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Abstract

Rapid analysis of oil-contaminated soils is important to facilitate risk assessment and

remediation decision-making process. This study reports on the potential of a handheld mid-

infrared (MIR) spectrometer for the prediction of total petroleum hydrocarbons (TPH), including

aliphatic (alkanes) and polycyclic aromatic hydrocarbons (PAH) in limited number of fresh soil

samples. Partial least squares regression (PLSR) and random forest (RF) modelling techniques

were compared for the prediction of alkanes, PAH, and TPH concentrations in soil samples (n =

85) collected from three contaminated sites located in the Niger Delta, Southern Nigeria. Results

revealed that prediction of RF models outperformed the PLSR with coefficient of determination

(R2) values of 0.80, 0.79 and 0.72, residual prediction deviation (RPD) values of 2.35, 1.96, and

2.72, and root mean square error of prediction (RMSEP) values of 63.80, 83.0 and 65.88 mg kg-1

for TPH, alkanes, and PAH, respectively. Considering the limited dataset used in the

independent validation (18 samples), accurate predictions were achieved with RF for PAH and

TPH, while the prediction for alkanes was less accurate. Therefore, results suggest that RF
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calibration models can be used successfully to predict TPH and PAH using handheld MIR

spectrophotometer under field measurement conditions.

Keywords

Mid-infrared reflectance spectroscopy; petroleum-hydrocarbon contamination; random forest;

partial least squares regression.

1. Introduction

Soils contaminated with petroleum hydrocarbons (PHCs) severely impact the environment and

wellbeing of the people, and reduce the agronomic potential of agricultural, grasslands and forest

lands. PHCs are common environmental contaminants found in soils, waters and sediments

(Sammarco et al., 2013; Li et al., 2014). PHCs consist of a complex mixture of aliphatic and

aromatic compounds with different concentrations that are considered toxic for human and

livestock (Ritchie et al., 2001; Yang et al., 2017). Especially, the polycyclic aromatic

hydrocarbon (PAH) fraction contains toxic compounds that can be either adsorbed and further

accumulated in the soil, or leach to groundwater and, subsequently, causing significant food

chain contamination (Chen et al., 2013). Therefore, environmental pollution as a result of oil

spill requires immediate attention and actions to reduce contamination levels and reclaim

contaminated lands (Pinedo et al., 2013). The first step towards achieving this urgent goal is by

rapid detection methods of PHCs in soils that offer in situ measurement with high sampling

density to allow spatial and temporal assessment.

Chromatographic techniques, particularly gas chromatography-mass spectrometry (GC-MS),

have been a common choice for the measurement of PHCs in environmental samples due to their

relative selectivity and sensitivity (Wang and Fingas, 1995; Brassington et al., 2010). However,



3

GC-MS methods for soil hydrocarbon analysis depend on the use of toxic extraction solvents

such as hexane, acetone, dichloromethane (Douglas et al., 2018a, 2018b; Okparanma and

Mouazen, 2013). Overall, traditional techniques for the measurement of soil contaminants in the

laboratory are slow, expensive and require specific expertise (Viscarra Rossel et al., 2011;

Chakraborty et al., 2015; Horta et al., 2015). Thus, there is need for rapid, accurate, and cost-

effective measurement tools for PHC concentrations in soils for in-field applications, where there

is no need for the use of toxic extraction solvents. The most obvious candidates that offer all the

advantages over traditional analytical methods of PHCs are the optical methods (Okparanma and

Mouazen, 2013; Douglas et al., 2018a, 2018b).

