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Abstract—This paper presents a multi-objective evolutionary
algorithm design of a longitudinal optimal controller for a large
flexible transport aircraft. The algorithm uses a mixed optimiza-
tion approach based on a combination of Linear Quadratic Reg-
ulator (LQR) control and a Multi-Objective Genetic Algorithm
(MOGA) to search over a set of possible weighting function
structures and parameter values in order to satisfy a number
of conflicting design criteria. The proposed approach offers a
number of potential optimal solutions lying on or near the Pareto
optimal front of competing objectives. The approach is explained
in this paper and some results are presented.

I. INTRODUCTION

Increasing demand for efficiency in the civil aerospace sec-
tor has resulted in manufacturers producing highly optimised
aircraft with numerous features to reduce the airframe weight.
The use of modern materials along with optimised structural
designs has helped achieve incremental improvements in per-
formance, but resulted in wings with increasing aspect ratios.
This increase in the slenderness of wings has emphasised
the importance of aeroservoelasticity where the interactions
between the structures, aerodynamics and flight control cannot
be neglected. Consequently it is now critical that the flight
control system not only provides good handling qualities but
also ensures the aeroelastic effects do not have a negative
impact on the overall aircraft flight dynamics and passenger
comfort.

The problem considered here is the longitudinal handling
quality for large flexible aircraft. Handling quality cannot
be expressed by a simple criterion or single performance
index. A satisfactory design requires consideration of a set
of performance indices that are required to meet a set of
certification specifications. Thus it is natural to place the
problem in a multiobjective setting.

There have been a number of other multi-objective opti-
mization based flight control studies. For example, Tabak et
al [1] designed a multi-objective lateral FCS (Flight Control
System) based on both fighter aircraft and large manned lifting
re-entry vehicle models. The Method of Inequalities (MOI) [2]
has been used to design a longitudinal FCS focused on the ride
qualities of a Short Take Off and Landing (STOL) aircraft [3].
More specifically, there have been several multiobjective opti-
mization approaches applied to flexible aircraft. These include
a multiobjective method based on eigenstructure assignment
[4] and Q-parameterization closed loop shaping approaches
[5], [6].

Many of the methods proposed for multiobjective control
design rely either on a direct search of the controller parame-
ters [1], [2], [7] or a Q-parametrization of the controller [5],
[6], [8] that maintains convexity of the system performance
indices. The former suffer from the problem of multiple local
minima and a high dimension search space (except for simple
SISO controllers), whilst the latter results in high dimen-
sion, complex controllers. An alternative approach, dubbed
mixed optimization [9] overcomes some of these limitations
by using a numerical method to search for the parameters
of the weighting functions required by analytical approaches
such as LQR and H∞-optimal control. The earliest mixed
optimization appears to be Baras et al [10] who developed a
Computer-Aided Control Systems Design (CACSD) package,
DELIGHT.LQG, that used tuning algorithms for the weights
of an LQG problem to satisfy a number of engineering
specifications. Other early efforts for linear quadratic control
include [11]–[13]. An H∞-based approach using the MOI
has been proposed [14], [15]; this was extended to utilize
the MOGA as the searching algorithm [16]. The MOGA has
also been combined with LMIs for mixed optimization [17]
and applied for robust controller design for aircraft lateral
dynamics [18].

One of the most important characteristics of aeroservoelastic
systems such as a large aircraft is that they are high order,
because the models include not only rigid body dynamics
but also the aero-structural dynamics. The simple structure
of LQR controllers and their relatively simple computation
make them a good candidate for high order system control
(see [19] for example). Furthermore, for an `-input, n-state
system model with the Q and R weighting matrices set to
be diagonal, the number of tuning parameters is ` + n − 1.
The controller structure is simpler than most other optimal
synthesis methods such as H∞. For tuning the parameters,
the MOGA offers a number of advantages over hill-climbing
methods, particularly with regards to the local minima. Hence
in this work, MOGA is mixed with LQR control to solve the
design problem of a multi-objective optimal controller for the
longitudinal dynamics of a large flexible transport aircraft.

