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Abstract 

Background: In English hospitals, the patient’s vital signs are monitored and summarised into a 

National Early Warning Score (NEWS). NEWS is more accurate than the quick sepsis related organ 

failure assessment (qSOFA) score at identifying patients with sepsis. We investigate the extent to 

which the accuracy of the NEWS is enhanced by developing computer-aided NEWS (cNEWS) models. 

We compared three cNEWS models (M0=NEWS alone; M1=M0 + age + sex; M2=M1 + 

subcomponents of NEWS + diastolic blood pressure) to predict the risk of sepsis. 

Methods: All adult emergency medical admissions discharged over 24-months from two acute 

hospitals (YH–York Hospital for model development; NH–Northern Lincolnshire and Goole Hospital 

for external model validation).  We used a validated Canadian method for defining sepsis from 

administrative hospital data. 

Findings: The prevalence of sepsis was lower in YH (4.5%=1596/35807) than NH (8.5%=2983/35161). 
The c-statistic increased across models (YH: M0: 0.705, M1:0.763, M2:0.777; NH:M0: 0.708, 
M1:0.777, M2:0.791). At NEWS 5+, sensitivity increased (YH: 47.24% vs 50.56% vs 52.69%; NH: 
37.91% vs 43.35% vs 48.07%)., the positive likelihood ratio increased (YH: 2.77 vs 2.99 vs 3.06; NH: 
3.18 vs 3.32 vs 3.45) and the positive predictive value increased (YH: 11.44% vs 12.24% vs 12.49%; 
NH: 22.75% vs 23.55% vs 24.21%).  

Interpretation: From the three cNEWS models, Model M2 is the most accurate. Since it places no 

additional data collection burden on clinicians and can be automated, it may now be carefully 

introduced and evaluated in hospitals with sufficient informatics infrastructure. 

Key words:  vital signs, national early warning score, emergency admission, sepsis, computer aided 

national early warning score 
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Introduction 

Sepsis is a major cause of mortality in hospitals. Survival is dependent on early recognition and 

treatment. Although each hour of delay is associated with a 7% reduction in survival (1,2), studies 

have found that treatment delays are not uncommon in hospitals (3). Several risk scores have been 

devised to aid the early detection of sepsis (4). Two widely used scores are the Systemic 

Inflammatory Response Syndrome (SIRS) (5) and the quick sepsis related organ failure assessment 

(qSOFA) scores (4). Although studies have found SIRS to be more accurate than qSOFA for diagnosis 

of sepsis (6), a recent study found that the National Early Warning Score (NEWS) compares 

favourably with qSOFA (7,8). 

The NEWS was introduced in 2012, by the Royal College of Physicians of London to identify acutely ill 

patients, including those with sepsis (9). The NEW score is used to identify those at risk of death and 

increased morbidity in all patient diagnostic groups (with some noted exceptions – i.e., head injury). 

This score has been widely adopted in National Health Service (NHS) hospitals in England and other 

countries (9).  NEWS is derived from seven physiological variables or vital signs - respiration rate, 

oxygen saturations, any supplemental oxygen, temperature, systolic blood pressure, heart rate and 

level of consciousness (Alert, Voice, Pain, Unresponsive) – which are routinely collected by nursing 

staff as an integral part of the process of care, usually within 30 minutes for most patients and 

subsequently repeated at a frequency dependent on local hospital protocols. NEWS points are 

allocated according to basic clinical observations and the higher the NEWS the more likely it is that 

the patient is developing a critical illness (see appendix for further details of the NEWS). The clinical 

rationale for NEWS is that early recognition of deterioration in the vital signs of a patient can provide 

opportunities for earlier, more effective intervention. Furthermore, studies have shown that 

electronically collected NEWS (10) are highly reliable and accurate when compared with paper based 

methods (11–13) and about two thirds of NHS hospitals now report the use of electronic NEWS 

(eNEWS) (14). 

A NEWS of 5+ has been recommended as a trigger point to screen for sepsis by the National Institute 

for Health and Care Excellence in England (15,16) and has been widely adopted in NHS Hospitals. 