There are a number of studies that have successfully used optical sensors for the analysis of

petroleum-contaminated soils. In analysing soils, these sensors use electromagnetic energy,

especially those in the visible and near-infrared (vis-NIR) and mid-infrared (MIR) regions. Both,

vis-NIR and MIR spectroscopy, have been used for the analysis of oil-contaminated soils. While

the majority of studies were reported on the use on the vis-NIR spectroscopy (e.g., Chakraborty

et al., 2010; Okparanma et al., 2014, Chakraborty et al., 2015; Douglas et al., 2017), only few

studies have used MIR spectroscopy. For example, Forrester et al. (2010) have successfully

determined total petroleum hydrocarbon (TPH) in spiked minerals with both vis-NIR (root mean

square error of prediction [RMSEP)] = 4500-8000 mg kg-1) and MIR (root mean square error of

prediction of cross validation [RMSEcv] = 2000-4000 mg kg-1) laboratory-based spectroscopy

for 0-100 000 mg kg-1 TPH range; whereas Forrester et al. (2013) predicted TPH concentration

in 205 naturally contaminated soils by laboratory-based MIR methods (RMSE = 601 mg kg-1 and

ratio of prediction deviation [RPD] = 3.4) and NIR (RMSE = 564 mg kg-1 and RPD = 3.7). More

recently, Webster et al. (2016) used a handheld MIR instrument in reflectance mode to predict
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TPH of three different soil types including a carbonate dominated clay, a kaolinite dominated

clay and a loam from Padova Italy, north Western Australia and southern Nigeria, respectively.

All samples (Nr = 194) were air-dried before scanning. Successful partial least squares

regression (PLSR) predictions, with coefficient of determination (R2) of 0.99 and RMSE < 200

mg kg-1, were obtained for TPH concentrations ranging between 0 and 3,000 mg kg-1. These

predictions were carried out using a set of independent samples for each soil type. Prediction

models were also tested for the full concentration range (0 - 60,000 mg kg-1) for each soil type

model, obtaining R2 and RMSE values of 0.99 and < 1,255 mg kg-1, respectively. Portable MIR

and vis-NIR spectroscopy were used by Wartini et al. (2017) for rapid prediction of total

recoverable hydrocarbon (TRH) in air-dried contaminated soils (n=126), resulting in RMSE of

calibration (RMSEcal) values of 1592 and 1881 mg kg-1, respectively. More details on available

studies can be found in a recent review of chromatography and spectroscopy for PHCs analysis

published by Douglas et al. (2017). To the best of our knowledge, there is no study yet on the

application of MIR spectroscopy for the prediction of alkanes and PAHs using limited number of

fresh (unprocessed) soil samples. This is essential requirement, for the implementation of field

spectroscopy, to explore whether MIR spectroscopy being sensitive to moisture content is

capable to predict alkanes and PAHs in fresh (field-moist) soil samples. Therefore, the current

study aims at assessing the potential of a handheld MIR instrument for the prediction of alkanes,

PAH and TPH in fresh and genuinely contaminated samples (n=85), collected from three

agricultural sites in the Niger delta, Nigeria. The prediction performance of the nonlinear

machine learning random forest (RF) and the linear partial least squares regression (PLSR)

methods was compared.
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2. Materials and methods

2.1. Study area and soil sampling

The soil samples were collected from three selected contaminated sites located in the Niger Delta

province of Nigeria. For more details on the studied area and samples used (e.g., sampling

location, method for sample collection, sampling depth, mass of samples, and sample

preservation) readers are referred to Douglas et al. (2018a, b).

2.2. Hydrocarbon analysis

Chemical analysis for hydrocarbon concentrations in soil was carried out at Cranfield University,

UK. The sequential ultrasonic solvent extraction gas chromatography (SUSE-GC) (Agilent

5973N GC-MS) was operated at 70 eV in positive ion mode for the analysis as described in

Risdon et al. (2008) with some modifications. Briefly, a mixture of 20 mL of hexane (Hex):

dichloromethane (DCM) solution (1:1, v/v) was added to 5 g soil sample and was shaken for 16

h at 150 oscillations per min, and finally sonicated for 30 min at 20°C. The validation

methodology was set against a robust and validated GC-MS method previously reported (Risdon

et al., 2008).

