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ABSTRACT    

The role of diagnostic systems in gas turbine operations has changed over the past years from a single support 

troubleshooting maintenance to a more proactive integrated diagnostic system. This has become so, because 

detecting and fixing fault(s) on one gas turbine sub-system can trigger false fault(s) indication, on other 

component(s) of the gas turbine system, due to interrelationships between data obtained to monitor not only the 

GT single component, but also the integrated components and sensors. Hence, there is need for integration of 

gas turbine system diagnostics. The purpose of this paper is to present artificial neural network diagnostic 

system (ANNDS) as an integrated gas turbine system diagnostic tool capable of quantifying gas turbine 

component and sensor fault. A model based approach which consists of an engine model, and an associated 

parameter estimation algorithm that predicts the difference between the real engine data and the estimated 

output data is described in this paper. The ANNDS system was trained to detect, isolate and assess 

component(s) and sensor fault(s) of a single spool industrial gas turbine GT-PG9171ER. The ANN model was 

construed with multi-layer feed-forward back propagation network for component fault(s) and auto associative 

network for sensor fault(s). The diagnostic methodology adopted was a nested network structure, trained to 

handle specific objective function of detecting, isolating or quantifying faults. The data used for training, and 

testing purposes were obtained from a non-linear aero-thermodynamic model using PYTHIA; a Cranfield 

University in-house software. The data set analyzed in this paper represent samples of clean and faulty gas 

turbine components caused by fouling (0.5% - 6% degradation) and sensor fault(s) due to bias (±1% - ±7%).  

The results show the capability of ANN to detect, isolate (classification) and quantify multiple faults if properly 

trained. 
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NOMENCLATURE 

ANNDS Artificial Neural Network Diagnostic System 

CF Component Faults 

DCF Dual Component Fault 

NF No Fault 

SF Sensor Fault 

SCF  Single Component Fault 

PCA Pattern Classified Accurately 

TET Turbine Entry Temperature 

 

Symbols 

𝝙z Difference 

 

1.0  INTRODUCTION 

To date, gas turbines (GT) have been used to produce large amount of  useful work for airborne or surface-borne 

(land and sea) applications [1]. It has evolved to become the most desirable unit application for power 

generation at base load, and as an industrial prime mover for the oil and gas sector. However, the overall 

performance of the GT power plant depends on the availability and performance of its components. Fault(s) on 

any of the gas turbine subsystem can result into performance or mechanical failure [2,3] of the subsystem(s) 

which can lead to unexpected outages, low availability and reducing the life cycle cost of the power plant.  

The increasing need for gas turbine (GT) engine performance, availability and reliability, has led to several 

researches on engine health monitoring systems (for example [4]), which can cater for fault detection, isolation 

and quantification in gas turbine subsystems. To mitigate any negative effect on the GT during operation, fault 

diagnostic system(s) and health monitoring have been widely used; which is a synchronised concept of data 

gathering, analysing and development of an action pattern expected to accurately monitor, detect, isolate and 

quantify the magnitude of fault(s) via its output results. They provide an insight into gas turbine components 

conditions, revealing possible faults or malfunctions of measurement and control systems such as fouling, 

erosion, foreign object damage and sensor bias or uncertainty. 

However, over the years, the  role of diagnostic systems in gas turbine operations has changed from supporting 

troubleshooting maintenance to a more proactive performance-based [5] integrated diagnostic system [6] . This 

has become so, because detecting and fixing fault(s) on one gas turbine subsystem could trigger false fault(s) 

indication on other component(s) of the gas turbine system, due to interrelationships between data obtained to 

monitor not only the GT single component, but also the integrated components and sensors [7]. Hence, 

developing a model which integrates the different gas turbine subsystem as described in reference [8] provides 

an incorporated information about the severity of the GT components fault(s) or instrumentation malfunctions 

from the knowledge of measured parameters taken along the engine‘s gas path.   

To this end, various engine health monitoring technique such as linear gas path analysis (GPA) [5], have been 

explored in the past [5]. Rule based expert system(s) have also been investigated for the task mentioned but 

limitations on handling extensive database of rules and the accuracy of these rules has made its application 

susceptible. However, several artificial intelligent (AI) based tools have been proposed as alternatives [9,10].  

