
Noise estimation in cardiac x-ray imaging: a machine

vision approach

Stephen M. Kengyelicsa,∗, Amber J. Gislason-Leea, Claire Keeblea, Derek R.
Mageeb, Andrew G. Daviesa

aDivision of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine,

Worsley Building, University of Leeds, LS2 9JT, United Kingdom
bSchool of Computing, EC Stoner Building, University of Leeds, LS2 9JT, United Kingdom

Abstract

We propose a method to automatically parameterize noise in cardiac x-ray image
sequences. The aim was to provide context-sensitive imaging information for
use in regulating dose control feedback systems that relates to the experience
of human observers. The algorithm locates and measures noise contained in
areas of approximately equal signal level. A single noise metric is derived from
the dominant noise components based on their magnitude and spatial location
in relation to clinically relevant structures. The output of the algorithm was
compared to noise and clinical acceptability ratings from 28 observers viewing
40 different cardiac x-ray imaging sequences. Results show good agreement and
that the algorithm has the potential to augment existing control strategies to
deliver x-ray dose to the patient on an individual basis.
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1. Introduction

In this paper, we present a machine vision algorithm to estimate the noise
level in real-time cardiac x-ray image sequences. The algorithm has the potential
to augment current x-ray dose control strategies to improve the delivery of x-ray
images of sufficient quality to accomplish the clinical task and at an x-ray dose5

to the patient that is more closely matched to the individual procedure.
Cardiovascular Disease (CVD) remains the main cause of death, claiming

an estimated 7.4 million lives worldwide in 2012 (World Health Organisation,
2012). Percutaneous coronary intervention (PCI) treats cardiovascular disease
that, results in the narrowing of coronary arteries, by improving blood flow to10

the muscles of the heart. It is a minimally invasive technique that relies on
the use of x-ray imaging to capture and display real-time dynamic sequences of
coronary arteries (Grech, 2003a,b).
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PCI procedures may have a number of stages. Initially, clinicians inspect
real-time x-ray images of the coronary arteries that are made opaque by the15

introduction of an iodine-based contrast agent into the vessel lumen. If any
significant narrowing is found then an angioplasty may be performed, where a
small balloon is positioned in the vessel lumen at the site of the occlusion and
expanded to widen it. Often this is followed by deploying a small expandable
metal mesh, called a stent, to provide support to the blood vessel and maintain20

improved blood flow to the heart muscle.
The use of ionizing radiation during these procedures may be a hazard to

both patient and staff. Though lowering the radiation dose would be beneficial,
any reduction also results in lower quality images that may ultimately compro-
mise patient care. PCI procedures can result in the delivery of high patient25

dose in comparison with other medical x-ray imaging techniques, due to their
complexity, duration, and the need to produce high-quality images (Eisenberg
et al., 2011; Z̆ontar et al., 2010; Gislason-Lee et al., 2013). The principle regu-
lating x-ray dose to patients is to reduce it to a level that is as low as reasonably
achievable, the so-called ALARA principle, such that the radiation dose is suf-30

ficient to achieve the clinical aim. In practice, this level is difficult to establish
on an individual basis, as patients differ in body habitus and clinical needs that
require the use of a variety of system geometries and x-ray generator settings.
In addition, the trade-off between x-ray dose and image quality is dependent on
the operating characteristics of the equipment employed.35

Currently, the majority of systems regulate their radiation output by seeking
to maintain a constant average output signal from the x-ray detector, as illus-
trated in Fig. 1. Any variations in the imaging field, resulting from a change
of view, are compensated for by altering one of the system’s variables such as
the x-ray tube voltage (kVp), current (mA) or time (ms). The average output40

from the detector is maintained unless either the system reaches some statutory
radiation protection limit, or has insufficient capacity to do so, for example,
when imaging a large patient, or employing a steep projection angle. In either
case, any further attenuation of the x-ray beam will not result in an increase
in the output of the x-ray generator and image noise will increase. This type45

of automatic dose rate control (ADRC) is implemented in a number of different
ways depending on the x-ray equipment vendor and the system mode employed
(Lin, 2007, 2009; Lin et al., 2012).

Referring to Fig. 1, for the system used in this study the requested output
signal (ROS) is predefined by the vendor and depends on the mode of operation50

employed. There is little published information on how these baseline prede-
fined levels are established. A recent study demonstrated that it is possible to
reduce patient dose by over 30% without affecting the image quality perceived
by clinicians viewing angiography image sequences (Gislason-Lee et al., 2015).
However, the reduction was not the same for all patients, with a margin of55

±15% and only a limited number of cases were considered. This implies there
is no single ROS figure that could satisfy a reduction of dose to the patient on
a individual level.