2.3. Quality assurance/quality control (QA/QC)

The present study used the quality assurance (QA)/quality control (QC) protocol prescribed by

Risdon et al. (2008). The Method is also mCERTS standards (UK Environment Agency

validation). The sample extracts were cleaned on Florisil® columns by elution with hexane. The

recovery from the extraction method obtained by spiking dried samples with 1 mL of a surrogate

solution containing o-terphenyl (oTP), squalane (Sq), heptamethylnonane (HMN) and 2-

fluororbiphenyl (2-Fb) at a concentration of 200 µg mL-1 each in acetone, was > 98%. To extract

the appropriate concentrations, Deuterated alkanes and PAHs internal standards were added; then
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the final extract was diluted (1:10) for GC-MS analysis. Deuterated alkanes (C10d22, C19d40 and

C30d62) and PAH (naphthalene d8, anthracene d10, chrysene d12 and perylene d12) internal standards

were introduced to extracts at 0.5 µg mL-1 and 0.4 µg mL-1, respectively. Aliphatic hydrocarbons

(alkanes) and aromatic hydrocarbons (PAHs) were identified and quantified by GC-MS (Agilent

5973N), operated at 70 eV in positive ion mode. The mass spectrometer was operated under the

full scan mode (range m/z 50-500) for quantitative analyses of alkanes and PAHs. For each

compound, quantification was carried out by integrating the peak at specific m/z using auto-

integration method by Mass Selective Detector (MSD) ChemStation software. External

multilevel calibrations were performed for both oil fractions, and quantification ranged from 0.5

to 2500 µg mL-1 and from 1 to 5 µg mL-1, respectively. For QC purpose, a 500 µg mL-1 diesel

standard and mineral oil were analysed after every 20 samples. The variation of the

reproducibility of extraction and quantification of soil samples were determined by successive

injections (n=7) of the same sample and estimated to ±8%. The limit of quantification (LOQ) of

0.02 mg kg-1 customarily used for PAH in Nigerian laboratories was adopted for the present

study, since samples were collected from crude oil spill sites in the Niger Delta, Nigeria.

2.4. MIR spectra collection and pre-processing

The field-moist soil samples were scanned using an Agilent 4300 handheld Fourier transfer

infrared (FTIR) spectrometer (Agilent Technologies, Santa Clara, CA, United States), with

spectral wavenumber range of 4000 cm−1 to 650 cm−1 at 8 cm−1 resolution and ~2 cm−1 sampling

interval. The instrument was equipped with a deuterated triglycine sulfate (DTGS) thermal

detector, and a zinc selenide (ZnSe) beam splitter which has high mid-infrared throughput and a

wide spectral range (Eid et., 2018). This detector relies on only the amount of heat energy
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delivered, and its response is independent of wavelength and provides slow and linear response

over a very wide range of FT-IR throughput (Theocharous and Birch, 2006). Before any

measurement, the spectrometer was warmed up at least for 30 min, and then the three

performance tests (signal-to-noise, Stability, and laser frequency calibration) on the instrument

using the validated software were performed (Agilent Technologies, 2015). Before spectral

measurement, all plant debris were removed from the field-moist oil-contaminated soil samples

(n=85), thoroughly mixed and placed in a 5-cm diameter plastic Petri dishes. Samples were

levelled using a stainless-steel blade. The sample preparation was carried out to enhance the

accuracy and reproducibility of the instrument as MIR is affected by sample heterogeneity. For

each spectrum, the number of scans (co-added scans) was 32 while the resolution was set to

8 cm−1. Prior to each measurement, a single beam spectrum (background spectrum) was taken

with a silver-plated reference cap provided by the manufacturer. The background scan provides a

baseline profile of the system conditions with no sample loaded on the instrument, and helps to

avoid the negative effects of changes in the environment (e.g. changes in local atmospheric

composition) and potential instrument drift (Agilent Technologies, 2015). To eliminate these

effects, the measured spectrum was divided internally by the collected background (Hutengs et

al., 2018). The spectral data were collected using the Microlab software V5.0 supplied with the

spectrometer. The collected raw spectra in reflectance (R) format were firstly converted into

absorbance by calculating log (1/R). Then three successive pre-treatment steps were carried out.