Artificial Neural Network (ANN) is one of such artificial intelligence based tool considered suitable for health 

condition monitoring of gas turbine (GT) power plants subsystems [6,11]. Artificial Neural Network (ANN) can 

learn patterns via proper adaptive training [4]. Due to this feature, it is well suitable for modelling non-linear 

and complex processes of gas turbine engine condition monitoring. Its approach circumvents most of the 

fundamental difficulties mentioned in preceding paragraph and emerges as a potential tool to carry out modular 

fault isolation, regression and general estimation problems [12].  

In this paper, a diagnostic system using the Artificial Neural Network is presented and has been applied to a 

single spool industrial gas turbine; a variant of GT-PG9171E for an integrated component(s) and sensor fault(s) 

diagnosis. The diagnostic system is trained with data set obtained from a non-linear aero-thermodynamic model 

using PYTHIA; a Cranfield University in-house software. The data set represented samples of clean and faulty 

gas turbine components caused by fouling and sensor fault(s) due to measurement uncertainty. Changes in the 

measured parameters reflected changes in the component characteristics; hence, using ANN model to represent 
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the non-linear interrelationship between them, the different faults under consideration were diagnosed. The 

results produced from the nested structured ANN diagnostic model are provided and analyzed for discussion.  

1.1 Theoretical Basics of Artificial Neural Network (ANN) 
A brief description of ANN approach [8,13] is provided as follow; 

ANN model employs similar concept of the human neuron to reproduce a relationship between inputs and 

outputs of linear or non-linear systems [9,14]. It is a set of mathematical model in form of multi-dimensional 

polynomials that mimics the neural structure of the human brain.  It consists of several numbers of 

interconnected artificial neurons with linear or non-linear transfer functions and is well capable of predicting 

non-linear behaviour of a system. It learns this relationship through several adaptive iteration processes 

(training). Hence, they can be harnessed to predict both component and sensor faults when properly trained. The 

training process of a network involves a continual readjustment of the inter neuron weightings until the error 

function is minimised; that is to say, training of network is stopped when either the objective function that 

defines the error has been reduced to the desired level [15–17]. 

The ANN model for a GT diagnostic system is construed as series of weighted inputs to a processing unit which 

sums the inputs and decides whether the sum is greater than its threshold level as shown in figure 1 

 

Figure 1 Artificial Neural Network Diagnostic Model 

𝑄𝐾 =  ∑ 𝑊𝐾𝑖 𝑃𝑖  

𝑋

𝑖=1

+  𝐵𝐾 … ( 1 ) 

 

𝐻𝐾 =  ƒ(𝑄𝐾) … ( 2 ) 

 

The scalar input data obtained from the engine model represented as Pi is transmitted via synapses that multiply 

its strength by scalar weight WKi to yield the scalar product(𝑊𝐾𝑖  𝑃𝑖). When the bias BK is added to the system, 

the argument produces a scalar summation function (QK). This summation function becomes the argument of the 

activation function f also known as the transfer function determining the characteristics of the ANN. 

ANN is trained with data captured during the clean baseline and faulty engine operation of the GT. Any 

reasonable observed difference between the predictions by this trained and the actual measured values of 

parameters in the plant are indications of a fault or degradation of the component or instrumentation. 

The number of neurons and layers in an ANN model depends on the degree of complexity of the system 

dynamics. The performance of the network is improved by making aware of its specified output(s) through a 

feedback loop which consist of a transfer function. The performance feedback loop is used to adjust the network 

parameters in order to improve the system output prediction with respect to the desired goal [18] 

The training process in ANN networks can be supervised or unsupervised, depending on whether the targeted 

output is specified or not during the learning period. In the supervised case, the input and output is usually 

mapped, while in unsupervised learning, the network clusters similar input data sets. 
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2.0  FORMULATION OF THE DIAGNOSTIC PROBLEM 

The problem is to set up an ANN model which provides diagnostics to both components and sensor faults of a 

single-shaft gas turbine. Fault(s) is any unexpected changes in the functionality of a system which may be traced 

to a failure in a physiccal component. In this paper, we considered faults that affect the compressor and turbine 

as well as six sensor probes. In the present analysis, the goal of the diagnostics is to explore the capability of 

ANN to detect, isolate and quantify the presence and nature of changes in the condition of the components of a 

referenced single-shaft gas turbine, caused by deterioration and sensor measurement malfunction. The 

diagnostic method (ANN) seeks the changes in the engine components by exploiting the way its outputs differ 

from their values in a clean or healthy state. The expectation is that the diagnostic method should be capable of 

detecting, isolating, and quantifying integrated faults (component and sensor fault doused with noise) in a gas 

turbine.  