In a properly designed x-ray system the predominant source of image noise is
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quantum noise. For dynamic real-time imaging quantum noise is both spatially60

and temporally distributed and the quantum noise power is proportional to the
absorbed incident photon fluence and as such does not have a constant value
across a typical clinical image, where the attenuation of the patient may change
considerably. Therefore, no one single estimate will adequately represent the
noise within a clinical image as it is signal-dependent. Most noise measurements65

in x-ray imaging have focussed on measuring the performance of x-ray image
detectors and are based on the measurement of the noise power spectrum (NPS)
of flat-field images, that are not modulated by spatially varying signals. These
methods are sensitive to trends, or signal content, in the data and require large
ensemble averages of noise samples acquired under the same conditions and,70

therefore, are not suitable to estimating noise across a single clinical image field
Kengyelics et al. (1998b,a); Launders et al. (1998); Dobbins III et al. (2006).

In the domain of image processing there have been a large number of noise
estimation algorithms developed. The majority of these include one or more
common steps that attempt to separate the signal from noise and determine75

a functional relationship between mean signal and variance. Common stages
include the location of homogeneous areas within an image with mean back-
grounds that are approximately constant (Salmeri et al., 2001; Shin et al., 2005;
Abramov et al., 2008; Uss et al., 2011; Olsen, 1993). In several methods high
gradients are detected and excluded from any further analysis. The calculation80

of variance in these areas is assumed to be an estimate of the noise. Image
filtering is used in other methods in an attempt to separate the signal from
the background (Liévin et al., 2002; Corner et al., 2003; Russo, 2007; Yang and
Tai, 2010; Liu, 2009). Some exploit the difference in spatial scale of the signal
and noise in images. Multi-resolution wavelet-based methods generally assume85

that signal and noise occupy different scales and can be separated into distinct
sub-bands (Donoho, 1995; Starck and Murtagh, 1998; De Stefano et al., 2004;
Hashemi and Beheshti, 2010). As the separation of signal and noise is often
not ideal the distribution of local noise samples will contain outliers. Therefore,
some use robust statistical methods to compute the final noise estimates (Al-90

parone et al., 2009; Aja-Fernández et al., 2009; Marais and Steyn, 2009; Ghazal
and Amer, 2011). More recently, algorithms have been proposed using principal
component analysis (Pyatykh et al., 2013; Pyatykh and Hesser, 2014) and a
method that uses arbitrarily large patches of heterogeneous data extracted at
random from the image (Azzari and Foi, 2014). In the domain of medical x-ray95

imaging, where noise is assumed to be heteroscedastic and signal dependent,
there have been similar methods developed to separate an estimate of the sig-
nal from noise by filtering and the application of robust statistical estimators
(Hensel et al., 2006, 2007; Gravel et al., 2004) and to employ wavelet techniques
to mammographic images (Salmeri et al., 2008; Mencattini et al., 2008).100

Previous attempts to quantify noise in medical images have demonstrated
an ability to measure signal dependent noise levels by generating an estimate
of the signal by filtering and calculating variance for image regions that have
different ranges of mean background level, after excluding high gradient edges
from the analysis (Hensel et al., 2006, 2007; Gravel et al., 2004). This was105
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performed mainly on static images, and the spatial location of the noise was
not considered. Clearly when assessed by a human the spatial location within
an image is important—high levels of noise around the coronary arteries in a
cardiac angiogram would be important, whereas high levels of noise in an area
below the diaphragm covered by the spine where there are no arteries of interest110

has no detriment to the clinical utility of the image.
We propose an approach that considers noise levels in the context of the

regions that surround clinically important structures within an image, which in
this case were the main coronary arteries. This approach can provide context
to the noise measurement to the images. Our method is also designed to work115

in real time on dynamic image sequences, allowing a changing situation in time
to be reacted to for instance as part of a dose control loop. We compared the
output of the algorithm with human observer performance and showed that
it provides potentially useful information that may be used to augment the
existing dose control system in modern cardiac x-ray imaging systems. While120

a comprehensive quantitative evaluation and validation of the processing steps
applied in our proposed method is desirable, this would require a ground-truth,
such as a series of clinical images of a subject obtained with different amounts of
noise and a detailed knowledge of the underlying anatomical structures. These
are not practical to obtain, as it would require multiple x-ray exposures that125

is hazardous to human health and unethical to perform. Even then it would
not be possible to entirely separate quantum noise components from anatomical
structure components. Therefore, we tested the approach directly using expert
observers operation in an environment that is as close to the clinical setting as
practicable and using a threshold contrast detail detectability phantom.130

