhibit local nitrate reduction (Shelley et al., 2017). The responses of benthic

invertebrate assemblages to nutrients are well documented whereas those of the hy-

porheic meiofaunal assemblages are far less known (Marmonier et al., 2012; Krause

et al., 2011b). Certain groups of invertebrates have proved to be good indicators of

moderately eutrophic rivers. Many caddisflies belonging to the Glossosomatidae, Psy-

chomyiidae and Hydropsychidae families for example, have been found intolerant or

with standing only a low-moderate range of nitrate, ammonium and phosphate con-

centrations (Pacioglu et al., 2016; Jones et al., 2012; Elliott, 2008; Nijboer, 2004). In

our study, Psychomyiidae and Hydropsyche spp instars were observed in control sites

exhibiting higher concentrations of ammonium and phosphates than LW sites. Besides,

other taxonomic groups (e.g. chironomids, oligochaetes, nematodes and amphipods),

widespread among wood and control sites, have demonstrated high tolerance to nutri-

ents in previous studies (Pacioglu et al., 2016).

Finally, our findings confirmed the mechanistic impact of LW on hyporheic meio-

fauna trait-selection as results of a mosaic of LW-driving processes. The effects are more

selective on meiofaunal than macrofaunal assemblages highlighting the importance of

LW in triggering physical and sedimentological impacts on faunal communities of low-

land systems. LW impacts on hyporheic meiofauna are potentially important given that

many benthic invertebrate species rely closely on the HZ in their life cycle (Robertson

and Wood, 2010). Our findings give also a glimpse into the mechanisms responsible for

local invertebrate assemblage structure in LW, reflecting adaptations to dominant local

and regional environmental stresses.

5.4.3 Perspectives

The trait approach has offered a mechanistic alternative to traditional taxonomy-

based approach to address the interplay of local biotic and abiotic factors governing
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functional relationships of invertebrates to wood-habitat. The hyporheic zone and river

connectivity are interrelated structural and functional properties of heterogeneous en-

vironments (Ward et al., 1999) and large wood does play a key role promoting vertical

hydrological connectivity (Lautz et al., 2006) and, as evidenced in this study, ecological

connectivity. Both hydrological and ecological connectivity are crucial to river function-

ality (“biodiversity maintenance”, (Leibold and Norberg, 2004) and as result to river

management (Kondolf et al., 2006; Ward, 1989).

Our results suggest that understanding the effects of LW on the hyporheic and

benthic zones depends upon a certain level of disturbance. The decrease of temporal

and spatial stability in LW sites, by increasing variability of local abiotic conditions,

resulted in species traits alternatively underscoring temporal disturbance and spatial

refugia availability (Townsend and Hildrew, 1994). As a result, LW would likely pro-

mote species r-strategist sustainability and in turn contribute to maintain the global

richness/biodiversity of invertebrate assemblages by facilitating long-term temporal co-

existence between r- and K-strategists at reach scale. r-strategists would exhibit an

adaptive advantage for living in more unstable habitats, which function as refugia (In-

termediate Disturbance Hypothesis (IDH) theory; (Connell, 1978)).

Finally, in the context of river restoration, large wood has been gradually integrated

into management strategies as a means of improving the biodiversity and conservation

value of lowland rivers (Kail et al., 2007; Erskine and Webb, 2003; Larson et al., 2001).

Yet, such approaches have not always given due attention to the underlying ecological

processes supporting river vertical connectivity. Our study confirmed the significant

effect of large wood on biological, physiological and behavioural traits of the hyporheic

meiofauna suggesting a crucial role in supporting river benthic zone functioning and

thus possible benefit to river restoration from functional interactions among different

ecological niches. Such data is essential within a processdriven and strategic frame-

work to effective restoration planning (Wohl et al., 2005) and has heuristic value for

generating further hypotheses about invertebrate functional responses to LW.
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Chapter 6

Discussion

6.1 Introduction

Previous chapters have described the importance of hyporheic mixing in river sys-

tems, its variability in time and space and the impacts on species structural descriptors

and functional traits. HEF plays such a significant role in mediating physical, chem-

ical and ecological processes in rivers that considering the HZ in management plans

could bring major benefits to re-establish the processes necessary to support the nat-

ural ecosystem within a catchment. But, to develop adequate management strategies,

predicting where HEF occurs over multiple scales and its effects on river ecology is

required to improve methodological and modelling approaches to HEF and target river

management needs.

To this end, spatial and temporal variation of HEF was assessed over three spatial

scales (catchment, segment, reach) to uncover the scale-specific factors and interactions

that determine its variability (Objective 1), a novel and transferable approach was

developed and tested to identify areas with potentially significant HEF (Objective 1),

and to investigate the effects of these variations on invertebrate structural descriptors

and functional traits assessed for use in restoration priority planning (Objective 2). This

last chapter of the thesis will reflect on how process-based hydro-ecological knowledge

of HEF can support river restoration though the prioritization of sites and approaches

to target the HZ.
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6.2 Sites of hyporheic exchange flows and effects on

river ecology

HEF is the result of deeply interconnected hierarchical processes and how their in-

fluences extend across scales. The consideration of different spatial scales is essential

to unravel the underlying factors and process interactions controlling HEF variation,

which was illustrated in Chapter 3 when applying a multiscale method to nine contrast-

ing European rivers, and in Chapters 4 and 5 when investigating the effects of large

wood, driver of HEF, on structural descriptors and functional traits of invertebrate at

reach scale.

In the following sections, the implications of these findings are discussed in terms

of: i) the selection of transferable and multiscale spatial planning approaches to predict

HEF accounting for interrelated processes and factors, ii) ensuring hydrological connec-

tivity to promote resilience and biodiversity maintenance in rivers, and iii) the valley

and reach context to inform the design of LW reintroduction and restoration.

6.2.1 Vertical hydrological connectivity and spatial planning

The multiscale study of HEF presented in Chapter 3 and Chapter 2 demonstrated

that individual processes and controls within river corridors (e.g. bedforms) are in-

sufficient to explain the spatial and temporal variation in HEF and do not provide

enough insights into the complex, non-linear processes and factors driving HEF. Instead,

HEF dynamics require the consideration of hydrological, topographical, hydrogeologi-

cal, anthropogenic and ecological processes, operating across a spectrum of spatial and

temporal scales, to enable multi-scale modelling, assessment of process controls, and

identification of common hyporheic predictors. Therefore, the complexity of multiple

inter-related processes was used here as a basis, to develop a transferable approach to

predict potential areas of hyporheic exchange for river restoration prioritization and

planning (Figure 3.2).
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Various analytical, probabilistic, and deterministic approaches have been developed

to describe HEF with evidence mounting on its importance to ecological processes and

community structure and function (Hester et al., 2017; Cardenas, 2015; Boano et al.,

2014; Cardenas, 2008; Cardenas and Wilson, 2007; Cardenas et al., 2004; Kasahara

and Wondzell, 2003; Storey et al., 2003; Wroblicky et al., 1998; Wondzell and Swanson,

1996; Harvey and Bencala, 1993). Some of these approaches include stream - tracer

injection experiments, one- dimensional advection, dispersion, and transient storage

models (Gooseff et al., 2003; Runkel et al., 1998). Others measure groundwater flow to

estimate quantitatively the fluxes and residence times of water exchanged between the

stream and hyporheic zone (Cardenas and Wilson, 2007; Gooseff et al., 2006; Cardenas

et al., 2004; Wondzell and Swanson, 1996; Harvey and Bencala, 1993). These different

modelling approaches have helped to disentangle the mechanisms driving hyporheic

mixing from a theoretical perspective and to quantify HEF at very fine scales, but

especially have encouraged drawing from different disciplines (catchment hydrology,

fluvial geomorphology and ecology) to discriminate the factors across spatio-temporal

scales that influence hyporheic mixing in rivers (Chapter 2).

HEF models usually have intensive data requirement, require definition of several

parameters that are difficult to measure in the field (i.e. hydraulic conductivity), are not

conducted at larger spatial scales than reach (Wondzell et al., 2010), and finally require

sophisticated analysis (Boano et al., 2014). Measurements are typically highly spatially

heterogeneous point values collected at sampling sites, restricting the ability to verify

model predictions and generalize to other catchments (Woessner, 2017; Wondzell et al.,

2010). Spatial limitation and data type are limiting factors to widespread application

of management purposes.

Alternatives to these methods are hydrological classification approaches, which have

been identified as both organizing frameworks and scientific tools for river research and

management (Olden et al., 2012). Deductive approaches in particular (Chapter 3), are

common in literature because they are able to integrate factors and principles con-

trolling hydrological processes and the causes of their variations (Olden et al., 2012).

By contrast to inductive approaches, they broadly refer to classification methods using

environmental attributes assumed to influence a certain parameter. They are often
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in hydrology when the objective is to describe or quantify the spatial variation of a

parameter across spatial scales but the availability of data is scarce (Olden et al.,

2012). They have several advantages: geographically independent and use available

high-quality hydrological, geological, topographical and ecological datasets that make

deductive reasoning a valid approach to define spatial patterns in hydrological char-

acteristics (Olden et al., 2012). However, deductive approach as require an accurate

choice of environmental factors and the underlying process-interactions in order to en-

sure that the data are representative of the total existing variation (Kennard et al.,

2010). Additionally, due to the use of environmental surrogates (i.e. coarse resolution

of available data), there are limits when implemented across spatial scales (Chapter 3).

