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Abstract: We consider the offline optimization of a sequence for communication scheduling in
networked control systems. Given a continuous-time Linear Quadratic Regulator (LQR) problem we
design a sampled-data periodic controller based on the continuous time LQR controller that takes
into account the limited communication medium and inter-sampling behavior. To allow for a Riccati
equation approach, singularities in the weighting matrices and time-variance are accounted for using a
lifting approach. Optimal scheduling can be obtained by solving a complex combinatorial optimization
problem. Two stochastic algorithms will be proposed to find a (sub)optimal sequence and the associated
optimal controller which is the result of a discrete algebraic Riccati equation for the given optimal
sequence.

1. INTRODUCTION

In a Networked Control System (NCS), sensors, actuators and
controllers are spatially distributed and interconnected via a
shared communication medium. NCS increase modularity, flex-
ibility and allow quick and easy maintenance at low cost. They
are essential to automotive industry (see Leen and Heffernan
[2002]), avionic systems (see Gwaltney and Briscoe [2006]),
robots (see Oda et al. [2001], Göktas et al. [1997]) and auto-
mated manufacturing systems (see Lian et al. [2000]) to reduce
hardwiring and costs of installation and implementation.

The focus in this paper are contention-free protocols where
the sequence of the control signal is solely dependent on the
progression in time and therefore allows pre-planning of a par-
ticular periodic communication sequence at the design stage.
The main problem we are solving is the following: given a
continuous-time infinite horizon Linear Quadratic Regulator
(LQR) problem for a distributed system, find a scheduler with a
fixed, periodic communication sequence and the corresponding
sampled-data controller based on the continuous time LQR
cost that takes into account the limited communication medium
and inter-sampling behavior. This problem was introduced in
Rehbinder and Sanfridson [2004] and reconsidered in Ben Gaid
et al. [2006]. Zhang and Hristu-Varsakelis [2006], Ionete and
Çela [2006], Hristu-Varsakelis [2007] proved that communica-
tion sequences that preserve reachability and observability exist
and have an upper bound on their period but the optimality of
such sequences is not addressed.

The solution to the complex combinatorial optimization prob-
lem proposed by Rehbinder and Sanfridson [2004] is a heuristic
algorithm based on a partition of the problem into three sub-
problems. Only the single-channel case is considered i.e. only
one control signal can be updated at any time tick. In Lu et al.
[2003], the (sub)optimal sequence for a H∞ control problem is
solved by using another heuristic. In Ben Gaid et al. [2006],
the LQ problem is translated into a mixed integer quadratic
programming formulation and solved using a branch and bound
based method. Lincoln and Bernhardsson [2002] uses a tree

pruning technique and optimality, for finite horizon problems,
is proven if the number of pruned branches is kept small.

In this paper, our approach is: from a standard continuous
time LQR problem, we first obtain the equivalent sampled-
data representation. Then we model the limited communication
channel as in Rehbinder and Sanfridson [2004], Lu et al.
[2003], and merge the two models to obtain an augmented
model which includes the dynamics of the scheduler. Since the
pre-planned schedule is periodic, the resulting LQ problem will
also be periodic. By using the lifting technique (see Chen and
Francis [1995]), for a given sequence, this periodicity can be
eliminated by creating a higher dimensional system and the
solution to the problem will be given by solving a Discrete
Algebraic Riccati Equation (DARE).

We exploit the features of two stochastic algorithms to solve
the (combinatorial) optimization problem. The first one is a
modification of the simple Genetic Algorithm (GA) (see Vosa
[1999]) to a integer-coded GA (see Deb and Goyal [1997]). The
second one is the Particle Swarm Optimization (PSO) algorithm
proposed by Kennedy and Eberhart [1995] and readapted for a
discrete-variable search space, (see Parsopoulos and Vrahatis
[2002]). A third PSO based algorithm is also proposed. This
exploits the benefits of partitioning the problem into smaller
sub-problems resulting in being faster and more effective.

2. PROBLEM FORMULATION

In this section, we introduce the theoretical framework of
limited communication for control. The framework follows the
one of Rehbinder and Sanfridson [2004] and extends it to the
multi-channel case of Ben Gaid et al. [2006].