Smoothing using the Savitzky-Golay (SG) algorithm with polynomial of 2 and windows size of

11 was adopted to remove noise. Smoothing was followed by maximum normalization (Rinnan

et al., 2009). Finally, the baseline corrections were implemented using ‘modpolyfit’ method in

chemometrics R- package (R Core Team, 2013), before modelling.
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2.5. Modelling

The data matrix including the processed MIR spectra and the SUSE-GC TPH, PAH and alkanes

reference values was used to develop PLSR and RF prediction models. Five samples out of the

eighty five samples were detected as outliers by principal component analysis (PCA) and

removed before the modelling. The remaining 80 samples were divided into two sets: 77% of

them for calibration (62 samples) and the remaining 23% for prediction (18 samples) using

Kennard-Stone algorithm (Kennard and Stone, 1969). After outliers removal and division of

samples into calibration and validation sets, the former set was subjected to both PLSR (Wold,

1982) and RF (Breiman, 2001) analyses to establish calibration models for TPH, alkanes and

PAH.

The PLSR analysis was performed using the pls-R package (R Core Team, 2013). A two-

dimension matrix composites of full MIR spectra (800 independent variables, X), coupled with

the references measured data (3 dependent variables, Y) was subjected to leave-one-out cross-

validation (LOOCV). The number of optimal LVs (8) was defined by plotting the resulted

RMSEcv against the used LVs of the models, and where the drop-in error value was not

significant any more (Wold et al., 2001).

RF was carried out by generating some bootstrap samples or resamples with replacement (ntree)

from the calibration data. Then, each resample is grown to a regression tree with a modifying

process. In this process, numbers from the predictors (mtry) tend to be arbitrarily sampled, and

the algorithm chooses the best split through these sampled variables rather of all of the variables.

The final models were grown to 500 trees (ntree = 500), and the minimum number of splitting

variables (mtry) was set to 2. The final prediction is then calculated as the mean values of the

individual predictions of each decision tree. The final TPH, alkanes and PAH models were tested
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rigorously using 77% of the data with jack-knife cross-validation, and 23% of the data for the

independent validation. In cross-validation, a sample was omitted for testing, and the remaining

samples were used for prediction one at a time until all samples in the dataset (77%) were tested.

The RF models were performed using the random Forest-R package (Liaw and Wiener, 2015).

2.6. Evaluation of model performance

The prediction performance of TPH, alkanes and PAH models were assessed using three

parameters, namely, RMSEP, the ratio of standard deviation (SD) to RMSEP (RPD), and the

coefficient of determination in prediction (R2). Based on the Chang et al. (2001) RPD

classification criterion, the performance was classified into four classes: RPD < 1.4 indicates no

predictive ability, 1.4 < RPD < 1.8 indicates limited predictive ability, 1.8 < RPD < 2.0 indicates

good predictive ability, and RPD > 2.0 indicates accurate predictive ability.

3. Results and discussion

3.1. Laboratory analysis of TPH, alkanes and PAH

Table 1 displays the summary statistics of TPH, alkanes and PAH concentrations acquired using

SUSE-GC from the three study sites (Ikarama, S1; Kalabar, S2; and Joinkrama, S3). Among the

sites, S3 happened to be the most contaminated. More details of the hydrocarbon concentrations

including limit of quantification of the every studied PAH across the sites can be found in

Douglas et al. (2018a, and b). However, the hydrocarbon concentration ranges of the samples (Nr

= 80) used in this study were 16.07-618.54 mg kg-1 for TPH, 9.9-551.22 mg kg-1 for alkanes, and

0.52-7.22 mg kg-1 for PAH (Table 1).

(Table 1)

3.2. Spectra of soils
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MIR absorption spectra of oil contaminated soils from the three sites are compared with an

uncontaminated soil spectrum in Fig. 1A and B, for raw and maximum normalised spectra,

respectively. This control sample (TPH = < 0.04 mg kg-1) is one of the three uncontaminated

samples were collected from the three sites. The comparison shows clear differences between

contaminated and non-contaminated spectra, as well as among contaminated spectra themselves.