The deductive approach used in Chapter 3 was based on readily available envi-

ronmental datasets avoiding the need of high resolution hyporheic data, only sparsely

available and not easily accessible to river restoration planners. Results showed that

the higher the variability of HEF at multiple spatial scales, more processes are likely at

play (Chapter 3, Table 6.1). The spatial and temporal variability of HEF at segment

and reach scale is driven by dynamic factors such as superficial sediment types, long

term land cover changes and topography (Section 3.3.2). This pattern occurs when

intrinsic hydrogeological variables at catchment scale indicate hydrological and geolog-

ical properties affecting the connection with the groundwater (i.e. aquifer type), the

heterogeneity of rocks (i.e. porosity) and grain size (i.e. hydraulic conductivities). For

example, the case study of the River Wye showed the entire catchment area being pre-

dominantly characterized by confined aquifers and poorly sorted deposits (>50 % of the

entire catchment area), spatially restricting hyporheic flows to sinuous areas of the river

with coarser gravel and sand sediments (Figure 2.5). However, when hydrogeological

variables indicate spatial and temporal variations and discontinuity of groundwater flow

at the catchment scale, the variability of HEF was higher and more processes are taken

in account into a multiscale approach. For example, the River Tern is characterized by

potential HEF at catchment and segment scale as a result of productive, unconfined

aquifers, topographical sinuosity (Table 3.7). However, the spatial heterogeneity of

HEF at reach scale is controlled by local streambed strata (i.e. silt and clay deposits)

and the geomorphological context (i.e. channel confinement), that support hyporheic
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flow to unconfined areas at reach-channel scale (Chapter 3) and responds to groundwa-

ter recharge at bedform scale (Chapter 2, Section 2.4.2). Similarly to the Tern, in the

Frome and Piddle rivers, where the combination of permeable chalk geology and coarse

sediment would normally strongly support HEF, the spatial variation of HEF at reach

scale is instead mainly controlled by pronounced groundwater flows that create strongly

gaining and losing conditions, high fine sediment loads supplied by long term land cover

changes, and high percentage of in-channel vegetation (Figure 3.3.2). This multiscale

approach demonstrated the impact of intrinsic and dynamic factors on HEF, while also

showing that upper hierarchical spatial levels inform on general conditions at low reso-

lution and exert constraints on the lower level, which informs at higher resolution and

provides mechanistic explanation for higher levels.

Based on this multi- scale and factor approach, the prioritization of sites for restora-

tion can be evaluated in terms of how well hydrological, hydrogeological, topographical

and ecological factors describe hyporheic-drivers (Figure 6.1). For example, the case

study on the River Rother showed suitable conditions for HEF to occur at the catch-

ment scale (i.e. complex aquifer, gravel to sand deposits), while unsuitable conditions

were predicted in segments and reaches (i.e. low channel gradient and sinuosity, clay

and fines). An “active” restoration approach would be appropriate to implement local

restoration measures for enhancing local hyporheic flows and ecological functioning in

this river (Figure 6.1). For example, previous studies on one tributary of the Rother,

the Hammer stream, showed that hyporheic flow was dominated by downwelling surface

water spatially limited by stream bed substrate rich in fine sand sediments, clay and

peat lenses (Shelley et al., 2017). Under these conditions, the active approach in the

Hammer stream would include in-situ evaluation of the valley (i.e. gradient, confine-

ment) and in-channel topography and planform (i.e. presence of bedforms or ecological

factors- Chapter 2 Section 2.6) that impact on HEF. In this thesis, the case study of the

Hammer steam provided an in-situ evaluation of the HEF effect on hyporheic fauna and

local environmental conditions and demonstrated that the multiscale method predic-

tions (Chapter 3) are representative of local conditions and that the use of restoration

measures, represented by natural existing large wood, can potentially play a role in

controlling dynamic factors affecting HEF and support river ecosystem resilience.
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Finally, a scientific understanding of HEF driving factors is needed to predict how

these flows generate and support river functioning. This research demonstrated the im-

portance of recognising different spatial scales and factors involved in hyporheic mixing

to identify the underlying processes, so that restoration planning can be better adjusted

to the larger catchment context. Vertical hydrological connectivity in rivers is a fun-

damental property of ecological communities and crucial in the context of ecological

restoration and thus in next section, the factors driving HEF are thus discussed by

focusing on large wood, a hydrostatic driver of HEF, and on its effect on ecological

communities.

Figure 6.1: Multiscale prediction of hyporheic flows using intrinsic (i.e. aquifer type, bedrock geology)
and dynamic factors (i.e. land use, superficial sediment) and potential restoration approaches. “1”
refers to likely presence of HEF and “0” to unlikely presence of HEF. The definitions of terms can be
found in Chapter 3.
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Table 6.1: Suitable (S) and unsuitable (UN) HEF conditions across spatial scales (catchment (C),
segment (S), reach (R)) reported in Chapter 3. Major intrinsic and dynamic factors involved in
determining suitable areas for hyporheic-restoration.

Suitability Intrinsic factors Dynamic factors Scale

UN
Semi- and

confined aquifers

Superficial deposits:

sand to silt (>50 % over

the catchment)

C

S Complex aquifers
Sorted sand and gravel,

silt and clay (<20 %)
C

UN
Mudstone, sandstone

geology

Low channel gradient,

>70 % cover arable and

grassland, >55 % clay and silt

S

S Sandstone geology

10-30 % fine sediments,

20-50 % gravel and sand,

sinuosity 1.2,

low channel gradient 0.002,

10 % pasture lands

S

UN n/a

Poached river banks,

in-channel vegetation and reeds,

low percentage of gravel substrates,

low number of bedforms low mean

velocity

R

S n/a

Low in-channel vegetation (2-10 %),

gravel sediment (>10 %),

silt and clay (2-10 %),

riffles & pools and wood

debris (5-10 %),

overgrazed banks (<5 %)

R
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6.2.2 Ecological responses to wood-driven HEF

In Chapter 4 and 5, the structural and functional responses of invertebrate com-

munities in the Hammer stream were attributed to variation in wood-driven physico-

sedimentological conditions demonstrating that large wood can potentially play a role

in controlling dynamic factors affecting HEF and support river ecosystem resilience.

Large wood as factor driving HEF, geomorphological changes and in turn affecting the

structure and function of hyporheic and benthic communities is generally not accounted

for ecological improvements in river restoration.

Much of the focus in documenting the impact of large wood on biodiversity has

been on changes in species richness metrics (Dornelas et al., 2014; Lindenmayer et al.,

2008), but richness estimates alone in the benthic zone are not enough to understand

spatial biodiversity changes (Lindenmayer et al., 2015). Species composition, biomass

and traits are more sensitive measures and more likely to reveal community and envi-

ronmental changes (Hillebrand et al., 2018). This is particularly true for communities

dominated by small species, like the hyporheos, that have short generation times and

result in rapid turnover of biomass, energy processing, and spatio-temporal changes in

population size (Peralta-Maraver et al., 2018; Naegeli and Uehlinger, 1997). Inverte-

brate biomass is especially important for community structure, ecosystem processes and

food web dynamics (Wardhaugh et al., 2014; Ellwood and Foster, 2004; Benke et al.,

1999; Basset and Arthington, 1992; Stork, 1988). As evidenced previously by studies

in USA and UK streams, considering both meiofauna and macrofauna biomass on a

year time would provide better understanding of river secondary production and food

webs in LW (Tod and Schmid-Araya, 2009; Stead et al., 2005; Benke and Wallace, 1997;

Smock et al., 1992). Production was not accounted in the Hammer stream study due to

sampling technique constrictions. However, the evaluation of taxonomic and functional

descriptors in conjunction with environmental variables at LW sites, suggested that the

decrease of temporal and spatial stability in LW sites, by increased variability of local

abiotic conditions, would drive changes in abundance, biomass, diversity and functional

traits of hyporheic meiofauna (Chapter 4 and 5). Such heterogeneity of abiotic condi-

tions was summarized by key abiotic parameters (Table 4.1) and reflected on hyporheic
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functional and structural descriptors.

Hyporheic meiofauna taxonomic descriptors and functional traits responded sig-

nificantly to LW-driven environmental change (i.e. physical factors, temporal insta-

bility) than macrofauna, exhibiting physiological (i.e. aquatic dispersal) and biologi-

cal (i.e.aquatic stages) traits alternatively indicating temporal disturbance and spatial

refugia (Townsend and Hildrew, 1994). This result suggests that the effects of LW on

the hyporheic communities depend upon a certain level of disturbance of hyporheic

flow, and that environmental and resource availability at the Hammer Stream were

instead within the tolerance of the majority of macrofaunal species. Generally, the

taxonomic-based descriptors results for the hyporheic meiofauna and macrofauna agree

with previous studies in lowland UK rivers with sand (Tod and Schmid-Araya, 2009;

Reiss and Schmid-Araya, 2008) and gravel riverbed sediment (Stead et al., 2003).

Through the sampling period and across reaches, hyporheic meiofauna and benthic

macrofauna varied in density and biomass (Figure B.7) and both reaches had quite di-

verse assemblages proportionally contributing to abundance and biomass (Figure B.8)

indicating a strong variability on time and on substrate type. For example, Chironomi-

dae was the dominant hyporheic insect in abundance and biomass in the Hammer and

was higher in the HZ’s of gravel-cobble reach, and lowest in sand-silt reach at control

sites (Figure B.8) as also observed by (Reynolds Jr and Benke, 2012) and Stead et al.

(2003). Whereas, changes in macrofaunal assemblage composition were mainly due to

seasonal changes in abundance within one generation. Differences in abundance, com-

position and biomass of hyporheos and benthic invertebrate with geology and sediment

type have been confirmed by several studies showing that decreasing sediment size has

a negative effect on abundance and taxon richness (Dunscombe et al., 2018; Reynolds

Jr and Benke, 2012).

At the Hammer Stream, sediment size was a common predictor of abundance,

biomass and functional trait variation, but due to the number of samples the rela-

tionship “sediment type x wood” was not investigated further. Nevertheless, the high

variability between reaches and time suggest that further investigations should explore

if the observed hydro-chemical-ecological patterns at wood sites held across a range of

lowland setting, sediment type and flow conditions, to compare and calibrate restora-
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tion measures at multiple hydrological and geomorphological conditions. To this end,

the extent to which LW-driven processes relate to habitat-specific invertebrates’ distri-

butions would depend on underlying processes at different spatial scales, which will be

discussed in the following section.

