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Abstract—Ground Penetrating Radar (GPR) are widely used
to probe the sub-surface. Recently, various time-frequency anal-
yses has been proposed to discriminate buried land mines from
other clutter objects and thus reduce GPR false alarm rates. This
paper examines the possibility for discrimination and assesses
it experimentally. The approach uses the Choi-Williams time-
frequency transform to analyse ultra-wideband signal returns
from a range of shallow buried objects. Single Value Decompo-
sition is performed on isolated object time-frequency signatures.
The signatures are evaluated using a set of waveform norms that
discriminate in time, frequency and energy content. The results
indicate that this approach could improve land mine detection
rates and reduce false alarms.

Keywords: - time-frequency transforms, remote sensing, sig-
nal theory and analysis.

I. INTRODUCTION

Typically land mine discrimination, i.e. detection and
possibly identification, is achieved using synthetic aperture
processing (SAR) techniques and image processing algorithms
[1], such approaches are computationally intensive and require
a trained operator [2]. Detection of non-metallic (NM) and
minimum metal (MM) anti-personnel land mines (APLs) with
ground penetrating radar (GPR) is often made difficult because
of the clutter environment within the first 5 cms of soil surface
[3]. On the other hand most APLs are placed within that region
to ensure reliable detonation when trod on.

In the literature the benefits of representing wideband radar
data in the time-frequency domain has been recognised and
applied in various ways for the purpose of target signature
identification [4]. Capturing the scattering properties of a
target such as resonances, dispersive propagation, creeping
waves and broadband scatterers results in a signal that has
greater information content than the relatively low resolution
product obtained from SAR [5] imagery. In this paper the ultra-
wideband GPR returns of various buried objects including land
mines are measured. A bi-linear time-frequency transform is
applied to the radar echogram (or A-scan). This is decomposed
into a time-frequency (two-dimensional) representation where
the localisation of an object and its scattering behaviour can
be analysed.

land mine detection techniques using Short-Time Fourier-
Transform (STFT), Wigner-Ville Distribution (WVD), Radon
Wigner Distriibution (RWD) and the S-Transform have been
reported (see [6] for an overview). Lopera [7] pointed out that
signatures from WVD contain more valuable information than
that extracted using Wavelet Transform (WT). Sun et al [8]
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Fig. 1: Photograph of the assembled antenna set-up used in
ground penetrating radar experiments. A TEM horn illuminates
the ground in vertical (V) polarisation. Two loop antenna are
arranged orthogonally to pick up the backscattered VV and
VH co-and cross-polarised signals.

also focused on the comparative results and their conclusion
was the Choi-Williams Distribution (CWD) provide better
discrimination results than STFT and other smoothed WVD.

The paper is organised as follows: In Section II the ground
penetrating radar set up and test environment are described
along with the signal pre-processing that is applied to minimise
noise and clutter effects. Section II-B describes the properties
of the Choi-Williams distribution or transform and its practical
application to UWB GPR data. Single Value Decomposition
(SVD) is then applied to extract eigenvalues and vectors from
which a set of waveform norms are defined and used to
analyse the time frequency and energy content of various
buried objects. The results are plotted in three-dimensional
space and demonstrate the technique. Section III provides an
assessment on the techniques effectiveness.

II. GPR DATA ACQUISITION AND PROCESSING
A. Experimental Set-up

Initial experiments have been conducted on the in-
doors soil facility which consists of three soil bays (each
1.2Lx1.2Wx0.8H meters) filled with different soils types;
sand, a 50:50 by % sand/shale mix and local Down Ampney
peaty loam. The soils are maintained within a 3-8% moisture
content and at a constant temperature of 25°C. A Near-Field
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Fig. 2: A processed B-scan of some buried objects in dry sand
including two surrogate land mine a PMN-2 buried 10 cms
below surface and an M14 buried 3 cm below the surface.