2.1 Augmented system model

Consider a plant where the actuators are spatially distributed
and the limited communication medium used for the actuator
signals is represented by a shared bus. Only a limited number
of actuators can be controlled and we assume that the actuator
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inputs latch so that when the switch contact is opened the
actuator holds its signal value (zero-order-hold). We assume
that the spatially distributed plant is a linear time-invariant
system described by

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (1)
where x(t) ∈ Rn, u(t) ∈ Rm and (A,B) is a controllable pair.
The control input u(t) is a discrete input signal created by a
zero-order-hold element.

The model in (1) has to be sampled with a periodic sampling
interval h giving the sampled-data system:

x(jh+ h) = Φx(jh) + Γu(jh), x(0) = x0, (2)

where Φ and Γ are given in [Åström and Wittenmark, 1997,
p.408] and j is the sampling instant. For simplicity, we will
omit the sampling period h from now on.

The next step is to obtain a model for the scheduler that em-
ulates the limited communication channel (see Rehbinder and
Sanfridson [2004], Ben Gaid et al. [2006]). From a practical
view point, it is reasonable to assume that sequences are peri-
odic.
Definition 1. If m is the number of actuators, mmax the
maximum number of control signals that can be transmit-
ted at any time tick t = ih and mr(k), 1 ≤ mr(k) ≤
mmax ≤ m, for all k is the reduced number of actuators
controlled at time k, a p-periodic communication sequence
σ = {σ(0), σ(1), . . . , σ(p − 1)} is an ordered list of p vectors
σ(k) =

[
σ1(k) σ2(k) . . . σmr(k)(k)

]T
where σi(k) ∈ N,

1 ≤ σi(k) ≤ m, is the index of the actuator for which control
communication is enabled at time tick k. 2

Definition 2. The sequence of binary scheduling matrices is
S = {S(0), S(1), . . . , S(p−1)}where S(k) := (sr,c(k))m×m

and sr,c(k) are the elements of S(k) in the rth row and cth

column. The elements sr,c(k) satisfy:

sr,c(k) =
{

1 if r = c = σi(k)
0 otherwise (3)

∀r, c = 1, 2, . . .m; i = 1, 2, . . . ,mr(k). (4)
We also define S̄ = {S̄(0), S̄(1), . . . , S̄(p−1)}, where S̄(k) :=
(s̄r,c(k))m×m, as S̄(k) = I − S(k) where I is the identity
matrix. 2

Definition 3. A p-periodic sequence σ that generates a se-
quence of matrices S such that

rank

(
p−1∑
k=0

S(k)

)
= m (5)

will be called feasible. 2

Condition (5) ensures that each actuator control signal is up-
dated at least once during the control sequence. This condition
is required to guarantee controllability of the NCS as shown in
Longo et al. [2009].

Having defined the p-periodic communication sequence and
the respective scheduling matrices, the scheduler can be rep-
resented by

υ(j) = S̄(k)υ(j − 1) + S(k)û(j), υ(0) = u0,

k = mod(j, p) (6)
where υ(·) is the limited control vector, û(·) is the full control
vector and mod(·, ·) is the modulo operator. The state matrix
S(k) is p-periodic according to the scheduling policy. The
plant model including the limited communication can now be
modified as

x(j + 1) = Φx(j) + Γ
(
S̄(k)υ(j − 1) + S(k)û(j)

)
. (7)

We let j = pl + k and merge the two system equations (7) and
(6) to form the augmented system

x̂(pl + k + 1) = Φ̂(k)x̂(pl + k) + Γ̂(k)û(pl + k). (8)
where the augmented states and matrices can be found in Ionete
and Çela [2006]. The dynamics of the periodic scheduler will
inevitably introduce a periodic augmented model.

2.2 Eliminate periodicity via lifting

To eliminate the time dependance in k, the lifting technique
can be used since S(k) is periodic in p. This is described in
Chen and Francis [1995] and used in Rehbinder and Sanfridson
[2004], Ben Gaid et al. [2006]. The aim here is to create a higher
dimensional system in order to eliminate the dependance on k.
The lifted system from (8) is 1

x̂(pl + p) = Φ̄px̂(pl) + Γ̄pū(pl) (9)
where

ū(pl) =
[
û(pl)T û(pl + 1)T · · · û(pl + p− 1)T

]T
,

Φ̄p =
p∏

j=1

Φ̂(p− j), Γ̄p = [G(0) G(1) · · · G(p− 1)] ,

and G(k) =
p−k−1∏

j=1

Φ̂(p− j)Γ̂(k). (10)

2.3 Cost function

Consider the given continuous time, infinite horizon LQ prob-
lem:

