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Abstract  

The production of a number of methyl esters such as methyl decanoate (MeDC), methyl 

salicylate (MeSC), and methyl benzoate (MeBZ) by esterification reactions of several 

carboxylic acids such as decanoic acid (DeC), salicylic acid (ScA), and benzoic acid (BeZ) 

with methanol, respectively, through a reactive distillation system (batch or continuous) is 

cost-intensive and operationally challenging operation. It is difficult to keep the reaction 

species together in the reaction section due to wide boiling point differences between the 

reactants. Methanol (in those esterification processes) having the lowest boiling temperature 

in the reaction mixture can separate easily from carboxylic acid as the distillation progresses, 

resulting in a severe drop in the reaction conversion ratio of the acid employing 

batch/continuous distillation system. In order to overcome this type of challenge and to 

increase the overall reaction conversion, a novel split-reflux conventional batch reactive 

distillation configuration (sr-BRD) is proposed/studied in detail in this investigation.  

The optimal performance of BRD/ sr-BRD column is determined in terms of maximum 

achievable conversion of acids, and highest concentration of the esters produced for each 

chemical reaction scheme. The results for given separation tasks are compared with those 

obtained using conventional batch distillation (BRD) process. The optimization results 

clearly show that the sr-BRD process significantly improves the process efficiency, the 

conversion ratio of acid, and the product purity of methyl esters compared to that obtained via 

the BRD process. 
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1. Introduction  

The alkyl esters produced from the esterification reactions are commonly used in many 

industrial such as resin cleaners, heavy duty hand cleaners, gear and rolling oils, plasticizers 

in polymer industries, flavors, plastics, green solvents, perfumes, and pharmaceutical and 

food industries (Lamba et al., 2018). Reactive distillation technology is becoming more 

commonly used in industry as a way to increase productivity, decrease energy demand, and 

total capital cost. The operation of batch column may be more flexible and appropriate than 

continuous distillation column for small scale production, high added value specialty and fine 

chemicals, and provides some benefits such as lower investment cost, easier start-up and 

shutdown phase. The combination of chemical reaction and distillation in the single shell 

(known as batch reactive distillation system) would be more suitable when one of the 

products being the less volatile component in the reaction mixture. It allows integration of the 

benefit of both reactive distillation and batch operation, which can lead to enhance the 

conversion rate of acid.  

The esterification reactions of decanoic, and salicylic acids with methanol to synthesize 

methyl alkyl esters are common practices in the chemical and petrochemical industries. For 

instance, the production of methyl decanoate by the esterification reaction of decanoic acid 

and methanol employing a continuous reactive distillation process was considered only by 

few scholars (Steinigeweg and Gmehling, 2003; Machado et al., 2011).  Recently, Lamba et 

al.
 
(2018) produced methyl decanoate in a small batch reactor through the esterification 

reaction of decanoic acid with methanol on solid acid catalyst (Amberlyst-15) utilizing Eley-

Rideal (ER) model. More recently, the formation of methyl decanoate was investigated in 

detail employing different kinds of batch reactive configurations in our recent work (Aqar et 

al., 2017a; 2017c; 2018a). The esterification process of salicylic acid (ScA) with methanol 

(MeOH) producing methyl salicylate (MeSC) was conducted in the past by a number of 
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scholars (Bochner et al., 1965; Chandavasu, 1997; D’Souza and Nagaraju, 2007; and Shi et 

al., 2010). Bochner et al. (1965) studied experimentally the esterification of salicylic acid 

with methanol over an ion exchange resin-catalyzed using a vapor phase chromatography. 

They developed a Langmuir-Hinshelwood model for a kinetic expression. Chandavasu 

(1997) developed a model for the esterification of salicylic acid with methanol in the 

presence of a homogeneous catalyst using a coupling of the pervaporation unit with the 

chemical reactor. More recently, Pečar and Goršek (2018) studied the kinetic esterification of 

benzoic acid with methanol to synthesize methyl benzoate using two different sorts of acid 

catalysts (S1 and S3) in batch reactor system. They found out that a maximum conversion 

level of benzoic acid of 60% was achieved using the catalyst S1 compared to that obtained 

using the catalyst S3.  

The paper studies a new split-reflux strategy in batch reactive distillation (sr-BRD) for the 

production of different methyl esters (MeDC, MeSC, and MeBZ). The suggested strategy 

recycles methanol back to the carboxylic acid with which it reacts to improve the reaction 

conversion and thus the product purity. Also, in this work, the performance of a novel split-

reflux batch reactive distillation process (sr-BRD) has been compared with the regular batch 

reactive distillation process (BRD) with excess and equimolar feed cases in terms of 

maximum product composition, and the reaction conversion using a rigorous model based on 

unsteady state mass and energy balances built in gPROMS (general Process Modeling 

System, 2017) software.  

Note, Aqar et al. (2016b) studied two other novel batch reactive configurations namely 

integrated conventional batch distillation (i-CBD) and integrated semi-batch distillation (i-

SBD) columns. Although the comparison of the proposed sr-BRD configuration with i-CBD 

and i-SBD configurations are beyond the scope of this study, it will be worth noting the 

qualitative difference between these configurations. In i-CBD, the alcohol (methanol) being 

javascript:void(0)
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recycled will have cumulative effect due to the accumulator tank while in sr-BRD it will not 

have such effect. Therefore, the quality (i.e. composition) of alcohol being recycled in both 

cases will be different and therefore will have impact on reaction and separation. In i-SBD, 

alcohol together with other species are accumulated over a period of time and then alcohol is 

separated and is recycled to the next batch. Therefore, the recycle of alcohol is discrete and 

not continuous as in the case of i-CBD and i-SBD and therefore will have impact on reaction 

and separation. 