6.2.3 Valley and reach context of wood-driven HEF

The relative contribution of single in-channel topographic structures to HEF is al-

tered by complex interactions across the spectrum of topographic scales (Section 2.4.1).

Large wood is a hydrostatic driver of HEF, thus the length and residence time of the

generated HEF primarily depend on valley-scale conditions inducing changes in the

height and slope of the steam water surface (Chapter 2, Section 2.6.2, (Boano et al.,

2014)). As result, the impact of LW on hyporheic hydrology (i.e. length and residence

time), ecology (i.e. distribution of community) and biogeochemical processes (i.e. deni-

trification) is likely to be different in low gradient systems, where flow is fairly uniform,

and in upland streams, where flow is turbulent and the gradient is high (Figure 6.2).
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Figure 6.2: Effect of large wood on hyporheic flow in lowland (a) and upland (b) conditions. Blue
arrows indicate surface water downwelling and HEF

Lowland rivers situate in unconfined valleys where the active interaction between

topography, hydrology and sedimentology allows the development of floodplains (Nan-

son and Croke, 1992). Generally, under these conditions the spatial variation of water

surface topography is less pronounced than in upland systems and HEF is induced by

finer pressure variations (e.g. submerged sand ripples and dunes) (Krause et al., 2014).

In presence of wood, driving changes in hydraulic head and imposing high hydraulic

resistance, geomorphological and hydraulic heterogeneity of lowland rivers with little

kinetic energy, can be enhanced (Krause et al., 2014).

For the case study of the Hammer Stream, in-situ measurements have shown that

LW was characterized by short hyporheic residence times and fast flows, due to slow

surface water velocities and dominance of fine sand streambed composition (Shelley

et al., 2017). This is a typical lowland river characterized by a longitudinally contin-

uous floodplain and natural wood recruitment. Individual tree falls accumulate and

extend across a substantial portion of the channel width (Gurnell et al., 2002; Vannote



Chapter 6. Discussion 147

et al., 1980; Sedell et al., 1988). The accumulated wood, along with irregularities of the

channel-cross sectional area facilitate the formation of active or complete jams charac-

terized by fine bed material (i.e. sand-silt, organic litter) and dammed pool upstream,

scour pool with coarser sediment (i.e. coarse sand or gravel) downstream and some

scour under parts of the jam (Gregory et al., 1985).

These types of LW structures in small channels such as the Hammer stream become

increasingly important to channel morphodynamics and have the potential to drive hy-

porheic mixing at meter scale by increasing the channel blockage ratio, Froude number

and sediment permeability (Sawyer et al., 2012). But, under baseflow conditions, the

low energy meandering stream type, the slow surface water velocities, the little variabil-

ity in height and slope of stream water surface, and the increased fining of the riverbed

which decreases hydraulic conductivities, reduce the impact of LW on hydrodynamic

forces, resulting in hydrostatically-driven HEF which is usually shallower in length and

shorter in residence than in upland systems (Shelley et al., 2017; Krause et al., 2014).

The shorter the residence time, the smaller is the impact of LW on nutrient attenuation

(i.e. nitrate, (Shelley et al., 2017)) and oxygen availability into the streambed. Still,

LW in lowland streams significantly influences total residence time by creating low ve-

locity zones within the channel and allowing biogeochemical transformation to occur

(Blaen et al., 2018; Shelley et al., 2017; Stofleth et al., 2008).

Upland rivers are high energy systems, different from lowland systems in terms of

valley gradients (i.e. high gradient), channel flows (i.e. turbulent flows), channel topog-

raphy (e.g. cascades, steps) and sediment structure (i.e. coarse sediment and supply)

(Figure 6.2). Here, the topography (i.e. channel slope, size, spacing of boulders and

cascades) increases the variability in surface water slope and in turn the spatial vari-

ability of hydrostatic-driven HEF. Under these conditions, LW would typically create

steeper head gradients and result in pronounced upwelling and downwelling upstream

and downstream the LW (Krause et al., 2014; Crispell and Endreny, 2009) , and pro-

vide sediment storage sites (Zimmermann and Michael, 2001). Also, as hyporheic flow

is proportional to sediment permeability, the coarser riverbed sediment (sand to gravel

to boulder) in upland rivers allows deeper and longer hyporheic flows and residence

times (Krause et al., 2014; Sawyer et al., 2012).
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In these systems, wood-driven HEF is also partially affected by stream discharge

(Wondzell, 2006) than in lowland rivers, due to the smaller hydrostatic groundwater

contribution (Figure 6.3). Given the topographical variability of upland environments,

LW is not the only in-channel structure driving HEF. A study in the steep-mountainous

channels of the Oregon Coast Range observed that LW produces greater hyporheic

exchange than smaller steps caused by boulders (Wondzell, 2006). Nevertheless, more

research is needed to quantify the effects of LW on streambed pressure distributions

and hyporheic exchange in upland systems to assess the influences on other in-channel

topography, pool spacing, frequency, and sediment sorting (Buffington and Tonina,

2009). With respect to river invertebrates, several studies in upland environment have

observed changes in benthic macroinvertebrate community composition in response to

sediment deposition at LW sites (Wallace et al., 1995; Gerhard and Reich, 2000) while

the effects on hyporheic communities remain unexplored.

Finally, in both lowland and upland river types, LW seems to provide positive eco-

logical responses. However, in lowland rivers, engineered log-jams used in conjunction

with other in-channel and floodplain restoration measures, might enhance more effi-

ciently local river hydraulic conditions, naturally limited by geomorphological and to-

pographical characteristics, and favour biogeochemical processing and nutrient turnover

by promoting HEF. The impact of different wood jams (e.g. active, complete, partial,

high jams) on the HZ and under different environmental settings has yet to be estab-

lished. Therefore, we need more empirical data on how LW and its context can enhance

and facilitate ecological and hydrological connection to strengthen our capacity to not

only effectively choose the design of large wood for restoration, but also to select and

evaluate its suitability in particular cases.
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Figure 6.3: Key hydrological, geomorphological, and biogeochemical process driven by LW in upland
and lowland rivers . Figure from Krause et al. (2014)

6.3 River management and the HZ

6.3.1 Advantages of considering the HZ in river management

Despite extensive research demonstrating the importance of HZ to river ecosystems,

few comprehensive syntheses addressed to HZs and river management exist (Boon et al.,

2016; Wood et al., 2012; Hester and Gooseff, 2011; Buss et al., 2009).

Globally, the implementation of restoration approaches responds to multifaceted

landscapes strategies linking environment (i.e. natural ecosystems) and development

(i.e. urban expansion) to sustainable land management (i.e. The Bonn Challenge

(BMUB and IUCN, 2011), the Intergovernmental Science-Policy Platform on Biodiver-

sity and Ecosystem Services (IPBES, 2012), the United Nations to Combat Desertifica-

tion (UNCCD, 1994), the Convention on Biological Diversity (CBD, 1993)). However,

none of the above legislations specify the HZ. Regionally, regulatory authorities tend to
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respond to the EC Water Framework Directive (WFD; (Directive, 2000), the EC Habi-

tats Directive (Directive, 1992) for Special Areas of Conservation and Sites of Special

Scientific Interest (SSSIs), but none of these incentivises and regulates HZs protection.

Hyporheic exchange flow provides indication of trophic structure (size and biomass),

chemical processes and thermal regimes within a catchment (Boulton and Hancock,

2006). These functions define priority river habitat, species habitat requirements, and

drive river restoration to act (Mainstone et al., 2014; Society for Ecological Restora-

tion International Science & Policy Working Group, 2004). Therefore, by predicting

and assessing HEF occurrence and the associated processes over different spatial scales,

potential HEF-related issues and environmental impacts can be identified that require

management intervention (Chapter 3). Also, this a fundamental step to place restora-

tion within and across entire catchments, not individual sites, representing mosaics of

interacting hydrological, topographical, geological and anthropogenic pressures. This

type of assessment can be used, for example, in conjunction with the “naturalness cri-

teria” now used in restoration to identify priority habitats in Britain (Department for

Environment and Affairs, 2013).

In terms of trophic structure, HEF enhances the growth of periphyton which cre-

ates localized hotspots of productivity (Claret and Fontvieille, 1997) and the growth of

subsurface invertebrates and microorganisms that i) affect the porosity of the riverbed

(i.e. burrowing, palletisation); ii) alter nutrient and river metabolism (i.e. excretion),

iii) organic and inorganic matter breakdown, and iv) transfer of material across the hy-

porheic zone (i.e. migration) (Table 1 in Boulton (2007)). These functions are the base

of river ecosystem functioning and are especially relevant in the context of achieving

and maintaining “good ecological status” as required by WFD. Benthic macroinver-

tebrates are regularly used as bio-indicators in river health assessment (Walsh, 2006),

whereas possibly because of the difficulties of quantifying and identifying very small

invertebrates, restoration attention on hyporheic invertebrates is less advanced. How-

ever, previous studies have demonstrated the potential of using hyporheic invertebrates

as ecological indicator especially for assessing the health of temporary rivers (EPT

metrics, (Leigh et al., 2013)) and ongoing citizen and science initiatives (i.e. Anglers’

Riverfly Monitoring Initiative ARMI) could hopefully open new strategies to promote
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restoration awareness on HZ, coordinate sampling approaches and provide benchmark

data to complement surface water assessments.

HEF also drives chemical processes (i.e. nutrient attenuation, cycling of oxygen,

mineral dissolution and precipitation) by creating T, pH, redox gradients between the

surface water and groundwater. Nutrient attenuation together with biodiversity is one

of the most critical water quality problem addressed by river restoration to satisfy the

requirements of policy drivers (e.g. WFD).