However, given the widespread use of eNEWS and its potential to support real-time computer aided 

screening for sepsis, we investigate the extent to which the accuracy of NEWS for predicting sepsis, 

could be enhanced by developing computer-aided NEWS (cNEWS) models. We examine the accuracy 

of cNEWS models which include age, sex and the subcomponents of NEWS versus a reference model 

that uses NEWS only using a validated method for defining sepsis developed by Jolley et al in Canada 

(17). An important feature of our cNEWS models is that they are not designed for paper based 

systems and do not place any additional burden of data collection and/or calculation on the 

clinicians because cNEWS relies on data which are (a) routinely collected as part of the process of 

care, (b) already stored in the patient’s electronic health record and (c) accessible in real-time thus 

offering the prospects of real-time risk predictions without hindering clinical workflows. 
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Methods 

Setting & data  

Our cohorts of emergency medical admissions are from three acute hospitals which are 

approximately 100 kilometres apart in the Yorkshire & Humberside region of England– the Diana, 

Princess of Wales Hospital (n~400 beds) and Scunthorpe General Hospital (n~400 beds) managed by 

the Northern Lincolnshire and Goole NHS Foundation Trust (NLAG), and York Hospital (YH) (n~700 

beds), managed by York Teaching Hospitals NHS Foundation Trust.  For the purposes of this study, 

the two acute hospitals in NLAG are combined into a single dataset and collectively referred to as 

NLAG Hospitals (NH).  NH and YH have been exclusively using electronic NEWS scoring since at least 

2013 as part of their in-house electronic patient record systems. We selected these hospitals 

because they had electronic NEWS which are collected as part of the patient’s process of care and 

were agreeable to the study. 

We considered all adult (age≥16 years) emergency medical admissions, discharged during a 24-

month period (1 January 2014 to 31 December 2015), with eNEWS. For each emergency admission, 

we obtained a pseudo-anonymised patient identifier, patient’s age (years), sex (male/female), 

discharge status (alive/dead), admission and discharge date and time, and eNEWS (including its 

subcomponents respiratory rate, temperature, systolic blood pressure, pulse rate, oxygen 

saturation, oxygen supplementation, and alertness).  NEWS does not include diastolic blood 

pressure, but we incorporate it in our statistical models because this data item is routinely collected 

(see later). NEWS ranges from 0 (indicating the lowest severity of illness) to a maximum of 20. (see 

Appendix for further details). The admission/discharge date and eNEWS were date and time 

stamped and the index eNEWS was defined as the first score electronically recorded within ±24 

hours of the admission time. We excluded records where the index eNEWS was not within ±24 hours 

or was not recorded at all (see Table S1 & S2 – supplemental digital content). 

We define sepsis (with at least one organ failure or septic shock) (4) based on 84 selected ICD-10 

codes identified by an optimised validated method reported by Jolley et al in Canada (17) (which we 

adapted to our study by excluding six Canadian specific ICD-10 codes and three procedure codes). 

We used this optimised approach for identifying sepsis using ICD-10 codes because other methods 

are known to underestimate sepsis from administrative data (17,18). We reported the statistical 

differences in characteristics of our two hospitals using two independent sample t-test (for 

continuous data) and chi square proportion test (for categorical data). 

Statistical Modelling 

We began with exploratory analyses including scatter plots and box plots that showed the 

relationship between covariates and risk of sepsis in our hospitals. We developed three logistic 

regression models for the risk of sepsis. The models (M0,M1,M2) use the index or first recorded 

eNEWS within ±24hours of admission. Model M0 uses eNEWS alone; Model M1 extends M0 with 

age and sex and Model M2 extends M1 with all the subcomponents of NEWS plus diastolic blood 

pressure. We used likelihood ratio tests to determine the extent to which progressing from models 

M0 to M2 improved the goodness of fit. 

We used the qladder function (Stata (19)), which displays the quantiles of transformed variable 

against the quantiles of a normal distribution according to the ladder powers 

(𝑥3, 𝑥2, 𝑥1, 𝑥, √𝑥, log(𝑥) , 𝑥−1, 𝑥−2, 𝑥−3)  for each continuous covariate and chose the following 
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transformations:- loge (respiratory rate), loge (pulse rate), loge (systolic blood pressure), and loge 

(diastolic blood pressure).  

All models were developed to predict the risk of sepsis following emergency medical admission using 

data from only YH (development dataset). We then externally validated these models using data 

from another hospital NH (external validation dataset). We report discrimination and calibration 

statistics as performance measures for these models (20). 

