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Abstract

Even with complete information, two-person bargaining can generate a large
number of equilibria, involving disagreements and inefficiencies, in (i) negotiation
games where disagreement payoffs are endogenously determined (Busch and Wen
[6]) and (ii) costly bargaining games where there are transaction/participation
costs (Anderlini and Felli [2]). We show that when the players have (at the mar-
gin) a preference for less complex strategies only efficient equilibria survive in
negotiation games (with sufficiently patient players) while, in sharp contrast, it is
only the most inefficient outcome involving perpetual disagreement that survives
in costly bargaining games. We also find that introducing small transaction costs to
negotiation games dramatically alters the selection result: perpetual disagreement
becomes the only feasible equilibrium outcome. Thus, in both alternating-offers
bargaining games and repeated games with exit options (via bargaining and con-
tracts), complexity considerations establish that the Coase Theorem is valid if and
only if there are no transaction/participation costs.
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1 Introduction

Under well-defined property rights, rational economic agents are expected to bargain and
fully exploit any mutual gains from trade. This “Coase Theorem” (Coase [9]) provides an
important benchmark for economists to think about the potential sources of inefficient
outcomes of negotiation. Chief among many explanations for its failure is informational
asymmetry, as documented by numerous papers in the literature on bargaining with
incomplete information.1

Even with complete information, the Coase Theorem can be invalid. First, inefficien-
cies can be sustained as equilibria in “negotiation games” with complete information
(Fernandez and Glazer [10], Haller and Holden [13] and Busch and Wen [6]). These
models can be thought of either as bargaining games in which disagreement payoffs at
each stage of the bargaining are determined endogenously in some game or as repeated
games in which at each period there is an exit option via bargaining and contractual
agreement. Inefficiencies in these games take the form of delay in agreement and even
perpetual disagreement. Second, similar inefficiencies also arise in complete information
bargaining models with small transaction costs (Anderlini and Felli [2]). In these models
the players have to incur some (small) cost in order to participate in bargaining; such
participation (or transaction) costs can induce sub-optimality for similar reasons as in
the hold-up literature.2

A common feature in these explanations for inefficient bargaining is the multiplicity
of equilibria. In particular, the games feature inefficient outcomes among a large number
of equilibria some of which are also efficient. Such multiplicity of equilibria makes it
difficult to draw firm conclusions concerning the Coase Theorem. In this paper, we take
the two aforementioned approaches and attempt to select amongst the set of equilibria,
thereby addressing the Coase Theorem head-on, by explicitly considering the complexity
of implementing a strategy. In contrast to the literature on repeated games played by
automata, we find that complexity considerations result in a very sharp set of (opposing)
predictions in the above two approaches with regard to efficiency and the Coase Theorem.

We show that when the players have a preference for less complex strategies at
the margin, only efficient equilibria survive in negotiation games while it is only the
most inefficient equilibrium involving perpetual disagreement that survives in bargaining
games with (arbitrarily small) transaction costs. We also combine the two approaches by
introducing transaction costs to negotiation games. We find that the selection result for
negotiation games with complexity is dramatically altered in the presence of (arbitrarily
small) transaction costs: perpetual disagreement becomes the only feasible equilibrium
outcome. Thus, our results suggest the following:

1For a survey of this literature, see Ausubel, Crampton and Deneckere [3].
2Other explanations for possible inefficiencies in complete information models can be found in Perry

and Reny [18], Sákovics [23] and Fershtman and Seidmann[11].
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(i) The Coase Theorem continues to be valid in negotiation games with bargaining
and endogenously determined disagreement payoffs. Since such negotiation models can
also be thought of as repeated games with exit options (see below) we can alternatively
interpret our results as showing that complexity and bargaining in tandem offer a sharp
explanation for co-operation in repeated games;

(ii) Transaction costs are a critical ingredient of a robust explanation for perpetual
disagreements and inefficient negotiation outcomes under complete information.

We first examine the “negotiation game” of Busch and Wen [6] (or simply BW). In
each period, two players bargain - in Rubinstein’s alternating-offers protocol - over the
distribution of a fixed and commonly known periodic surplus. If an offer is accepted,
the game ends and each player gets his share of the surplus according to the agreement
in every period thereafter. After any rejection, but before the game moves to the next
period, the players engage in a normal form game to determine their payoffs for the
period. The Pareto frontier of the disagreement game is contained in the bargaining
frontier.

A special case of this game is the standoff between a union and a firm considered
by Fernandez and Glazer [10] (and Haller and Holden [13]). During a contract renewal
process, a union and a firm renegotiate over the distribution of a periodic revenue, but a
disagreement puts them in a strategic situation. After rejecting the firm’s wage offer or
having their own offer rejected by the firm, the union can forego the status quo wage for
one period and strike before a counter-offer is made next period. (The firm is inactive
in the disagreement game.)

The negotiation game generally admits a large number (continuum) of subgame-
perfect equilibria, as summarized by BW in a result that has a same flavor as the Folk
theorem in repeated games. Some of these equilibria involve delay in agreement (even
perpetual disagreement) and inefficiency. Thus, the Coase Theorem fails in the sense
that it is no longer guaranteed.

As we mentioned before, the negotiation game and its equilibria can be interpreted
from two alternative viewpoints. Naturally we can think of the game as a standard
alternating-offers bargaining game with endogenous disagreement payoffs and hence
evaluate its equilibria in a Coasian context.3 The alternative viewpoint focuses on the re-
peated game aspect of the game. Real world repeated interactions are often accompanied
by negotiations which can lead to mutual agreement. While equilibria in standard re-
peated games are usually given the interpretation of implicit, self-enforcing agreements,
the situations depicted by the negotiation game are associated with the possibility of
explicit contracts that can bind the players to a particular set of outcomes. For example,
we observe firms engaged in a repeated horizontal or vertical relationship negotiating

3The issue of endogenous disagreement payoffs in a bargaining situation goes back at least to Nash
[16] who considers the problem in a co-operative framework.
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over a long-term contract, or even a merger. Similarly, countries involved in international
trade often attempt to settle an agreement that enforces fixed quotas and tariffs.

The Folk theorem gives economic theorists little hope of making any predictions in
repeated interactions. However, as the aforementioned examples suggest, it seems that
negotiation is often a salient feature of real world repeated interactions, presumably to
enforce co-operation and efficient outcomes. Can bargaining be used to isolate equilibria
in repeated games? Unfortunately, the contributions of BW and others demonstrate that
Folk theorem type results are likely to persist even when the players are endowed with
an opportunity at the beginning of each period to settle on an efficient outcome once
and for all.

We next consider the “costly bargaining game” of Anderlini and Felli [2] (or simply
AF). Two players bargain in the Rubinstein alternating-offers protocol to split a fixed
surplus (which accrues once, not periodically as in the negotiation game), but at the
beginning of each period both players have a choice of whether or not to pay a par-
ticipation cost. (It is immaterial to the results whether the cost is paid simultaneously
or sequentially). Bargaining in that period takes place only if both players pay their
participation cost. If at least one player decides not to pay, there will be no bargaining
and the game moves to the next period.

AF characterize the set of subgame-perfect equilibria in this game. In particular,
they show that when the participation cost is low, the game admits a wide variety
of equilibria. Immediate agreement, agreement with an arbitrarily long delay, and no
bargaining/no agreement (with players not paying the participation cost) at all dates
are all possible equilibrium outcomes.