In Chapters 4 and 5, LW was presented as a driver itself of HEF in relation to

structural and functional responses of invertebrate communities. But, LW-driven HEF

has been especially studied for its impact on biogeochemical cycling, denitrification and

therefore on nutrient pollutant attenuation (Blaen et al., 2018; Kail et al., 2016; Craig

et al., 2008). Therefore, these studies in conjunction with ecological ones (Thompson

et al., 2018; Pilotto et al., 2014) (Chapters 4 and 5) suggest that instream LW can be

used in river restoration to improve water quality and ecology of upland and lowland

rivers. If the observed hydro-chemical-ecological patterns at LW sites would be true

across a range of lowland setting and flow conditions, then there is a potential in river

restoration to implement catchment-field approaches including design and placement

of wood considering the HZ. More studies are however required that use restored-LW,

ecology and nutrient dynamics to improve the scientific understanding on how changes

in HEF relate to hydrological processes and vertical connectivity in rivers.

In terms of thermal regimes, the HEF regulates river temperature through buffering,

lagging, or cooling (Arrigoni et al., 2008). Temperature regulates microbial-mediated

reactions such as denitrification (Zarnetske et al., 2011) and is essential for fish larvae

refuge (Baxter and Hauer, 2000; Geist, 2000); a critical topic to restoration given the

decline in salmon numbers in more recent years (EA, 2014 accessed May 10, 2018).

Finally, restoration would be an opportunity for hyporheic research to access in-

formation - rich data being collected by government and private consultant at large

geographical scale. Restoration projects, whose design is informed by scientific un-

derstanding of ecological and hydrological processes within a catchment context, can

provide to science a wide range of fine-resolution data with more intensive sampling

at a local scale (e.g. river type, spatial extent and frequency, data type) to evaluate
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physical, ecological and chemical factors drivers of HZ processes. Also the information

obtained from broad-scale restoration can be used to created baseline data to test and

use hyporheic flow and fauna in river surveys and assessment.

6.3.2 Project management plans

The HZ physical and biological processes are the result of multiple interacting fac-

tors, thus efforts to address its functioning in river management require a multifaceted

response. The trade-off between the beneficial and detrimental effects on hyporheic

organisms and habitat, need to be understood within the context of multiple effects

provided by them in specific environments (Chapter 3).

Therefore, a starting point for HZ and HEF to be targeted by river restoration is

considering the prioritization of sites with a catchment-specific approach. By focusing

on strengthening the resilience of river ecosystems at catchment scale, river restoration

can optimise its goods and services as societal needs change or new environmental chal-

lenges arise (Society for Ecological Restoration International Science & Policy Working

Group, 2004). This means including specific hydrogeological, topographical and an-

thropogenic characteristics driving and affecting HEF (Chapter 2), and so achieving a

more inclusive understanding of the short, medium and long-term implications of HZ-

functioning to river restoration (Figure 6.1). The catchment-scale approach to the HZ

requires adopting holistic policy-responses that go beyond narrowly-defined policy agen-

das and put in place the enabling conditions necessary for long-term change (i.e. IPBES

Assessments, (IPBES, 2012; CBD, 1993)). To this end, dynamic and multifunctional

approaches to restoration practices are good examples and already adopted globally

in the Bonn Challenges within the Forest Landscape Restoration project (BMUB and

IUCN, 2011) to re-establish ecological functionality of deforested landscapes, and in

the strategic framework of the International Conventions to Combat Desertification

(UNCCD, 1994).

At regional scale, the HZ can be included into the current river restoration plans

on SSSI rivers in Britain (Wheeldon, 2013). The plan includes seven action stages,

from geomorphological and ecological appraisal to site monitoring (Wheeldon, 2013).
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As starting point, HEF can be considered in the prioritisation of actions (Stage 1 and

Stage 2, Figure 6.4) and in the selection of restoration measures (Stage 3) of the SSSI

plans. While ecological assessment can be carried out at Stage 6 and 7 of the phys-

ical restoration strategy (Figure 6.4). This first assessment can, for example, include

targeting areas already identified in the priority maps as “poor” status (WFD) and

discussing what is the problem and how this issue affects the functions and ecosystem

services of the hyporheic zone (i.e. Section 6.3.1, trophic structure, chemical processes

and stream temperature). Alternatively, WFD ecological and hydrological metrics can

be evaluated under the hyporheic perspective and assessed, in case of failure, to under-

score where the HZ can play a role to achieve “good ecological status”. When in-situ

measurement is needed (Figure 6.1), excellent guidance encompassing a variety of levels

of complexity exist to develop field methods in the river channel, reach and floodplain

(i.e. piezometers, seepage meters, stream flow measurements, Table 8.1 in (Buss et al.,

2009)) and distinguish the hyporheic flows. The most common and easy-to-use meth-

ods are mini-piezometers, stream stage data and groundwater monitoring wells. For

example, mini-piezometers or wells are used to measure the elevation of water levels in

the saturated riverbed sediments (e.g. Figure 5.1)(Rivett et al., 2008).

For the ecological assessment, hyporheic fauna could be collected in conjunction

with Surber sampler, by portable standpipe (i.e. Bou Rouch Pump) and ETP metrics

applied to evaluate river water quality (Leigh et al., 2013). In this context, community

involvement could take many different forms (i.e. recent started Riverfly Partnership

Anglers - Monitoring Initiative (AMI)), promote awareness and actions across broad

geographical scales. Especially at this stage that interdisciplinary collaboration with

academic institution would be beneficial to understand the extent to which restoration

strategies promote specific hyporheic functions.
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Figure 6.4: Main steps for developing a SSSI physical restoration strategy. Green colour refers to the
strategy, purple to communication aspects and orange to main outputs.Figure from Wheeldon (2013)

6.4 Implication for future research

It is important to acknowledge that the results of this research and the interpre-

tation of processes are constrained by methodological limitations. Therefore, recom-

mendations for further research are formulated here in terms of (i) hyporheic exchange

measurements and data availability; and (ii) ecological information about HEF and

LW.



Chapter 6. Discussion 155

6.4.1 Hyporheic exchange flow and data availability

In this study, the use of direct measures of HEF in most field studies was limited

by the spatial coverage of published hyporheic studies within the river network, and by

the variable quality and quantity of data at each site (Chapter 3). Therefore literature

published data of HEF were used to qualitative asses the results of the clusters and

only few in situ study sites could be used to compare model predictions and in a

qualitative way. More spatially distributed hyporheic data is required to systematically

test, compare and calibrate predictive models at multiple spatial and temporal scales.

Research should explore alternative possibilities to increase the temporal and spatial

resolution of HEF monitoring by sharing and promoting collaborative experimentation

of scientific findings.

Quantifying HEF in the field is challenging because both hydrologically complex

and relatively difficult to manipulate under undisturbed conditions (Palmer, 1993).

First, there are a variety of terms associated with mixing and boundary conditions

and therefore vastly field and modelling expectations (Hester et al., 2017). Conse-

quently, there are not conventional indicators of HEF. Second, being the HZ at the

interface between surface and subsurface waters, it can extend from considerable me-

ters to few centimetres, implying that the selection of measuring methods depend on a

sound understanding of the local environmental conditions. Also, the direct connection

with groundwater means that the HZ may change significantly during field experiment

which is a possible reason of limited experimental manipulation. Thirdly, the volume

of water that is involved in the HEF is small compared to stream flow (Bencala and

Kimball, 2011) and therefore several measurement methods are used in conjunction

(i.e. vertical hydraulic gradients, water temperature).These challenges partly explain

the reliance of HEF quantification on small-scale sampling. Finally, while technological

advancements have made it easier to collect large amounts and high resolution data,

access and processing of this information are often constrained.

Data processing platforms and open-source computational systems could be a valid

solution to meet science requirements of reproducibility, repeatability and re-usability,

and to promote the use of collaborative approaches among restoration managers and
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scientists. Data platform systems enable to share computational information with other

colleagues, to execute processes provided by communities of practice and reduce cal-

culation effort at the same time. If more and high quality HEF data was available at

the time of this research, alternative modelling approaches like ANNs would have been

likely used. ANNs are methods promising to capture the dynamics of highly nonlinear

chaotic system (Parasuraman and Elshorbagy, 2007) and can be used in conjunction

with numerical and analytical groundwater models (Daliakopoulos and Tsanis, 2005).

These approaches could have offered the possibility of teasing out multiple processes

without the need of defining “a priori” physical constraints and therefore helping a

more accurate identification of patters and clusters of hyporheic data at larger spatial

scales.

To this end, the success of including the HZ into restoration plans lies in the ability

of providing tools for easy hyporheic measure and predictions, suitable to the scale of

assessment, and responding to catchment impacts in an interpretable way.

6.4.2 Ecological information on large wood

More studies are required that target hyporheic communities at LW sites to improve

scientific understanding on how LW-driving processes and valley setting relate to eco-

logical processes. Information on the impacts of LW on HEF is needed to better relate

species structure and functions to environmental responses.

As discussed in the previous section, data on HEF are limited, so our field study was

constrained by available hyporheic data at LW sites, and therefore focused on only one

river. But, consideration of environmental factors will help to discern anthropogenic-

induced changes in hyporheic fauna. Furthermore, Chapter 4 and 5 suggested that

LW variability (i.e. upstream, downstream and lateral to wood) might be important

to explain benthic invertebrate distribution at LW sites. Due to time constraints,

it was not possible to study the ecological responses to LW variability (downstream,

upstream, lateral LW) which might provide, in the future, additional information on the

distribution of invertebrates as a function of vertical and horizontal subsurface flows, like

those shown in riffle studies (Mathers and Wood, 2016). Additionally, in lowland rivers
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groundwater discharge is very pronounced and during stream gaining conditions the

hydrodynamic forcing of LW on HEF is reduced (Krause et al., 2014). Changes on HEF

and HZ extent might potentially be followed by changes in invertebrates composition,

distribution and diversity (Dole-Olivier et al., 1997)and therefore future studies might

want to determine whether the environmental instability of groundwater-fed stream

influence invertebrate community distribution in LW sites.