Discrimination relates to how well a model can separate, (or discriminate) between cases with and 

without sepsis and is given by the area under the Receiver Operating Characteristics (ROC) curve 

(AUC) or c-statistic after adjusting for differences in the baseline (21) risk of sepsis in our two 

hospitals.  The 95% confidence interval for the c-statistic was derived using DeLong’s method as 

implemented in the pROC library (22) in R (23).  

Calibration is the relationship between the observed and predicted risk of sepsis  (24) and can be 

readily seen on a scatter plot (y-axis observed risk, x-axis predicted risk). Perfect predictions should 

be on the 45° line.  The intercept (a) and slope (b) of this line gives an assessment of ‘calibration-in-

the-large’. At model development, a = 0 and b = 1, but at external validation, calibration-in-the-large 

problems are indicated if a is not 0 and if b is more/less than 1 as this reflects problems of 

under/over prediction.  

The cut-off of NEWS 5+ is the recommended threshold for screening sepsis (15,16).  We determined 

the sensitivity, specificity, positive and negative predictive values and likelihood ratios for these 

models (M0, M1, M2) at eNEWS 4+,5+,and 6+ thresholds (25). For the best performing model (M2) 

we further analysed its performance across a range of risks of sepsis (5% to 15%) to highlight the 

performance characteristics of this model which may inform choice of thresholds in routine clinical 

practice. 

Analyses were carried using R (23), using the  ROCR (25) library and Stata (19). 

Supplementary Materials 

Tables and figures prefixed by “S” and shown as – supplemental digital content. 

Ethical Approval 

We obtained ethical approval for the main research project of which this is a sub study from 

Yorkshire & The Humber - Leeds West Research Ethics Committee (reference number 15/YH/0348). 
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Results 

Description of development and validation datasets 

The number (YH: n=36751; NH: n=37100) of emergency medical admissions over a 24-month period 

was similar in our two hospitals. We excluded 2.6% (944/36751) of admissions in YH and 5.2% 

(1939/37100) in NH because the index eNEWS was not recorded within 24 hours of the admission or 

there was no eNEWS recorded at all (see Table S1 & S2 – supplemental digital content). 

The characteristics of the admissions included in our study are shown in Table 1.  Emergency 

admission in YH were older than those in NH (67.8 years vs 66.4 years), less likely to be male (47.3% 

vs 49.8%), had higher index eNEWS (2.5 vs 2.1), much lower prevalence of sepsis (4.5% vs 8.5%) but 

similar in-hospital mortality (5.8% vs 5.4%). The prevalence of oxygen supplementation was lower in 

the YH compared to NH (11.3% vs 19.2%). See accompanying scatter and boxplots in figure S1 to S4 

– supplemental digital content. Figure 1 shows the relationship between the index eNEWS with 

sepsis in each hospital. As the index eNEWS increases so too does the risk of sepsis. 

 

 Characteristic 

Development 
dataset (YH) 

Validation 
dataset (NH) 

p-value 

N=35807 N=35161 - 

Mean Age [years] (SD) 67.8 (19.5) 66.4 (19.5) <0.001 

Male (%) 16936 (47.3) 17498 (49.8)  <0.001 

Sepsis [outcome] (%) 1596 (4.5) 2983 (8.5) <0.001 

In-Hospital Mortality (%) 2080 (5.8) 1900 (5.4) 0.32 

Mean index eNEWS (SD) 2.5 (2.6) 2.1 (2.3) <0.001 

Alertness   <0.001 

Alert (%) 34769 (97.1) 34503 (98.1)  

Pain (%) 243 (0.7) 126 (0.4)  

Voice (%) 607 (1.7) 435 (1.2)  

Unconscious (%) 188 (0.5) 97 (0.3)  

Mean Respiratory rate [breaths per 
minute] (SD) 

18.6 (4.8) 18.1 (3.6) <0.001 

Mean Temperature [oC] (SD) 36.3 (0.8) 36.5 (0.7) <0.001 

Mean Systolic pressure [mmHg] (SD) 136 (27.3) 129.4 (23) <0.001 

Mean Diastolic pressure [mmHg] (SD) 75.4 (15.5) 74.9 (14.9) <0.001 

Mean Pulse rate [beats per minute] (SD) 85.6 (21.1) 81.2 (17.8) <0.001 

Oxygen supplementation (%) 4053 (11.3) 6750 (19.2) <0.001 

Mean % Oxygen saturation (SD) 96.3 (2.9) 95.9 (3.0) <0.001 

Table 1 Characteristics of emergency medical admissions in the development and validation datasets. 
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Figure 1: Observed different type of sepsis risk versus index electronic NEWS in YH and NH 

hospitals. Vertical bars are exact binomial 95% confidence intervals. 
Note: for visualisation purposes, we capped NEWS to 12. 