J = min
u

s.t.(1)

∫ ∞
0

x(t)TQc1x(t) + u(t)TQc2u(t)dt. (11)

We assume that Qc1 ≥ 0 and Qc2 > 0 are given as weights
for a desirable ideal closed-loop response and that (A,Qc1) is
an observable pair. The solution to the continuous-time control
problem is given by the Continuous-time Algebraic Riccati
Equation (CARE)

ATPc + PcA− PcBQ
−1
c2 B

TPc +Qc1 = 0. (12)
The equivalent discrete cost function of (11) for the sampled
system (2) is:

J = min
u

s.t.(2)

∞∑
j=0

[
x(jh)
u(jh)

]T [
Q1 Q12

QT
12 Q2

] [
x(jh)
u(jh)

]
, (13)

where the expressions Q1 Q2 and Q12 are given in [Åström
and Wittenmark, 1997, pp.411-412]. The cost associated with
the augmented plant of (8) is

J = min
û

s.t.(8)

∞∑
l=0

p−1∑
k=0

[
x̂(pl + k)
û(pl + k)

]T[
Q̂1(k) Q̂12(k)
Q̂12(k)T Q̂2(k)

]
︸ ︷︷ ︸

=Q̂(k)

[
x̂(pl + k)
û(pl + k)

]
,

(14)

where the expression for Q̂(k) is given in Ben Gaid et al.
[2006]. The cost associated with the augmented lifted plant of
(9) is

1 When k = p− 1, the product is undefined. For this reason, to allow for this
short notation, we need to define in the context of our paper

∏i

j=1
f(j) = 1

for i < j.



J = min
ū

s.t.(9)

∞∑
l=0

[
x̂(pl)
ū(pl)

]T
(

p−1∑
k=0

[
Q̄1(k) Q̄12(k)
Q̄12(k)T Q̄2(k)

])
︸ ︷︷ ︸

=

[
Q̃1 Q̃12

Q̃T
12 Q̃2

]
[
x̂(pl)
ū(pl)

]
.

(15)
where
Q̄1(k) = Φ̄T

k Q̂1(k)Φ̄k,

Q̄2(k) = Γ̄T
k Q̂1(k)Γ̄k + ET Q̂12(k)T Γ̄k

+ Γ̄T
k Q̂12(k)E + ET Q̂2E,

Q̄12(k) = Φ̄T
k Q̂1(k)Γ̄k + Φ̄T

k Q̂12(k)E,
Φ̄0 = I, Γ̄0 = 0,

E = [E(0) E(1) · · · E(p− 1)] , E(i) =
{
I if i = k
0 if i 6= k ,

(the matrix E extracts the particular control signal û(pl + k)).

It should be noticed that the control input dimension of the
matrix Γ̄p has increased by a factor of p to mp. It is easily

shown that there exists a binary matrix F ∈ Rmp×
∑

k
mr(k)

with elements 0 and 1 only such that rank
(
Γ̄pF

)
= m, Γ̄pF ∈

R(m+n)×
∑

k
mr(k) and rank

(
FT Q̃2F

)
=

∑p−1
k=0mr(k),

FT Q̃2F ∈ R
∑

k
mr(k)×

∑
k

mr(k), i.e. FT Q̃2F is non-
singular. The final LQR time-invariant problem is

J = min
ǔ

s.t.(9)

∞∑
l=0

[
x̂(pl)
ǔ(pl)

]T [
Q̃1 Q̃12F

FT Q̃T
12 F

T Q̃2F

] [
x̂(pl)
ǔ(pl)

]
, (16)

where ū(pl) = Fǔ(pl). With a given feasible sequence of
length p the solution to (16) is given by the feedback controller

ū(pl) = −FK̄x̂(pl)

= −F (FT Γ̄T
p P̄ Γ̄pF + FT Q̃2F )−1

(FT Γ̄T
p P̄ Φ̄p + FT Q̃T

12)x̂(pl) (17)

where P̄ is the solution of the DARE
P̄ = Φ̄T

p P̄ Φ̄p − (Φ̄T
p P̄ Γ̄pF + Q̃12F )(F Γ̄T

p P̄ Γ̄pF+ (18)

FT Q̃2F )−1(Φ̄T
p P̄ Γ̄pF + Q̃12F )T + Q̃1.

Since we are considering the lifted system, only one Riccati
equation needs to be solved.