However, the overall shape of the MIR spectra in all the samples presented in Fig. 1A and B

were similar, and differences can be attributed to soil physico-chemical properties and level of

oil contamination. Absorbance peaks (Fig. 1A) between 1353-1625 cm-1 were identified to be

associated with aromatic functional groups, while peaks between 2840-3015 cm-1 are linked to

total recoverable petroleum hydrocarbon (TRH) concentration (aliphatic-CH2, -CH3). Absorption

peaks around 1353-1625 cm-1 observed in the current study are close to those reported by

Wartini et al. (2017), which were attributed to aromatic C, C=C conjugated with C=O (1580-

1630 cm-1). Also, the 1353-1625 cm-1 absorbance peaks are attributable to the vibrations of C-H

bending in CH3, CH3 out of plane bending, and CH2 wagging and twisting (Daimay et al., 1991).

Similarly, the significant absorption peaks around 2840-3015 cm-1 are not far from 2990-2810

cm-1 reported by Wartini et al. (2017). Significant absorbance range of 3000-2800 cm-1 obtained

by a PCA was reported by Webster et al. (2016) to be associated with TPH concentrations.

Forrester et al. (2013) identified the wavenumber of 2730 cm-1 to be potentially specific to TPH

absorption in soils, whereas the same research group (Forrester et al., 2010) found the spectral

range of 2700-3000 cm-1 to be characteristic features of alkyl-CH3 stretching vibrations. The

aforementioned absorbance signals of hydrocarbons are practically absent in the uncontaminated

absorbance curve (UC) in Fig. 1A and B, which is a clear characteristic to differentiate the

contaminated samples from the uncontaminated sample.
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(Fig. 1.)

3.3. Models performance for predicting TPH, alkanes and PAH

Table 2 shows the modelling results in cross-validation and prediction of TPH, alkanes and PAH

using both PLSR and RF prediction methods. Results indicate that RF-MIR models

outperformed PLSR in prediction (using prediction set) for the three hydrocarbon components

with R2 = 0.8, RPD = 2.35, RMSEP = 63.80 mg kg-1, R2 = 0.72, RPD = 1.96, RMSEP = 68.88

mg kg-1, and R2 = 0.79, RPD = 2.27, RMSEP = 0.83 mg kg-1 for TPH, alkanes, and PAH,

respectively. The highest prediction accuracy is obtained for TPH, for which RPD values

obtained with the RF models were 1.19 and 1.04 times better than alkanes and PAH models,

respectively. Lower prediction performance was observed for PLSR compared to RF. The reason

behind this is that RF can model the linear and nonlinear response of the MIR spectral data,

whereas PLSR is capable to handle only the linear response (Nawar and Mouazen, 2017). This in

line with Douglas et al. (2018a) findings for the prediction TPH based on vis-NIR spectroscopy.

It has been previously reported that MIR spectra are sensitive to moisture content, which reduces

the intensity of the PHCs related peaks leading to low estimation accuracy (Hazel et al., 1997);

and the non-linearity effect becomes much stronger with high moisture contents (Webster et al.,

2016). Having said that, it can be claimed that results presented in the current work are of strong

prediction capability, although the analysis were based on fresh (wet) soil samples with high soil

moisture content.

The results achieved in the current study based on RF prediction are better than those reported by

Wartini et al. (2017) for cross-validation of TRH in laboratory spiked soil samples using a field

portable MIR coupled with PLSR (RMSE and R2 of 1592 mg kg-1 and 0.89, respectively). Also,
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the models accuracy in our study is better than those of Webster et al. (2016), who reported

RMSE = 1225 mg kg-1 for TPH prediction using a handheld MIR. Compared to the prediction

results of a portable vis-NIR spectrophotometer for TPH (Douglas et al., 2018a), and alkanes and

PAH (Douglas et al., 2018b), where the same samples were studied, results obtained herein with

the MIR are more accurate (Table 2). The superior performance of MIR over that of vis-NIR

may be attributed to the fact that fundamental molecular vibration occurs in the MIR spectral

region, which generates more intense peaks (Reeves, 2010; Soriano-Disla et al., 2014). These

findings, therefore, support the use of a portable MIR instrument to predict TPH, alkanes and

PAH in fresh oil contaminated soil samples.