There are many different ways of defining the complexity of a strategy in dynamic
games. In the literature on repeated games played by automata the number of states
of the machine is often used as a measure of complexity (Rubinstein [21], Abreu and
Rubinstein [1], Piccione [19] and Piccione and Rubinstein [20]). This is because the set of
states of the machine can be regarded as a partition of possible histories. In particular,
Kalai and Stanford [14] show that the counting-states measure of complexity, or state
complexity, is equivalent to looking at the number of continuation strategies that the
strategy induces at different histories of the game. We extend this notion of strategic
complexity to the negotiation game and the costly bargaining game, and facilitate the
analysis by considering equivalent “machine games”.

The alternating-offers bargaining imposes an asymmetric structure on the extensive
forms considered which are stationary only every two periods (henceforth we shall refer to
every two periods as a “stage”). To account for such structural asymmetry of the games,
we adopt machine specifications that formally distinguishes between the different roles
played by each player in a given stage. A player can be either proposer or responder. For
most of the paper, a machine is assumed to consist of two “sub-machines”, each playing
a role (of proposer or responder) with distinct states, output and transition functions.
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Transition occurs at the end of each period, from a state belonging to one sub-machine
to a state belonging to the other sub-machine as roles are reversed. 4’5

The concept of Nash equilibrium is then refined to incorporate the players’ preference
for less complex strategies. In our choice of equilibrium, complexity enters a player’s
preferences, together with the payoffs in the underlying game, either lexicographically
or as a positive fixed cost c. The larger this cost is, the more is required of complexity.
We refer to a Nash equilibrium (of the machine game) with fixed complexity cost c
by NEMc and adopt the convention of using c = 0 (and thus NEM0) to refer to the
lexicographic case in which players first choose a best response and then choose the
least complex strategy within the set of best responses. We also invoke the notion of
subgame-perfection and consider the set of NEMc that are subgame-perfect, referred to
as SPEMc.

The selection results are as follows. We first show that complexity considerations
select only efficient equilibria in the negotiation game. Independently of the complexity
cost and discount factor, if an agreement occurs in some finite period as the outcome of
some NEMc then it must occur within the very first stage of the game, and moreover,
the equilibrium strategies are stationary (history-independent). Thus, in this case any
NEMc outcome is efficient in the limit as the discount factor goes to one. We then
show that, with sufficiently patient players, every SPEMc in the negotiation game that
induces perpetual disagreement is at least long-run almost efficient; that is, the players
must reach a finite period in which the continuation game then on is almost efficient.6

For the case of positive complexity cost, we establish a stronger result; every SPEMc of
the negotiation game is stationary and hence almost efficient, with sufficiently patient
players.7

Second, we show that, in sharp contrast to the previous results, complexity selects the
most inefficient outcome in the costly bargaining game. Independently of the complexity
cost, discount factor and participation cost, every SPEMc in the costly bargaining game

4We also explore an alternative machine specification that employs more frequent transitions and
hence account for finer partitions of histories and continuation strategies. This machine consists of four
sub-machines; while keeping the role distinction, transition occurs twice in each period at the end of
bargaining and at the end of the disagreement game.

5We show that the result of Kalai and Stanford [14], on the equivalence of the number of states and
the number of continuation strategies that the implemented strategy induces, also holds here for our
machine specifications.

6This implies that we can draw a yet stronger set of conclusions under certain disagreement game
structures (given sufficiently high discounting). For example, if every disagreement game outcome is
dominated by an agreement, it is not possible to have a SPEMc involving perpetual disagreement. Thus,
every equilibrium outcome in this case must reach an agreement in the first stage of the negotiation
game, and hence is stationary and almost efficient.

7With the four sub-machine specification mentioned in footnote 4, we derive the same set of SPEMc
results independently of the discount factor.
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is such that the players never pay the participation cost and therefore agreement is never
reached.

Finally, in order to obtain a broader understanding of the role of transaction costs,
we look at the “costly negotiation game’. Extending AF, we assume that in order for
the players to bargain in each period of the negotiation game (but not to play the
disagreement game) both have to (sequentially) pay a participation cost; if at least one
player foregoes the payment, they proceed directly to the disagreement game.

The striking observation here is that the introduction of the participation cost dra-
matically alters the selection result for the negotiation game. We show how just a small
positive participation cost induces perpetual disagreement in every SPEMc of the costly
negotiation game. This result thus strengthens our conclusion that transaction costs are
indeed a critical ingredient of a robust account of the failure of the Coase Theorem under
complete information.8

In terms of new ideas and techniques about complexity in games, the paper’s main
contributions lie in the following. First, we successfully combine some of the ideas de-
veloped in looking at complexity in repeated games (Abreu and Rubinstein [1]) and
alternating-offers bargaining models (Chatterjee and Sabourian [7][8]) to a setting that
involves bargaining, repeated games and/or transaction costs.9 Second, we introduce a
new machine specification that involves different sub-machines to play different roles.
Such a specification is critical for our results and may also be useful in other dynamic
games.10 Moreover, with this specification the counting state measure of complexity is
equivalent to Kalai and Stanford’s [14] notion of complexity. Third, we show how per-
fection and complexity arguments intricately interact to deliver the results on perpetual
disagreement.

In terms of application, the results are novel and unique in that they contain very
sharp and clear predictions on the issues of agreement and efficiency. For example, taken
from the repeated game perspective, the efficiency results in the negotiation game take
the study of complexity in repeated games a step further from the existing literature
in which complexity has yielded only a limited selective power. While many inefficient

8Again the results here are sharper if c > 0 or if the four sub-machine specification is adopted.
9We like to point out two differences between our approach here and the above cited literature. First,

we do not assume that machines have a finite number of states. Second, our complexity definition is
different from that used in the recent literature on complexity and bargaining; for example, Chatterjee
and Sabourian [8] look at complexity of the response rule within a period. (See also Sabourian [22]
and Gale and Sabourian [12] who use a similar notion of complexity to justify competitive outcomes in
market games with matching and bargaining.)

10In the previous literature, this issue did not arise because the analysis was restricted either to
repeated games (and therefore there was a natural specification of the machines) or to pure bargaining
problems. Here, since the negotiation game is a mixture of repeated game and bargaining, having a
machine specification with different sub-machines playing different roles turns out to play an important
role.
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equilibria survive complexity refinement in standard repeated games (Abreu and Ru-
binsten [1]),11 we demonstrate that complexity and bargaining in tandem can provide
a sharp explanation for why co-operation and efficiency can be expected to arise in re-
peated interactions. On the other hand, our results also show that introducing (small)
transaction costs to the standard bargaining or negotiation game can swing the selection
results sharply towards perpetual disagreement and inefficiency.

The paper is organized as follows. We begin Section 2 by describing the negotiation
game and BW’s main results. We then introduce the notion of complexity in terms of
strategies and machines, describe the machine game and finally present the main analysis
and efficiency results for the negotiation game. In Section 3 we run the analogous analysis
for the bargaining and negotiation games with transaction costs. In sharp contrast to
the results in Section 2 with no transaction costs, we learn here that complexity selects
perpetual disagreement and inefficient outcomes in the presence of transaction costs in
both games. We conclude in Section 4. Appendix contains some relegated proofs.

2 Complexity in the Negotiation Game

2.1 The Basics

Let us formally describe the negotiation game, as defined by BW. There are two players
indexed by i = 1, 2. In the alternating-offers protocol, each player in turn proposes a
partition of a periodic surplus whose value is normalized to one. If the offer is accepted,
the game ends and the players share the surplus accordingly at every period indefi-
nitely thereafter. If the offer is rejected, the players engage in a one-shot (normal form)
game, called the “disagreement game”, before moving onto the next period in which the
rejecting player makes a counter-offer.

We index the (potentially infinite) time periods by t = 1, 2, . . . and adopt the conven-
tion that player 1 makes offers in odd periods and player 2 makes offers in even periods.
Let 42 ≡ {x = (x1, x2) |

∑
i xi = 1} be a partition of the unit periodic surplus. A period

then refers to a single offer x ∈ 42 by one player, a response made by the other player -
acceptance “Y ” or rejection “N” - and the play of the disagreement game if the response
is rejection. The common discount factor is δ ∈ (0, 1).