2. Methods

2.1. Description of algorithm

A machine vision algorithm was developed in MATLAB (MATLAB, 2014).
The major steps of the algorithm are shown in Table (1) and described below
for a single image frame.135

1. Extract active image region Ia. The raw data image frames contained dark
regions at their periphery produced by the x-ray shuttering employed to
limit the irradiation of the patient to areas of clinical interest. There are no
useful data in these regions so they were removed before further processing.
The shadows of the vertical shutters were identified by averaging pixel140

values in the vertical direction to form a profile that has a length equal to
the width of the image. The profile was smoothed, differentiated, and a
threshold was applied to identify the edges of the shutters. The two highest
gradients from the profile are generally associated with the shutter edges.
Occasionally, this is not true due to structures contained in the image area145

that also produce high gradients, such as surgical instruments or devices.
However, the shutters can be reliably identified as they work as a pair,
closing from the periphery of an image to the centre, so spurious edges may
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Figure 1: Cardiac x-ray imaging system: Feedback control diagram.

easily be identified. Identification of the horizontal shutters was performed
in the same way but in the orthogonal direction. Next the active image150

area Ia containing the clinically relevant informations was extracted.

2. Estimate image signal Ie from Ia. A median filter with a kernel size of 5
by 5 was applied to Ia to estimate the signal content Ie. The size of the
filter was chosen to be the same as Gravel et al. (2004). If the size is too
small then the estimate of the signal follows the original too closely and155

the final estimate of the noise will be underestimated. If it is too large
then the influence of edges is increased in areas remote from their location
and corrupt the estimate of the local mean. In either case, the separation
of signal and noise will not be perfect.

3. Generate mask Mg for high gradient areas in Ie. Areas containing high-160

gradient features were not included in the analysis of noise because it is
difficult to estimate the mean signal in their vicinity. Edges were located
by applying a gradient filter to Ie. A mask was constructed from Ie by
thresholding the output of the gradient filter such that only the lowest
eighth of all the gradients returned were not masked. In this way high-165

gradient features such as the edges of iodine-filled arteries, or catheters,
and other surgical device structures could be excluded from further anal-
ysis.

4. Quantize Ia into k levels giving Ik. The pixel values in Ia were mapped
uniformly into k levels into an image Ik essentially quantizing the original170
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Table 1: Noise estimation: List of algorithm steps.

Step Brief Description

1 Extract active image region Ia

2 Estimate image signal Ie from Ia

3 Generate mask Mg for high gradient areas in Ie

4 Quantize Ia into k levels giving Ik

5 Generate k region masks Mk from Ik from largest connected area at each level

6 Generate noise image In = Ia − Ie

7 Calculate noise Nk from In for each region Mk excluding Mg.

8 Aggregate Nk into a single noise measure.

image to produce a new image whose values were the indices of the range
of pixel values contained in the original. For the purposes of this study k
was chosen to be 4, but could be higher if a more detail spatial distribution
of variance is required. The images were had 8-bit bit depth.

5. Generate k region masks Mk from Ik from the largest connected area at175

each level. A set of binary masks Mk were generated from the quantized
image Ik for each level k. Each mask was produced from the largest
connected area at each level as this was, in practice, sufficient to cover the
majority of the image area across k levels.

6. Generate noise image In = Ia - Ie. The influence of background structures180

was suppressed by subtracting the signal estimate image from the original
image.

7. Calculate noise Nk from In for each region Mk, excluding Mg. For each
slice level k the noise was estimated by calculating the variance in In
for the region delineated by Mk, but excluding the high-gradient regions185

defined by Mg.

8. Aggregate Nk to a single metric. The regions represented by Mk that
overlay the major iodine-filled coronary arteries are located by comparing
the coordinates of the points contained within each boundary to those of
the center-lines of the vessels. The center-lines of the vessels are supplied190

from an algorithm developed in a previous study (Kengyelics et al., 2015).
If one or more of the Mk boundaries overlays the coronaries a mean score
is calculated from the corresponding values of Nk and scaled to the pro-
portion of total area occupied and then returned. In the case of a sequence
of images the score is averaged for the previous 10 frames. Therefore, the195

algorithm gives an aggregate noise measurement in regions surrounding
the location of the main coronary arteries, which are the structures of
interest in the clinical image.
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2.2. Clinical image sequence acquisitions