 In this work, three different case studies (MeDC, MeSC, and MeBZ) by esterification 

reactions of several carboxylic acids of decanoic acid (DeC), salicylic acid (ScA), and 

benzoic acid (BeZ) with methanol) are considered to demonstrate the applicability of 

proposed batch configuration (sr-BRD). However, to best of authors’ knowledge, the use of 

different types of batch reactive distillation columns for the productions of both MeSC, and 

MeBZ is non-existent. Both the total quantity in the still and the product concentration are 

utilized as the operating constraints. Reflux ratio for BRD mode and both reflux ratio and 

reflux side rate for sr-BRD mode are treated as optimization variables and are considered as 

piece-wise constant parameters. The dynamic optimization problem is converted to a 

nonlinear programming (NLP) problem, which is solved by using Control Vector 

Parameterization (CVP) method using successive quadratic programming (SQP) technique 

within gPROMS software (more details about this technique can be found in Mujtaba, 2004).  

2. Column Configuration and Process Modelling 

2.1 Conventional batch distillation process (BRD)  

The model equations, in terms of mass and energy balances, thermodynamics and chemical 

kinetics, for BRD, and sr- BRD (Figure 1), results in a system of differential and differential 

algebraic equations (DAEs). Note, that reaction occurs in the condenser drum, in all column 

plates and in the reboiler tank for both column configurations. The model is an equality 
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constraint. The BRD column (Figure 1a) model is same as that presented in Aqar et al 

(2016a, 2017b) except that the reaction kinetics and phase equilibria for both DeC, ScA, and 

BeZ esterification reactions. Different levels of simplifying assumptions are typically made 

for the process models such as the vapour holdups and column hydraulics are negligible, and 

ideal vapour liquid equilibrium is assumed. Also, constant operating pressure and constant 

molar overflow are assumed.  

2.2 The split-reflux batch reactive distillation system (sr-BRD) 

The reflux rate from the condenser drum is split into two parts (reflux rate 1 and 2) in this 

batch system, where the flow rate 1 refluxed back into the first stage of the distillation 

column (similar to BRD), and the flow rate 2 goes into the pot drum as the process continues 

(Figure 1b). The reason for splitting the reflux and feeding into the pot drum will be clearer in 

section 4.1.  The process model of sr-BRD mode is most similar to the BRD mode but with 

the extra equations accounting for reflux 2. Note, the detailed dynamic models for both 

(BRD, sr-BRD) configurations are presented in Appendix A. 



6 
 

(CBD)

(a)

Condenser

Reflux Rate

Pot Tank

Distillate Tank

Internal  

Trays

Condenser

Heat Duty

Pot Tank

Distillate Tank

Internal  

Trays

Reflux Rate 1

R
ef

lu
x

 R
a

te
 2

(sr-BRD)

(b)

Heat Duty

Reflux DrumReflux Drum

 
Figure 1: Schematic diagram of two batch configurations: (a) conventional (BRD) and (b) 

split-reflux conventional batch distillation systems (sr-BRD). 

 

2.3 Reaction kinetics and phase equilibria (VLE)  

Three different chemical reactions are studied in this work as summarized in Table 1. Boiling 

points of each chemical component are shown in brackets. 

Table 1: Chemical Reactions together with the Boiling Points for Three Reaction Schemes 

Methyl Decanoate (MeDC) System 

DeC (543.15) + MeOH (337.85) <=> MeDC (505.13) + H2O (373.15) 

C.O.          4                         1                               3                      2 

Methyl Salicylate (MeSC) System 

ScA (529.00) + MeOH (337.85) <=> MeSC (493.65) + H2O (373.15) 

C.O.          4                         1                               3                      2 

(BRD) 
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Methyl Benzoate (MeBZ) System 

BeZ (523.00) + MeOH (337.85) <=> MeBZ (472.65) + H2O (373.15) 

C.O.          4                         1                              3                      2 

*C.O. = Component order in each reaction in terms of boiling points   

2.3.1 The esterification reaction of decanoic acid  

Steinigeweg and Gmehling (2003) explored experimentally the modified kinetic model 

(LHHW) for the formation and hydrolysis of methyl decanoate (MeDC). MeDC was formed 

due to chemical reaction between decanoic acid with methanol over the heterogeneous 

catalyst (Amberlyst-15) via the reversible reaction scheme is expressed by in Equation 1. 

Note, the vapour liquid equilibrium (VLE) model for the MeDC system were taken from our 

previous work (Aqar et al., 2017a). 

- rDeC= mcat { 
3.1819 ×10

6
 exp (

-72230
RT

) aDeC aMeOH 

(2.766 aH2O)
2

- 
3.5505 ×10

5
 exp (

-71900
RT

) aMeDC

(2.766 a
H2O

)
} (1) 

 

2.3.2 The esterification reaction of salicylic acid  

The reversible reaction system for esterification of salicylic acid (ScA) and methanol 

(MeOH) to produce methyl salicylate (MeSC) and water (H2O) is explored in detail by 

Chandavasu (1997). Kinetic equation of catalytic synthesis of MeSC catalyzed by the cation 

exchange resin (Dowex 50) catalyst is expressed by Equation (2), which is taken from 

(Chandavasu, 1997). 

- rScA=    mcat × 2.67×10
19

exp (
-16248.5

T
) {CScA CMeOH - 36.85×10

10
 exp (

-7797.7

T
) CMeSC CH2O }  (2) 

2.3.3 The esterification reaction of benzoic acid  

The reversible reaction system for esterification of benzoic acid (BeZ) and methanol (MeOH) 

to form methyl benzoate (MeBZ) and water (H2O) is investigated by Pečar and Goršek 
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(2018). Kinetic modeling of catalytic synthesis of MeBZ catalyzed by functionalized silica 

gel catalyst is expressed by Equation (3), which is taken from (Pečar and Goršek, 2018). 