The disagreement game is a normal form game, defined as G = {A1, A2, u1(·), u2(·)}
where Ai is the set of player i’s strategies (or simply actions) and ui(·) : A1×A2 → R is
his payoff function in the disagreement game. We shall denote the set of action profiles

11Abreu and Rubinstein [1] show that complexity refinement narrows the set of equilibrium payoffs
in 2 × 2 repeated games. But, in other repeated games complexity by itself does not have any bite at
all. (See Bloise [5] who shows robust examples of two-player repeated games in which the set of Nash
equilibria with complexity costs coincides with the set of individually rational payoffs.)

7



in G by A = A1×A2 with its element indexed by a. Let u(·) = (u1(·), u2(·)) be the vector
of payoff functions, and assume that it is bounded. Each player’s minmax payoff in G is
normalized to zero. Also, we assume that, for any a ∈ A, u1(a) + u2(a) ≤ 1. Therefore,
the bargaining offers the players an opportunity to settle on an efficient outcome once
and for all.

Two types of outcome paths are possible in the negotiation game; one in which an
agreement occurs in a finite time and one in which disagreement continues perpetually.
Let T denote the end of the game and at ∈ A the disagreement game outcome (action
profile) in period t < T . If T = ∞, we mean an outcome path in which agreement is
never reached. Player i’s (discounted) average payoff in this case is equal to

(1− δ)
∞∑

t=1

δt−1ui(a
t) .

If T < ∞, denote the agreed partition in T by z = (z1, z2) ∈ 42. Player i’s payoff from
such an outcome path amounts to

(1− δ)
T−1∑
t=1

δt−1ui

(
at

)
+ δT−1zi .

The negotiation game is stationary only every two periods (beginning with an odd
one) or “stage”. In specifying the players’ strategies (and later machines), we shall for-
mally distinguish between the different roles played by each player in each stage game.
He can be either the proposer (p) or the responder (r) in a given period. We shall index
a player’s role by k. The role distinction provides a natural framework to capture the
structural asymmetry that the alternating-offers bargaining imposes on the repeated
(disagreement) game.

In order to define a strategy, we first need to introduce some further notations. We
shall use the following notational convention. Whenever superscripts/subscripts i and j
both appear in the same exposition, we mean i, j = 1, 2 and i 6= j. Similarly, whenever
we use superscripts/subscripts k and l together, we mean k, l = p, r and k 6= l.

We shall denote by e a history of outcomes in a period, and this belongs to the set

E = {(xi, Y ), (xi, N, a)}xi∈42,a∈A,i=1,2

where the superscript i represents the identity of the proposer in the period. Let et be
the outcome of the period t.

We also need notations to represent information available to a player within a period
when it is his turn to take an action given his role. To this end, we define a “partial
history” (information within a period) d as an element in the following set

D = {∅, (xi), (xi, N)}xi∈42,i=1,2 .
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For example, the null set ∅ here refers to the beginning of a period at which the proposer
has to make an offer; (xi, N) represents a partial history of an offer xi by player i followed
by the other player’s rejection. Also, let us define

Dik ≡ {d ∈ D | it is i’s turn to play in role k after d in the period} .

Thus, we have

Dip = {∅, (xi, N)}xi∈42 and Dir = {(xj), (xj, N)}xj∈42 .

We denote the set of actions available to player i by

Ci ≡ 42 ∪ Y ∪N ∪ Ai .

Let Cik(d) be the set of actions available to player i given his role k and a corresponding
partial history d ∈ Dik. Thus, we have

Cip(d) =

{
∆2 if d = ∅
Ai if d = (xi, N)

Cir(d) =

{ {Y, N} if d = xj

Ai if d = (xj, N) .

Let
H t = E × · · · × E︸ ︷︷ ︸

t times

be the set of all possible histories of outcomes over t periods in the negotiation game,
excluding those that have resulted in an agreement. The initial history is empty (trivial)
and denoted by H1 = ∅. Let H∞ ≡ ∪∞t=1H

t denote the set of all possible finite period
histories.

For the analysis, we shall divide H∞ into two smaller subsets according to the differ-
ent roles that the players play in each stage. Let H t

ik be the set of all possible histories over
t periods after which player i’s role is k. Notice that H t

ik = H t
jl. Also, let H∞

ik = ∪∞t=1H
t
ik.

Thus, H∞ = H∞
ip ∪H∞

ir (i = 1, 2).
A strategy for player i is then a function

fi : (H∞
ip ×Dip) ∪ (H∞

ir ×Dir) → Ci

such that for any (h, d) ∈ H∞
ik ×Dik we have fi(h, d) ∈ Cik(d). The set of all strategies

for player i is denoted by Fi. Also, we shall denote by F t
i the set of player i’s strategies

in the negotiation game starting with role distribution given in period t. Thus, if t is
odd, F t

i = Fi.
We can define a stationary (or history-independent) strategy in the following way.
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Definition 1 A strategy fi is stationary if and only if fi(h, d) = fi(h
′, d) ∀h, h′ ∈ H∞

ik

and ∀d ∈ Dik for k = p, r. A strategy profile f = (fi, f−i) is stationary if fi is stationary
for all i.

The behavior induced by such a strategy may depend on the partial history within the
current period but not on the history of the game up to the period. For instance, if a
strategy fi is stationary, then it must be such that

fi(h, x, N) = fi(h
′, x, N) ∀h, h′ ∈ H∞ ∀x ∈ 42

but we may have
fi(h, x, N) 6= fi(h, x′, N) for x 6= x′ .

Notice also that a stationary strategy profile always induces the same outcome in each
stage of the game.

In the spirit of the Folk theorem, BW characterize the set of all subgame-perfect
equilibrium (SPE) payoffs of the negotiation game. BW, to this end, compute the lower
bound of each player’s SPE payoff in the negotiation game with discount factor δ. Define

wj = max
a∈A

{
uj(a)−

[
max
a′i∈Ai

ui(a
′
i, aj)− ui(a)

]}

which BW assume to be well-defined. Note also that wi ≤ 1 given the assumption that
ui(a) ≤ 1 ∀a ∈ A, and that wi ≥ 0 if G has at least one Nash equilibrium.

Then, BW show that the infimum of player i’s SPE payoffs in the negotiation game
beginning with his offer (given δ) is not less than vi(δ) =

1−wj

1+δ
while the infimum of the

other player’s SPE payoffs in the same game is not less than vj(δ) = δ(1−wi)
1+δ

. They also
show that, with sufficiently patient players, there exists a SPE of the negotiation game
(beginning with i’s offer) in which the players obtain these lower bounds.

Next define the limit of these infima as δ goes to unity by

vi =
1− wj

2
and vj =

1− wi

2
.

We can now formally state the BW’s main Theorem.

BW Theorem For any payoff vector (v1, v2) of the negotiation game such that v1 > v1

and v2 > v2, ∃ δ̄ ∈ (0, 1) such that ∀δ ∈ (δ̄, 1), (v1, v2) is a SPE payoff vector of
the negotiation game with discount factor δ.

The forces of bargaining thus restrict the set of feasible equilibrium payoffs in the
negotiation game compared to the set of individually rational payoffs in the disagree-
ment (repeated) game. But, if v1 + v2 < 1, the negotiation game has many inefficient
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subgame-perfect equilibria much in the way the Folk theorem characterizes the repeated
game (even when the disagreement game payoffs are always uniformly small relative to
agreement). The negotiation game has a unique (efficient) SPE payoff if v1 + v2 = 1 or
w1 = w2 = 0 which implies that any Nash equilibrium payoff vector of the disagreement
game has to coincide with its minmax point.