 

Statistical Modelling  

We compared three cNEWS models (M0=NEWS alone; M1=M0 plus age and sex; M2=M1 plus the 

subcomponents of NEWS plus diastolic blood pressure) to predict the risk of sepsis. The models were 

developed to predict the risk of sepsis on data from YH and externally validated using data from NH. 

The likelihood ratio test showed statistically significant improvement in model goodness of fits (M0 

vs M1: χ2=416.8 (df=2) p<0.001; M1 vs M2: χ2=161.8 (df=10) p<0.001). The ROC plots for each 

model are shown in figure 2 with their accompanying discrimination and calibration statistics shown 

in table 2.  Model M0 had the lowest c-statistic in the development (0.705) and validation datasets 

(0.708). Models M1 and M2 had higher c-statistics (see table 2).   

The external validation slope reduced from 1.18 (M0) to 1.15 (M2). The internal and external 

validation plots are shown in Figure S5 - supplemental digital content. 
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Figure 2 Receiver Operating Characteristic curve for four models (M0,M1,M2) in predicting the risk 
of  sepsis in the YH and NH hospitals. Black line is M0; Red line is M1 and Green line is M2.  

 

Model 

Discrimination  
c-statistic: 

Development dataset 
YH 

(95%CI) 

Discrimination  
c-statistic: 

Validation dataset NH 
(95%CI) 

Calibration slope 
validation dataset NH 

(95%CI) 

M0=eNEWS only 
0.705 

 (0.692 to 0.719) 
0.708 

 (0.698 to 0.718) 
1.18 

(1.12 to 1.23) 

M1=M0+age+sex 
0.763 

 (0.752 to 0.774) 
0.777 

 (0.769 to 0.784) 
1.18 

(1.13 to 1.23) 

M2= M1+ subcomponents 
of NEWS + diastolic blood 

pressure 

0.777 
 (0.766 to 0.787) 

0.791 
 (0.783 to 0.798) 

1.15 
(1.11 to 1.18) 

 

Table 2 Performance of three cNEWS models in predicting the risk of sepsis in the development and 
validation datasets. 
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Table 3 shows the sensitivity, specificity, positive predictive value and negative predictive value at 

eNEWS 4+,5+, and 6+ for models M0, M1 and M2 for predicting the risk of sepsis.  

At the current recommended threshold of a NEWS of 5+ for screening for sepsis, sensitivity 

increased across models M0, M1 and M2 in the development dataset (47.24% vs 50.56% vs 52.69%) 

and the external validation dataset (37.91% vs 43.35% vs 48.07%). Specificity changed little in the 

development dataset (82.94% vs 83.09% vs 82.77%) and external validation data set (88.07 vs 86.96 

vs 86.05). The positive likelihood ratio increased across models in the development dataset (2.77 vs 

2.99 vs 3.06) and the external validation dataset (3.18 vs 3.32 vs 3.45). The negative likelihood ratio 

reduced across models in the development dataset (0.64 vs 0.59 vs 0.57) and the external validation 

dataset (0.70 vs 0.65 vs 0.60). The positive predictive value increased in the development dataset 

(11.44 vs 12.24 vs 12.49) and the external validation dataset (22.75 vs 23.55 vs 24.21). The negative 

predictive value increased slightly in the development dataset from (97.12 vs 97.30 vs 97.40) and the 

external validation dataset (93.87 vs 94.30 vs 94.70). 