Twenty clinical PCI image sequences were obtained from a modern flat-200

panel x-ray imaging system operating in the Leeds General Infirmary, United
Kingdom, (Allura Xper FD10, Philips Healthcare). A propriety data capture
device installed by the manufacturer was used to acquire image data prior to
the application of any complex non-linear image processing algorithms during
routine PCI procedures. The effect of specific image processing algorithms were205

not considered in this study. The operation of such algorithms vary considerably
between equipment manufactures and even amongst applications settings on
single systems. The only processing applied to the data prior to capture was
linear scaling and a dynamic range compression look-up table and, therefore,
the results of this study are generalizable.210

Each test sequence contained approximately 30-50 image frames of 1024 ×

1024 pixels with 16-bit depth, of which 10-bits are used. For this study the
images were converted to 8-bit images. The patient images did not contain any
personal information and their use for this study was approved by the National
Health Service Research Ethics Committee.215

Clinical images were selected from different patient examinations, and com-
prised 10 left coronary artery (LCA) and 10 right coronary artery (RCA) se-
quences, acquired at 15 frames per second, using the digital-acquisition (cine)
mode and 15 cm field size. The image sequences chosen did not contain any
additional catheters, guide wires or other surgical devices other than the main220

catheter used to introduce the iodine contrast agent. Summary information for
the image sequences is shown in Table 2.

Table 2: Images Sequence Summary Information

Minimum Maximum Mean
Standard

Deviation

X-ray Tube
Voltage(kVp)

70.1 121.4 83.6 12.1

X-ray Tube
Current(mA)

588.8 921.9 816.8 96.2

X-ray Tube
Pulsewidth(mS)

5.2 9.9 7.1 1.1

Angulation (Degrees) -27.5 28.1 5.4 19.3

Rotation (Degrees) -34.1 35.8 -8.7 24.0

Source-to-Detector
Distance(cm)

103.1 121.0 113.6 4.7

Table Height (cm) 89.8 105.2 98.7 3.2
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2.3. Test image synthesis

Further test images were generated from the originals by adding noise to
simulate acquiring a sequence at a lower x-ray dose. Dose reduction levels were225

randomly generated between 20–75%. One test sequence was generated per
original, with a randomly allocated dose reduction factor, making a total of 40
sequences. The methodology used has been previously validated and reported
by Gislason-Lee et al. (2015).

2.4. Observer study230

Twenty-eight observers viewed the images, graded their clinical acceptability,
and rated their level of noise. Images were viewed on a high-quality medical-
grade viewing monitor (RadiForce RX340, EIZO Corporation, Ishikawa, Japan).
The monitor was DICOM-calibrated to proved a perceptually linear response.
The observers comprised various professions having different levels of experience235

viewing cardic PCI image sequences as summarised in Table 3. The sequences
were viewed at 15 frames per second using 8-bit depth presentation. The ob-
servers were asked to view each image sequence and rate the level of noise on
a continuous scale displayed on the bottom of the viewing area, graded from
negligible to very noisy produced a value between zero and one. Observers were240

also asked to decide if the image sequence was satisfactory or unsatisfactory to
be able to determine the presence and severity of stenotic lesions. Each of the
two types of questions was asked independently and sequences were presented
at random i.e. the two types of question were made by separate presentations
of the same sequence that were not presented sequentially.245

2.5. Threshold Contrast Detail Detectability

Images were acquired of a commercially available test object TO10 (Leeds
Test Objects, Boroughbridge, North Yorkshire) as shown in Fig. 2. The test
object was imaged at 75 kVp, with 2.5 mm Cu additional filtration, and the
mAs adjusted to give a range of detector entrance surface doses, viz. 16, 36, 54,250

85 and 101 nGy/frame. The scoring of the test object was performed following
the methods of Launders et al. (1995). Briefly, three images at each dose were
viewed by three experienced observers on a medical grade computer monitor in
dimmed ambient lighting conditions. The number of disks visible in each obser-
vation were converted into contrast thresholds, and then averaged to produce255

a threshold per disk size for each dose. We compared the averaged detection
index HT (A) for rows 4–7 (disk radii of 1.1, 0.9, 0.8 and 0.6 mm), to the noise
estimate from the new algorithm. HT (A) is calculated according to 1/CT (A),
where CT is the threshold contrast and A the area of the detail.

3. Results and discussion260

Some of the following results are provided to illustrate the output of the
algorithm, but are generally applicable for all of the image sequences examined
in this study unless otherwise stated.
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Figure 2: Threshold Contrast Detail Detectability Test Object.