The aircraft in this study is a conceptual aircraft with flexi-
ble wings and known as the AX-1 [20]. It has been developed
by the Dynamics Simulation and Control Group (DSCG) at
Cranfield University. The configuration is shown in Figure 1.
The aircraft’s open loop longitudinal flying qualities have been
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All dimensions are in metres and degrees.

Performance specification
   

Seating capacity    295 (3-class)

Cargo capacity    19.7m

Maximum range    13,700km

Cruise Mach number  0.82

Operational empty weight   130,200kg

Maximum take-off weight   276,500kg

Service ceiling    41,100ft
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5

Fig. 1. AX-1 Aircraft Model

shown to be unsatisfactory [21]. For large transport aircraft, the
longitudinal performance is also very important for ensuring
satisfactory passenger comfort, so this study is confined to
the control law design for the longitudinal modes. The system
modelling and linearization is summarised in Section II, the
theory and algorithm are explained in Section III. Section IV
presents the experimental results and, conclusions are in the
final section.

II. SYSTEM MODEL

The AX-1 model is a non-linear generic large transport
aircraft model based on the CA2LM framework [20], [21].
This model was initially developed for the evaluation of
handling qualities of large flexible aircraft. It also provides
the capability for flight control law design of user defined
airframe configurations.

Most flight control systems consist of a set of flight control
laws for different flight conditions and flight missions. In this
paper the aircraft is considered at the flight condition with an
airspeed of 180 m/s and altitude of 20,000 ft. The MATLAB
linmod routine is used to linearize the model.

The full order linearized state-space model is 33rd order
system. There are 9 state variables which are the same as rigid
body aircraft, velocities (u, v, w), angular velocities (p, q, r)
and Euler angles (φ, θ, ψ). The remaining 24 state variables

capture 12 different aeroelastic modes with state variables
consisting of the structural displacements and corresponding
velocities.

In common with most classical fixed wing aircraft, the
lateral and longitudinal dynamics can be decoupled and the
flight control laws designed separately. There are 4 rigid body
longitudinal state variables, (u,w, q, θ), and the aeroelastic
modes can be divided into symmetric and asymmetric. Only
the symmetric aeroelastic modes affect the longitudinal re-
sponses of the aircraft, so denoting the symmetric aeroelastic
mode structural displacements by η1, . . . , η6, we define the
longitudinal dynamics model as

ẋ = Ax+Bu+ Fw (1)

with state variable vector, x = (q, θ, u, w, η1, . . . , η6,
η̇1, . . . , η̇6)

T , control u = δe being the elevator deflection
and wind disturbance vector, w = (wz), which is the wind
velocity component in the z-direction.

III. MIXED OPTIMIZATION PROBLEM FORMULATION

A. Mixed Optimization

If the design aims are expressed quantitatively as a set of
m design objective functions {fi(p) : i = 1 . . .m}, where p
denotes the design parameter vector chosen by the designer,



the design problem can be formulated as a multi-objective
optimization problem:

min
p∈P
{fi(p) : i = 1 . . .m} (2)

where P denotes the set of possible design parameters. In
general, the problem (2) is hard to solve if mappings p 7→ fi
are non convex, particularly if m is not small.