We further explored the behaviour of the best performing cNEWS model (M2) across a range of cut-

off probabilities (5% to 15%) – see Table 3. For YH a cut-off of 0.06 appears to offer reasonable 

performance, likewise, 0.12 appears to be a reasonable cut-off for NH. 
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 Development dataset (YH) External Validation dataset (NH) 

NEWS threshold Models Sensitivity% Specificity% PPV NPV LR+ LR- Sensitivity% Specificity% PPV NPV LR+ LR- 

4+ 
(equivalent 

predicted probability 
YH=0.051 & NH = 

0.11) 

M0 
55.95 

 (53.48 to 58.41) 
74.91 

 (74.45 to 75.37) 
9.42 

 (8.84 to 10.03) 
97.33 

 (97.13 to 97.52) 
2.23 

 (2.13 to 2.34) 
0.59 

 (0.56 to 0.62) 
48.58 

 (46.77 to 50.39) 
81.29 

 (80.85 to 81.71) 
19.39 

 (18.5 to 20.31) 
94.46 

 (94.18 to 94.73) 
2.60 

 (2.49 to 2.71) 
0.63 

 (0.61 to 0.66) 

M1 
60.96 

 (58.52 to 63.37) 
75.53 

 (75.07 to 75.98) 
10.41 

 (9.8 to 11.05) 
97.65 

 (97.46 to 97.83) 
2.49 

 (2.39 to 2.6) 
0.52 

 (0.49 to 0.55) 
57.09 

 (55.29 to 58.88) 
79.77 

 (79.32 to 80.2) 
20.73 

 (19.86 to 21.63) 
95.25 

 (94.99 to 95.5) 
2.82 

 (2.72 to 2.93) 
0.54 

 (0.52 to 0.56) 

M2 
63.22 

 (60.8 to 65.59) 
75.55 

 (75.1 to 76.01) 
10.77 

 (10.15 to 11.41) 
97.78 

 (97.59 to 97.95) 
2.59 

 (2.48 to 2.7) 
0.49 

 (0.46 to 0.52) 
59.5 

 (57.72 to 61.27) 
79.38 

 (78.94 to 79.82) 
21.11 

 (20.24 to 22) 
95.48 

 (95.23 to 95.73) 
2.89 

 (2.78 to 2.99) 
0.51 

 (0.49 to 0.53) 

5+ 
(equivalent 

predicted probability 
YH=0.063 & NH = 

0.138) 

M0 
47.24 

 (44.77 to 49.73) 
82.94 

 (82.54 to 83.34) 
11.44 

 (10.68 to 12.23) 
97.12 

 (96.92 to 97.31) 
2.77 

 (2.62 to 2.93) 
0.64 

 (0.61 to 0.67) 
37.91 

 (36.17 to 39.68) 
88.07 

 (87.71 to 88.42) 
22.75 

 (21.59 to 23.94) 
93.87 

 (93.59 to 94.13) 
3.18 

 (3.01 to 3.36) 
0.70 

 (0.69 to 0.73) 

M1 
50.56 

 (48.08 to 53.05) 
83.09 

 (82.69 to 83.49) 
12.24 

 (11.46 to 13.06) 
97.30 

 (97.11 to 97.48) 
2.99 

 (2.83 to 3.16) 
0.59 

 (0.57 to 0.63) 
43.35 

 (41.56 to 45.15) 
86.96 

 (86.58 to 87.32) 
23.55 

 (22.43 to 24.7) 
94.30 

 (94.03 to 94.57) 
3.32 

 (3.16 to 3.49) 
0.65 

 (0.63 to 0.67) 

M2 
52.69 

 (50.21 to 55.17) 
82.77 

 (82.37 to 83.17) 
12.49 

 (11.71 to 13.3) 
97.40 

 (97.21 to 97.58) 
3.06 

 (2.9 to 3.22) 
0.57 

 (0.54 to 0.6) 
48.07 

 (46.27 to 49.88) 
86.05 

 (85.67 to 86.43) 
24.21 

 (23.12 to 25.32) 
94.70 

 (94.44 to 94.96) 
3.45 

 (3.29 to 3.61) 
0.60 

 (0.58 to 0.62) 

6+ 
(equivalent 

predicted probability 
YH=0.079 & NH = 

0.169) 

M0 
39.22 

 (36.82 to 41.67) 
88.1 

 (87.75 to 88.44) 
13.33 

 (12.37 to 14.33) 
96.88 

 (96.68 to 97.07) 
3.30 

 (3.08 to 3.53) 
0.69 

 (0.66 to 0.72) 
27.49 

 (25.89 to 29.13) 
92.65 

 (92.36 to 92.93) 
25.74 

 (24.23 to 27.29) 
93.24 

 (92.95 to 93.51) 
3.74 

 (3.49 to 4.01) 
0.78 

 (0.77 to 0.8) 