Assuming the initial states x̂(0) are random following a Gaus-
sian process with unity variance, the expectation of the cost J
subject to a random x̂(0) is

JE = E[J ] = trace[P̄ ]. (19)
Moreover, the cost equivalent to the optimality function used in
Rehbinder and Sanfridson [2004] is:

JO = max
{
λ(P−1

c
¯̄P )
}

(20)

where Pc is the solution of the CARE (12) and ¯̄P is the top left

submatrix of P̄ , i.e. P̄ =
[ ¯̄P ∗
∗ ∗

]
.

Finally, the optimization problem is: find an optimal feasible
sequence that will minimize the cost in (20). The associated
feedback controller will be given by (17).
Remark 1. The solvability of the LQR problem is implied from
controllability 2 of the lifted augmented system that also de-
2 The more relaxed assumption of stabilizability could be used instead.

pends on the communication sequence and the observability of
(A,Qc1). A sufficient condition involving ‘feasible’ scheduling
sequences (Definition 3) and a more general form of non-
pathological sampling frequencies is given in Longo et al.
[2009]. ◦
Remark 2. Although the cost function here is only defined for
the LQR problem, the approach is readily extended to LQG
(e.g. Zhang and Hristu-Varsakelis [2005]), H2 and H∞ (e.g.
Lu et al. [2003]) design. ◦

3. COMBINATORIAL OPTIMIZATION

This problem falls into the area of combinatorial optimization
and can be described by the tuple (S,P,F , JE/O,min) where
S is the solution space of size NS on which P and JE/O are
defined, P is the feasibility predicate (5) and F is the set of
feasible solutions of size NF . The set of unfeasible solutions is
U and its size is NU = NS −NF since F ∪ U = S.

3.1 Analysis of properties

We will analyze some of the properties specific to the optimiza-
tion problem and give some definitions.

The behavior of an optimization algorithm can be predicted
by analyzing the fitness landscape that the cost function JE/O

gives rise to (see Reeves and Rowe [2003]). The number of
local optima in the fitness landscape will be one important
factor in the performance of the search algorithms. Even more
important are the relative basins of attraction of the optima that
will depend on the search strategy.
Remark 3. It is intuitive to assume that given a sequence σ =
{σ(0), σ(1), . . . , σ(p − 1)} any k circular shifting of σ will
result in another sequence σk with the same cost of σ. This is
argued in Rehbinder and Sanfridson [2004] in what is called
‘the set of equivalence classes’. Although this is true when the
plant consists of several decoupled and identical systems, it
may not be the case for other situations (e.g. a decoupled plant
with some stable and some unstable subsystems). ◦

A visual landscape analysis can be performed by inspecting
the solution space. Fig. 1 shows typical costs JO for all the
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Fig. 1. Typical LG cost of every (3, 8)-Gray encoded solution.

m(
∑

k
mr(k)) permutations for a system with m = 3, mr(k) =

1, for all k and p = 8. All the possible combinations have been
encoded using the (m, p)-Gray code algorithm of Guan [1998].
This allows to see the changes in cost for neighbor solutions
as a Hamiltonian path in a generalized hypercube network in
(Zm)p. All the unfeasible solutions have been plotted with a
symbolic high cost. The example shows the discontinuity of the
search space in terms of neighbor solutions.

Let us now consider the feasibility issues. We only consider the
actuator scheduling here but the analysis is similar and can be
also applied to sensor scheduling. For the purpose of analysis,



we define a new type of sequence σ̄ that we call the augmented
sequence. This is a sequence, the elements of which are the
entries of the vectors σ(k) in σ distributed as follows
σ̄ = {σ1(0), . . . , σmr(0)(0), σ1(1), . . . , σmr(1)(1), . . .

. . . , σ1(p− 1), . . . , σmr(p−1)(p− 1)}
= {σ̄(0), σ̄(1), . . . , σ̄(p̄− 1)} (21)

where p̄ =
∑p−1

k=0mr(k) is the augmented period. For feasibil-
ity analysis, σ and σ̄ are equivalent. Notice that if mr(k) > 1
for some k there will be equivalent sequences for σ̄. These
are those sequences where the order of the elements of σ(k)
is interchanged.
Observation 1. If NS = mp̄ is the size of the solution space,
the number of feasible and unfeasible permutations (NF and
NU respectively) depends on m and p̄ and can be found analyt-
ically as follows
NF = NS −NU ,