Typically, p parameterizes the controller as a set of control
gains. However, given an `-input, n-state system linearised
model,

ẋ = Ax+Bu,

y = Cx
(3)

with control u = −Kx and quadratic performance cost
function

J =

∫ ∞
0

(xTQx+ uTRu)dt (4)

where Q and R are are the positive semi-definite control
weighting matrices, then the controller that minimizes J is
well-known and is given by K = R−1BTP where P =
PT > 0 is found by solving the algebraic Riccati equation
ATP + PA − PBR−1BTP + Q = 0. If p parameterizes
the weighting matrices Q and R, then (2) represents a mixed
optimization problem which overcomes some of the limitations
of the direct approach (see [15]). In this study, the Q and R
matrices are constrained to be diagonal positive matrices

Q = diag(q1, . . . , qn) and R = diag(1, r1, . . . , r`−1). (5)

GA’s are very-well suited for solving multi-objective opti-
mization problems. In particular the MOGA [22], which is
used to solve the problem, is an extension on an idea by
[23] which is to develop a population of Pareto-optimal or
near Pareto-optimal solutions. This is achieved by finding a
set of solutions which are non-dominated. An individual j
with a set of objective functions f j = {f j1 , . . . , f jm} is said
to be non-dominated if for a population of N individuals,
there are no other individuals k = 1, . . . , N, k 6= j such
that fki ≤ f ji ∀i = 1, . . . ,m and fki < f ji for at least
one i. With the MOGA, non-dominated individuals are given
the greatest fitness, and individuals that are dominated by
many other individuals are given a small fitness. Using this
mechanism, the population evolves towards a set of non-
dominated, near Pareto-optimal individuals. Details of this
mechanism are given in [22].

For transport aircraft pilots prefer command of pitch rate
rate, so a Rate Command Attitude Hold (RCAH) control flight
control system [24] is used with a structure shown in Figure
2. Rather than feedback θ directly, feedback pitch rate, q, is
fed back with integral action as part of a PI controller. Thus
the LQR optimal controller, K, is partitioned so that K =
[kq, kθ, k̃] with kq acting on the pitch rate error signal and kθ
on the pitch rate error integral signal as the PI controller. The
remaining state variables, x̃ = (u,w, η1, . . . , η6, η̇1, . . . , η̇6)

T ,
are fed back through k̃.

1/s kθ
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Fig. 2. Controller Structure

A feed-forward gain, kf , is included in the controller
structure. This gain corrects the reference input, qr, so that
the output equals the reference input at steady state but only
in the short term. Thus the pitch, θ, is removed from the state
variables to give a reduced order model with state x̂ = (q, x̃)T

and controller k̂ = [kq, k̃]. If (Â, B̂) represents the reduced
order model matrix pair, then kf = kq(km − 1) where

km =
(
cq(Â− B̂k̂)−1B̂

)−1
(6)

and cq = [1, 0, . . . , 0]. Output aw in Figure 2 represents the
normal acceleration and is used in the next section.

The longitudinal dynamics system is single input, hence R
is a scalar and is set to 10000. Hence, from (5), the vector of
design parameters is

p =
(
q1, . . . , qn

)T
. (7)

B. Performance Objective Functions

A good choice of the design objective functions, fi, is
critical to allow the correct trade-offs between competing
criteria. A main objective is satisfactory longitudinal handling
qualities. Here, two objective functions based on the Gibson
drop-back criterion [25] are used. Gibson drop-back is based
on the response of a low order model that excludes the phugoid
mode to a pulse elevator input [26]. Figure 3 shows a typical
Gibson drop-back response along with the terms of the Gibson
drop-back criteria.

The open-loop test uses a 5◦ elevator deflection pulse input
as the test input which is typical for flight test. The closed
loop reference is pitch rate command, qr, and the response is
obtained from the system model with the structure of Figure
2 but with a reduced order model that has the phugoid mode
removed. This is done by removing the lowest frequency
complex mode pair from the Jordan canonical form of the
closed-loop system.

Satisfactory handling qualities based on Gibson drop-back
can be assessed by two terms, qmax/qss and DB/qss, where
the qmax is the maximum value of pitch rate, qss is the steady
state value of pitch rate for the certain elevator input and DB
is the drop-back of the pitch altitude θ, between the maximum
value and the steady state value of θ [25]. The model is linear,
hence the input magnitude is unity and the Gibson drop-back
input is

qr(t) =

{
1 for t ∈ [t0, t1),

0 for t elsewhere.
(8)
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Fig. 3. Definition of qmax, qss and DB terms

To evaluate qmax, qss and DB, we take t0 = 0 and we need
to calculate t1 and t2. This is done based on the convergence
of the modal responses.