2.2 Complexity, Machines and Equilibrium

There are many alternative ways to think of the “complexity” of a strategy in dynamic
games. One natural and intuitive way to measure strategic complexity, which we shall
adopt in the paper, is to consider the total number of distinct continuation strategies
that the strategy induces at different histories (Kalai and Stanford [14]).

In a repeated game, it is natural to take the measure over all its possible subgames.
In the negotiation game, each stage game consists of an extensive form game and this
means that several different definitions are possible.

In the main analysis, we shall consider the set of all continuation strategies at the
beginning of each period of the negotiation game. Formally, let fi|h be the continuation
strategy at history h ∈ H∞ induced by fi ∈ Fi. Thus,

fi|h(h′, d) = fi(h, h′, d) for any (h, h′, d) ∈ H∞
ik ×Dik for any k .

Also, let us define the set of all such continuation strategies by Fi(fi) = {fi|h : h ∈ H∞}.
Then the cardinality of this set provides a measure of strategic complexity. Let us call
it comp(fi).

The set of continuation strategies can also be divided into smaller sets according to
the role specification. Define Fik(fi) = {fi|h : h ∈ H∞

ik } such that we have Fi(fi) =
∪kFik(fi). Complexity can then be equivalently measured by comp(fi) =

∑
k |Fik(fi)|.

We can also measure complexity over finer partitions of histories and corresponding
continuation strategies. We shall later show that the exact definition of complexity is
going to play some role in shaping the precise details of the results.

In dynamic games any strategy can be implemented by an automaton or a “machine”
(we shall clarify this statement below in our negotiation game context). Moreover, Kalai
and Stanford [14] (or simply KS) show that in repeated games the above notion of
complexity of a strategy (the number of continuation strategies) is equivalent to counting
the number of states of the (smallest) automaton that implements the strategy. Thus,
one could equivalently describe any result either in terms of underlying strategies and
their complexity (comp(·)) or in terms of machines and the number of states in them.

We shall establish below that this equivalence between the two representations of
strategic complexity also holds in the negotiation game. Our approach to complexity will
then be facilitated in machine terms as this will provide a more economical platform to
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present the analysis of complexity. Each player’s strategy space in the negotiation game
will be taken as the set of all machines and the players simultaneously and independently
choose a single machine at the beginning of the negotiation game. This is the “machine
game”, a term which we shall interchangeably use with the negotiation game.

Here the extensive form of the stage game allows for many different machine specifi-
cations to equivalently represent a strategy. (The same is also the case in other sequential
dynamic games; see Piccione and Rubinstein [20], Chatterjee and Sabourian [7][8] and
Sabourian [22]). The fact that the stage game is also asymmetric across its two periods
- a player switches his role in the bargaining process - adds to this issue of multiple
possible machine specifications.12

In this paper, we will mainly employ a particular machine specification that consists
of two “sub-machines”:

Definition 2 For each player i, a machine (automaton), Mi = {Mip,Mir}, consists of
two sub-machines Mip = (Qip, q

1
ip, λip, µip) and Mir = (Qir, q

1
ir, λir, µir) where for any

k, l = p, r

Qik is the set of states;

q1
ik is the initial state belonging to Qik;

λik : Qik ×Dik → Ci is the output function such that

λik(qik, d) ∈ Cik(d), ∀qik ∈ Qik and ∀d ∈ Dik; and

µik : Qik × E → Qil is the transition function.

Let Φi denote the set of player i’s machines in the machine game. We also let Φt
i

denote the set of player i’s machines in the machine game starting with role distribution
given in period t. Thus, if t is odd, Φt

i = Φi.
Each sub-machine in the above definition of a machine consists of a set of distinct

states, an initial state and an output function enabling a player to play a given role.
Transitions take place at the end of each period from a state in one sub-machine to a
state in the other sub-machine as roles are reversed each period. We also assume that
each sub-machine has to have at least one state.13’14

12There is no loss of generality in adopting any of the possible specifications in terms of implementing
strategies. However, as we shall see below, the counting-the-number-of-states (of a machine) measure
of complexity corresponds to different notions of complexity for different machine specifications.

13We could also define a distinct terminal state for each sub-machine. This is immaterial. We are
assuming that if an offer is accepted by the responder, Mi enters the terminal state of the relevant
sub-machine and shuts off.

14Note that the initial state of the sub-machine that operates in the second period is in fact redundant
because the first state used by this sub-machine depends on the transition taking place between the first
two periods of the game. Nevertheless, we endow both sub-machines with an initial state for expositional
ease.
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Let us now formally state what we mean by a machine implementing a strategy in
the negotiation game. Consider a machine Mi = {Mip,Mir} ∈ Φi where, for k = p, r,
Mik = (Qik, q

1
ik, λik, µik). For every k = p, r and for any h ∈ H∞

ik , denote the state at
history h by qi(h) ∈ Qik. Formally if h = (e1, . . . , et−1) then qi(h) = qt

i where, for any
0 < τ ≤ t, qτ

i is defined inductively by

q1
i =

{
q1
ik if i is in role k initially at t = 1

q1
il if i is in role l initially at t = 1

qτ
i ≡

{
µil(q

τ−1
i , eτ−1) if i is in role k at τ

µik(q
τ−1
i , eτ−1) if i is in role l at τ

, ∀τ > 0

Definition 3 Mi implements fi if ∀k, ∀h ∈ H∞
ik and d ∈ Dik we have

λik(qi(h), d) = fi(h, d)

where qi(h) is defined inductively as above.

Clearly, any strategy fi can be implemented by a machine. For example, consider a
machine Mi = {Mip,Mir} (where, for k = p, r, Mik = (Qik, q

1
ik, λik, µik)) which is such

that ∀k, ∀h ∈ H∞
ik , ∀d ∈ Dik and ∀e ∈ E

Qik = H∞
ik , λik(h, d) = fi(h, d), µik(h, e) = (h, e),

and q1
ik′ = ∅ where k′ is i’s role in period t = 1. Evidently, this machine implements fi.

The above establishes that machines and strategies are equivalent in our set-up.
Notice also that we do not impose any restriction on the set of machines/strategies;
each sub-machine may have any arbitrary (possibly infinite) number of states. This is
in contrast to Abreu and Rubinstein [1] and others who consider only finite automata.
Assuming that machines can only have a finite number of states is itself a restriction on
the players’ choice of strategies.

Let ‖Mi‖ =
∑

k |Qik| be the total number of states (or size) of machine Mi. Next, as
in KS (Theorem 1), we show that for any strategy fi, comp(fi) is equivalent to the total
number of states of the smallest machine that implements fi. It must be stressed here
that the exact specification of a machine is important in qualifying this statement. In
fact, it is precisely to establish this equivalence that we have chosen the above machine
specification.15

15The exact specification of a machine is important in qualifying this statement. Since in defining
comp(fi) we consider continuation strategies at the beginning of each period, we need transitions between
the states of a machine to take place between periods in accordance with the continuation points chosen.
It is also important that each sub-machine uses its own distinct set of states.
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Proposition 1 Fix any fi ∈ Fi. Let Mi(fi) ⊆ Φi be the set of machines that implement
fi. Also, let M̄i = {M̄ip, M̄ir} be a smallest machine that implements fi; that is

‖M̄i‖ ∈ {Mi ∈Mi(fi) | ‖Mi‖ ≤ ‖M ′
i‖ ∀M ′

i ∈Mi(fi)} .

Then, we have |Fik(fi)| = ‖M̄ik‖ for any k = p, r and thus ‖M̄i‖ = comp(fi).