Measurement System (NFMS) has been erected over the three
bays with a 3.5 m long linear automated positioner. The
antenna array acquires the scattering parameter Sa; across the
0.4-5.0 GHz frequency spectrum and takes measurements at
1 cm intervals along the horizontal x-axis. Figure 1 shows
the dual polarised near-field antenna configuration. The set-
up uses a linear polarised TEM (Scientific Atlanta) horn that
illuminates the ground scene in vertical (V) polarisation. The
local back-scattered electromagnetic field is collected by two
loop antennas arranged orthogonally and in front of the TEM
antenna to acquire VV and VH (vertical-horizontal) co- and
cross-polarised data. The loop antenna are 30 cms above the
soil surface. The antenna height is typical of a stand-off GPR.
This height is a trade-off between such factors as the energy
attenuation, decreasing the antenna-soil coupling, avoiding
possible obstacles of the ground surface, and forming sufficient
antenna footprint for the SAR processing. The loop antennas
are located just outside the near-eld of the TEM horn, at 11 cm
in front of the aperture at 400 MHz. Figure 2 shows a B-scan
made using this antenna set-up over the sand bay where several
buried objects can be clearly seen. Background subtraction has
been applied to remove any stationary artefacts present such
as mutual coupling and air-ground interface reflections. Using
this antenna set up a number of UWB scans were acquired
with different shallow buried land mines and clutter objects
present in the sand. The data from these experiments are used
in the remainder of the paper.

B. Time-Frequency Analysis

The usefulness of the joint time-frequency analysis of
signals has long been recognized in the signal processing arena
[9]. Perhaps the most well known and used transform is the
Wigner-Ville distribution (WVD). This quadratic or bilinear
transform can be shown to provide better time frequency
resolution compared to linear transforms such as the Short-
Time Fourier transform (STFT) or the continuous Wavelet
Transform. An important property of the WVD are indepen-
dence of time, frequency, or phase shift and preservation of the
signal energy. A serious limitation of the WVD is cross term
interference for multiple signals. This can hinder the usefulness
of the WVD for detecting signal characteristics in the time-
frequency plane.

More generally, other types of time-frequency distributions
such as the Choi-Williams distribution (CWD) can be designed
to reduce the cross-term interference while preserving the
WVD properties. The general form of the CW D(¢,w) of an
A-scan s(t) signal may be given as,

ewn(tw) = [ [ot)stu+ s =)

x exp(—jwt)dudt' )]

where ¢(t,t’) is a kernel function designed to reduce the
cross-term interference problem. It is essentially a low pass
filter where « is set to one.
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Where s(t) is the analytic signal, u = tf,, and f, is the
sampling frequency. This transforms the one-dimension signal
to the resultant (magnitude) |CW D(¢,w)| two-dimensional
representation. It is usual to apply some form of windowing
such as a Hanning or as here a rectangular window is applied

[9].

C. Feature Extraction

Singular values of the CWD may be extracted using the
SVD technique [10]. The CWD matrix W's with its singular
values and singular vectors, are unique for any matrix:

Wslm, n] = Ulm,n|X[m,n|V[m,n] 3)

Where, the matrix U and V' contain the left-singular and
right-singular vectors, respectively, and the matrix ¥ contains
the singular values. Namely, any matrix can be decomposed
into a number of singular triplets ug, ok, vk, with k& =
1.. min(M, N), where each singular value oy, can be treated as
the square root of the corresponding triplet energy. The rows
and columns of Wy, represent the distribution of the energy in
time and frequency, respectively. The singular values vy and
uy can be treated as the time and frequency representations of
the CWD.

The signature decomposition is demonstrated in Fig. 3. The
original time-frequency signature is shown top-left for an A-
scan acquired directly over a buried PMN-2 surrogate land
mine. The first singular component is the strongest, and it
creates the high-energy part of the time frequency signature,
i.e., the most robust part, is shown in the signature top-
right. It can be interpreted as a signature approximation, while
the second component expresses the next important signature
detail, shown bottom-left. The ideal image signature for the
given land mine in this case is the composite (1st+2nd) modes
shown bottom-right. Higher order singular components (the
third and higher) could also be considered as discriminator
features. However, they show significant change due to any
small modification of the physical scan or due to any change
of the target response. We do not include these transitory
components in further analysis.
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(iv) Ist+2nd singular components

Fig. 3: Approximation of CWD by the principal singular components.