NU =
m−1∑
i=1

c(i)
(
m

i

)
,

where c(i) = ip̄ −
i∑

j=1

c(i− j)
(

i

i− j

)
, c(0) = 0 (22)

and
(
n
k

)
= n!

k!(n−k)! . •

Fig. 2 shows the percentage of unfeasible augmented sequences
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Fig. 2. Percentage of unfeasible sequences in S as a function of
m and p̄.

as a function of m and p̄ for 1 ≤ p̄,m ≤ 40. As the length of
the augmented sequence p̄ gets closer to the number of actuators
m, the number of unfeasible solutionsNU increases until, when
m = p̄, it becomes NU = mp̄ −m! (and therefore NF = m!).
This is important when considering the sequence length p and
channel capacity mr(k) for a given number of actuators m at
the design stage.

3.2 Optimization algorithms

The analysis in the previous section will be used to select suit-
able parameters for the optimization algorithms and enhance
their performance. The algorithm run time is expressed here as
the number of evaluations of the cost function as this is the
predominantly expensive computation. An exhaustive search
will run in O(mp̄) time.

The highly discontinuous and unstructured search space (see
Fig. 1) prevents gradient descent or local search algorithms to
find satisfactory solutions. Complexity increases for mr(k) >
1. The heuristics proposed by Rehbinder and Sanfridson [2004]
greatly simplify the problem by braking it into three disjoint
parts but it is only valid for mr(k) = 1 for all k.

Definition 4. For a sequence σ̄ (see Equation (21)), the ele-
ments of the vector α = [α1 α2 · · · αm] are the number of
times actuator i appears in σ̄, therefore

αi =
p̄∑

k=1

δ(k), δ(k) =
{

1 if σ̄(k) = i
0 if σ̄(k) 6= i ,

m∑
i=1

αi = p̄.

(23)

2

The algorithm of Rehbinder and Sanfridson [2004] allows a
local search approach to be effective for small, single-channel
problems but strong assumptions are made. In contrast, the
optimization approach suggested in this paper exploits the
characteristics of two stochastic algorithms in the attempt to
find a fast, near to optimal solution and avoid combinatorial
explosion as the problem size grows.

Genetic Algorithm optimization The simple Genetic Algo-
rithm (GA) is modified by using an integer-coded chromosome
(see Deb and Goyal [1997]) instead of the traditional binary-
string chromosome of Vosa [1999], Reeves and Rowe [2003].
This type of coding is the most natural way to represent the
augmented sequence σ̄ as each ‘gene’ will hold a value i,
1 ≤ i ≤ m, i ∈ N that directly corresponds to the actuator to be
controlled. This eliminates the problems of generating binary
unfeasible solutions due to the encoding when m 6= 2i and will
also eliminate the need for decoding. With a low mutation prob-
ability, this algorithm converges rapidly to a single (sub)optimal
solution. A large population size will give more chances to find
the global optimum but it will slow the search. A large mutation
probability will encourage a wider exploration of the solution
space but will also deteriorate the convergence rate.

Particle Swarm Optimization algorithm In the Particle Swarm
Optimization (PSO) algorithm an optimal solution is found by
a swarm of particles ‘flying’ through the solution space. Al-
though the algorithm was originally proposed to find a solution
in a continuous space (see Kennedy and Eberhart [1995]), it can
be readapted for discrete optimization problems by truncating
the real values to integers which does not affect significantly the
search performance (see He et al. [2004]). The PSO algorithm
is implemented in two substantially different ways and they will
be referred as PSO1 and PSO2 algorithm.

In the PSO1 algorithm, the set of coordinates ρ(i) of the position
of particle i corresponds to a candidate augmented scheduling
sequence i.e. σ̄i ≡ {ρ(i)}. The advantages of this algorithm
is its simplicity and that it requires only few parameters to be
tuned. The core of the algorithm is in fact the velocity and
position update equations for the ith particle (Kennedy and
Eberhart [1995]).