Proof. See Appendix. ‖

Given this result, we now formally define the notion of complexity in terms of ma-
chines, as in Rubinstein [21] and Abreu and Rubinstein [1].16

Definition 4 (State complexity) A machine M ′
i is more complex than another ma-

chine Mi if ‖M ′
i‖ > ‖Mi‖.

The following defines a minimal machine.

Definition 5 A machine is minimal if and only if each of its sub-machines has exactly
one state.

A minimal machine implements the same actions in every period regardless of the
history of the preceding periods, provided that the partial history within the current
period (given a role) is the same. Thus, it corresponds to a stationary strategy as in
Definition 1. We shall henceforth refer to a minimal machine (profile) interchangeably
as a stationary machine (profile).

To wrap up the description of the machine game, let us fix some more notational
conventions. Let M = (M1, M2) be a machine profile. Then, if M is the chosen machine
profile, T (M) refers to the end of the negotiation game; z(M) ∈ 42 is the agreement
offer if T (M) < ∞; at(M) ∈ A is the disagreement game outcome in period t < T (M);
and qt

i(M) is the state of player i’s machine appearing in period t ≤ T (M) (the state of
the active sub-machine in period t).

Similarly, we denote by πt
i(M) player i’s (discounted) average continuation payoff at

period t ≤ T (M) when the machine profile M is chosen. Thus,

πt
i(M) =





(1− δ)
∑∞

τ=t δ
τ−tui(a

τ (M)) if T (M) = ∞

(1− δ)
∑T−1

τ=t δτ−tui (a
τ (M)) + δT−tzi(M) if t < T (M) < ∞

zi(M) if t = T (M) < ∞
16We also draw attention to the work of Binmore, Piccione, and Samuelson [4] who propose another

notion of complexity similar to state complexity considered in this paper and others. According to their
“collapsing state condition”, an automaton M1 is less complex than another automaton M2 if the same
implementation can be obtained by consolidating a collection of states belonging to M2 into a single
state in M1. It will not be difficult to see that our results will also hold under this notion of complexity.
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We shall use the abbreviation πi(M) = π1
i (M).

For ease of exposition, the argument in M will sometimes be dropped when we refer
to one of these variables that depends on the particular machine profile. For example,
πt

i will refer to πt
i(M). Unless otherwise stated, the abbreviated variable will refer to the

machine profile in the claim.
We now introduce an equilibrium notion that captures the players’ preference for less

complex machines. There are several ways of refining Nash equilibrium with complexity.
We choose an equilibrium notion in which complexity enters a player’s preferences after
the payoffs and with a (non-negative) fixed cost c.17

To facilitate this concept, we first define the notion of ε-best response.

Definition 6 For any ε ≥ 0, a machine Mi is a ε-best response to M−i if, ∀M ′
i ,

πi(Mi,M−i) + ε ≥ πi(M
′
i ,M−i) .

If a machine is a 0-best response, then it is a best response in the conventional sense.
We then define a Nash equilibrium of the machine game with complexity cost c.

Definition 7 A machine profile M∗ = (M∗
1 ,M∗

2 ) constitutes a Nash equilibrium of the
machine game with complexity cost c ≥ 0 (NEMc) if ∀i

(i) M∗
i is a best response to M∗

−i;

(ii) ∃ no M ′
i ∈ Φi such that M ′

i is a c-best response to M∗
−i and ‖M∗

i ‖ > ‖M ′
i‖.

By definition, the set of NEMc is a subset of the set of Nash equilibria in the negoti-
ation game. The case of zero complexity cost c = 0 is closest to the standard equilibrium
and corresponds to the case in which complexity enters players’ preferences lexicograph-
ically. Any NEMc with a positive complexity cost c > 0 must also be a NEMc with
c = 0. The magnitude of c therefore can be interpreted as a measure of how much the
players care for less complex strategies, or indeed the players’ bounded rationality.

Abreu and Rubinstein [1] (or simply AR) propose a general way of describing a
player’s preference ordering over machine profiles that is increasing in his payoff of the
game and decreasing in the complexity of his machine. A Nash equilibrium can then be
written in terms of machines that are most preferred against each other. In contrast, our
equilibrium concept directly finds a subset of Nash equilibria of the underlying game
that fits our complexity cost criterion (at the margin). There is, however, an analytical
parallel between our choice of solution concept and that of AR because the latter must
also be a Nash equilibrium of the underlying negotiation game (see Lee and Sabourian
[15]). Our complexity cost criterion can be thought of as an alternative way to embed
the trade-off between payoff and complexity that underlies AR’s preference ordering.

17Sabourian [22] employs this equilibrium notion.
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NEMc strategy profiles are not necessarily credible however. We could introduce
credibility, as in Chatterjee and Sabourian [7][8], by introducing trembles into the model
and considering the limit of extensive form trembling hand equilibrium (Nash equilib-
rium with independent trembles at each information set) with complexity cost as the
trembles become small. The trembles will ensure that strategies are optimal (allowing
for complexity) at every information set that occurs with a positive probability.

A more direct, and simpler, way of introducing credibility would be to consider NEMc
strategy profiles that are subgame-perfect equilibria of the negotiation game without
complexity cost.

Definition 8 A machine profile M∗ = (M∗
1 ,M∗

2 ) constitutes a subgame-perfect equilib-
rium of the machine game with complexity cost c ≥ 0 (SPEMc) if M∗ is both a NEMc
and a subgame-perfect equilibrium (SPE) of the negotiation game.

Given Proposition 1, we can equivalently define these notions of equilibrium (NEMc
and SPEMc) in terms of underlying strategies and the corresponding measure of com-
plexity comp(·). As mentioned earlier, we prefer the machine game analysis for its exposi-
tional economy. Also, unless otherwise stated explicitly, any reported result and its proof
below are independent of (i) the complexity cost (c ≥ 0), including the lexicographic
case, and (ii) the discount factor δ.

2.3 Analysis: Complexity and Efficiency

2.3.1 NEMc Results

Some Preliminary Results We begin by laying out some Lemmas that will pave way
for the main results below. We first state an obvious, yet very important, implication of
the complexity requirement. Suppose that there exists a state in some player’s equilib-
rium (NEMc) machine that never appears on the equilibrium path. Unless the machine
is minimal, however, this cannot be possible because this state can be “dropped” by
the player to reduce complexity cost without affecting the outcome and payoff, thereby
contradicting the NEMc assumption. This argument leads to the following Lemma.

Lemma 1 Assume that M∗ = (M∗
1 ,M∗

2 ) is a NEMc, where M∗
i = {M∗

ip,M
∗
ir} and

M∗
ik = (Q∗

ik, q
1∗
ik , λ∗ik, µ

∗
ik) for any i = 1, 2 and k = p, r.18 Then, we have the following:

(i) if T (M∗) ≥ 2, then ∀i, ∀k and ∀qi ∈ Q∗
ik ∃ a period t such that qt

i(M
∗) = qi;

(ii) if T (M∗) ≤ 2, then |Qik| = 1 ∀i and ∀k.19

18This will henceforth define the equilibrium machines in our claims.
19Note that although a player can choose a machine of any size it follows from Lemma 1 that for any

NEMc profile M∗ = (M∗
1 ,M∗

2 ), M∗
i (i = 1, 2) must have a countable number of states.
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Next note that, since any strategy can be implemented by a machine, it follows, by
definition, that any NEMc profile M∗ = (M∗

1 ,M∗
2 ) corresponds to a Nash equilibrium of

the underlying negotiation game; thus

πi(M
∗
i ,M∗

j ) = max
fi∈Fi

πi(fi,M
∗
j ) ∀i, j

where, with some abuse of notation, πi(fi,M
∗
j ) refers to i’s payoff in the game where i

and j play according to fi and M∗
j respectively.