- rBeZ =  mcat {6.00×10
5
 exp (

-5400.53

T
) × CBeZ }                                                                    (3) 

Note, all the kinetic models are catalyst loading (mcat) based. For both MeSC and MeBZ 

systems, the binary interaction parameters of the NRTL method were taken from the data 

bank of Aspen Plus (Table B.1) and the Antoine constants (Table B.2) were taken from Yaws 

(1997) in Appendix B. It was stated in Ullmann’s Encyclopedia (2014) that a zeotrope was 

formed in binary mixture (methyl benzoate + water) for the esterification reaction of benzoic 

acid and methanol. However, according to DeGarmo et al. (1992), the solubility of acids in 

the mixture and the formation of azeotrope in reactive distillation column is commonly 

overcome due to its capability to increase the conversion ratio of carboxylic acids by 

removing the products instantaneously from the reactive zone, and by eliminating the 

azeotrope forming elements in reaction (DeGarmo et al., 1992). Perhaps, this could be the 

main reason why the solubility between the reactants and the azeotrope formation were not 

taken into account by a number of scholars in their study (Chandavasu, 1997; Steinigeweg 

and Gmehling, 2003; Machado et al., 2011; and Pečar and Goršek, 2018). Based on these 

observations, we have decided not to consider solubility of acids and azeotropes in this work. 

3. Dynamic optimization problem framework  

In the present study, the performance of both column systems (BRD, sr-BRD) is measured in 

terms of minimum batch time for a given total amount in the reboiler and the desired product 

composition. The optimization problems can be described as follows: 

3.1 Minimum Batch Time Problem  

Mathematically, the optimization problem (OP) can be represented as follows: 

OP                  Min         tF    

                       RBRD(t)                                              (For BRD)    
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                             Or                                                                                                                (4)   

                      Rsr-BRD(t),  LS                                     (For sr-BRD)     

S. t. : 

f (t, 
𝑑𝑥

𝑑𝑡
, x, u, v) = 0;     [0 tF]            (DAE process model, inequality constraints) 

BPr = BPr
*  + ɛ                                                             (Inequality Constraints)    

xPr = xPr
*   + ɛ                                                             (Inequality Constraints)    

Linear bound on RBRD (t), Rsr-BRD (t), and LS (t)      (Inequality constraints) 

BPr, and xPr are the quantity of bottom product and concentration of ester product at final 

batch time (tF) in the pot drum, (denotes that the BPr
*  and xPr

*  are specified). RBRD and Rsr-BRD 

are the optimum reflux ratios; LS is the reflux side rate profile (for the sr-BRD column), 

which are optimized into the optimization problem case and ɛ is small positive numbering in 

the order of magnitude of 10
-3

. The process models act as inequality constraints to the 

dynamic optimization problem. 

4. The formation of methyl esters via the esterification operations   

4.1 Operational Challenge  

MeDC is formed by the esterification operation of decanoic acid and methanol. Methyl 

Salicylate (MeSC) is synthesized via esterification salicylic acid and methanol. On other 

hand, methyl benzoate (MeBZ) is produced from esterification benzoic acid and methanol.  

With the distillation in progress in three reaction schemes (in a reactive distillation mode), 

methanol (one of the reaction components) having the lowest boiling point among all the 

components (Table 1) in the reaction mixture will separate itself from the other reactants 

(acid) thus causing operational challenge. And consequently, the conversion level of the 

carboxylic acid to the main product (methyl ester) will be quite restricted. The boiling 

temperatures of the carboxylic acids (decanoic, salicylic, and benzoic acids) are the highest in 

the reaction mixture and therefore will stay in the reboiler drum most of the time. Therefore, 

it is expected that refluxing side rate (reflux 2) to the reboiler (in sr-BRD operation) will 

bring methanol (from the methanol rich reflux rate) and will enhance the reaction between 
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methanol and acids and thus will increase the conversion of acid. However, the severity of 

this operational challenge will depend upon the differences in the boiling point temperature 

of methanol with the rest of the chemical species in the reaction mixture or on the relative 

volatility of the methanol in the mixture. Note, the relative volatility of methanol in MeDC 

scheme will be higher than those of the MeSC and MeBZ schemes if the relative volatility in 

those systems is based on the heaviest component in the mixture. Therefore, operationally the 

MeDC system will offer more operational challenge compared to MeSC and MeBZ systems. 

Also note, the separation of water (the second lightest component) from the reaction system 

(especially from ester - component 3) as the distillation continues will also be challenging 

affecting the methanol purity in the reflux rate and will influence the overall performance of 

the column. With respect to the difference in boiling point temperature of compound 2 and 3, 

the MeBZ scheme will offer less challenge as compared to MeSC and MeDC schemes. 

Hence, the difficulty of separating water is in inverse order of the challenge of retaining 

methanol with the acids. These are all qualitative expectations from the point of view of 

boiling temperatures of the reaction components. The ultimate behavior of the reaction 

system will be based on the reaction model and thermodynamic aspect of each system.  

4.2 The problem descriptions   

The case studies are carried out in a 10-theoretical stages distillation process (including total 

condenser and reboiler drum). The vapour load to the condenser was specified to be 2.5 

kmol/h. Batch distillation commonly operates using one of the specific column operation 

modes (Mujtaba, 2004): (A) constant condenser vapor load rate, (B) constant reboiler heat 

duty, (C) constant vapor boil-up rate and (D) constant distillate rate. In this work, the constant 

condenser vapour load (Mode C) is considered to operate both BRD and sr-BRD columns. In 

this strategy, the reboiler heat duty (Qr) gradually changes with time to maintain the 

constancy of the vapour rate to the reflux drum. Note, also, this operation mode is extensively 
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used by a number of researchers in the past (Nad and Spigel, 1987; Wajge and Reklaitis, 

1999; Edreder et al., 2011; Kao and Ward, 2014a; Kao and Ward, 2014b; Kao and Ward, 

2015a; Kao and Ward, 2015b; and Aqar et al., 2018b).  

The constancy of vapour load to the overhead column was maintained in the reactive column 

by running the column at constant approximations reflux ratio and making an energy balance 

around the reflux drum with suitable control tools to regulate the heat provided to the pot still 

(Nad and Spigel, 1987). The column trays are numbered from the top to bottom with the 

reflux drum as stage 1 and the still pot as the last stage. Five kmol of fresh feed loaded into 

the pot drum at the beginning of the process. The feed concentrations for both the excess feed 

and the equimolar feed ratios for three reaction systems considered in this work are 

documented in Table 2. The total column holdup amounts to 4% of the total initial feed 

charge to batch column (5 kmol). Half of the total column holdup is placed in the reflux drum 

and the rest is equally distributed in the column trays. Note, the same strategy is applied for 

the catalyst loading distribution for both (BRD and sr-BRD) columns (Aqar et al, 2016a, b, c, 

2017a, c, 2018b). 