M1 
40.23 

 (37.81 to 42.68) 
88.22 

 (87.87 to 88.56) 
13.74 

 (12.77 to 14.76) 
96.94 

 (96.74 to 97.12) 
3.41 

 (3.2 to 3.65) 
0.68 

 (0.65 to 0.71) 
31.38 

 (29.71 to 33.08) 
91.91 

 (91.61 to 92.21) 
26.46 

 (25.01 to 27.94) 
93.53 

 (93.25 to 93.8) 
3.88 

 (3.64 to 4.14) 
0.75 

 (0.73 to 0.77) 

M2 
42.04 

 (39.61 to 44.51) 
88.13 

 (87.78 to 88.47) 
14.18 

 (13.2 to 15.21) 
97.02 

 (96.83 to 97.21) 
3.54 

 (3.32 to 3.78) 
0.66 

 (0.63 to 0.69) 
35.67 

 (33.95 to 37.42) 
90.8 

 (90.48 to 91.11) 
26.44 

 (25.08 to 27.83) 
93.84 

 (93.56 to 94.1) 
3.88 

 (3.65 to 4.11) 
0.71 

 (0.69 to 0.73) 

 

Table 3 Sensitivity, specific and related analyses of M0, M1 and M2 to predict the risk of sepsis in the development and external validation datasets at selected eNEWS 
thresholds. 

PPV=Positive Predictive Value; NPV= Negative Predictive Value; LR+=Positive Likelihood Ratio; LR-=Negative Likelihood Ratio 
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Predicted 
probabilities 

cut-offs 

 
Development dataset (YH) External Validation dataset (NH) 

N+ Sensitivity% Specificity% PPV NPV LR+ LR- N+ Sensitivity% Specificity% PPV NPV LR+ LR- 

0.05 9558 
63.85 

 (61.43 to 66.21) 
75.04 

 (74.58 to 75.5) 
10.66 

 (10.05 to 11.3) 
97.8 

 (97.62 to 97.98) 
2.56 

 (2.45 to 2.67) 
0.48 

 (0.45 to 0.51) 
20864 

93.66 
 (92.73 to 94.51) 

43.84 
 (43.3 to 44.39) 

13.39 
 (12.93 to 13.86) 

98.68 
 (98.48 to 98.86) 

1.67 
 (1.65 to 1.69) 

0.14 
 (0.13 to 0.17) 

0.06 7337 
55.2 

 (52.72 to 57.66) 
81.13 

 (80.71 to 81.54) 
12.01 

 (11.27 to 12.77) 
97.49 

 (97.3 to 97.67) 
2.93 

 (2.78 to 3.07) 
0.55 

 (0.52 to 0.58) 
18160 

89.78 
 (88.63 to 90.84) 

51.89 
 (51.34 to 52.43) 

14.75 
 (14.23 to 15.27) 

98.21 
 (98 to 98.4) 

1.87 
 (1.84 to 1.9) 

0.2 
 (0.18 to 0.22) 

0.07 5753 
47.24 

 (44.77 to 49.73) 
85.39 

 (85.01 to 85.76) 
13.11 

 (12.24 to 14.01) 
97.2 

 (97.01 to 97.38) 
3.23 

 (3.05 to 3.43) 
0.62 

 (0.59 to 0.65) 
15471 

83.04 
 (81.64 to 84.37) 

59.62 
 (59.08 to 60.16) 

16.01 
 (15.44 to 16.6) 

97.43 
 (97.2 to 97.65) 

2.06 
 (2.01 to 2.1) 

0.28 
 (0.26 to 0.31) 

0.08 4639 
41.79 

 (39.36 to 44.26) 
88.39 

 (88.05 to 88.73) 
14.38 

 (13.38 to 15.42) 
97.02 

 (96.82 to 97.21) 
3.6 

 (3.37 to 3.84) 
0.66 

 (0.63 to 0.69) 
13331 

77.98 
 (76.44 to 79.45) 

65.8 
 (65.28 to 66.32) 

17.45 
 (16.81 to 18.1) 