More generally, the equilibrium machines must be best responses (in terms of payoffs)
along the equilibrium path of the negotiation game.

Lemma 2 Assume that M∗ = (M∗
1 ,M∗

2 ) is a NEMc. Then, ∀i, j and ∀τ ≤ T (M∗) we
have

πτ
i (M∗) = max

fi∈F τ
i

πi(fi,M
∗
j (qτ

j ))

where qτ
j ≡ qτ

j (M∗), M∗
j (qτ

j ) ∈ Φτ
j is the machine that is identical to M∗

j except that it
starts with the sub-machine which operates in period τ with initial state qτ

j , and again
with some abuse of notation, πi(fi,M

∗
j (qτ

j )) refers to i’s payoff in the negotiation game
that starts with role distribution given in period τ and is played by i and j according to
fi ∈ F τ

i and M∗
j (qτ

j ) respectively.

It then follows that if a state belonging to a player’s equilibrium machine appears
twice on the outcome path then the continuation payoff of the other player must be
identical at both periods.

Lemma 3 Assume that M∗ = (M∗
1 ,M∗

2 ) is a NEMc with c ≥ 0. Then, ∀i, j and ∀t, t′ ≤
T (M∗) we have the following:

if qt
j(M

∗) = qt′
j (M∗), then πt

i(M
∗) = πt′

i (M∗) .

Lemmas 1-3 are familiar arguments rooted in the existing literature (see Abreu and
Rubinstein [1] or Osborne and Rubinstein [17]). The proofs of these lemmas are simple
adaptations of the earlier results to the 2SM machine specification; hence to save space
we shall omit them and refer the reader to our working paper (Lee and Sabourian [15]).

Agreement We now show that, if an agreement occurs at some finite period as a
NEMc outcome, then it must occur within the very first stage (two periods) of the
negotiation game, and thus, the associated equilibrium machines (strategies) must be
minimal (stationary).

To do so, we first establish the following critical Lemma: if a NEMc induces an
agreement in a finite period then every state of the equilibrium machines occurs only
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once on the equilibrium path. The proof uses the arguments behind Lemmas 3 and 4
in AR which deliver their “tracking states” result. In AR, machines are assumed to be
finite, so any equilibrium must induce an outcome path that repeats perpetually, or
“cycles”. Here, we do not impose finiteness of a machine but when there is an agreement
in a finite period cycles clearly cannot happen.

Lemma 4 Assume that M∗ = (M∗
1 , M∗

2 ) is a NEMc with T (M∗) < ∞. Then, qt
i(M

∗) 6=
qt′
i (M∗) ∀t, t′ ≤ T (M∗) and ∀i.

Proof. Suppose not; then there exists a NEMc profile M∗ with T (M∗) < ∞ such
that qt

i = qt′
i for some i and for two distinct dates t, t′ ≤ T . Now, we show that there

has to be a cycle, which contradicts that T (M∗) < ∞.
Define τi as the minimal t such that qt

i is repeated. Also, let τ ′i be the minimal t > τi

such that qt
i = qτi

i . We proceed in the following steps.
Step 1: ∃ t ≤ T such that t 6= τi and qt

j = qτi
j .

Suppose not. Then consider player j using another machine M ′
j = {M ′

jp,M
′
jr},

where M ′
jk = (Q′

jk, q
1′
jk, λ

′
jk, µ

′
jk) for k = p, r, which is identical to M∗

j except that
(i) qτi

j is dropped (thus Q′
jl = Q∗

jk\qτi
j ) and (ii) the transition function is such that

µ′jl′(q
τi−1
j , eτi−1) = q

τ ′i
j , where j plays role l at τi and l′ at τi − 1.

Since qτi
j is distinct, playing M ′

j against M∗
i generates the same outcome path as M∗

j

up to period τi − 1 followed by the outcome path between τ ′i and T (thereby making

the agreement occur sooner). Notice that, since πτi
j = π

τ ′i
j from Lemma 3, πj(M

∗
i ,M ′

j) =
πj(M

∗). But then, since qτi
j is dropped, ‖M∗

j ‖ > ‖M ′
j‖, and this contradicts NEMc.20

Step 2: τi = τj where τj is the minimal t such that qt
j is repeated.

By Step 1 τj ≤ τi. Also, we can use exactly the same reasoning as in Step 1 to show
that q

τj

i is not distinct, and hence τj ≥ τi. Therefore, τj = τi.
Step 3: τ ′i = τ ′j where τ ′j be the minimal t > τj such that qt

j = q
τj

j .
Suppose not; suppose τ ′i > τ ′j. Let τ = τi = τj. There are two cases to consider.

Case A: q
τ ′i
j 6= qt

j ∀t < τ ′i .
Now, consider another machine M ′

j = {M ′
jp,M

′
jr} which is identical to M∗

j except

that (i) q
τ ′i
j is dropped (thus Q′

jl = Q∗
jl\qτ ′i

j ) and (ii) the transition function is such that

µ′jl′(q
τ ′i−1
j , eτ ′i−1) = qτ

j , where j plays role l at τ ′i and l′ at τ ′i − 1.

Since qτ
i = q

τ ′i
i and q

τ ′i
j does not happen before τ ′i , playing M ′

j against M∗
i generates

the same outcome path up to τ ′i − 1 and then replicates the outcome path between τ
and τ ′i − 1 ad infinitum. Thus, j’s corresponding continuation payoff at τ is:

20Notice that this result turns on the assumption that each sub-machine uses a distinct set of states.
If the sub-machines shared the states, we could not simply “drop” qτi

j since it could be used for the
other sub-machine (playing a different role) somewhere else.
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πτ
j (M∗

i ,M ′
j) = (1− δ)




τ ′i−1∑
t=τ

δt−τuj(a
t) + δτ ′i−τ

τ ′i−1∑
t=τ

δt−τuj(a
t) + . . .




=
1− δ

1− δτ ′i−τ

τ ′i−1∑
t=τ

δt−τuj(a
t) .

But this equals to πτ
j (M∗

i ,M∗
j ) because

πτ
j (M∗

i ,M∗
j ) = (1− δ)

τ ′i−1∑
t=τ

δt−τuj(a
t) + δτ ′i−τπ

τ ′i
j (M∗

i ,M∗
j )

= (1− δ)

τ ′i−1∑
t=τ

δt−τuj(a
t) + δτ ′i−τπτ

j (M∗
i ,M∗

j )

=
1− δ

1− δτ ′i−τ

τ ′i−1∑
t=τ

δt−τuj(a
t) ,

where the second equality follows from Lemma 3.
Since (M∗

i ,M ′
j) and M∗ induce the same outcome before τ , it follows that πj(M

∗
i ,M ′

j) =

πj(M
∗). But then, since q

τ ′i
j is dropped, ‖M∗

j ‖ > ‖M ′
j‖, and this contradicts NEMc.

Case B : q
τ ′i
j = qs

j for some τ ≤ s < τ ′i .
If s = τ then the outcome path between τ and τ ′i−1 repeats perpetually, contradicting

T < ∞. So, it must be that s > τ . In this case, consider i using another machine M ′
i =

{M ′
ip,M

′
ir} which is identical to M∗

i except that (i) qτ
i is dropped (thus Q′

il = Q∗
il\qτ

i ) and

(ii) the transition function is such that µ′il′(q
τ−1
i , eτ−1) = q

τ ′j
i and µ′il′(q

τ ′i−1
i , eτ ′i−1) = qs

i ,
where i play role l at τ and l′ at τ − 1.