 

 

Table 2: Feed compositions for Three Reaction Schemes 

Methyl Decanoate (MeDC) System 

Excess Feed Case  

< DeC, MeOH, MeDC, H2O> is: <0.47, 0.53, 0.0, 0.0> 

Equimolar Feed Case 

< DeC, MeOH, MeDC, H2O> is: <0.5, 0.5, 0.0, 0.0> 

Methyl Salicylate (MeSC) System  



12 
 

Excess Feed Case  

< ScA, MeOH, MeSC, H2O> is: <0.47, 0.53, 0.0, 0.0> 

Equimolar Feed Case 

< ScA, MeOH, MeSC, H2O> is: <0.5, 0.5, 0.0, 0.0> 

Methyl Benzoate (MeBZ) System  

Excess Feed Case  

< BeZ, MeOH, MeBZ, H2O> is: <0.47, 0.53, 0.0, 0.0> 

Equimolar Feed Case 

< BeZ, MeOH, MeBZ, H2O> is: <0.5, 0.5, 0.0, 0.0> 

 

4.3 Results and Discussions 

4.3.1 BRD operation with excess methanol  

Excess MeOH in the initial feed to reboiler is used as it is the lightest boiling point compound 

in the reaction mixture. The optimum process for BRD mode in terms of optimal reflux ratio, 

final batch time, and conversion level of acids are presented in Table 3 for different product 

qualities and for different reaction systems.  

For both MeDC and MeBZ systems as the bottom product purity increases, reflux ratio and 

operating batch time rise gradually, whereas, the optimum reflux ratio values, and the 

production batch times decrease progressively with the bottom product purity for MeSC 

scheme.  

Note also, an increase in the bottom product concentrations of produced esters caused a 

highest reachable conversion ratio of acid. As far as product purity is concerned, it was not 

possible to achieve beyond 0.555 mole fraction (for MeDC system), 0.770 mole fraction (for 

MeSC system), and 0.740 mole fraction (for MeBZ system), and the maximum achievable 
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conversion of carboxylic acid employing a BRD column was 62.95% for MeDC, 86.30% for 

MeSC, and 82.80% for MeBZ. This is due to a fast separation of methanol from the pot drum 

(because of the wide gap in boiling point temperatures of reaction reactants and the reverse 

reaction being active).  

As described earlier, MeSC reaction scheme offers less challenge in terms of keeping the 

reactants together in the reaction zone and makes the separation of water from methyl ester 

slightly easier compared to MeBZ system. Thus, the BRD operation operated at a lower 

reflux mode and lower processing batch time to remove large amount of water from the 

distillation column and thus enhance the bottom product purity shifting the reaction forward. 

The reason for this decrease in the reflux ratio for this system is that the BRD column is 

trying to get rid of methanol and water quicker and in a large volume was removed from the 

reboiler drum to the distillate tank to meet the product purity specification thus pushing the 

reaction more forward. Although, methanol is the lightest, it will also be removed with water, 

but due to excess methanol being used, the remaining methanol in the reboiler is sufficient to 

convert more of the benzoic acid and thus improves the concentration of the desired product 

(methyl benzoate). 

On the other hand, MeBZ reaction scheme offers more challenge in terms of retaining the 

chemical species together in the bottom tank of the distillation column and makes the 

separation of water from methyl benzoate more difficult. Thus, it operated at higher reflux 

ratio and more operating batch time to convert more acid and to increase the product purity of 

methyl esters (by removing water). Also, it can be realized that the difference of the boiling 

point temperatures between MeSC and H2O system (120.50 K) is larger than that between 

MeBZ and H2O system (99.50 K).   

Hence, the separation of water from methyl salicylate is much faster and easier than the 

separation of water from methyl benzoate. Therefore, MeSC system offers much better 
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performance than MeBZ system in terms of higher conversion rate of acid and lower batch 

time to satisfy the desired product considerations. It can be seen from Table 3 that the 

decrease of reflux ratio with increasing product composition at the MeSC system assists the 

removal of water as it is being formed and thus shifting the chemical reaction more forward. 

However, methanol will also be separated with water as the lightest component. Also, the 

remaining of methanol in the pot drum is adequate to convert more of the salicylic acid thus 

increases the product concentration (methyl salicylate) due to the excess methanol in the feed 

mixture being utilized. 

 

 

 

Table 3: Summary of optimization results for the three reaction systems for BRD column 

with excess methanol 

Product Purity 

(kmol %) 

Optimal Reflux  

Ratio, RBRD (---) 

Final Batch  

time, tF, (h) 

Conversion of  

Acid (%) 

Methyl Decanoate (MeDC) System 

0.535 0.757 3.78 60.82 

0.545 0.808 4.79 61.88 

0.555
 

0.861 6.63 62.95 

0.565
 

---
a
 ---

a
 ---

a
 

Methyl Salicylate (MeSC) System 

0.755 0.443 1.65 84.52 

0.765 0.340 1.39 85.66 

0.770
 

0.265 1.25 86.30 

0.775
 

---
a
 ---

a
 ---

a
 

Methyl Benzoate (MeBZ) System 

0.725 0.859 6.52 81.23 

0.735 0.863 6.73 82.28 

0.740
 

0.866 6.85 82.80 
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0.745
 

---
a
 ---

a
 ---

a
 

                         a 
Infeasible. 

 

4.3.2 The performance of BRD process with the equimolar feed case 

Here the effect of equimolar reactant ratio on the overall performance of reactive distillation 

for all reaction systems is investigated. The results are summarised in Table 4, including the 

optimal reflux ratio, and minimum operating time, and the highest conversion of acid for 

different bottom product considerations. It can be seen from Table 4 that, in MeBZ and 

MeDC systems, all values of reflux ratio, and operation time, and the conversion level of acid 

increase gradually with increasing product concentration specifications. For MeSC system, 

the batch time and reflux ratio decrease gradually with improved product composition of 

MeSC. This is because that the distillation column has tried to remove methanol and water 

quicker and in a large quantity to fulfil the desired product requirements. 