In the PSO2 algorithm, the search space is partitioned in two
disjoint subproblems. The first subproblem is an optimization
over α and it is solved in the following way: the set of co-
ordinates ρ(i) of the position of particle i corresponds to the
number of instances of control action i.e. α(i). In other words
the algorithm is used to optimize α(i) ≡ {ρ(i)} rather than
σ̄i ≡ {ρ(i)}. The second subproblem is an optimization over the
distribution of control actions. This can be indeed solved with
the neighborhood search of Rehbinder and Sanfridson [2004]
for single-channel problems but numerical analysis showed that
it is highly inefficient especially for large problems. Instead,
once an optimal α is found, a sequence σ̄ can be constructed by
maximizing the distance between control actions of the same
actuator for the given mr(k). The distribution algorithm is:



Step 1: p̄ =
∑m

i=1
αi, σ̄ = {01, 02, . . . , 0p̄}

Step 2: c = maxi{αi}, k = {i : αi = c}
Step 3: q0 = minj∈{j: σ̄(j)=0}j
Step 4: q = argminj∈{j: σ̄(j)=0}|q0 − j|, σ̄(q) = k, c = c− 1

Step 5: q0 = q + b(p̄− q) /cc
if c > 0 go to Step 4
Step 6: αk = 0

if ‖ α ‖6= 0 go to Step 2
Step 7: Construct σ from σ̄ knowing the structure of σ̄ from (21).

By constraining the particle position to αmin ≤ αi ≤ αmax for
all i, the sequence will always be within the feasibility region
if αmin ≥ 1 and it is easy to keep the period length p within
desired limits.

4. EXAMPLE

The effectiveness of the optimization approach will be demon-
strated by some numerical results. The distributed system to
be controlled is formed by m inverted pendulums arranged in a
circle. Their poles are mechanically connected by ideal springs.
The circle is large in radius so that the interaction due to the
springs can be regarded as linear. The linearized dynamics of
the system with the masses chosen to be Mi = µi = 1 (where
M and µ are the cart and bob masses respectively) for all
i = 1, 2, . . . ,m, can be described by (1) where

A =



0 1 0 0 · · · 0 0
g/l1 −k1,2 − km,1 0 k1,2 · · · 0 km,1

0 0 0 1 · · · 0 0
0 k1,2 g/l2 −k2,3 − k1,2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
0 km,1 0 0 · · · g/lm −km,1 − km−1,m


,

B =



0 0 · · · 0
g/l1 0 · · · 0

0 0 · · · 0
0 g/l2 · · · 0
...

...
. . .

...
0 0 · · · 0
0 0 · · · g/lm


, x =



φ1

φ̇1
φ2

φ̇2
...
φm

φ̇m


, (24)

li, i = 1, 2, ..,m is the length of the ith pendulum’s pole,
φi is the pole’s angle and ki,j is the spring coefficient of the
spring between pendulum i and j. The sampling period has
been set to h = 0.01 and K = k1,2 = k2,3 = . . . = km,1.
When K = 0 (decoupled systems case), the time constants of
the pendulum systems will depend on the length of the stick
li according to τi =

√
li/g. By varying li, we can alter the

system’s dynamics and this, together with different choices of
weight matrices, will be used to show how different sequences
are assigned to different system’s requirements. Furthermore,
the actuators share the communication medium used to control
the cart position.

4.1 Results

Optimal sequences In this example K = 0, m = 3,
mr(k) = 1 for all k, τ1 = τ2 = 0.32, τ3 = 3.2, and
Qc1 = Qc2 = diag(10, · · · , 10). This is the case where two
systems have smaller time constants than the other one. We first
run the PSO2 algorithm with αmin = 1 and αmax = 4. The
optimal sequence was found for p = 5. The reason for keeping
p small is to allow a direct comparison with an exhaustive
search. The GA and PSO1 algorithm have been used to find
an optimal sequence with p = 5. The sequences returned by the
three algorithms have been shown in Fig. 3 in comparison to
their location with the entire feasible solution space. The three
algorithms returned different solutions with the GA having
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σPSO1 = {2,1,2,3,1}
JO = 1.1238

σPSO2 = {1,2,1,2,3}
JO = 1.1253

σGA = {1,2,1,3,2}
JO = 1.1237

Fig. 3. Optimal sequences in comparison to the solution space.

found the optimal one. However, the sequences found by the
PSO1 and PSO2 algorithms are close to the optimal. More
time slots are allocated to the systems with higher requirement.
Notice that αGA

i = αPSO1
i = αPSO2

i for all i, and therefore
different costs are to be attributed to different distribution of
control actions.

The same set up was used with mr(k) = 2, for all k (multi-
channel case). The optimal sequences found with the corre-
sponding costs were

σGA = σPSO1 =
{[

1
2

]
,

[
1
2

]
,

[
2
3

]}
, with JO = 1.003

σPSO2 =
{[

2
1

]
,

[
2
1

]
,

[
2
3

]}
, with JO = 1.003.