Waveform norms are a branch of signal analysis used in
EMC/EMI testing to characterise the properties of an arbitrary
RF waveform. It was suggested in [7] that some of these
norms for energy, time and frequency characteristics could
be used as discriminators. Since the centre-of-gravity (CoG)
of a two-dimensional array is the most robust point in any
distribution. We use this concept combined with the SVD to
extract eigenvalues and discriminate the more robust stationary
scattering time-frequency features. The following normalized
feature set was adopted since it is shown they can provide
good discrimination results [8].

In total, we may extract six parameters from the CWD,
namely t1,to, f1, f2, 01 and o4 norms. These parameters could
be used as target features directly. However, the signal dura-
tion and bandwidth are inter-related viz. the time-bandwidth
(= 1.0) product. We can reduce the dimensionality of the
feature space by multiplying the parameters ¢; and fj, for the
same principal component. Leading to a compact form of time-
frequency-norm products or “feature set” as defined below,
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Where d;, d;, and &; are the time, frequency and energy
features. Ideally, one anticipates a dense cluster of such points
for the same target, and such clusters should ideally be well
separated from each other for different targets. Fig. 4 shows
the plotted feature extracted from five A-scans taken over the
back scatter hyperbola for the PMN-2 surrogate land mine.
Taking more A-scans around the surrogate land mine provided
more observation vector plots. We observe, from Fig. 4, a good
clustering in feature space.

Fig. 5 shows the extracted feature set d;,dy, and J. for
two surrogate land mines; an M14 (56x40 mm in size) and a
PMN-2 (115x57 mm in size) and a range of other buried clutter
objects including dielectric plates of relative permittivity 5 and
15 (both approximately 100x100x10 mm in size) and a crushed
coke can (115x65x3 mm in size). The APLs targets and clutter
objects are shallow buried in the sand, typically < 10 cms. To
increase the number of observation features plotted a vector
of A-scan over the top of an object has been processed. It can
be seen from Figure 5 that different objects are well clustered
with some degree of separation between the clusters.

In Figure 5 the M14 and PMN-2 land mines appear
clustered and fairly close in feature space. Since they pos-
sess similar construction materials and dimensions this is not
unexpected. The two dielectric blocks show distinctly differing
feature sets. Resonant frequency features are similar but time
and energy characteristics differ markedly. The dielectric block
of permittivity 15 possess a weaker backscatter energy feature.
This is due to a stronger dielectric resonator action (and
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Fig. 4: Features extracted from singular feature vectors of
CWD for five A-scans over the PMN-2 land mine.

higher Q-factor) that the lower dielectric constant block. It was
anticipated that the dielectric block of permittivity 5 would be
close to the M14 and PMN-2 feature sets and this is so. The
coke can is metallic clutter and could potentially present a
series of false alarms to a de-mining radar. Since it presents a
surprisingly well clustered feature set that is also close to that
of the lower dielectric constant block.

III. DISCUSSION OF RESULTS

A technique has been proposed to enable detection and
accurate discrimination of buried land mines from other buried
objects. It relies on GPR UWB waveform illumination, back-
ground subtraction and analysis of the singular values and
vectors of the CWD. The CWD of an isolated object are
unique to the target and related to the dielectric constant, its
geometric design and polarisation of the incident field. An
optimum set of waveform norm features were identified and
used to characterise various buried objects. Plots of the three-
dimensional feature sets illustrate the potential to discriminate
different types of buried land mines and land mines from clut-
ter. Further work is currently under way considering different
ground types, moisture conditions, and antenna configurations.
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Fig. 5: Features extracted from singular feature vectors of the
CWD for shallow buried APLs and some clutter objects.
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