Table 4: Summary of optimization results for the three reaction systems for BRD column 

with equimolar ratio 

Product Purity 

(kmol %) 

Optimal Reflux  

Ratio, RBRD (---) 

Final Batch  

time, tF, (h) 

Conversion of  

Acid (%) 

Methyl Decanoate (MeDC) System 

0.545 0.774 4.06 58.53 

0.555 0.824 5.22 59.52 

0.560
 

0.850 6.12 60.00 

0.570
 

---
a
 ---

a
 ---

a
 

Methyl Salicylate (MeSC) System 

0.765 0.545 2.02 80.83 

0.775 0.453 1.68 81.93 

0.780
 

0.383 1.49 82.54 

0.785
 

---
a
 ---

a
 ---

a
 

Methyl Benzoate (MeBZ) System 

0.725 0.835 5.57 76.58 

0.735 0.839 5.73 77.58 
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0.745
 

0.844 5.90 78.58 

0.755
 

---
a
 ---

a
 ---

a
 

                         a 
Infeasible. 

 

 To remove water (byproduct), reflux ratio has to be decreased and thus enhancing the 

chemical reaction further to the right by converting more and more salicylic acid (Table 4). 

As before, it was difficult to obtain a higher purity of methyl esters using BRD operation for 

both reaction schemes.  

4.3.3 The performance of sr-BRD column with excess methanol  

The split-reflux batch reaction distillation column (sr-BRD) with side reflux to the reboiler 

(Figure 1b) is novel and is proposed/examined in this work for all the reaction systems and 

the performance of sr-BRD column is compared with those of the BRD column as 

highlighted earlier for excess methanol case. Note, the operating conditions and sr-BRD 

specifications are the same as those in the BRD process for this purpose. Note the pot drum 

amount is kept at 2.5 kmol for all cases. The minimum batch time, optimum reflux ratio for 

both reflux rate, the conversion of acid together with total quantity of refluxed liquid for sr-

BRD process for various product concentrations are summarized in Table 5. There it is 

observed Table 5 that the total batch time, reflux ratio and the total refluxed amount (split 

reflux) gradually increases with increasing the product purity requirements. Note increasing 

total batch time clearly helped rising the conversion rate of acid. Note, for MeDC scheme, 

sharp increase in both processing time and quantity of refluxed rate is noticed in line with the 

increase in MeDC purity from 0.715 to 0.720 (mole fraction). This is due to the fact that the 

sr-BRD column operated at a higher reflux ratio to suppress the MeDC travelling up the 

column but demanded a higher batch time as compared to the others to meet the product 

constraint. A comparison of the results between the conversion ratio of acids (DeC, ScA, and 

BeZ) employing the sr-BRD operation and the BRD column (Table 3) shows that for a given 
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amount of bottom product in the still pot (2.5 kmol) the sr-BRD column can produce MeDC, 

MeSC, and MeBZ at much higher purities (0.720 as compared to 0.555 mole fraction for 

MeDC system),  (0.810 as compared to 0.770 mole fraction for MeSC system), and (0.850 as 

compared to 0.740 mole fraction for MeBZ system), and can convert more decanoic acid  by 

reaction with methanol (81.27% as opposed to only 62.95%), more salicylic acid into methyl 

salicylate  (91.18% as opposed to only 86.30%), and more benzoic acid into methyl benzoate  

(94.84% as opposed to only 82.80%). 

However, note for MeDC system, use of sr-BRD for product purity more than 0.72 

molefraction will not be economically justified due to significantly higher batch time leading 

to significantly higher operating cost for very little improvement in product purity. 

 

Table 5: Summary of optimization results for the three reaction systems for sr-BRD column 

with excess methanol 

Product Purity 

(kmol %) 

Optimal 

Reflux Rate, 

(kmol/h) 

Optimal 

Reflux  

Ratio, Rsr-BRD 

Final Batch 

time,  

tF, (h) 

Conversion 

of  

Acid (%) 

Total 

 Refluxed 

Amount, (kmol) 

    Methyl Decanoate (MeDC) System 

0.705 2.05 0.958 21.66 79.67 44.36 

0.715 2.10 0.975 36.52 80.77 76.60 

0.720
 

1.99 0.988 74.84 81.27 148.90 

Methyl Salicylate (MeSC) System 

0.795 0.88 0.505 1.86 89.51 1.64 

0.805 1.31 0.700 3.06 90.50 4.00 

0.810
 

1.60 0.816 5.00 91.18 7.98 

Methyl Benzoate (MeBZ) System 

0.830 0.15 0.907 9.92 92.46 1.53 

0.840 1.02 0.916 11.00 93.83 11.21 

0.850
 

0.69 0.920 11.47 94.84 7.91 
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The sr-BRD operation is performed to return the accumulated methanol at the top plate of the 

batch column (lightest but reactant) to the unconverted component (acid) and thus have 

further reaction to occur which enhance the overall conversion. However, for the MeDC 

system, the sr-BRD column requires operating at high reflux ratio and with longer batch time 

to make sure water is sufficiently taken out from the bottom tank to satisfy the product purity.  

For both MeSC and MeBZ schemes, operating at low reflux ratio and reflux rate ensures both 

removal of water and re-union of methanol at the reboiler drum to shift the chemical reaction 

forward. Shorter operating batch time was also feasible for increasing the conversion of acid 

as compared to MeDC system. In terms of reflux rates, the behaviour of MeDC system is a 

quite different from that in MeSC and MeBZ systems using sr-BRD column, higher reflux 

ratio with higher operating batch time, as well as higher rate of refluxed rate are needed for 

increasing product purity as compared to MeSC and MeBZ systems.  