2.1 GT Component Faults 
The reference engine is single-shaft gas turbines that consist of a compressor, combustor and turbine. When gas 

turbines deteriorate as a result of fouling or erosion, the effect is manifested in the performance of the gas 

turbine component efficiency and mass flow capacity reduction [2,3]. In the absence of real faulty data, the 

compressor and turbine component faults was simulated by implanting fault onto the adaptive model of the 

reference plant. The relationship between the physical deterioration and the simulated is realised by setting 

certain ratios of the component efficiency and mass flow capacity which are a representative effect of 

compressor fouling and turbine erosion. The combustor is excluded in this analysis because its efficiency is 

relatively stable with time. Degradation does not reflect adequately on the measurement parameter. 

The level of fault implanted for the compressor and turbine is shown in Table 1. This is implemented in 

simulation tool by reducing the component efficiency and flow capacity as specified with 0.5% stepwise. For 

the turbine, the flow capacity was implemented with fault by increasing it to represent turbine erosion. 

Table 1 Compressor and Turbine Faults 

 Fault Level Implanted (%) 

Compressor Flow Capacity ΓC 0.5 𝑡𝑜(−6) 

Compressor Isentropic Efficiency (ηC) 0.5 𝑡𝑜(−6) 

Turbine Flow Capacity Γt 0.5 𝑡𝑜(+6) 

Turbine Isentropic Efficiency (ηt) 0.5 𝑡𝑜(−6) 

Combined 0.5 to (±4) 

 

2.2 GT Sensor Faults 
Modern power plants depend on accurate and reliable sensor readings for the purposes of engine control and 

monitoring [19]. When sensors fail due to instrument degradation, measurement errors become unavoidable 

during gas turbine operation, and it can force the power plant or component into non-optimal performance and 

unavailability. Hence, the optimal prompt detection of sensor fault(s) is important to the functionality and 

availability of the plant unit. In this work, sensor faults were implanted onto the adaptive engine model with the 

aim of applying ANNDS to detect, classify and quantify the faults implanted. Six measurement set selected 

were doused with noise using equation 3  

  𝐹𝑆 = 𝑆𝑏 + ∆𝑆𝑏 … ( 3 ) 

Where  𝐹𝑆 , is the measurement fault, 𝑆𝑏, is the measurement baseline without noise and ∆𝑆𝑏, is the level of 

noise or bias implanted.  

The level of fault simulated for this study and the non-repeatability range of the sensors for which they can be 

considered as producing faulty readings is shown in Table 2 

Table 2 Sensor Fault Characteristics 

 Descriptions Non-Repeatability Range Fault Level Implanted (%) 

P3 Compressor Discharge pressure ±0.5 ±(1 𝑡𝑜 7) 

T3 Compressor Exit Temperature ±1 ±(1.2 𝑡𝑜 7) 

FF Fuel Flow ±0.5 ±(1 𝑡𝑜 5) 

P7 Turbine Discharge pressure ±0.5 ±(1 𝑡𝑜 7) 

T7 Turbine exit Temperature ±1 ±(1.2 𝑡𝑜 7) 

PCN Shaft Rotational Speed ±0.1 ±(0.2 𝑡𝑜 3) 
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2.3 Brief Description of Referenced Gas Turbine  
The modelled engine used for this study is a single-shaft gas turbine with output power of 126.1MW. The 

engine was designed for 50Hz, 3000rpm nominal speed coupled directly to a 2-pole synchronous generator. It 

has the design features and solutions of the GE-MS9001E family introduced in the 1970s. The compressor is an 

axial flow type which has 17 stages with an overall pressure ratio of 12.6:1. Air is extracted from the 5
th

, 11
th

 

and 17
th

 stage of the compressor unit for cooling and sealing rotor bearings, for start-up and shutdown pulsation 

control, and for turbine blade cooling. The combustion unit utilizes a reverse flow type and a 14 can-annular 

combustion chamber arranged around the periphery of compressor discharge casing, and incorporated with 

DLN. The turbine has 3 stages with internal cooling. The schematic and operating parameters of the model 

engine is shown in figure 2  

 

Figure 2 Overview of Reference Gas Turbine (similar to GE PG9171E) [20] 

 

3.0  METHOD OF ANALYSIS 

In order to assess the health of the modelled GT engine shown in figure 2 and ultimately provide a diagnosis 

concerning any detected fault(s), it becomes important to have data that relate the engine gas path measurements 

with the independent performance parameters under a healthy (baseline) and number of faulty conditions that 

covers all case of interest. Hence, in the absence of real time engine data, it became necessary to use a gas 

turbine performance model to generate the required data for application onto an artificial neural network 

diagnostics system (ANNDS). For this purpose, a simulation program called PYTHIA [21], developed at 

Cranfield University was used to formulate an adaptive performance model and to estimate the health indices of 

the reference engine at clean or healthy (baseline) and for the effects of the engine component deterioration, as 

well as sensor faults. 