Let λ1, . . . , λn be the eigenvalues of the closed loop
system, then if α is the spectral abscissa defined by α =
max {Re(λi) : i = 1, . . . , n} and let tss = −10/α be the time
such that the modal responses have decayed to nearly zero.
Then t1 = tss and t2 = 2tss.

The performance indices used are below.
1) Maximum Pitch Rate: This is the first Gibson criterion,

f1 = qmax/qss, (9)

where qmax = max {q(t) : t ∈ [t0, t1]} and qss = q(tss).
2) Drop Back: This is

f2 = DB/qss (10)

where DB = θmax−θss with θmax = max {θ(t) : t ∈ [t0, t2]}
and θss = θ(t2).

3) Control effort: This is measured by

f3 = ‖Tuw‖2 (11)

where Tuw is the closed loop transfer function from w to u
obtained using (1).

4) Comfort: Passenger comfort during turbulence is also
important for a transport aircraft. Kubica and Madelaine [27]
developed the following comfort criteria based on the ISO
2631-1 standard

PIP =
1

3

[∫ T

0

(aw
2(t))dt

]1/2
(12)

where PIP means Percentage of Ill Passengers and aw is the
normal acceleration. The final time, T , is not clearly defined,
so here we define the comfort measure as

f4 = ‖Taww‖2 (13)

where Taww is the closed loop transfer function from w to
aw.

5) Rise Time: This objective function measures the re-
sponse speed of the system, and ensures the bandwidth is
maintained and the system is not over-damped. The rise time
is the time taken for the response to rise from 10% to 90%
of the steady-state response. Figure 4 shows the definition of
rise time which is defined as

f5 = tr = t0.9qss − t0.1qss (14)

0.1

0.9
1.0

t

q(t)/qss

tr

Fig. 4. Definition of Rise Time

C. Non-linear Constraints

In addition to the objective functions, the system needs to
meet some constraints, in particular a constraint on the max-
imum controller gain to prevent too great a change from the
open-loop dynamics which is neither desirable nor achievable
due to actuator saturation. In addition, the flight control law
should not overly alter the phugoid mode as this may cause
problems with the outer loop autopilot control loops and the
calculation of the low-order model required for the calculation
of f1 and f2.

1) Gain Constraint: It is important to limit the gains to
reasonable values so the controller can be implemented in
practice. Here, the gains are limited in [−1, 1] giving the
constraint

‖K‖∞ < 1. (15)

2) Phugoid Mode Constraint: The phugoid mode is the
lowest frequency complex mode pair obtained from the Jordan
canonical form of the closed-loop system. For handling quality
evaluation, the phugoid mode response is not important. This
is because it is comparatively slow compared to the short
period mode and does not affect the handling quality. Here,
the phugoid mode damping ratio, ζphugoid, is constrained so
ζ(phugoid) ≤ 0.5. In addition, the phugoid closed-loop poles
should not move too far from the open-loop poles, so the
mode natural frequency change, δωn(phugoid), is constrained
so |δωn(phugoid)| ≤ 0.01.

IV. EXPERIMENTAL RESULTS

The gamultiobj MOGA from the MATLAB Global
Optimization Toolbox was used to search for Pareto optimal
solutions of the LQR control weighting represented by p.
The algorithm took approximately 45 minutes to evaluate
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Fig. 5. Multi-objective Trade-off Diagram

102 generations. The final generation’s population size is 500
and has 175 non-dominated members. Figure 5 is a trade-
off diagram that shows the relations between the different
objectives. The set of non-dominated solutions is represented
by the blue lines and the dominated set of solutions by the
grey.