Playing M ′
i against M∗

j generates the same outcome path up to τ − 1, followed by
the outcome path between τ ′j and τ ′i − 1, and then, repeats the outcome path between s
and τ ′i − 1 perpetually. Thus, we get

πτ
i (M ′

i ,M
∗
j ) = (1− δ)

τ ′i−1∑

t=τ ′j

δt−τ ′jui(a
t) +

(1− δ)δτ ′i−τ ′j

1− δτ ′i−s

τ ′i−1∑
t=s

δt−sui(a
t) .
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But, since qτ
j = q

τ ′j
j and q

τ ′i
j = qs

j , Lemma 3 implies

πτ
i (M∗) = π

τ ′j
i (M∗)

= (1− δ)

τ ′i−1∑

t=τ ′j

δt−τ ′jui(a
t) + δτ ′i−τ ′jπ

τ ′i
i (M∗)

= (1− δ)

τ ′i−1∑

t=τ ′j

δt−τ ′jui(a
t) + δτ ′i−τ ′jπs

i (M
∗)

= (1− δ)

τ ′i−1∑

t=τ ′j

δt−τ ′jui(a
t) +

(1− δ)δτ ′i−τ ′j

1− δτ ′i−s

τ ′i−1∑
t=s

δt−sui(a
t)

where the last equality follows from

π
τ ′i
i = πs

i = (1− δ)

τ ′i−1∑
t=s

δt−sui(a
t) + δτ ′i−sπ

τ ′i
i .

Therefore, πi(M
′
i , M

∗
j ) = πi(M

∗). But since ‖M∗
i ‖ > ‖M ′

i‖ we have a contradiction.

Steps 2 and 3 imply that M∗ eventually induces a cyclical outcome path (the out-
come path between τ and τ ′i − 1 cycles perpetually); but this contradicts T < ∞. ‖

We are now ready to present our first major result. Any NEMc outcome that reaches
an agreement must do so in the very first stage of the negotiation game and hence
the associated strategies must be stationary. The intuition is as follows. We know from
Lemma 4 that the state of each player’s machine occurring in the last period is distinct.
This implies that, if the last period occurs beyond the first stage of the game, one of the
players must be able to drop his last period’s state without affecting the outcome of the
game. In the case where the final offer on the equilibrium path was proposed before by
the same player, he could reduce complexity cost simply by using one state to make the
offer twice. On the other hand, if the final offer occurs only once then the responder in
the last period could reduce complexity cost by replacing the last period’s state with any
other state in his (sub-)machine and then revising the corresponding output function to
accept the final offer. Note that the argument in the latter case is of a different kind
and relies critically on the fact that the output of a machine in a given state can be a
function of the proposal.21

21Chatterjee and Sabourian [7][8] use similar intuition to derive a similar result in a multi-person
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Proposition 2 Assume that M∗ = (M∗
1 ,M∗

2 ) is a NEMc with T (M∗) < ∞. Then, (i)
T (M∗) ≤ 2, and (ii) M∗

1 and M∗
2 are minimal and hence M∗ is stationary.

Proof. If part (i) of the claim is true, part (ii) must be true because of Lemma 1.
Let us consider part (i).

Suppose not. Then an agreement z ∈ 42 occurs at some T ∈ (2,∞). We know from
Lemma 4 that qT

1 and qT
2 are both distinct. Now suppose that player i is the proposer

at T and consider two possible cases.
Case A: xτ = z at some τ < T where i proposes.
Consider another machine M ′

i = {M ′
ip,M

′
ir} which is identical to M∗

i except that (i)

qT
i is dropped and (ii) the transition function is such that µ′ir(q

T−1
i , eT−1) = qτ

i . (Note
that qτ

i 6= qT
i since we have T > 2 and qT

i is distinct by Lemma 4.)
Since λ′ip(q

τ
i , ∅) = z and qT

i appears for the first time at T on the original equilibrium
path, M ′

i (given M∗
j ) generates an identical outcome path and payoff as M∗

i . But, since
qT
i is dropped, ‖M∗

i ‖ > ‖M ′
i‖. This contradicts NEMc.

Case B: xτ 6= z ∀τ < T where i proposes.
Consider another machine M ′

j = {M ′
jp,M

′
jr} which is identical to M∗

j except that

(i) qT
j is dropped, (ii) the transition function is such that µ′jp(q

T−1
j , eT−1) = qj 6= qT

j for
some arbitrary but fixed qj ∈ Q′

jr (such qj exists since we have T > 2 and qT
j is distinct

by Lemma 4) and (iii) the output function is such that λ′jr(qj, z) = Y .
Since the offer z does not appear anywhere before T on the original equilibrium path

when i proposes, playing M ′
j (given M∗

i ) does not affect the outcome and payoff. But,
since qT

j is dropped, ‖M∗
j ‖ > ‖M ′

j‖. This contradicts NEMc. ‖

It immediately follows from Proposition 2 that any NEMc involving an agreement
must be efficient unless the agreement is in period 2. Therefore, any such NEMc is almost
efficient for a sufficiently large discount factor (i.e. efficient in the limit as δ → 1).

Corollary 1 For any ε ∈ (0, 1), ∃ δ̄ < 1 such that for any δ ∈ (δ̄, 1), any NEMc profile
M∗ of the negotiation game with discount factor δ that involves an agreement must be
such that

∑
i πi(M

∗) > 1− ε.

2.3.2 SPEMc Results

Stationary Subgame-Perfect Equilibria We begin the SPEMc characterization of
the negotiation game by considering stationary SPE. Since our notion of a stationary
strategy (Definition 1) allows for actions conditional on partial history within a period,

bargaining game. However, the details of the arguments are somewhat different because first we have
to consider what happens in the disagreement game (after a rejection), and second, their analysis, in
particular that in [8], is based on a different notion of complexity from one considered here.
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a stationary SPE here does not precisely correspond to BW’s characterization (see their
Proposition 1 and Corollary 1).

Of course, it must be that for a pair of stationary strategies to constitute a SPE of the
negotiation game, only a Nash equilibrium of the disagreement game can be played after a
rejection (on- or off-the-equilibrium path); otherwise, there will be a profitable deviation
for some player as continuation payoffs are history-independent at the beginning of next
period.

But, a stationary SPE here is not necessarily efficient. Delay in agreement (either
over one period or indefinite) and inefficiency can be sustained in equilibrium because a
player who makes a deviating offer can be credibly punished in the disagreement game
of the same period if the disagreement game has multiple Nash equilibria.22

Before providing a characterization for the set of stationary subgame-perfect equi-
libria, denote the set of Nash equilibria of G by A∗ and let

b ≡ max
i

sup
a,a′∈A∗

[ui(a)− ui(a
′)].23 (3)

Proposition 3 (i) The negotiation game has a stationary SPE if and only if A∗ is
non-empty.

(ii)If f is a stationary SPE profile of the negotiation game, then
∑

i

πi(f) ≥ 1− (1− δ)b .

22For instance, suppose that G has three Nash equilibria a = (a1, a2), a1 = (a1
1, a

1
2) and a2 = (a2

1, a
2
2)

such that the following two conditions hold

1 >
∑

i

ui(a) ≥ 1− (1− δ) max
i

(ui(ai)− ui(a)) (1)

ui(ai) > ui(a) ∀i . (2)

Then, there exists a stationary SPE in which the players disagree indefinitely and play a in every
period after rejection. We can easily check that given (1) and (2) the following stationary strategy
profile f = (f1, f2) constitutes a SPE. For each i, fi is such that ∀h ∈ H∞

ip

fi(h, ∅) = xi = (xi
1, x

i
2) ∈ 42 such that xi

j < uj(a)

fi(h, x, N) =
{

ai if x = xi

aj
i if x 6= xi

and ∀h ∈ H∞
ir

fi(h, x) = Y if and only if xi > (1− δ)ui(ai) + δui(a)

fi(h, x,N) =
{

ai if x = xj

ai
i if x 6= xj .