(Table 2)

The performance of the PLSR models in the current research is considered poor, compared with

previous works by Webster et al. (2016), who reported site specific TPH prediction models with

RPD values of 8-13 for three groups of diesel contaminated air-dried and ground soils, field

contaminated and laboratory constructed soils. The poor result in the current study may be

attributed to very low hydrocarbons concentrations and mixing of soils from three different sites

in the same calibrations might have influenced the model prediction accuracy. In another study,

Wartini et al. (2017) reported R2 and RMSEcv of 0.89 and 1592 mg kg-1, respectively, for TRH in

processed (air-dried) soils; however, no independent predictions were provided to be able to

compare them with results from the present study. It can be challenging to put the results of PAH

and alkanes into context with the other studies, since there are no RF-MIR prediction models yet

reported in the open literature.

Figures 2, 3, and 4 show the results of the cross-validation and prediction of TPH, alkanes, and

PAH using RF and PLSR models. As mentioned earlier the concentration range (for the 80
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samples used in the analysis) of TPH, alkanes, and PAH were 16.07-618.54 mg kg-1, 9.9-551.22

mg kg-1, and 0.52-7.22 mg kg-1, respectively. Visually, these scatter plots demonstrate a

relatively compact data cloud in all the three plots; indicating a better fit. Among the three

studied hydrocarbon components, the RF prediction of TPH was more accurate, as the measured

versus predicted points are close to the 1:1 line (Fig. 2) compared to more scattered points

around the 1:1 lines for alkanes (Fig. 3) and PAH (Fig. 4). The predictions for TPH and PAH

with RF models can be classified as accurate (RPD = 2.35 and 2.27, respectively), whereas a

limited prediction for the alkanes with RPD of 1.96 was observed (Chang et al., 2001). These

results are in line with those reported by other research groups for estimating TPH based on MIR

(Webster et al., 2016; Wartini et al., 2017). The limited prediction of alkanes in this study with

both RF and PLSR might be attributed to the small range of the concentration, as well as the

limited number of samples in the prediction set (18). The dataset size (e.g., sample number) has

shown also to have a considerable influence on the prediction performance of TPH (Douglas et

al., 2018a) and organic carbon (Nawar and Mouazen, 2017).

It was reported that a small dataset size leads to a negative effect, that is difficult to measure, and

may result in very poor performance (Klement et al., 2008). However, the prediction

performance here with RF was much better than that obtained with PLSR. Therefore, the current

work confirms previous findings and provides additional evidence suggesting that advanced data

mining methods (e.g., RF in the current work) have the capability to improve MIR spectroscopy

prediction performance for PHCs estimation. Moreover, the use of a handheld MIR spectrometer

coupled with RF method has been proved to be a promising tool for field investigation and

estimation of the TPH, PAH and alkanes with limited number of soil samples scanned in fresh

(wet unprocessed) field sample conditions.
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(Fig. 2)

(Fig. 3)

(Fig. 4 )

4. Conclusions

This study investigated the potential of a handheld mid infrared (MIR) spectrophotometer for the

measurement of total petroleum hydrocarbon (TPH), alkanes, and polycyclic aromatic

hydrocarbon (PAH) in fresh (unprocessed) soil samples of relatively small number (n=85),

collected from three oil spill sites in the Niger Delta region of Nigeria. Random forest (RF) and

partial least squares regression (PLSR) prediction models were developed and the prediction

performance was compared. The prediction results showed that RF models outperformed PLSR

for the estimation of TPH (coefficient of determination [R2] = 0.80, ratio of prediction deviation

[RPD] = 2.35, and root mean square error of prediction [RMSEP] = 63.80 mg kg-1); alkanes (R2