Despite univariate diversity metrics remaining the principal tool for biodiversity as-

sessment and monitoring (Hillebrand et al., 2018), multivariate species trait and tempo-

ral data on biomass can reveal trends of community changes (i.e. species specialization

decline and homogenization) likely to be important to conservation and ecosystem func-

tion (Boulton and Hancock, 2006; Larsen et al., 2018).

Finally, restoration programmes incorporating hyporheic invertebrate in their plan-

ning will benefit of a conceptual understanding of how river flow variation and ground-

water mediates changes of HEF (Chapter 2) and in turn physical, sedimentological,

nutrient parameters. Pilot studies and analytical methods will then help supporting

on-ground restoration.

6.5 Conclusion

This research aimed to improve our understanding of the multi-scale drivers for spa-

tial and temporal variation of HEF, and the effects on hyporheic and benthic biodiver-

sity from structure-induced HEF for river restoration planning. By using a multi-scale

perspective on HEF, this research provides a comprehensive hydro-ecological under-

standing of aquatic ecosystems and can support river restoration prioritizing sites and

approaches to target the HZ.

First, the multi-scale method based on environmental information at different scales

demonstrated the importance of identifying underlying processes and factors in order to

predict HEF. In the study catchments, suitable areas for HEF-focused restoration em-

bed a summary of environmental information across the domains of hydrology, geology,

and ecology (Section 3.4.1) forming the basis to capture the attention for effective and

problem-oriented river management (Section 3.4.2). The results of the study confirm
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the need of co-ordinated approaches to pooling hyporheic data and creating uniform

and long-term datasets, the lack of which limit the capacity to quantitatively assess

model predictions (Section 6.2.3).

Second, by examining the effect of large wood on hyporheic and benthic communi-

ties and linking to multiple environmental data, the role of LW as structure-induced

HEF to maintain river ecological connectivity could be assessed (Chapters 4 and 5).

The findings confirmed hypotheses made in previous research about the role in LW

in lowland rivers and provided new information about the tight association between

abiotic and biotic interactions to shape spatial patterns of functional trait diversity.

However, it is essential to establish further knowledge on how large wood effects on HZ

vary in different valleys and river types and over multiple spatial and temporal scales,

so that wood-based restoration design can account for heterogeneity of riverscapes and

specific processes (Sections 6.2.2, 6.2.3).

In conclusion, through new methodological approaches and empirical evidence, this

research highlights that unravelling the process interactions underlying HEF is essential

to improved prediction of HEF and help management to target HZ. Future research

will aid better-resolved scientific understanding of the hyporheic ecosystem and further

encourage river management to commit to hyporheic restoration.
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tique II. Prise en compte et élimination d’effets dans un tableau faunistique. Acta

Oecologica 10, 207–232.
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Jasechko, S., Kirchner, J. W., Welker, J. M., McDonnell, J. J., 2016. Substantial pro-

portion of global streamflow less than three months old. Nature Geoscience 9 (2),

126–129.

Jeffries, R., Darby, S. E., Sear, D. A., 2003. The influence of vegetation and organic

debris on flood-plain sediment dynamics: case study of a low-order stream in the

New Forest, England. Geomorphology 51 (1-3), 61–80.

Jencso, K. G., McGlynn, B. L., 2011. Hierarchical controls on runoff generation: Topo-

graphically driven hydrologic connectivity, geology, and vegetation. Water Resources

Research 47 (11).

Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Bencala, K. E., Wondzell, S. M., 2010.

Hillslope hydrologic connectivity controls riparian groundwater turnover: Implica-

tions of catchment structure for riparian buffering and stream water sources. Water

Resources Research 46 (10).

Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Wondzell, S. M., Bencala, K. E., Mar-

shall, L. a., 2009. Hydrologic connectivity between landscapes and streams: Trans-

ferring reach- and plot-scale understanding to the catchment scale. Water Resources

Research 45 (4), 1–16.

Jin, L., Siegel, D. I., Lautz, L. K., Otz, M. H., 2009. Transient storage and downstream

solute transport in nested stream reaches affected by beaver dams. Hydrological Pro-

cesses 23 (17), 2438–2449.

Johnson, L. B., Breneman, D. H., Richards, C., 2003. Macroinvertebrate community

structure and function associated with large wood in low gradient streams. River

Research and Applications 19 (3), 199–218.



References 185

Johnstone, C. P., Lill, A., Reina, R. D., 2014. Habitat loss, fragmentation and degra-

dation effects on small mammals: Analysis with conditional inference tree statistical

modelling. Biological Conservation 176, 80–98.

Jolliffe, I., 2002. Principal component analysis. Wiley Online Library.

Jones, I., Growns, I., Arnold, A., McCall, S., Bowes, M., 2015. The effects of increased

flow and fine sediment on hyporheic invertebrates and nutrients in stream mesocosms.

Freshwater Biology 60 (4), 813–826.

Jones, J. I., Murphy, J. F., Collins, A. L., Sear, D. A., Naden, P. S., Armitage, P. D.,

2012. The impact of fine sediment on macro-invertebrates. River Research and Ap-

plications 28 (8), 1055–1071.

Jones, K. L., Poole, G. C., Woessner, W. W., Vitale, M. V., Boer, B. R., O’Daniel, S. J.,

Thomas, S. A., Geffen, B. A., 2008. Geomorphology, hydrology, and aquatic vege-

tation drive seasonal hyporheic flow patterns across a gravel-dominated floodplain.

Hydrological Processes 22 (13), 2105–2113.

Kail, J., Hering, D., Muhar, S., Gerhard, M., Preis, S., 2007. The use of large wood in

stream restoration: experiences from 50 projects in Germany and Austria. Journal

of Applied Ecology 44 (6), 1145–1155.

Kail, J., McKie, B., Verdonschot, P. F., Hering, D., 2016. Preface: Effects of hydro-

morphological river restorationa comprehensive field investigation of 20 European

projects. Hydrobiologia 769 (1), 1–2.

Kaller, M. D., Kelso, W. E., 2007. Association of macroinvertebrate assemblages with

dissolved oxygen concentration and wood surface area in selected subtropical streams

of the southeastern USA. Aquatic Ecology 41 (1), 95–110.

Kasahara, T., Hill, A. R., 2006. Hyporheic exchange flows induced by constructed riffles

and steps in lowland streams in southern Ontario, Canada. Hydrological Processes

20 (20), 4287–4305.



References 186

Kasahara, T., Wondzell, S. M., 2003. Geomorphic controls on hyporheic exchange flow

in mountain streams. Water Resources Research 39 (1).

Kasahara, T., Yasuda, Y., Otsuki, K., 2013. Changes in distribution of fine sediments

in the hyporheic zone during high flow events. In: AGU Fall Meeting Abstracts.
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Environmental data derived from the original datasets and used in the

UK and Polish case studies

Table A.2: Environmental data used in the UK case studies derived from the datasets listed in Table
2 in the main manuscript

Parameters
Spatial
scale

Derived
information

Data type

DTM Catchment
Catchment size
(km2)

Spatial,
quantitative,
continuous

Catchment
Segment
Reach

Elevation (m) :
min,max, mean, std

Spatial,
quantitative,
continuous

Segment
Reach

Gradient and Sinuosity
(Stream and Gradient
Sinuosity Toolbox (ArcGIS 10.2)
Roughness (ArcGIS 10.2)

Spatial,
quantitative,
continuous

Segment Stream Order (ArcGIS 10.2)

Precipitation Catchment

Rainfall (mm): mean daily per
season (autumn, winter,spring,
summer). From 1981 to 2010.
Min, max, mean, std.

Temporal,
quantitative

Air
Temperature

Catchment

Temperature (degC): mean daily
per seasons (autumn, winter,
spring, summer). From 1981
to 2010. Min, max, mean, std.

Temporal,
quantitative

Bedrock geology
(1:625,000)

Catchment
Bedrock classes:classes expressed
on the overall area in the range
between 0 and 1.

Spatial,
fuzzy

Superficial geology
(1:50,000)

Segment
Superficial geology: classes
expressed on the overall area
in the range between 0 and 1

Spatial,
fuzzy

Soils;
Aquifers

Catchment
Soils and aquifer classes
expressed on the overall area
in the range between 0 and 1

Spatial,
fuzzy

Catchment
Hydrogeology: expressed on
the overall area in the range
between 0 and 1

Spatial,
fuzzy
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Table A.2 – continued from previous page

Parameters
Spatial
scale

Derived
information

Data type

Catchment

Permeability: Range, max, min.
Assigned categories accordingly
to very high, high, moderate,
low,very low permeability

Spatial,
fuzzy

Land Cover
Catchment
Segment
Reach

Riparian vegetation and land
use classes expressed on the
overall area in the range
between 0 and 1

Spatial,
quantitative,
categorical

Vegetation Reach

Riparian vegetation at 5 and
50 m from the river bank.
Expressed on the overall area
in the range between 0 and 1.
In-channel vegetation
expressed between 0 and 1.

Spatial,
fuzzy

River Flows Reach Mean flow velocities
Temporal,
quantitative

Bank and
in-channel
geology

Reach
Superficial and bedrock
geology classes expressed
in the 0 and 1 range.

Quantitative

Reach
Presence of riffles, pools
expressed on the overall area
in the range between 0 and 1

Quantitative

Table A.3: Environmental data used in the Polish case studies derived from the datasets listed in Table
3 in the main manuscript

Parameters
Spatial
scale

Derived
information

Data type

DTM Catchment
Catchment
size (km2)

Spatial,
quantitative,
continuous

Catchment
Segment
Reach

Elevation (m):
min, max, mean, std.