To this end, the following steps were taken to achieve the set goal of integrated diagnostic using ANNDS 

1. Adaptive thermodynamic modelling of reference gas turbine engine.  

2. Optimum measurement set selection in order to determine the optimum combinations that would be 

effective to diagnose the desired faults.  

3. Faults implantation in the engine model and generating data to cover all possible fault matrixes in the 

compressor, turbine and sensor malfunction. 

4. Development of ANN diagnostic structure of data flow  

5. Training, testing and analysing the performance 

In this study, all networks were trained using supervised learning. Training of the ANN was done in MATLAB 

neural network toolbox. 

3.1 Data Set Acquisition 
The purpose of data acquisition is to obtain performance parameters that represent all classes of faults under 

analysis, through the sensor probes around the engine gas path and to translate the acquired data into formats 

that would be useful for the diagnostic system. The proper selection of the sets of input parameters for accurate 

prediction of the sets of output parameters is vital for any ANN diagnostic system. Hence, an approach to 

obtaining the right sets measurement-set was achieved by observing the sensitivity of measurement parameters 

to changes in the component health indicators (Flow capacity and efficiency). Measurement parameters with 

high sensitivity are desirable because they are easy indicators of deterioration and are not easily susceptible to 

noise or uncertainty [7,22]. Figure 4 shows the location of the sensor probes selected for acquisition of both 

clean and faulty data to be used for GT-PG9171ER diagnostics. Faulty data generated covered all classes as 

discussed in section 2.1 and 2.2. The faulty data were generated at 90% shaft power since the engine is not 

expected to perform at full power in operation. Other baseline conditions considered during this process was 
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ISO SLS condition and TET was used as engine handle. All data generated were normalised under the same 

manageable range for easy assessment using equation 4.  

∆𝑍 =
{𝑍𝑝 − 𝑍𝑏}

𝑍𝑏

  × 100 … ( 4 ) 

Where, 𝑍𝑏, is the value at established baseline condition, and, 𝑍𝑝, is the measured or calculated value 

In order to carry out the diagnostic, 4 set of data are required 

 Training data 

 Target output data  

 Validation and  Test data 

In total 25008 sample points generated, 65% was used for training purposes, while 35% was used for validating 

and testing purposes. Data were processed for use according to the objective function of each network in the 

ANNDS. Table 3 shows a breakdown of data acquired for clean and faulty conditions. 

Table 3 Breakdown of Data Processed 

 Number of Sample Patterns 

Clean 1000 

Compressor 4320 

Turbine 4320 

Compressor &Turbine 8192 

Sensors 7176 

Total 25008 

 

3.2 ANN Fault Diagnostic System Description 
The concept of ANNDS is to recognise a fault signature if one exists within the engine measurable parameters. 

If a fault signature is recognised, it must then be able to determine which component or sensor the fault 

signature relates to. Once the component or sensor is identified, the diagnostic system must quantify by 

providing prediction on the level of fault. 

 

Figure 3 Nested Structure of ANNDS for GT-PG9171ER 

The ANN diagnostic structure used for this study is shown in figure 3. Using a single network structure will be 

unrealistic because of the number of objective and the size of the data library required for this analysis. Thus, a 

nested structure was used [15], so that each network is assigned an objective function; thereby making the 

diagnostic tool very efficient. In the first network denoted as NET1, all the normalised data generated for both 

the components and sensors are fed into it, where they are classified as ‘faulty or no fault’ data. All patterns 

detected as faulty are fed onto the NET2, while the ‘no fault’ data require no further diagnostic action. This 

implies that the input met the required output threshold of clean data. At the NET2, input data detected are 
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classified as sensor or component faults. If sensor faults, the data is fed onto NET3 for quantification. A 

deviation of the quantified data from the clean data provides an indication on the amount of bias or noise present 

in each sensor. On the other hand, data classified as component faults in NET2 are fed onto NET4. At NET4, 

the data patterns consisted of single and dual component faults. The objective function of NET4 is to classify the 

faults and pass it onto NET5 or NET6. Single component fault are detected by NET5, where the patterns are 

isolated as either compressor or turbine fault. Successfully isolated component faults are passed onto the 

QUANT1 and QUANT2 for quantification of deviation from baseline by determining changes in component 

efficiency and flow capacity degradation. Similarly, NET 6 passes the dual component fault onto QUANT3 for 

further quantification of deviation.  