= 0.72, RPD = 1.96, RMSEP = 65.88 mg kg-1) and PAH (R2 = 0.79, RPD = 2.27, RMSEP = 0.83

mg kg-1). Results also showed that MIR spectroscopy performs better than visible and near

infrared spectroscopy-based on previously published work using the same samples. This study

has demonstrated that the MIR when coupled with RF non-linear calibration method provided

accurate prediction of soil TPH, alkanes, and PAH using limited but fresh (unprocessed) soil

samples. It is, therefore, concluded that handheld MIR spectrometer coupled with RF modelling

can be very useful in quantifying soil hydrocarbon and would provide a rapid and cost-effective

means of contaminated site investigation to enhance on-site risk prioritisation; and to support

timely pollutant management decision-making and remediation with a potential future field

application. Future work will focus on improving the prediction accuracy of the MIR by

implementing spiking of the current limited samples into an existing Nigerian contaminated soil
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spectral library, followed by modelling using machine learning (e.g., RF) techniques. Further

research into developing models for the prediction of hydrocarbons from MIR and vis-NIR

signals is necessary so as to select the best performing tool for quantitative analysis of

hydrocarbon in soils.
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Figure captions:

Fig. 1. (A) Raw mid infrared (MIR) absorbance spectra and (B) maximum normalized MIR

absorbance spectra of site 1 (S1) oil-contaminated soil, site 2 (S2) oil-contaminated soil, site 3

(S3) oil-contaminated soil, and uncontaminated (UC) soil spectrum. All samples were collected

from the Niger Delta, Nigeria. Absorbance peaks between 1353-1625 cm-1 were identified to be

associated with aromatic functional groups, while peaks between 2840-3015 cm-1 are linked to

total recoverable hydrocarbon (TRH) concentrations. These features were not observed in the

UC soil spectrum.

Fig. 2 Scatter plots of the measured total petroleum hydrocarbon (TPH) versus mid-infrared

(MIR) spectroscopy predicted concentrations in cross-validation (a, and c), and in prediction (b,

and d) based on (A) partial least squares regression (PLSR), and (B) random forest (RF)

modelling methods. The grey areas and the blue lines represent the 95% confidence interval and

regression line, respectively.

Fig. 3 Scatter plots of the measured alkanes versus mid-infrared (MIR) spectroscopy predicted

concentations in cross-validation (a, and c) and in prediction (b, and d) based on (A) partial least

squares regression (PLSR), and (B) random forest (RF) modelling methods. The grey areas and

the blue lines represent the 95% confidence interval and the regression line, respectively.

Fig. 4 Scatter plots of the measured polycyclic aromatic hydrocarbon (PAH) versus mid-infrared

(MIR) spectroscopy predicted concentations in cross-validation (a, and c) and in prediction (b,

and d) based on (A) partial least squares regression (PLSR), and (B) random forest (RF)
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modelling methods. The grey areas and the blue lines represent the 95% confidence interval and

the regression line, respectively.
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Fig. 1. (A) Raw mid infrared (MIR) absorbance spectra and (B) maximum normalized MIR

absorbance spectra of site 1 (S1) oil-contaminated soil, site 2 (S2) oil-contaminated soil, site 3

(S3) oil-contaminated soil, and uncontaminated (UC) soil spectrum. All samples were collected

from the Niger Delta, Nigeria. Absorbance peaks between 1353-1625 cm-1 were identified to be

associated with aromatic functional groups, while peaks between 2840-3015 cm-1 are linked to

total recoverable hydrocarbon (TRH) concentrations. These features were not observed in the

UC soil spectrum.
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Fig. 2 Scatter plots of the measured total petroleum hydrocarbon (TPH) versus mid-infrared

(MIR) spectroscopy predicted concentrations in cross-validation (a, and c), and in prediction (b,

and d) based on (A) partial least squares regression (PLSR), and (B) random forest (RF)

modelling methods. The grey areas and the blue lines represent the 95% confidence interval and

regression line, respectively. The plot was based on without outliers of the TPH data.
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Fig. 3 Scatter plots of the measured alkanes versus mid-infrared (MIR) spectroscopy predicted

concentations in cross-validation (a, and c) and in prediction (b, and d) based on (A) partial least

squares regression (PLSR), and (B) random forest (RF) modelling methods. The grey areas and

the blue lines represent the 95% confidence interval and the regression line, respectively. This

plot was based on without outliers of PAH data.
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Fig. 4 Scatter plots of the measured polycyclic aromatic hydrocarbon (PAH) versus mid-infrared