Both sequences are in fact equivalent and produce the same
sequence of scheduling matrices S (hence the cost is the same).
The lower cost achieved compared to the previous (single-
channel) example is due to higher cannel capacity mr(k).

Performance comparison To demonstrate the algorithms per-
formance, we first compare them with the exact set up as in Re-
hbinder and Sanfridson [2004] and then we use a larger scale,
more realistic example. For the first example the algorithms
have been tested for the two identical decoupled systems with
weight matrices

Qc1 =
[
1.72 0

0 0

]
, Qc2 =

[
2000000 0

0 0

]
,

for a desired time constant for pendulum 1 of 0.5s and pendu-
lum 2 of 0.015s. The left plot of Fig. 4 shows the run time
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Fig. 4. Run time comparison between the minimization algo-
rithms and respective minimum cost for m = 2.

between the algorithm in Rehbinder and Sanfridson [2004]
(called ‘Rehbinder’) and the three algorithms proposed here.
Apart from the trivial sequence of length 2, for any increasing
length, the time required to find an optimal solution for the
Rehbinder algorithm is much larger compared to the one of



the other algorithms. The three algorithms proposed here on
the other hand, after an initial increase in run time, are not as
affected by the length of the sequence. The right plot of Fig.
4 gives the measure JO of the quality of the solution found.
Although it is not clear from the plot, the PSO1 algorithm and
GA found equal or better solution than the Rehbinder algorithm
for any sequence length. The results do not exactly match the
ones in Rehbinder and Sanfridson [2004] because of Remark 3.

For the second example, the system was chosen so that m = 8,
K = 0.1 and
Qc1 = diag (1.72, 0, 250, 0, 250, 0, 1.72, 0, 1.72, 0,

250, 0, 250, 0, 1.72, 0) ,
Qc2 = diag (1, · · · , 1)

(eight coupled systems with different control specifications).
The cost function used this time is JE in (19). The results
are shown in Fig. 5. The run time of the Rehbinder algorithm

10 15 20 25
10

1

10
2

10
3

10
4

10
5
Run time comparison, m=8

sequence length p

R
un

 ti
m

e

10 15 20 25
305

310

315

320

325
Minimization comparison, m=8

sequence length p

C
os

t

 

 

Rehbinder
GA
PSO1
PSO2

Fig. 5. Run time comparison between the minimization algo-
rithms and respective minimum cost for m = 8.

becomes very large for p > 15. The algorithms proposed here
showed to solve the problem in reasonable time, where the
PSO2 algorithm is still the fastest. The GA, for all p, returns
better solutions than any other algorithm.

4.2 Discussion

The PSO2 algorithm has the advantage of simultaneously solv-
ing two subproblems (optimization over p̄ and α) with an ef-
fective global search algorithm and it eliminates the need to
solve the third subproblem. The search in the PSO2 algorithm
is confined within the feasibility region only, ignoring the po-
tentially large unfeasible space. Disadvantages of the PSO2
algorithm include the assumption that sequences obtained by
the distribution algorithm of Section 3.2.2 are optimal.

The GA and PSO1 algorithm eliminate any assumption on the
structural properties and solve the problem as a whole. The
worst case run time will be O(NpNc) where Np is the popula-
tion size and Nc is the number of iterations until convergence.
For the GA and PSO1 algorithm there is no optimization over
the sequence length. Of course an exhaustive search over βl ≤
p̄ ≤ p̄max (where p̄max is the maximum allowed sequence
length) would be possible. If the ratio NU/NF is high (see Fig.
2), sequences as offsprings (for the GA) or position (for the
PSO1 algorithm) have a high probability to evolve or move into
an unfeasible one and, as unfeasible sequences are rejected, fast
convergence is prevented.

The GA is less sensitive to parameter changes which suggests
that, for this type of problems GAs are more suited. This can
be explained by the fact that GAs naturally work with discrete
variables while it is possible that the forced discretization of the
PSO algorithms deteriorate their search characteristics.

5. CONCLUSION

In this paper, we considered the joint controller and static
schedule optimization. The problem was solved using the
GA and the PSO algorithm. Some fitness landscape analysis
showed the complexity of the search space and justified the
choice of parallel search algorithms. Their performance seemed
to be superior when compared to existing results especially for
large scale problems. In general, the use of stochastic search
methods to solve scheduling problems resulted to be effective
in terms of quality of solutions found, computational time and
simplicity of implementation.
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