The basic requirement for each of the network defined is to have adequate representation capacity of faults 

which are proportional to the number of parameters selected, and availability of sufficient training data that will 

cover all the expected operatinfg ranges of the network 

 

Figure 4 Sensor probe location 

3.3 Network Architecture, Training and Algorithm   
The network architecture defines the pattern in which the neurons of the network are organised. This sudy 

utilised the multilayered feed-forward back propagation (MLFFBP) architeture for component fault and the auto 

associative feed-forward neural network (AAFFNN) architecture for sesnor fault diagnostic. During the 

MLFFBP training process, inputs data are transmitted through the network, layer by layer, and a set of output is 

calculated by the activation function. The calculated output is compared with the target output values. Error 

from this comparison of predicted (calculated output) and target output is feedback into the network which 

prompt a dynamic adjustment of the weight and bias in order to reduce the level of error. This iterative process 

continues until a mininum acceptable level of error is achieve, which mean that the output response is closer to 

the target set. Each  iteration of the whole set of data is called Epoch. The dynamic adjustment of the synaptic 

weight is corrected using equation 5. The number of layer and output node used in this work is set based on the 

task to be performed by each NET in the ANNDS structure. 

𝛥𝑊𝑖𝑗(𝑛)(𝑚) =  𝜂 × 𝑑𝑗(𝑛) × 𝑦𝑖(𝑛)+∝ ∆𝑊𝑖𝑗(𝑛)(𝑚−1) … ( 5 ) 

Where 𝚫𝐖𝐢𝐣(𝒏) is termed the weight correction, η is the learning rate parameter, 𝐲𝐣(𝐧) is the input signal of the 

𝒋 node. 𝛅𝐣(𝐧), is the local gradient, 𝜶 is the momentum coefficient and 𝒎 is the number of iterations 

The major distinctive feature of the AAFFNN is that it contains a bottleneck layer which has a non-linear 

transfer function and both the input and output values are the same. All the noise filtering is achieved at the 

mapping part (between the input and the bottleneck layer). After the intrinsic states are determined from the 

mapping process, a demapping part is followed by decoding the nodes of the bottlenec to the output layers. 

The non-linear sigmoid transfer function and binary threshold function was used for the layers depending on the 

network objective.The sigmoid transfer function takes the input values between plus or minus affinity and 

squashes its output into a range between 0 and 1 described by equation 6, while the binary threshold limits the 

output to either 0 or 1 represented with equation 7 

𝐻𝐾 =  ƒ(𝑄𝐾) =  
1

(1 + 𝑒𝑥𝑝(−𝑃𝑖𝑄𝐾 ))
 … ( 6 ) 
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𝐻𝐾 =  ƒ(𝑄𝐾) =  {
0, 𝑖𝑓  𝑄𝐾 < 0
1, 𝑖𝑓  𝑄𝐾 ≥ 0

 … ( 7 ) 

In the learning process, in order to increase the learning speed and maintain stability, the Lavenberg-Marquardt 

learning rule and scaled conjugate gradient learning rule was used [13]  

3.4 Network Performance 

The performance of the network is assessed based on the generalisation ability to validation and test data, and 

the performance index. Some of the performance index used is defined as follow: 

 Mean Square Error (MSE) 

This error is calculated as average difference between the target output and the network output 

(predicted).  

MSE =
1

T
∑ 𝐸𝑟𝑟(𝐾)2 =

𝑇

𝐾=1

1

𝑇
∑(𝑌(𝐾) − 𝐻(𝐾))2

𝑇

𝐾=1

 … ( 8 ) 

Where(𝒀(𝑲), is the network output,𝑯(𝑲), is the target output and T is the number of output 
layer neurons. 

 Root Mean Square Error (RMSE) 
This is gives a general purpose error metric for numerical prediction. It is given by the square root of 

the MSE 

RMSE = √
1

T
∑ 𝐸𝑟𝑟(𝐾)2 =

𝑇

𝐾=1

1

𝑇
∑(𝑌(𝐾) − 𝐻(𝐾))2

𝑇

𝐾=1

 … ( 9 ) 

 

 Confusion Matrix (CM) 
This shows the number of patterns classified accurately (PCA) and the number of patterns classified 

inaccurately (PCI). It is represented in percentage. 