This is due to the difference in alcohol-acid boiling point temperature for MeDC system is 

much higher than that of the MeSC and MeBZ systems. Therefore, total quantity of refluxed 

methanol for MeDC scheme was much bigger than that of MeSC and MeBZ schemes. As can 

be observed also, the difference of boiling points between the acid- methyl ester for MeBZ 

scheme is much higher than those of the MeSC and MeDC schemes, respectively, and thus 

makes the separation of MeBZ is much easier than the separation of MeSC and MeDC.  

Therefore, the maximum achievable conversion of acid and purity of methyl ester in MeBZ 

scheme is higher than that achieved for MeSC and MeDC schemes. Clearly, MeBZ system 

was found to provide better operational flexibility, highest conversion rate of limiting 

reactant, and maximum achievable purity of methyl ester as compared to MeSC and MeDC 

systems.  

4.3.4 The performance of sr-BRD column at equimolar feed ratio 
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The operational flexibility and feasibility of sr-BRD mode as a potential option for the 

synthesis of a number of methyl esters is investigated. As mentioned before in section 4.3.3, 

the initial feed with excess methanol could increase the overall conversion of carboxylic 

acids, but with decreased bottom product composition. Here, the sr-BRD process is studied 

with equimolar feed ratio case, where the desired product amount is still at 2.5 kmol. The 

optimal reflux rate, reflux ratio, batch time, total refluxed amount over the batch time, and the 

conversion of acid are summarized in Table 6. Table 6 indicate that for all reaction systems, 

the side reflux rate, the reflux ratio, batch time, and the conversion increase as the product 

purity increases. The results show that sr-BRD can yield higher purity product (0.740 mole 

fraction of MeDC system, 0.825 mole fraction of MeSC system, and 0.875 mole fraction of 

MeBZ system) compared to those obtained by BRD mode of operation (Table 4). To 

accomplish this, the reflux ratio has to rise gradually to supress the large quantity of water in 

the refluxed side rate to push the reaction forward. However, although the purities of MeDC, 

MeSC, and MeBZ increase gradually at equimolar feed case in sr-BRD column as compared 

to those in sr-BRD with excess methanol (Table 5), the maximum conversions of acid 

obtained are 79.01% for MeDC system, 87.69% for MeSC system, and 92.22% for MeBZ 

system, which are much lower than those of sr-BRD with excess feed ratio as shown in 

Figure 2. As discussed before, MeBZ case is found to offer much better performance than 

MeDC, and MeSC cases in terms of higher conversion rate, and maximum achievable 

concentration of ester produced (Table 6, Figure 2).  

However, note for MeDC system, use of sr-BRD for product purity more than 0.735 

molefraction will not be economically justified due to significantly higher batch time leading 

to significantly higher operating cost for very little improvement in product purity. 

Table 6: Summary of optimization results for the three reaction systems for sr-BRD column 

with equimolar ratio 

Product Purity Optimal Optimal Final Batch Conversion Total 
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(kmol %) Reflux Rate, 

(kmol/h) 

Reflux  

Ratio, Rsr-BRD 

time,  

tF, (h) 

of  

Acid (%) 

 Refluxed 

Amount, (kmol) 

    Methyl Decanoate (MeDC) System 

0.725 2.06 0.974 35.89 77.49 73.90 

0.735 2.07 0.987 73.35 78.50 151.98 

0.740
 

2.08 0.995 185.95 79.01 386.95 

Methyl Salicylate (MeSC) System 

0.805 0.74 0.512 1.88 86.04 1.40 

0.815 1.18 0.693 3.00 87.36 3.53 

0.825
 

1.41 0.895 8.73 87.69 12.29 

Methyl Benzoate (MeBZ) System 

0.860 0.34 0.896 8.82 90.13 3.01 

0.870 1.31 0.907 9.91 91.73 12.94 

0.875
 

1.31 0.909 10.14 92.22 13.27 

 

Figure 3 shows the reflux rate and reflux ratio at the equimolar feed amount and different 

MeBZ product purities for all batch times for sr-BRD configuration. It can be seen from 

Table 6 also that higher product concentration of esters and higher conversion ratio of acids 

are accomplished. Some investigators disregarded the impacts of azeotrope formation and 

acid solubility for the production of isopropyl palmitate system due to the high conversion 

ratio of palmitic acid of 99.40 % accomplished in their work (Chen et al., 2012, Zhang et al., 

2015). Note that, although the MeBZ-H2O form minimum-boiling azeotrope, their influences 

are ignored also in our work due to higher concentration of esters produced and higher 

conversion rate of carboxylic acids are attained by using the sr-BRD operation (see Tables 5 

and 6). Figures 4 and 5 show the composition profiles of the accumulator tank and the 

reboiler for the MeDC case (xMeDC
*  = 0.560 mole fraction for BRD, and 0.740 mole fraction 

for sr-BRD), while Figures 6 and 7 show the same for the MeSC case (xMeSC
*  = 0.780 mole 

fraction for BRD, and 0.825 mole fraction for sr-BRD), and Figures 8 and 9 show the same 
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for the MeBZ case (xMeBZ
*  = 0.745 mole fraction for BRD, and 0.875 mole fraction for sr-

BRD), respectively at the equimolar feed case for both BRD and sr-BRD columns. Note that 

for sr-BRD mode (MeDC case), the batch time increases sharply affecting the total amount of 

refluxed rate (Table 6, Figure 5) helping to enhance the product concentration from 0.735 to 

0.740 (mole fraction). For product concentration of 0.740 mole fraction, the sr-BRD system 

operated at the highest reflux ratio and longest batch time allowing high purity methanol to 

be refluxed back to the column by both reflux rates. For all reaction schemes, the mole 

fraction of water (2
nd

 boiling component) rises from zero and gets to the maximum value and 

then decreases gradually. This is due to its separation in the top tank (Figures 4, 6, and 8). In 

the reboiler tank, as the reaction continues, at the beginning the reactant concentrations 