Spatial,
quantitative,
continuous
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Table A.3 – continued from previous page

Parameters
Spatial
scale

Derived
information

Data type

Segment,
reach

Gradient and Sinuosity
(ArcGIS 10.2)

Spatial,
quantitative,
continuous

Precipitation
(5 km)

Catchment

Rainfall (mm): mean
monthly per seasons
from 1950 to 2013
(autumn, winter, spring,
summer). Min, max,
mean, std

Temporal,
quantitative

Precipitation
(interpolated)

Reach

Rainfall (mm): mean
monthly per seasons
from 1994 to 2013
(autumn, winter,
spring, summer).
Interpolated
(IDW-ArcGIS 10.2)
Min, max, mean, std

Temporal,
quantitative

Air
Temperature

Catchment

Temperature (degC):
monthly average per seasons
from 2000 to 2013 (autumn,
winter, spring,summer).
Min, max,mean, std

Temporal,
quantitative

Bedrock
Superficial Geology
(1:250,000)

Catchment
Segment
Reach

Bedrock classes expressed
on the overall area in
the range between 0 and 1.

Superficial geology: classes
expressed on the overall area
in the range between 0 and 1.

Spatial,
fuzzy
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Table A.3 – continued from previous page

Parameters
Spatial
scale

Derived
information

Data type

Soils Segment, reach

Soils classes expressed
on the overall area
in the range between
0 and 1. Peat depth
at reach scale was
obtained by interpolation
(IDW method ArcGIS 10.2)
Min, max, mean, std

Spatial,
fuzzy

Aquifers
(1:50,000)

Catchment

Aquifer classes expressed
on the overall area
in the range between
0 and 1.

Spatial,
fuzzy

River Flows Reach

Average discharge from
1971 to 1995.Spatial
interpolation with IDW
(ArcGIS 10.2).

Spatial,
quantitative,
continuous

Groundwater flows Reach

Average per years from
1998 to 2013 per season
(autumn, winter, spring,
summer). Spatial
interpolation with
IDW ArcGIS 10.2.
Min, max, mean, std

Spatial,
quantitative,
continuous

Land Cover
Catchment
Segment
Reach

Riparian vegetation and
land use classes expressed
on the overall area
in the range between 0 and 1

Spatial,
quantitative
and categorical
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Results of the Large scale merging (Step 5) for the UK and Polish case

study

Table A.4: Summary table of the Absolute Percentage of Agreement obtained by the confusion matrices
and the Large scale merging for the UK and Polish case study

Scales UK Polish
catchment 88% 75%
segment 75% 78%
reach 74% 82%

Large Scale Merging
Segment-Catchment 76% 78%
Reach-Segment 64% 82%

Table A.5: UK case study Step 5: reach agreement with enrichment of the 20% using the information
of the segment

Clustering Reach-Segment
Expert Classifier 1 Classifier 0 Total
Classifier 1 25 13 38
Classifier 0 36 61 97
Total 61 74 135
Agreement 25 61 86
By Chance 17.17 53.17 70.34

Fleiss Landis-Koch
Kappa 0.24 Poor Fair
Absolute % of agreement 64%



Appendix B

Large wood and invertebrates’ taxonomic-based met-

rics

Table B.1: Taxon-specific regression equations and parameters used to calculate biomass of inverte-
brates. Taxa are ordered alphabetically. DW= weight (mg), WW= wet weight (mg), V= volume (mL,
nL), L= body length (mm), SL= shell length (mm), W=body width (mm), H= body height (mm),
HW = head-capsule width (mm).

Taxa Formula Source

Acroloxidae DW= -3.3319 + 3.1403 * SL Meyer (1989)
Agabus spp DW= -4.4518 + 2.4724 * L Meyer (1989)
Asellidae DW= 0.0054 * L 2.948 Benke et al. (1999)
Atherix spp DW= 0.0038 * L 2.586 Benke et al. (1999)
Baetis spp DW= 0.0033 * L 3.196 Benke et al. (1999)
Beraeidae DW= 0.0034 * L 3.212 Benke et al. (1999)
Bosminidae
(Cladocera)

V (mL) = (LW2 * π)/6 Reiss and Schmid-Araya (2008)

Bithyniidae DW= -4.54 + 3.66 * SL Baumgärtner and Rothhaupt (2003)
Caenis spp DW= 0.0069 * L 2.61 Benke et al. (1999)
Calopterygidae DW= 0.005 * L 2.742 Benke et al. (1999)
Capnia spp
(Capniidae)

DW= 0.0049 * L 2.562 Benke et al. (1999)

Ceratopogonidae DW= 0.0020 * L 2.438 Poepperl (1998)
Chironomini DW= 0.059 * L 2.099 Benke et al. (1999)
Chloroperlidae DW= 0.0065 * L 2.724 Benke et al. (1999)
Chrysomelidae DW= 0.039 * L 3.111 Benke et al. (1999)
Chydoridae
(Cladocera)

V (mL)= (LW2 * π)/6 Reiss and Schmid-Araya (2008)

Corbicula spp DW= 0.0078 * L 3.12 Benke et al. (1999)
Cordulegaster boltonii
(Cordulegastridae)

DW= 0.0067 * L 2.782 Benke et al. (1999)

Crangonyctidae DW= 0.0058 * L 2.798 Benke et al. (1999)
Cyclopoida
(Copepoda)

V (nL)= L * W2 * 560 Reiss and Schmid-Araya (2008)

Continued on next page
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Table B.1 – Continued from previous page

Taxa Formula Source

Cylindrotomidae
(Tipulidae)

DW= 0.0064 * L 2.443 Benke et al. (1999)

Daphniidae
(Cladocera)

V (mL) = (LW2 * π)/6 Reiss and Schmid-Araya (2008)

Dasyheleinae
(Ceratopogonidae)

DW= 0.0020 * L 2.438 Benke et al. (1999)

Diamesinae DW= 0.0020 * L 2.602 Benke et al. (1999)
Ecnomidae not calculated
Empididae DW= 0.0054 * L 2.546 Benke et al. (1999)
Ephemera danica DW= 0.0021 * L 2.737 Benke et al. (1999)
Ephemera vulgata DW= 0.0021 * L 2.737 Benke et al. (1999)
Ephemerellidae DW= 0.0103 * L 2.676 Benke et al. (1999)
Ephydridae DW= -5.17 + 1.8 * L Steingŕımsson and Gı́slason (2002)
Erpobdella spp DW = 0.0058 * L 2.225 Poepperl (1998)
Gammarus pulex DW = 0.0019 * L 2.964 Poepperl (1998)
Glossiphonia spp DW = 0.0198 * L 2.212 Poepperl (1998)
Glossosomatidae DW = 0.0082 * L 2.958 Benke et al. (1999)
Goera pilosa DW = 0.0016 * L 4.244 Meyer (1989)
Haliplidae DW = 0.0271 * L 2.744 Benke et al. (1999)
Hebridae
(Hemiptera)

DW = 0.0108 * L 2.734 Benke et al. (1999)

Heptageniidae DW = 0.0108 * L 2.754 Benke et al. (1999)
Hydrachnidia V (nL)= L * W2 * 399 Reiss and Schmid-Araya (2008)
Hydrobiidae not calculated
Hydropsyche spp DW= 0.0019 * L 2.89 Burgherr and Meyer (1997)
Hydroptila spp DW= 1.30 + 3.62 * L Baumgärtner and Rothhaupt (2003)
Hygrobiidae not calculated
Lepidostomatidae DW= 0.0079 * L 2.649 Benke et al. (1999)
Leptoceridae DW= 0.0034 * L 3.212 Benke et al. (1999)
Leptophlebiidae DW= 0.0047 * L 2.686 Benke et al. (1999)
Leuctra spp DW=0.0022 * L 2.66 Burgherr and Meyer (1997)
Limnephilidae DW =0.0054 * L 2.966 Meyer (1989)
Limnius spp DW =0.0074 * L 2.879 Benke et al. (1999)
(Elmidae)
Limoniidae DW = 0.0039 * L 2.44 Poepperl (1998)
Molanna spp DW = 0.0034 * L 3.212 Benke et al. (1999)
Muscidae DW= -7.8392 + 3.1059 * L Meyer (1989)

Continued on next page
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Table B.1 – Continued from previous page

Taxa Formula Source

Nematoda
WW (µ g)= L µ m *
W µm 2/16*105 Andrassy (1956)

Niphargidae
(Amphipoda)

DW = 0.0058 * L 3.015 Benke et al. (1999)

Notidobia ciliaris
(Sericostomatidae)

DW = 0.0074 * L 2.741 Benke et al. (1999)

Oligochaeta V (nL)= L * W2 * 530 Feller (1988)
Orthocladiinae DW = 0.0020 * L 2.254 Benke et al. (1999)
Ostracoda V (nL)= L * W2 X 450 Reiss and Schmid-Araya (2008)
Pediciidae DW = -7.8392 + 3.1059 * L Meyer (1989)
Perlodidae DW = 0.0196 * L 2.742 Benke et al. (1999)
Philopotamidae DW = 0.0050 * L 2.511 Benke et al. (1999)
Phryganeidae DW = 0.0054 * L 2.811 Benke et al. (1999)
Physidae not calculated
Piscicolidae DW = 0.0198 * L 2.212 Benke et al. (1999)
Pisidium spp DW = 0.0163 * L 2.477 Benke et al. (1999)
Planariidae DW = 0.0082 * L 2.168 Benke et al. (1999)
Planorbidae not calculated
Podonominae DW = 0.0059 * L 2.099 Benke et al. (1999)
Polycentropodidae DW = 0.0047 * L 2.705 Benke et al. (1999)
Potamanthidae
(Ephemeroptera)

DW = 0.0071 * L 2.832 Benke et al. (1999)

Procloeon pennulatum
(Baetidae)

DW = 0.0053 * L 2.875 Benke et al. (1999)

Prodiamesinae DW = 0.0020 * L 2.602 Benke et al. (1999)
Prosimuliini DW = 0.0012 * L 3.190 Benke et al. (1999)
Psychodidae DW = 0.0025 * L 2.692 Benke et al. (1999)
Psychomyiidae DW = 0.0018 * L 3.129 Meyer (1989)
Radix spp DW = -4.76 + 3.19 * S * L Baumgärtner and Rothhaupt (2003)
Rhithrogena spp DW = -2.29 + 3.52 * HW Burgherr and Meyer (1997)
Rhyacophilidae DW = 0.0016 * L 3.123 Meyer (1989)
Scarodytes spp
(Coleoptera)