The near-Pareto front between f1 and f5 is shown in Figure
6. The blue points represent the non-dominated solutions of the
final generation and the grey points the dominated solutions.
This figure it is not a full-scope Pareto front because of the
constraints set previously. The solutions with a rise time less
than 0.2 all have low values of the gains on the aeroelastic
mode structural displacements η1, . . . , η6, whereas those with
high rise time have high gains on ηi. Two example solutions, a
low-gain p1 and hign-gain p2 are chosen. Figure 7 shows the
Gibson dropback criteria pitch rate responses for solutions p1

and p2 and the open loop response. The high-gain solution,
p2, has a much improved handling qualities response.
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Fig. 7. Gibson Criteria Pitch Rate Response
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Figure 8 shows the Gibson drop back criteria in a Gibson
drop-back assessment diagram [28] for the closed loop systems
with the non-dominated solutions shown in Figure 6 and the
open loop system. The solution p1 provides better handling
qualities than the open-loop system (×), but is still out of
the satisfied region. The solution p2 gives much better perfor-
mance in handling qualities, but it sacrifices the performance
in the other objectives. Note that the gains on the aeroelastic
mode structural displacements means the closed-loop system
utilizes the information about the structure deformation to
achieve a better handling quality performance.

V. CONCLUSIONS

The process of a RCAH flight controller design for a
large flexible transport aircraft using a multiobjective mixed
optimization approach is shown. A variety of objective criteria
are used along with an LQG optimal controller. The approach
allows trade-off studies to be conducted in order to assist
the designer making the right choice of design parameters.
However, because of the simple controller structure, the LQR
approach does not give a rich set of possible solutions. Further
details of the results are available [29].

Several observations can be made. The approach is flexible
in its choice of criteria, these included both handling qualities
in the form of Gibson drop back criteria as well as a passenger
comfort index that measures rejection of gust disturbances and
turbulence. The use of an LQR controller with a flexible air-
craft is also demonstrated. Further work is needed to validate
the controller designs using flight simulation; this can be done
through the CA2LM framework [20], [21].

The integration of parametric search methods into computer
aided control system design tools is now very mature via MAT-
LAB Control System Toolbox tools such as systune and
looptune. It would be useful for such tools to also include
weighting function parameter tuning in a mixed optimization
approach.
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design study for a maglev suspension controller using the databased
ANDECS-MATLAB environment,” in Proc. IEEE Symp. on Comp.
Aided Contr. Syst. Design (CACSD’94), Tuscon, AZ, Mar. 1994, pp.
239–246.

[12] D. Haessig, “Selection of LQR/LTR weighting matrices through con-
strained optimisation,” in Proc. 1995 Amer. Contr. Conf., Seattle, WA,
1995, pp. 458–460.

[13] J. F. Whidborne, G. Murad, D.-W. Gu, and I. Postlethwaite, “Robust
control of an unknown plant – the IFAC 93 Benchmark,” Int. J. Control,
vol. 61, no. 3, pp. 589–640, 1995.

[14] I. Postlethwaite, J. F. Whidborne, G. Murad, and D.-W. Gu, “Robust
control of the benchmark problem using H∞ methods and numerical
optimization techniques,” Automatica, vol. 30, no. 4, pp. 615–619, 1994.

[15] J. F. Whidborne, I. Postlethwaite, and D.-W. Gu, “Robust controller
design using H∞ loop-shaping and the method of inequalities,” IEEE
Trans. Contr. Syst. Technol., vol. 2, no. 4, pp. 455–461, 1994.

[16] N. V. Dakev, J. F. Whidborne, A. J. Chipperfield, and P. J. Fleming,
“H∞ design of an EMS control system for a maglev vehicle using
evolutionary algorithms,” Proc. IMechE, Part I: J. Syst. & Contr., vol.
311, no. 4, pp. 345–355, 1997.
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