 Regression 
This shows how closely fitted the network output data is to the target output. A regression value close 

to 1 justifies the network trained. 

 Standard Deviation (σ) 
This is used to assess the distribution of prediction errors in the quantification networks; that is 

difference between the target values and predicted values.  

 

4.0  RESULTS AND DISCUSSION 

This section presents a brief description on how each network is trained to satisfy the performance of the 

ANNDS, where NET1, NET2, NET4, NET5, NET6 are for classification, while NET 3, QUANT1, QUANT2, 

QUANT3 are for quantification of the faults.  

4.1 NET1 

The objective of this network was to accurately classify all the engine measurement data patterns into faulty or a 

‘no fault’. This network was trained with 25008 data from 6 measurement sets, consisting both faulty and clean 

data as shown in Table 3. The target output for this network was set as a binary (0, 1). When there is ‘no fault’ 

the target output becomes ‘0’ and when there is fault, the output is set as ‘1’. After 220 iterations (Epoch) of 

training, validation and test using different architectures (for example 6-15-1), the best classification 

performance converged with the least MSE of 0.0075, generalisation classification ability of 99% (pattern 

classified accurately) and 1% misclassified. From the 99% classified accurately, NET1 detected 95.7% (23923) 

patterns as faulty and 3.3% (837) as clean (‘no fault’) based on Table 3. The result from testing the network is 

shown in figure 5 to figure 7, which demonstrated its capability to handle large data in the presence of noise or 

bias, and still able to satisfy the task objective.  
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4.2 NET2 
The established faulty pattern from NET1is passed onto this network where isolation of the fault pattern is 

classified as either sensor or component fault. A total of 24008 samples were used for training, validation and 

testing of this network. The target output was set at (1 0) for faulty components and (0 1) for faulty sensor. 

Similar to the NET1, scaled conjugate gradient learning rule was used to map the input to the target output. The 

result of the network testing after 221 training iteration is shown in figure 8 to 11. 97.5% were classified 

accurately which consisted 29.9% (7168) as sensor faults, 67.7% (16232) as component faults and 2.5% (608) 

was not recognised (misclassified) in any fault class. 

 

Figure 5 Training State of NET1 

 

Figure 6 Validation of NET1 

 

Figure 7 PCA of NET 1 
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Figure 8 Training State of NET2 

 

 

Figure 9 Validation of NET2 

 

 

Figure 10 PCA of NET2 

4.3 NET3 
As previously described, this network isolates the sensor faults and quantifies the amount of data from each 

sensor declared faulty that lies within its threshold. AANN with Lavenberg-Marquardt learning rule was used to 

train this network. The number of nodes for the input and output layers were determined by the size of the input 

vector. Hence, 6 nodes (neurons) representing the selected measurement sets was used as the input and target 

parameters. Determining the appropriate number of nodes for the hidden layer was not straight forward, because 

few nodes implies that the network cannot properly identify the non-linear correlations between the input 
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values, hidden nodes and output. Too many nodes can also lead to ‘overfitting’ the network. However, with 

good engineering judgement and after several trials, a 6-15-3-15-6 architecture was chosen to give the best 

isolation performance and minimum error. A total of 7176 faulty sensors measurement was used to training and 

test purposes. The first step was to isolate each individual sensors faults ( P3, T3, FF, P7,T7, PCN) from the set. 

This required NET3 to perform classification task. The results showed 83% were accurately classified and 17% 

misclassified with an MSE of 3.2 ∗ 10−8 . 

The next step is to quantify the faulty sensor data. To achieve this, two thresholds were fixed on the difference 

between the input and the output vector.  When the MSE is between the first and the second threshold, then, the 

sum of the erros are weighted by the measurement non-repeatability, and compared. If error is larger than the 

threshold., then the larger error to non-repeatability ratio isolates the sensor error. The target output was set at 

values obtained when engine was not with noise or bias. Hence, the performance is judged based on the 

percentage of outputs that were established within the noise level.  

This process was repeated for all the sensors. To avoid repeatation, only result of T7 sensor is presented in Table 

5. Samples implanted with fault should fall outside its error threshold of ±1.0%, but within the fault level 

implanted shown in Table 2. The results shows that average of 93.6% of data fell outside the error threshold 

which are indications of faulty sensor of data.  correctly detected but are meant to fall within the fault level were 

misquantified. 