(MIR) spectroscopy predicted concentations in cross-validation (a, and c) and in prediction (b,

and d) based on (A) partial least squares regression (PLSR), and (B) random forest (RF)

modelling methods. The grey areas and the blue lines represent the 95% confidence interval and

the regression line, respectively. This plot was based on without outliers of the alkanes data.
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Table 1
The descriptive analysis of the tested soil samples for the three measured contaminate

compounds total petroleum hydrocarbons (TPH), alkanes and polycyclic aromatic hydrocarbons

(PAH) measured using sequential ultrasonic solvent extraction gas chromatography (SUSE-GC).

This hydrocarbon data coupled with vis-NIR spectral signal were previously used by Douglas et

al. (2018a, b) for the prediction of TPH, alkanes, and PAH.

N Min. Mean Median 1st Qu. 3rd Qu. Max. St. dev.

TPH (mg kg-1) 85 16.07 252.59 213.69 120.66 339.27 666.33 165.51

Alkanes (mg kg-1) 85 9.90 187.24 151.75 84.55 259.25 551.22 133.13

PAH (mg kg-1) 85 0.52 9.11 1.39 0.89 4.00 312.28 40.20

N= number of samples; Min. = Minimum; 1st Qu. = first quartile; 3rd Qu. = third quartile; St.

dev. = standard deviation.
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Table 2

The results of calibration (cross-validation) and prediction for total petroleum hydrocarbon

(TPH), alkanes (ALK), and polycyclic aromatic hydrocarbon (PAH) models based on of random

forest (RF) and partial least square regression (PLSR) methods in naturally oil-contaminated soil

samples collected from three sites in the Niger Delta, Nigeria. Results compare the RF and PLSR

mid infrared (MIR) prediction performance of the present study with those obtained from visible

near infrared (vis-NIR) spectroscopy analyses reported previously by Douglas et al. (2018a) and

Douglas et al. (2018b).

Instrument PLSR RF
Property

Present
study R2

RMSEP
(mg kg-1) RPD RPIQ LV R2

RMSEP
(mg kg-1) RPD RPIQ ntrees

MIR Calibration
(n=62) 0.25 156.26 1.17 1.82 8 0.82 76.62 2.32 3.68 500 TPH
Prediction
(n=18) 0.10 142.98 1.05 0.85 8 0.80 63.8 2.35 1.90 500
Calibration
(n=62) 0.26 120.6 1.16 1.52 8 0.82 59.92 2.35 3.03 500 ALK
Prediction
(n=18) 0.12 117.8 1.09 1.01 8 0.72 65.88 1.96 1.81 500
Calibration
(n=62) 0.68 1.01 1.87 2.56 8 0.91 0.52 3.48 4.97 500 PAH
Prediction
(n=18) 0.67 1.03 1.80 2.09 8 0.79 0.83 2.27 3.83 500

Vis-NIR Previous
study a

Calibration
(n=65) 0.63 107.54 1.66 2.55 8 0.85 68.43 2.61 3.96 500 TPH
Prediction
(n=20) 0.54 75.86 1.51 2.10 8 0.68 69.64 1.85 2.53 500

Vis-NIR Previous
study b

Calibration
(n=65) 0.49 101.71 1.41 6 0.85 55.71 2.58 500 ALK
Prediction
(n=18) 0.36 66.66 1.29 6 0.58 53.95 1.59 500
Calibration
(n=58) 0.76 0.81 2.07 6 0.89 1.02 2.99 500 PAH
Prediction
(n=23) 0.56 1.21 1.55 6 0.71 0.99 1.99 500

Previous studya =Douglas et al., 2018a; Previous studyb =Douglas et al., 2018b; R2 = coefficient of determination;

RMSEP = root mean square error of prediction; RPD = residual prediction deviation; LV = latent variables; ntrees =

number of trees; and RPIQ = ratio of performance to interquartile range.