(decanoic acid and methanol) for MeDC system, (salicylic acid and methanol) for MeSC 

system, and (benzoic acid and methanol) for MeBZ system declines rapidly, whereas, the 

mole fractions of methyl decanoate, methyl salicylate, and methyl benzoate rise (Figures 5, 7, 

and 9). Note also, methyl salicylate product reached the desired purity at the shorter batch 

time for MeSC case than methyl benzoate for MeBZ case, and methyl decanoate for MeDC 

case (Figures 7, and 9). Note, the performance of sr-BRD process is compared with the 

performance of classical BRD column in terms of maximum achievable purity and highest 

reaction conversion. However, the new sr-BRD column was suggested to increase the product 

purity and the reaction conversion and thus in some cases required high operating time and 

operating cost in order to achieve the desired product considerations. However, a comparison 

of the results of sr-BRD operation with the continuous reactive distillation column using the 

energy saving as the performance measure is beyond the scope of the present study. Note, the 

amount of bottom product is kept constant at 2.5 kmol for both BRD/sr-BRD columns for all 

presented cases. As mentioned before, the novel sr-BRD scheme was proposed to improve 

the process efficiency and the profitability and decrease the operating cost by increased the 
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product purity and the conversion of limiting reactant. The still pot temperature profiles of 

the sr-BRD system for the MeDC case (xMeDC
*  = 0.740 mole fraction), for the MeSC case 

(xMeSC
*  = 0.825), and for the MeBZ case (xMeBZ

*  = 0.875) at the equimolar feed amount are 

given in Figures 10, 11, and 12, respectively. For both MeDC and MeSC systems, the 

reboiler temperature rises gradually with time in both cases at the initial period due to the 

presence of a significant amount of water. After a certain period as the light component 

(methanol) is removed from the bottom tank, the heaviest component (acid) is remined in the 

still pot, therefore the reaction temperature starts to rise. While in MeBZ system higher 

operating temperature is observed due to more benzoic acid in the feed mixture. It can be 

noted from Figure 12 that the operation temperature of the still pot is increased and reached 

the maximum value (575 K) at 5.5 h and then drops down to 363 K at the end of the 

operation time. This is due to having more methanol reacting with benzoic acid in the bottom 

tank (reducing methanol in the receiver tank) and yielding more ester by the reaction (and 

thus increasing the reaction conversion as presented in Table 6). 
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Figure 2: The conversion of acid for three reaction systems for the sr-BRD operation at both 

equimolar and excess methanol ratios. 

 

 
Figure 3: The reflux rate and reflux ratio for MeBZ system for the sr-BRD operation. 
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Figure 4: The accumulator composition of BRD and sr-BRD for MeDC system at the 

equimolar feed ratio. 

 
Figure 5: The reboiler composition of BRD and sr-BRD for MeDC system at the equimolar 

feed ratio. 
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Figure 6: The accumulator composition of BRD and sr-BRD for MeSC system at the 

equimolar feed ratio. 

 

 
Figure 7: The accumulator composition of BRD and sr-BRD for MeSC system at the 

equimolar feed ratio. 
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Figure 8: The accumulator composition of BRD and sr-BRD for MeBZ system at the 

equimolar feed ratio. 

 

 
Figure 9: The reboiler composition of BRD and sr-BRD for MeBZ system at the equimolar 

feed ratio. 
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Figure 10: The still pot temperature for MeDC system for the sr-BRD operation. 

 

 

 
Figure 11: The still pot temperature for MeSC system for the sr-BRD operation. 
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Figure 12: The still pot temperature for MeBZ system for the sr-BRD operation. 
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for these columns are constructed using gPROMS software and are embedded within the 

dynamic optimization problem. The optimization constants such as reflux ratio for BRD 

process, and the side reflux rate strategy for sr-BRD column on the production batch time are 

considered. Obviously, the performance of the split-reflux batch distillation operation (sr-

BRD) is found to be superior compared to the conventional batch distillation column (BRD) 

in terms of attaining higher conversion and thus product concentration. Note also, the 

performance of sr-BRD operation with the equimolar ratio case was preferable to the sr-BRD 

operation with excess feed ratio in terms of maximum product purity for both esterification 

reactions.  

Also, it was found that the use of additional methanol in the feed mixture was necessary in 

split-reflux batch reactive distillation operation to only improve the conversion rate of the 

acid in both MeDC and MeSC systems. Finally Note, MeBZ Case was found to outperform 

the MeDC and MeSC systems in terms of highest achievable concentration of methyl esters 

and maximum reaction conversion. 

Nomenclature 

- Activity of component i ai 

kmol The product amount in the reboiler drum BPr 

Mol/lit Concentration of component i Ci 

- Convectional batch distillation BRD 

- Control vector parameterisation CVP 

- Differential algebraic equations DAEs    

kJ/kmol Liquid, and vapour enthalpy  H
L
, h

V
 

kmol Accumulator and condenser holdups Ha, HC 

kmol Trays and reboiler holdups, respectively  H, HN 

- Vapour–liquid equilibrium  K 

kmol/h Liquid flow rate  L 

kmol/h Distillate rate  LD 
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kmol/h Reflux side 2 rate LS 

kg The catalyst weight mcat     

- Nonlinear programming problem NLP 

- Optimisation problem OP 

kJ/h Condenser duty and reboiler heat duty QC, QR 

- Reflux ratio for BRD RBRD 

- Reflux ratio for sr-BRD Rsr-BRD 

- Reaction rate ri 

- Successive quadratic programming algorithm SQP 

- Split-reflux batch reactive distillation sr-BRD 

h Processing time tF 

kmol/h Vapour Boil up rate VC 

molefraction Liquid concentration  x 

molefraction Accumulated distillate concentration xa 

molefraction Instant distillate concentration xD 

molefraction Vapor concentration y 

Greek Letters 

Superscripts and subscripts 

- Component number i 

- Number of Plates j 

- Change in moles due to chemical reaction Δn 

Abbreviations  

BeZ                       Benzoic Acid      

DeC                       Decanoic Acid      

H2O                       Water 

MeBZ                   Methyl Benzoate 

MeDC                   Methyl Decanoate 

MeSC                    Methyl Salicylate  

MeOH                   Methanol        

ScA                       Salicylic Acid      
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Appendix A 