 

Figure 11 Training State of NET4 

 

 

Figure 12 Validation of NET4 
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Figure 13 PCA of NET4 

4.4 NET4 
This network was trained to isolate the type of component faults as discussed in section 3.2. A total of 16832 

samples were used to training, validation and testing. Two output node was set as target output, represented as 

(1 0) for single component fault (SCF) and (0 1) for dual component faults (DCF). Similar to previous 

discussion, architecture 6-18-2 exhibited the best trained performance with 45.6% of input classified accurately 

as SCF, 45.9% as DCF and 8.5% misclassified with an MSE of 0.0606. The results of its generalisation justify 

the network ability to isolate component faults as shown in figure 11 to figure 13. 

4.5 NET5 & NET6 
Both networks were trained with scale conjugate gradient learning rule. For NET5, the target output was set 

similar to NET4, but in this case (1 0) for compressor fault and (0 1) for turbine fault. The performance of NET5 

showed 37.6% PCA for compressor, 41.7% turbine faults and 20.7% misclassified with an MSE of 0.1251. 

NET6 was designed for pattern recognition of DCF with a target output set at (1 0) where 1 for faulty DCF and 

0 for ‘not a DCF fault’. Data from both networks are further fed onto the QUANT network for quantification of 

faults. NET5 and NET6 results are shown in Table 4 

4.6 QUANT1, QUANT2 & QUANT3   
The goal of these fault quantification networks is to be able to approximate an output based on a set of received 

data. The networks were trained to detect and estimate the magnitude of deterioration in the faulty component(s) 

in terms of isentropic efficiency and flow capacity degradation. QUANT1 network is to quantify compressor 

faults, QUANT2 for turbine faults and QUANT3 for dual component faults. The processes of these networks are 

similar, hence to avoid repetitions; QUANT 1 is described alongside with other QUANT network and results 

presented according to the objective function of each networks.  The MATLAB “nftool” with FFBP and 

Levenberg-Marquardt algorithm was used to train each network. Similar to previous discussions, different 

architectures were tried for each QUANT network to obtain the best network performance. Each QUANT target 

output also corresponds to the level of deterioration of the component(s) in terms of changes in isentropic 

efficiency and flow capacity, which covers the whole range of implanted deterioration as described in Table 1. 

The assessment of each QUANT network was achieved using statistical correlations between the network 

output obtained and the target output. Relative Error which gives the normalized difference between both 

outputs mentioned was calculated for isentropic efficiency and flow capacity respectively. The mean and 

standard deviation of the relative errors for each performance deterioration (η and Г), was also calculated and 

direct comparison between the isentropic efficiency and flow capacity was established by obtaining the 

percentage relative error as shown in figure 14 and 15. 

The value of the standard deviation obtained, was used to determine the amount of data that lies within the 1σ, 

2σ and 3σ of the mean error. Estimations with the lowest standard deviations are considered favorable to predict 

the magnitude of component deterioration. 

The results of QUANT1 presented in Table 5 after different architectures were tested showing that architecture 

6-18-2 had the least standard deviation and predicted about 95% of the data within the 2σ for both efficiency 

and flow capacity. Plotting the Histogram of the percentage relative error for both efficiency and flow capacity 
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of the network as presented in Figure 14 and 15, showing how much data lie close to the average error. This is 

represented by values close to the zero percent mark in the histogram. 

 

Figure 14 Histogram of Relative Error for QUANT 1 Network (6-18-2) Predicting Flow Capacity 

 

 

Figure 15 : Histogram of Relative Error for QUANT1 Network (6-18-2) Predicting Isentropic Efficiency 

It can be seen that the QUANT1 network shows better prediction of flow capacity than the isentropic efficiency, 

because of cases with large relative error of approximation for isentropic efficiency. 

A summary of the ANNDS results are presented in Table 4 and Table 5 which shows the performance of the 

classification networks and the quantification networks. NET 1, NET 2, NET 4, NET5 and NET 6 are 

classification networks while QUANT1, 2, 3 and NET 3 are quantification networks. The classification 

networks play important roles in the nested ANNDS, if the classification doesn’t give satisfactory result; it 

becomes difficult to obtain a meaningful quantification of fault level. The classification networks were assessed 

by success rate of recognition and isolation of sample patterns. Figure 16 showed that the classification network 

achieved over 75% accuracy. NET 5 performed the least, because of the difficulty assessing fault severity when 

more than one component degrades in similar magnitude of fault signature. The quantification networks were 

not assessed based on PCA but on standard errors and a comparison of their performance is shown in Figure 17. 