Figure 3 shows a single frame from a PCI LCA sequence with the coronary
arteries filled with contrast medium, together with a color-coded variance map265

calculated by the algorithm. The variance map includes the outline of the mask
used to exclude features with high gradients. The same image frame is shown
at two further simulated dose levels decreasing from left to right. Note how
the visual impression of noise is reflected in the corresponding variance map.
This figure illustrates that the noise contained in a typical PCI image frame270

may be subdivided into a small finite number of regions that give good coverage
across the image. For the purposes of illustration the figure shows all the regions
calculated within a specified signal range and not just the largest area. Figure 4
shows an example of choosing just the largest areas calculated by the algorithm
at each of the four output levels.275

Figure 5 shows the calculated variance for each of the four areas highlighted
in Figure 4 as a function of percentage dose reduction. Note that there is over
an order of magnitude difference between the lowest and highest variance values.

In Figure 6 variance is plotted as a function of time indicated by the frame
number. The estimate of variance appears relatively stable with time despite280

the dynamic content of the image, apart from for level 1. This is due to the
relatively small area of the corresponding variance map and its location that is
associated with contrast media escaping from the coronary artery ostia into the
aorta. This process is not stable with time as reflected in the variance map at
this signal level. The figure demonstrates that the algorithm is insensitive to285
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Figure 3: PCI LCA Image frame: (left to right) 0, 25, 50% dose reduction (top) and
corresponding variance maps below.

Figure 4: PCI LCA image frame showing location of variance map overlays (colors denote
variance as in Figure 2).
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Table 3: Observer Summary Statistics

Profession
Number of

Observers

Experience

Range (Years)
Experience

Mean (Years)

Interventional Cardiologist 7 5-37 16.4

Cardiologist Registrar 5 1-7 3.4

Radiographer 8 4-30 15.1

Medical Physicist 6 1-30 16.3

Nurse 1 9 9

Other 1 1 1

the inflow and outflow of the contrast media in the vessels and the motion of
the heart for levels 2–4.

Figure 7 shows the percentage area of each of the four output levels for the
image sequence shown in Figure 6. Level 1 is the smallest of the areas, so despite
its temporal instability and high variance compared to the other levels, it has290

little impact on the overall image. The variation in the percentage area at all
levels reflects the change of size of the variance maps due to patient movement
and the inflow and outflow of the contrast media.

Figure 8 shows the observed mean noise rating of the 28 observers for each
image sequence against the value returned from the algorithm. The sequences295

that were judged to be clinically inadequate by more than 50% of the observers
are indicated as unacceptable. The figure demonstrates the importance of noise
for an observer judging the clinically acceptable image as might be expected. In
addition, by setting a suitable threshold for the measured variance metric there
is a reasonable separation of the two classes of acceptable and unacceptable300

images. Further work is required to establish a suitable threshold that would be
applicable to a broader population of patients and range of examinations than
was possible in this limited study.

Figure 9 shows the detection index Ht(A) against the measured variance
indicating that observer performance increases with decreasing variance. In305

other words, observer performance and measured noise are improved with an
increase in detector dose. This confirms the ability of the algorithm to reflect a
change in observer performance with respect to a detection task.

4. Conclusion

We have developed an automatic machine vision algorithm to measure noise310

in PCI cardiac image sequences. The measurement algorithm may be useful in
an ADRC scheme that monitors noise that is significant with respect to how
human observers rate the clinical acceptability of images and seeks to reduce it.
It may also be useful in a post acquisition quality assurance scheme to analyse
image sequences to ensure inter and intra system consistency. The overall aim315
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Figure 5: Variance vs. percentage dose reduction for the PCI LCA image frame shown in
Figure 4.

Figure 6: Variance vs. frame number (15 frames per second, No dose reduction).

12



Figure 7: Percentage area vs. frame number (15 frames per second)

Figure 8: Observed mean noise rating vs. measured variance. 28 observers, 40 images.
Unacceptability based on greater than 50% of observers agreeing.
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Figure 9: Detection index vs measured variance. Three observers. Text labels denote
entrance surface dose to the detector.

was to provide context-sensitive imaging information for use in the dose control
feedback system that relates to observer experience. Noise is not the only im-
portant aspect of image quality for cardiac imaging. Contrast, spatio-temporal
resolution properties, and the application of specialist image processing are also
critically important. We selected noise for this investigation, as the x-ray imag-320

ing system has a convenient means of influencing it by setting a requested output
signal (ROS) for the x-ray detector. The results show good correspondence be-
tween average observer noise rating and the level of noise measured in key areas
within the image by the machine algorithm. Low levels of measured noise were
predictive of improved observer performance in a detection task. The study was325

limited to image sequences that did not contain any additional catheters, guide
wires or other surgical devices other than the main catheter used to introduce
the iodine contrast agent.

Future work will focus on excluding these structures from the variance mea-
surement, on the implementation of the algorithm in a practical dose control330

system, and establishing suitable image quality thresholds across a much wider
population than was possible in this study.
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