A.1 Mathematical Model for the BRD Operation 

2.1. Condenser System and Accumulator Tank: j=1 

 Accumulator Tank Mass Balance: 

dHa

dt
= LD                                                                                                                                     5 

 Component Mass Balance: 

a) Distillate Accumulator: 

Ha

dxai

dt
 = LD (xDi - xai)                                                                                                               6 

b) Condenser Holdup Tank: 
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Hc

dxci

dt
 = VC y

2
- (VC + ∆n1Hc) xDi + r1iHc                                                                                7 

 Energy Balance: 

0  =  VCH2
V- (VC + ∆n1Hc) H1

L - Q
c
                                                                                            8 

 Physical Properties and other equations: 

H1
L = H1

L (xD1, T1, P)                                                                                                                   9 

T1 =  T1(xD1, P)                                                                                                                        10 

r1j = r1j (ke, xDi)                                                                                                                        11 

∆n1 = ∑ r1j                                                                                                                               12 

L1 = R (VC + ∆n1Hc)                                                                                                                 13 

LD = (1- R) (VC + ∆n1Hc)                                                                                                         14 

2.2. Internal trays:  j= 2 to N-1 

 Total Mass Balance: 

0 = Lj-1+Vj+1- Lj -Vj+ ∆njHj                                                                                                    15 

 Component Balance: 

Hj

dxj

dt
 = Lj-1 xj-1+ Vj+1 y

j+1
- Lj xj-Vj yj

+ Hjrji                                                                          16 

 Energy Balance: 

0 = Lj-1 Hj-1
L + Vj+1 Hj+1

V - Lj Hj
L-Vj  Hj

V                                                                                      17 

 Equilibrium: 

Kj,i = 
 y

j,i

 xj,i

                                                                                                                                  18 

 Summation: 

∑ y
j,i

 = 1                                                                                                                                 19  

 Relations Defining Physical Properties and Chemical Reactions: 

Kj,i  = Kj,i ( yj,i
, xj,i,Tj, P)                                                                                                           20 

Hj, i
L  = Hj, i 

L (xj, i,Tj, P)                                                                                                                21 

Hj, i
V  = Hj, i 

V (y
j, i

,Tj, P)                                                                                                                22 

rj,i = rj,i (ke, xj, i)                                                                                                                       23 

∆nj = ∑ rj, i                                                                                                                             24 

2.3. Pot Tank: j= N 
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 Total Mass Balance: 

dHn

dt
 = Ln-1 - Vn + ∆nn Hn                                                                                                        25 

 Component Mass Balance: 

Hn

dxn

dt
 = Ln-1(xn-1- xn) -Vn (y

n
- xn) + Hnrn                                                                              26 

 Energy balance: 

0 = Ln-1 (Hn-1 
L -Hn

L) -Vn (Hn 
V -Hn

L) + Q
r
                                                                                     27 

 A.2 Mathematical Model for the sr-BRD Operation 

 

 Reflux Ratio: 

R = 
 L1+ LS

VC

                                                                                                                             28 

2.4 Pot Tank: j= N 

 Total Mass Balance: 

dHn

dt
 = Ln-1 - Vn  + LS + ∆nn Hn                                                                                                 29 

 Component Mass Balance: 

Hn
dxn

dt
 = Ln-1(xn-1- xn) - Vn (y

n
- xn) + LS (xDi- xn) + Hnrn                                                         30 

 Energy balance: 

0 = Ln-1 (H
n-1 

L
-Hn

L) -Vn (hn 
V

- Hn
L) +  LS (H1

L- Hn
L) + Q

r
                                                               31 
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Appendix B 
 

Table B.1 NRTL Binary Parameters for Esterification of Salicylic and Benzoic Acids  

Systems. 

Component i 

 

Component j 

 

 

Aij (cal/mol) 

 

 

Aji (cal/mol) 

 

 

α 

 

 Methyl Salicylate System  

ScA  MeOH - 272.294 -209.323 0.3 

ScA MeSC - 143.808 434.917 0.3 

MeSC  MeOH - 376.205 698.908 0.3 

H2O  MeOH 367.669 - 112.991 0.3 

H2O  ScA 1105.54 - 494.886 0.3 

H2O  MeSC 1440.68 - 237.123  0.3 

 Methyl Benzoate  System  

BeZ MeOH - 330.975 529.933 0.3 

BeZ MeBZ 913.264 - 452.219 0.3 

MeBZ MeOH 730.217 248.007 0.3 

H2O  MeOH - 231.507 738.175 0.3 

H2O  BeZ 287.187 3231.228 0.3 

H2O  MeBZ 1232.178 3967.954 0.3 

                       αij = 0.0 and Aij = 0.0 when i = j 
 

Table B.2 Antoine Parameters for both (MeBZ, MeSC) systems. 

 
Methyl Salicylate System  

Antoine Coefficients ScA MeOH MeSC H2O 

A1 [--] 177.3858 45.6171 202.6840 29.8605 

A2 [K] - 1.2871E+4 -3.2447E+3 -1.2160E+4 -3.1522E+3 

A3 [K
-1

] -5.6301E+1 -1.3988E+1 -6.6670E+1 -7.3037 

A4 [K
-1

] -1.6667E-7 6.6365E-3 -1.8009E-9 2.4247E-9 

A5 [K
-2

] 1.1353E-5 -1.0507E-13 1.8060E-5 1.8090E-6 

 Methyl Benzoate System  

Antoine Coefficients BeZ MeOH MeBZ H2O 

A1 [--] -140.0388 45.6171 -13.6342 29.8605 

A2 [K] 8.0479E+1 -3.2447E+3 -2.9133E+3 -3.1522E+3 

A3 [K
-1

] 6.2611E+1 -1.3988E+1 1.1773E+1 -7.3037 

A4 [K
-1

] - 6.5321E-2 6.6365E-3 - 2.3979E-2 2.4247E-9 

A5 [K
-2

] 2.4596E-5 -1.0507E-13 1.1324E-5 1.8090E-6 

      A1, A2, A3, A4, A5 are the regression coeffieicents for each compund 
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