DW = 0.0077 * L 2.910 Benke et al. (1999)

Sericostoma spp DW = 0.0114 * L 2.649 Meyer (1989)
Serratella ignita DW = 0.0054 * L 3.057 Meyer (1989)
Sialidae DW = 0.0037 * L 2.753 Benke et al. (1999)
Sididae
(Cladocera)

V (mL) = (LW2 * π)/6 Reiss and Schmid-Araya (2008)

Continued on next page
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Taxa Formula Source

Silo spp DW = 0.0016 * L 4.244 Meyer (1989)
Simuliidae DW = 0.0029 * L 2.67 Benke et al. (1999)
Siphlonuridae DW = 0.0027 * L 3.446 Benke et al. (1999)
Sphaerium spp
(Sphaeriidae)

DW = 0.0163 * L 2.477 Benke et al. (1999)

Tabanidae DW = 0.0050 * L 2.591 Benke et al. (1999)
Talitridae
(Amphipoda)

DW = 0.0058 * L 3.015 Benke et al. (1999)

Tanypodinae DW = 0.0026 * L 2.503 Benke et al. (1999)
Tanytarsini DW = 0.0012 * L 2.294 Benke et al. (1999)
Thaumaleidae
(Diptera)

DW = 0.0025 * L 2.692 Benke et al. (1999)

Tipulidae DW = 0.0064 * L 2.443 Benke et al. (1999)

Table B.2: Taxa list for the Hammer Stream found during the study period from October 2016 to
August 2017

Hyporheic meiofauna Hyporheic macrofauna Benthic macrofauna
Asellidae Acroloxidae Asellidae
Beraeidae Agabus spp Atherix spp
Bithyniidae (Bi) Asellidae Baetis spp
Bosminidae Atherix spp Bithyniidae
Caenidae (Cae) Baetis spp Caenis spp
Capnia spp (Ca) Beraeidae Calopterygidae
Ceratopogonidae (Cer) Bithyniidae Capnia spp
Chironomini (C ) Caenis spp Ceratopogonidae
Chydoridae (Chy) Capnia spp Chironomini
Cyclopoida (Cy) Ceratopogonidae Chloroperlidae
Cylindrotomidae Chironomini Chrysomelidae
Daphniidae Chydoridae Cordulegaster boltonii
Diamesinae (Di) Corbicula spp Crangonyctidae
Dytiscidae Cordulegaster boltonii Dasyheleinae
Empididae (Em) Crangonyctidae Diamesinae
Ephemera danica (Eph) Cyclopoida Ecnomidae

Continued on next page
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Table B.2 – Continued from previous page
Hyporheic meiofauna Hyporheic macrofauna Benthic macrofauna
Ephemerellidae (Ep) Cylindrotomidae Empididae
Erpobdellidae (Er) Dasyheleinae Ephemera
Gammarus pulex (G.p) Diamesinae Ephemerellidae
Glossiphonia (Gl) Empididae Ephydridae
Glossiphoniidae Ephemera danica Erpobdella
Heptageniidae Ephemera vulgata Gammarus pulex
Hydrachnidia (Hy) Ephemerellidae Glossiphonia
Hydropsyche (Hyd) Erpobdella spp Glossosomatidae
Leptoceridae (Lep) Gammarus pulex Goera pilosa
Leptophlebiidae Glossiphonia spp Haliplidae
Leuctridae (Leu) Glossosomatidae Hebridae
Limnius spp (Li) Goera pilosa Heptageniidae
Limoniidae (Lim) Hebridae Hydrachnidia
Molannidae Heptageniidae Hydrobiidae
Nematoda (N) Hydrachnidia Hydropsyche spp
Niphargidae Hydropsyche spp Hydroptila spp
Oligochaeta (Oli) Hydroptila spp Lepidostomatidae
Orthocladiinae (Ort) Hygrobiidae Leptoceridae
Ostracoda (Os) Leptoceridae Leptophlebiidae
Pediciidae Leuctra spp Leuctridae
Philopotamidae Limnephilidae Limnephilidae
Physidae Limnius spp Limnius spp
Piscicolidae Limoniidae Limoniidae
Pisidium spp (Pi) Molanna spp Molanna spp
Planariidae Nematoda Muscidae
Polycentropodidae Niphargidae Oligochaeta
Prodiamesinae Notidobia ciliaris Orthocladiinae
Prosimuliini (Pr) Oligochaeta Pediciidae
Psychodidae Orthocladiinae Ostracoda
Psychomyiidae (Ps) Ostracoda Perlodidae
Sericostomatidae Pediciidae Philopotamidae
Sialidae Philopotamidae Phryganeidae
Sididae Phryganeidae Planorbidae
Simuliidae Physidae Podonominae
Siphlonuridae Piscicolidae Polycentropodidae
Sphaeriidae Pisidium Potamanthidae

Continued on next page
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Table B.2 – Continued from previous page
Hyporheic meiofauna Hyporheic macrofauna Benthic macrofauna
Tabanidae Planorbidae Procloeon pennulatum
Talitridae Podonominae Psychodidae
Tanypodinae (Ta) Polycentropodidae Psychomyiidae
Tanytarsini (Tany) Prodiamesinae Radix spp
Thaumaleidae Prosimuliini Rhithrogena spp
Tipulidae (Tip) Psychodidae Rhyacophilidae

Psychomyiidae Scarodytes spp
Radix spp Sericostoma spp
Sericostoma spp Serratella ignita
Serratella ignita Silo spp
Sialidae Siphlonuridae
Sididae Sphaerium spp
Simuliidae Tabanidae
Siphlonuridae Talitridae
Sphaerium spp Tanypodinae
Tabanidae Tanytarsini
Talitridae Tipulidae
Tanypodinae
Tanytarsini
Thaumaleidae
Tipulidae
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Within Reach x Campaign Analysis and Conditional Inference Tree of

hyporheic macrofauna

Figure B.1: Comparison of hyporheic macrofauna abundance (log-transformed) among wood and
control sites. Within Reach x Campaign Analysis gives the locations of the 48 samples grouped by
wood and control. Wood and control are located at the weighted average (i.e. the centre of the star) of
corresponding samples (solid circles). Lines link samples to the mean location of their site. The ellipse
of inertia indicates the 95% of confidence interval around the centroids. (b) Conditional inference tree
(9999 Bonferroni permutations; α= 0.01) testing the significance of differences in wood and control
sites locations on the first WCA factorial plane (response variables: coordinates of samples along F1
and F2), the CIT analysis does not identify significant differences
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Figure B.2: Comparison of hyporheic macrofauna biomass (log-transformed) among wood and control
sites. Within Reach x Campaign Analysis gives the locations of the 48 samples grouped by wood
and control. Wood and control are located at the weighted average (i.e. the centre of the star) of
corresponding samples (solid circles). Lines link samples to the mean location of their site. The ellipse
of inertia indicates the 95% of confidence interval around the centroids. (b) Conditional inference tree
(9999 Bonferroni permutations; α= 0.01) testing the significance of differences in wood and control
sites locations on the first WCA factorial plane (response variables: coordinates of samples along F1
and F2), the CIT analysis does not identify significant differences.
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Within Reach x Campaign Analysis and Conditional Inference Tree of

benthic macrofauna

Figure B.3: Comparison of benthic macrofauna abundance (log-transformed) among wood and control
sites. Within Reach x Campaign Analysis gives the locations of the 48 samples grouped by wood
and control. Wood and control are located at the weighted average (i.e. the centre of the star) of
corresponding samples (solid circles). Lines link samples to the mean location of their site. The ellipse
of inertia indicates 95% of confidence interval around the centroids. (b) Conditional inference tree
(9999 Bonferroni permutations; α= 0.01) testing the significance of differences in wood and control
sites locations on the first WCA factorial plane (response variables: coordinates of samples along F1
and F2), the CIT analysis does not identify significant differences.
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Figure B.4: Comparison of benthic macrofauna biomass (log-transformed) among wood and control
sites. Within Reach x Date Campaign gives the locations of the 48 samples grouped by wood and
control. Wood and control are located at the weighted average (i.e. the centre of the star) of cor-
responding samples (solid circles). Lines link samples to the mean location of their site. The ellipse
of inertia indicates 95% of confidence interval around the centroids. (b) Conditional inference tree
(9999 Bonferroni permutations; α= 0.01) testing the significance of differences in wood and control
sites locations on the first WCA factorial plane (response variables: coordinates of samples along F1
and F2), the CIT analysis does not identify significant differences
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Relative contribution of meiofauna and macrofauna groups to abundance

and biomass.

Figure B.5: The relative contribution in percentage to mean abundance and mean biomass of hyporheic
macrofaunal groups found in the Hammer Stream on sampling occasions from October 2016 to August
2017.



Appendix B. Large wood and invertebrates’ taxonomic-based metrics 237

Figure B.6: The relative contribution in percentage to mean abundance and mean biomass of benthic
macrofaunal groups found in the Hammer Stream on sampling occasions from October 2016 to August
2017.
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Figure B.7: Average abundance and biomass(±SD)of hyporheic meiofauna and benthic macrofauna
across reaches and sampling campaing.
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Figure B.8: Relative contribution in percentage of hyporheic meiofauna and benthic macrofauna to
abundance and biomass.



Appendix C

Large wood and invertebrates’ functional traits

List of traits and modalities used in this study

Table C.1: Biological and ecological traits and modalities of freshwater invertebrates used in this study.