The prediction of diagnosis is represented with a 2𝛔 confident interval, which was computed from large amount 

of validation samples in the training period. A lower 2𝛔 of error means that the network can predict more 

accurately, while a large 2𝛔 of error means that the confidence interval of this prediction would be spread, hence 

a poor network estimate. The result shows that the flow capacity had better predictions with minimum standard 

deviations from the mean error than the isentropic efficiency most of quantification networks. This was assessed 

using 2 standard deviations (2σ) of the relative error between the network output and the target output as 
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presented in Figure 17. The results also shows that the quantification of single component faults where more 

accurate than dual component faults. This is because the performance of ANN depends on the complexity of the 

problem. QUANT2 exhibited the best performance with the least standard error. 

The results from NET3 for the sensor fault isolation and estimation that lie between the noise level threshold of 

±1.0% and fault level implanted for T7 was also very satisfactory. The NET 3 performed two objectives: it was 

trained to isolate single sensor faults from dual sensor faults and was later trained to estimate single sensor fault 

using T7 as case study. Two standard deviations (2σ) were also used during analysis of the estimation results. 

Measurements that fell outside the threshold were those implanted with bias which is an indication of a faulty 

sensor. 

Table 4 Performance of Classification Network 

 Network Selected Architecture Performance 

𝑷𝑪𝑨 (%) 𝑴𝑺𝑬 RMSE 

NF F 

1 NET 1 6-15-1 3.3 95.7 0.0075 0.0885 

   SF CF   

2 NET 2 6-15-2 29.9 67.8 0.0194 0.1465 

   SCF DCF   

3 NET4 6-18-2 45.6 45.9 0.0587 0.2422 

   C T   

4 NET 5 6-10-2 37.6 41.7 0.1252 0.3537 

5 NET 6 6-10-2 100 - 0 0 

 

 

Table 5 Performance of Quantification Network 

 Network Selected 

Architecture 

Performance 

𝑴𝑺𝑬 RMSE 

1 NET 3 Isolate 6-15-3-15-6 4 × 10−8 0.0002 

2 NET3 T7 6-15-3-15-6 0.0475 0.2141 

3 QUANT1 6-18-2 0.0145 0.1207 

4 QUANT2 6-15-2 0.0082 0.0906 

5 QUANT3 6-15-4 0.0368 0.1919 

 

 

 

Figure 16 Generalisation Ability of Classification Network 
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Figure 17 Generalisation Ability of Quantification Network using 2𝛔 of prediction error 

 

5.0  CONCLUSION 

An ANNDS nested diagnostic system has been presented in this paper as a tool for EHM of an industrial gas 

turbine PG9171ER. The level of accuracy obtained through the application of the nested ANN provided much 

benefit to its performance when compared with just a single network performing several fault isolation or 

detection functions. The overall performance of the nested structure depended on the combinative capability of 

each individual NET. The quality of the diagnostics results is influenced by the quality of the data obtained from 

the engine model. To this end, using PYTHIA was a useful tool for simulation of fault(s), automatic interaction 

with component data and the variations of faulty samples needed for the engine model diagnostic purposes. This 

was achieved by implantation of component(s) and sensor faults representing deterioration in efficiency, flow 

capacity and instrumentation error. The component faults implanted on the model, ranged from -0.5% to -6.0% 

for efficiency and 0.5% to 6.0% for flow capacity. Three classes of component fault(s) were simulated and a 

total of 25008 data were processed for diagnostic purposes of training, validation and testing of network. The 

results of the generalisation ability of the classification and quantification of the ANNDS showed a high level of 

success rate (above 80%) for NET1, NET2, NET4, and NET6. Quant1 prediction also demonstrated ability to 

quantify accurately with data falling within the range (-0.5% – (-6.0%)) implanted fault.  

Finally, from the application results for diagnostics of the GT-PG9171ER industrial gas turbine using ANNDS, 

it is to draw conclusion that the proposed diagnostics system was able to perform diagnostic task of detecting 

and quantifying faults such as fouling and erosion on the GT components and faulty sensors. However, the 

limitation of the diagnostic model is the capability of handling complex dual component fault of similar fault 

signature.  
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