96.99 
 (96.76 to 97.21) 

2.28 
 (2.23 to 2.34) 

0.33 
 (0.31 to 0.36) 

0.09 3834 
36.97 

 (34.59 to 39.39) 
90.52 

 (90.2 to 90.83) 
15.39 

 (14.26 to 16.57) 
96.85 

 (96.66 to 97.04) 
3.9 

 (3.63 to 4.19) 
0.7 

 (0.67 to 0.72) 
11477 

71.61 
 (69.95 to 73.22) 

70.97 
 (70.47 to 71.47) 

18.61 
 (17.9 to 19.34) 

96.42 
 (96.18 to 96.66) 

2.47 
 (2.4 to 2.54) 

0.4 
 (0.38 to 0.42) 

0.10 3243 
32.39 

 (30.1 to 34.75) 
92.03 

 (91.74 to 92.32) 
15.94 

 (14.7 to 17.25) 
96.69 

 (96.49 to 96.88) 
4.07 

 (3.75 to 4.4) 
0.73 

 (0.71 to 0.76) 
9956 

65.87 
 (64.14 to 67.58) 

75.17 
 (74.69 to 75.64) 

19.74 
 (18.96 to 20.53) 

95.96 
 (95.71 to 96.2) 

2.65 
 (2.57 to 2.74) 

0.45 
 (0.43 to 0.48) 

0.11 2677 
28.13 

 (25.94 to 30.41) 
93.49 

 (93.22 to 93.75) 
16.77 

 (15.38 to 18.24) 
96.54 

 (96.34 to 96.73) 
4.32 

 (3.96 to 4.72) 
0.77 

 (0.75 to 0.79) 
8644 

60.41 
 (58.63 to 62.17) 

78.74 
 (78.29 to 79.18) 

20.85 
 (19.99 to 21.72) 

95.55 
 (95.29 to 95.79) 

2.84 
 (2.74 to 2.94) 

0.5 
 (0.48 to 0.53) 

0.12 2265 
24.87 

 (22.77 to 27.07) 
94.54 

 (94.29 to 94.78) 
17.53 

 (15.98 to 19.16) 
96.43 

 (96.22 to 96.62) 
4.56 

 (4.14 to 5.01) 
0.79 

 (0.77 to 0.82) 
7540 

55.88 
 (54.08 to 57.68) 

81.75 
 (81.32 to 82.17) 

22.11 
 (21.18 to 23.06) 

95.24 
 (94.98 to 95.48) 

3.06 
 (2.94 to 3.18) 

0.54 
 (0.52 to 0.56) 

0.13 1913 
21.68 

 (19.68 to 23.78) 
95.42 

 (95.19 to 95.64) 
18.09 

 (16.39 to 19.89) 
96.31 

 (96.11 to 96.51) 
4.73 

 (4.26 to 5.26) 
0.82 

 (0.8 to 0.84) 
6556 

51.39 
 (49.58 to 53.2) 

84.39 
 (83.99 to 84.78) 

23.38 
 (22.36 to 24.43) 

94.93 
 (94.67 to 95.18) 

3.29 
 (3.15 to 3.44) 

0.58 
 (0.55 to 0.6) 

0.14 1644 
19.24 

 (17.33 to 21.26) 
96.09 

 (95.88 to 96.29) 
18.67 

 (16.82 to 20.64) 
96.23 

 (96.02 to 96.43) 
4.92 

 (4.39 to 5.51) 
0.84 

 (0.82 to 0.86) 
5776 

47.07 
 (45.26 to 48.88) 

86.41 
 (86.03 to 86.79) 

24.31 
 (23.21 to 25.44) 

94.63 
 (94.36 to 94.88) 

3.46 
 (3.31 to 3.63) 

0.61 
 (0.59 to 0.63) 

0.15 1407 
16.92 

 (15.11 to 18.85) 
96.68 

 (96.48 to 96.86) 
19.19 

 (17.16 to 21.35) 
96.15 

 (95.94 to 96.35) 
5.09 

 (4.5 to 5.76) 
0.86 

 (0.84 to 0.88) 
5086 

42.74 
 (40.96 to 44.54) 

88.16 
 (87.8 to 88.51) 

25.07 
 (23.88 to 26.28) 

94.32 
 (94.05 to 94.58) 