Trait Modalities Abbreviations

Maximal potential
size (MPS)

≤ 0.25 cm

>0.25-0.5 cm
>0.5-1 cm
>1-2 cm
>2-4 cm
>4-8 cm
>8 cm

Life cycle
duration (LCD)

≤ 1year

>1 year

Potential number of
cycles per year (PNC)

<1

1
>1

Fecundity (F) ≤ 100
>100-1000
>1000-3000
>3000

Body Flexibility (BF) none (<10 ○) none
low (>10-45 ○) low
high (>45 ○) high

Body Form (BFo) streamlined
flattened
cylindrical
spherical

Aquatic Stages (AS) egg
larva

Continued on next page
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Table C.1 – Continued from previous page

Trait Modalities Abbreviations

nymph
adult

Reproduction (R) ovoviviparity ovoviv.
isolated eggs, free iso.egg.free
isolated eggs, cemented iso.egg.cem
clutches, cemented or fixed clutches.fixed
clutches, free clutches.free
clutches, in vegetation clutches.veg
clutches, terrestrial clutches.terr
asexual reproduction asex.repr
parthenogenesis parth

Dispersal (D) aquatic passive aqu.pass
aquatic active aqu.act
aerial passive aer.pass
aerial active aer.act

Resistance Forms (RS) eggs, statoblasts
cocoons
housings against desiccation house.diss
diapause or dormancy diapause
none

Respiration(Re) tegument
gill
plastron
spiracle

Locomotion and
substrate relation (L)

flier

surface swimmer surf.swim
full water swimmer full.wat.swim
crawler
burrower
interstitial
temporarily attached temp.att
permanently attached perm.att

Food (Fo) microorganisms microorg
detritus <1 mm
dead plant ≥ 1 mm
living microphytes l.microphytes
living macrophytes l.macrophytes

Continued on next page
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Table C.1 – Continued from previous page

Trait Modalities Abbreviations

dead animal ≥ 1 mm dead.animal
living microinvertebrates l.microinverts
living macroinvertebrates l.macroinverts
vertebrates

Feeding Habits (FH) absorber
deposit feeder dep.feeder
shredder
scraper
filter-feeder f.feeder
piercer
predator
parasite

Substrate preferences (S) flags/boulders/cobbles/pebbles fbcp
gravel
sand
silt
macrophytes
microphytes
twigs/roots
organic detritus/litter org.detritus/litter
mud

Current velocity (V) null
slow
medium
fast

Temperature (T) psychrophilic
thermophilic
eurythermic
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Path diagram of the PLS modelling approach

Hydrological

ChemicalSedimentological

Physical Traits
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Figure C.1: Path diagram depicting the outer and inner model of the PLS approach used for both
benthic and hyporheic invertebrates in wood and control sites. Latent variables are represented by
an ellipse box and each direct effect from this latent variable to another is represented by an arrow.
Manifest variables are displayed in reflective or formative mode.
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Supporting results Within Reach x Campaign Analyses

Hyporheic zone: hyporheic macrofauna
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Figure C.2: Hyporheic macrofauna trait profiles among wood and control sites. First factorial plane
of WCA gives the locations of the 48 samples gathered by wood and control. In (a), wood and
control are located at the weighted average (i.e. the centre of the star) of corresponding samples (solid
circles). Lines link samples to the mean location of treatment category. The percentage of the total
variance explained by each axis is indicated. The ellipse of inertia indicateS the 95% of confidence
interval around the centroid of wood and control sites. (b) Conditional inference tree (9999 Bonferroni
permutations; α= 0.01) testing the significance of differences in wood and control site on the first
WCA factorial plane (response variables: coordinates of samples along F1 and F2); the CIT analysis
does not identify significant differences.
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Benthic zone: benthic macrofauna

Node 1 (n = 48)

w
oo

d
co

nt
ro

l

0

0.2

0.4

0.6

0.8

1●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

control

wood

F
2 

(8
.8

 %
)

F1 (9.1 %)

(a) (b)

Figure C.3: Benthic macrofauna trait profiles among wood and control sites. First factorial plane
of WCA gives the locations of the 48 samples gathered by wood and control. In (a), wood and
control are located at the weighted average (i.e. the centre of the star) of corresponding samples (solid
circles). Lines link samples to the mean location of treatment category. The percentage of the total
variance explained by each axis is indicated. The ellipse of inertia indicateS the 95% of confidence
interval around the centroid of wood and control sites. (b) Conditional inference tree (9999 Bonferroni
permutations; α= 0.01) testing the significance of differences in wood and control site on the first
WCA factorial plane (response variables: coordinates of samples along F1 and F2); the CIT analysis
does not identify significant differences.
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Supporting results Wilcoxon Signed-Rank Test

Hyporheic meiofauna

Table C.2: Results of Wilcoxon Signed-Rank Test on hyporheic meiofauna trait profiles among wood
and control sites.

Modalities p-value Modalities p-value Modalities p-value

aqu.act <0.001 >8 cm 0.067 diapause 0.439
twigs/roots <0.001 aer.act 0.069 1 0.456
sand <0.001 <1 0.076 medium 0.456
egg <0.001 <0,25 cm 0.079 scraper 0.473
nymph <0.001 >4-8 cm 0.08 perm.att 0.507
fbcp <0.001 low 0.097 tegument 0.509
none (RF) 0.004 vertebrates 0.100 l.macroinverts 0.527
shredder 0.004 null 0.121 absorber 0.587
macrophytes 0.004 temp.att 0.143 >3000 0.602
mud 0.005 >1-2 cm 0.178 crawler 0.603
slow 0.005 detritus 0.178 microphytes 0.643
flattened 0.005 dep.feeder 0.188 none 0.649
cylindrical 0.005 >2-4 cm 0.208 l.microphytes 0.663
spiracle 0.006 >100-1000 0.208 parth 0.702
aqu.pass 0.010 high 0.218 plastron 0.722
adult 0.010 clutches.fixed 0.241 gill 0.726
dead.anim 0.010 is.egg.free 0.252 microorg. 0.726
larva 0.010 egg.stat 0.267 >1 0.747
org.detritus/litter 0.021 cocoons 0.267 ovoviv. 0.749
l.macrophytes 0.029 predator 0.317 asex.repr 0.763
gravel 0.029 streamlined 0.339 burrower 0.768
l.microinverts 0.037 <100 0.345 clutches.veg 0.789
surf.swim. 0.038 aer.pass 0.360 flier 0.834
spherical 0.041 >0 ,5-1 cm 0.390 piercer 0.834
>0,25-0,5 cm 0.046 <1 year 0.390 is.egg.cem 0.855
clutches.free 0.046 >1 year 0.390 >1000-3000 0.891
interstitial 0.053 parasite 0.390 full.wat.swim. 0.989
silt 0.056 dead.plat 0.406 f.feeder 1.000
fast 0.056 clutches.terr 0.408
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Benthic and hyporheic macrofauna
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Figure C.4: Boxplot of trait modalities marginally different between LW and control sites (Wilcoxon
test 0.01 <p-value <0.05) of benthic and hyporheic macrofauna. In brackets the corresponding trait
category.
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Table C.3: Results of Wilcoxon Signed-Rank Test on benthic (SM) and hyporheic macrofauna (HM)
trait profiles among wood and control sites.

Modalities
p-value
SM

p-value
HM

Modalities
p-value
SM

p-value
HM

1 0.20 0.17 gill 0.88 0.12
<0,25 cm 0.90 0.35 gravel 0.22 0.94
<1 0.21 0.43 high 0.25 0.81
<1 year 0.35 0.95 house.diss 0.68 1.00
<100 0.83 0.55 interstitial 0.07 0.40
>0,5-1 cm 0.71 0.63 is.egg.cem 0.14 0.34
>0,25-0,5 cm 0.75 0.67 is.egg.free 0.66 0.15
>1 0.81 0.05 l.macroinverts 0.30 0.58
>1 year 0.35 0.95 l.macrophytes 0.09 0.10
>1000-3000 0.66 0.03 l.microinverts 0.20 0.34
>100-1000 0.32 0.89 l.microphytes 0.79 0.66
>1-2 cm 0.55 0.62 larva 0.53 0.80
>2-4 cm 0.97 0.42 low 0.29 0.78
>3000 0.53 0.40 macrophytes 0.07 0.30
>4-8 cm 0.14 0.58 medium 0.46 0.41
>8 cm 0.94 0.60 microorg. 0.28 0.39
absorber 0.53 0.50 microphytes 0.35 0.26
adult 0.80 0.20 mud 0.01 0.66
aer.act 0.12 0.59 none 0.78 0.64
aer.pass 0.57 0.50 none.1 0.06 0.68
aqu.act 0.38 0.44 null 0.44 0.80
aqu.pass 0.30 0.86 nymph 0.33 0.96
asex.repr 0.44 0.77 org.detritus/litter 0.10 0.96
burrower 0.12 0.33 ovoviv. 0.03 0.44
clutches.fixed 0.11 0.51 parasite 0.07 0.49
clutches.free 0.04 0.64 parth 0.03 0.44
clutches.terr 0.15 0.43 perm.att 0.37 0.94
clutches.veg 0.55 0.75 piercer 0.13 0.61
cocoons 0.18 0.75 plastron 0.81 0.53
crawler 0.02 0.41 predator 0.55 0.83
cylindrical 0.36 0.23 psychrophilic 0.57 0.71
dead.anim 0.90 0.84 sand 0.21 0.40
dead.plat 0.73 0.29 scraper 0.49 0.04
dep.feeder 0.81 0.66 shredder 0.90 0.99
detritus 0.12 0.71 silt 0.13 0.75
diapause 0.06 0.66 slow 0.30 0.10

Continued on next page
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Modalities
p-value
SM

p-value
HM

Modalities
p-value
SM

p-value
HM

egg 0.66 0.89 spherical 0.34 0.17
egg.stat 0.11 0.41 spiracle 0.02 0.87
eurythermic 0.53 0.83 streamlined 0.41 0.91
f.feeder 0.58 0.46 surf.swim. 0.09 0.63
fast 0.86 0.46 tegument 0.36 0.38
fbcp 0.75 0.41 temp.att 0.12 0.21
flattened 0.58 0.60 thermophilic 0.86 0.84
flier 0.60 0.38 twigs/roots 0.05 0.62
full.wat.swim. 0.16 0.48 vertebrates 0.66 0.63
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