3.61 
 (3.43 to 3.8) 

0.65 
 (0.63 to 0.67) 

 

Table 4 Sensitivity, specific and related analyses of M2 to predict the risk of sepsis in the development and external validation datasets at range of predicted 
probabilities cut-offs 

N+= the number of positive cases; PPV=Positive Predictive Value; NPV= Negative Predictive Value; LR+=Positive Likelihood Ratio; LR-=Negative Likelihood Ratio 

Bold underline tentatively indicates a reasonable cut-off choice. 
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Discussion 

In this study we developed three computer-aided versions of eNEWS models which incorporated 

progressively more information. Model M0 uses eNEWS alone; Model M1 extends M0 with age and 

sex and Model M2 extends M1 with all the subcomponents of NEWS plus diastolic blood pressure. 

We found that M2 was the best model. This is unsurprising because it incorporates additional 

information about the patient’s age and other vital signs. The main advantages of these computer-

aided eNEWS models is that they are designed to incorporate data which are already available in the 

patient’s electronic health record and so place no additional data collection or computational 

burden on clinicians and they are readily automated. Nonetheless, we note that computer aided risk 

scores are not designed to replace clinical judgement. They are intended and designed to support, 

not undermine, clinical decision making and can be overridden by clinical concern (9,26). The 

hypothesis for our computer aided eNEWS scores is that they may enhance situational awareness of 

sepsis by processing information already available without impeding the workflow of clinical staff. 

Although our previously published computer aided risk of sepsis (CARS) score (27), which is based on 

physiological variables and blood results, offers more accuracy than cNEWS, it has two main 

disadvantages. (1) Up to a quarter of emergency medical admissions do not have a blood test 

undertaken within 24 hours of admission and (2) it takes some time, usually an hour or so, for blood 

results to be reported.  These disadvantages would delay automated assessment of sepsis risk. The 

advantage cNEWS is that it can trigger for sepsis screening as soon as the first set of physiological 

observations have been electronically recorded – which is usually within 30 minutes of admission for 

most patients. 

There are a number of important limitations in relation to our study. We identified sepsis based on a 

validated optimised algorithm using ICD-10 codes (17). Nonetheless the extent to which differences 

between this approach to identifying sepsis and more recent consensus clinical definitions of sepsis 

(4) uphold or undermine the evaluation of cNEWS merits further study (7,28). Although our cNEWS 

models performed well in external validation, the 95%CI of the external calibration slope, despite 

adjusting for baseline differences in prevalence of sepsis between our two hospitals, did not include 

the ideal value of 1 – which therefore indicates some differences between observed and predicted 

risk of sepsis in the external dataset. Further work is required to understand why this is the case (eg 

it may be attributable to different ways of recording sepsis between our two hospitals). We used the 

index eNEWS data in our cNEWS models, which reflect the “on-admission” risk of sepsis of the 

patient. Nonetheless, eNEWS is repeatedly updated for each patient according to local hospital 

protocols, and the extent to which changes in eNEWS over time reflect changes in sepsis risk that 

need to be incorporated in our cNEWS models needs further study. Since cNEWS is based on NEWS 

and escalation protocols in hospitals are based on NEWS, work is required to determine how to 

successfully blend the risk estimates into existing escalation policies. For example, we could start by 

using a cut-off that is similar to the current threshold of NEWS 5+ (15,16) but note that this will 

increase the number of patients that will trigger for screening. An updated version of NEWS, known 

as NEWS2, has now been released (29)  which includes a second oxygen scale for patients with 

proven type 2 respiratory failure and the inclusion of confusion (C) in the AVPU scale for conscious 

level (“alert, verbal, pain, unrespon-sive” scale becomes ACVPU). The extent to which these changes 

to NEWS enhance our cNEWS models requires further investiga-tion. So, a crucial next phase of this 

work is to field test cNEWS by carefully engineering it to build upon the current use of NEWS in 

routine clinical practice (30,31) to see if it does support the earlier detection and treatment of sepsis 

in emergency medical patients without unintended adverse consequences. 



14 
 

Conclusions 

From the three cNEWS models, Model M2 is the most accurate. Since it places no additional data 

collection burden on clinicians and can be automated, it may now be carefully introduced and 

evaluated in hospitals with sufficient informatics infrastructure. 
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