23Notice that b ∈ [0, 1].
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Proof. See Appendix. ‖

It immediately follows from Proposition 3 that for a sufficiently large discount factor
every stationary SPE must be (almost) efficient.

Corollary 2 For any ε ∈ (0, 1), ∃ δ̄ < 1 such that, for any δ ∈ (δ̄, 1), if f is a stationary
SPE of the negotiation game with discount factor δ then

∑
i πi(f) > 1− ε.

We can also deduce that in some cases a stationary SPE is efficient independently of
the discount factor.

Corollary 3 For any δ, every stationary SPE of the negotiation game is efficient if
either (i) G has a unique Nash equilibrium or (ii) ∀a ∈ A∗ we have

∑
i ui(a) < 1− b.

Proof. See Appendix. ‖

SPEMc and Perpetual Disagreement First, let Ωδ(c) denote the set of SPEMc
machine profiles in the negotiation game with discount factor δ and complexity cost c.

Now we show that, given a discount factor arbitrarily close to one, any SPEMc
outcome with perpetual disagreement must be at least long-run (almost) efficient; that
is, if agreement never occurs then the players must eventually reach a finite period at
which the sum of their continuation payoffs is approximately equal to one.

The proof of this claim (and also several other claims below) requires an interaction
between complexity and perfection arguments. The key complexity argument is that
every state of each player’s equilibrium machine must appear on the equilibrium path
(Lemma 1). This implies the following. Suppose that a player deviates from a SPEMc
of the negotiation game by making a different offer in some period. What can the other
player obtain if he rejects this offer? Since the state of each player’s (sub-)machine is
fixed for each period (not at each decision node), the ensuing disagreement game of the
period may see an outcome that never happens on the original equilibrium path; but
then, Lemma 1 implies that the subsequent transition must take the players to some
point along the original path for next period. Thus, any punishment for a player who
deviates from the proposed equilibrium must itself occur on the equilibrium path (except
for the play of the disagreement game immediately after the deviating offer), and as a
consequence, the set of equilibrium outcomes is severely restricted.

Informally, we consider the period in which a player gets his maximum continuation
payoff in the proposer role. Bargaining can then be used by the other player in the
preceding period to break up the on-going disagreement if there is any (continuation)
inefficiency from then on. In such cases, there exists a Pareto-improving deviation offer
because the responder in that period, who will be proposing next, cannot obtain more
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from punishing the deviant than what he is already getting from the original outcome as
of next period. We need the discount factor to be sufficiently large so as to eliminate the
importance of the current period in which the deviation can be followed immediately by
an off-the-equilibrium play of the disagreement game.

Proposition 4 For any ε ∈ (0, 1), ∃ δ̄ < 1 such that, for any δ ∈ (δ̄, 1) and any
M∗ ∈ Ωδ(c) with T (M∗) = ∞, ∃ τ < ∞ such that

∑
i π

τ
i (M∗) > 1− ε.

Proof. Fix any ε ∈ (0, 1). Define

β = max

{
1, max

i
sup

a,a′∈A
[ui(a)− ui(a

′)]
}

(4)

which is bounded since u(·) is. Define also

δ̄ = 1− ε

β
.

Given these, consider any δ ∈ (δ̄, 1) (thus ε > β(1−δ)) and any M∗ = (M∗
1 ,M∗

2 ) ∈ Ωδ(c)
with T (M∗) = ∞. Define η, tik and τη such that

0 < η < ε− β(1− δ), (5)

tik = {t| i plays role k}, (6)

τη = min{t ∈ t2p | πt
2 + η > πt′

2 ∀t′ ∈ t2p}(< ∞) . (7)

Now, given M∗
1 , consider player 2’s continuation payoff after rejecting any offer in

any period belonging to t2r. Notice that since

• every state of M∗
1 appears on the equilibrium path of M∗ (Lemma 1)

• πt
2 = maxf2∈F t

2
(f2,M

∗
1 (qt

1)) ∀t (Lemma 2),

player 2’s continuation payoff at the next period if he rejects any offer (given M∗
1 ) is at

most supt∈t2p
πt

2. We also have π
τη

2 + η > πt
2, ∀t ∈ t2p.

The above implies that if 2’s equilibrium machine M∗
2 receives an offer

z′ = (1− πmax
2r , πmax

2r ) ∈ 42,

where
πmax

2r = (1− δ) sup
a∈A

u2(a) + δ
(
π

τη

2 + η
)
, (8)

it must always accept because the profile M∗ is subgame-perfect.
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Now, consider player 1 using another machine M ′
1 = {M ′

1p,M
′
1r} which is identical

to M∗
1 except that λ′1p(q

τη−1
1 , ∅) = z′. Define

τ = min
t
{t| qt

1 = q
τη−1
1 } . (9)

Since M∗
2 always accepts the offer z′ and M ′

1 differs from M∗
1 only in offers conditional

on state q
τη−1
1 , it follows that (M ′

1,M
∗
2 ) results in agreement z′ in period τ .

We also know by Lemma 3 that πτ
2 = π

τη−1
2 . Thus, we have

πτ
2 = (1− δ)u2(a

τη−1) + δπ
τη

2 . (10)

Since supa∈A u2(a)− u2(a
τη−1) ≤ β (where β is given by (4)), we have, by (8) and (10),

πmax
2r − πτ

2 ≤ (1− δ)β + δη .

Using this, we can write

1− πmax
2r ≥ 1− (πτ

2 + (1− δ)β + δη) . (11)

Since M∗ is a SPEMc, it must be that πτ
1 ≥ 1− πmax

2r ; otherwise the deviation to M ′
1

is profitable. This implies that (given δ < 1)

πτ
1 + πτ

2 > 1− ((1− δ) β + η) .

But, since by (5) we have ε > (1− δ) β+η, it follows that at period τ < ∞,
∑

i π
τ
i > 1−ε

as in the claim. ‖

Proposition 4 does not however rule out the possibility that we observe inefficiency (in
terms of payoffs) early on in the negotiation game.24 Given any ε > 0 and δ sufficiently
close to one, we can write the total equilibrium payoff from the negotiation game as

∑
i

πi(M
∗) > (1− δ)

∑
i

τ−1∑
t=1

δt−1ui

(
at (M∗)

)
+ δτ−1(1− ε)

where M∗ is the equilibrium profile (T (M∗) = ∞) and τ is the first period in which
continuation becomes (almost) efficient. The limit of the right-hand side as ε → 0 and
δ → 1 is not necessarily the efficient level (because τ may depend on δ).25

24To be precise, neither does it rule out the possibility that there will be inefficient disagreement
game outcomes even after τ . It is just that the continuation game from then on is almost efficient.

25If we restrict each player’s machine to use only a finite number of states, then any machine profile
must generate cycles. But this is not enough to guarantee that Proposition 4 implies ex ante efficiency
in the limit as δ goes to one. For this, we need for instance to additionally assume that the size of a
machine is uniformly bounded (for any δ) so that the first cycle cannot last beyond a fixed period.
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Main Results for SPEMc Now, putting together Proposition 2, Proposition 4 and
Corollary 1, we state Theorem 1: under sufficiently patient players, (i) every SPEMc
(in fact any NEMc) inducing an agreement must do so in the very first stage of the
negotiation game and hence be stationary and almost efficient, (ii) every SPEMc inducing
perpetual disagreement must be at least almost efficient in the long run, and (iii) if the
structure of the disagreement game is such that there exists no efficient action profile,
the players cannot disagree forever; every SPEMc must then induce an agreement in the
first stage and hence be stationary and almost efficient.

Theorem 1 1. For any δ and any c ≥ 0, if M∗ ∈ Ωδ(c) is such that T (M∗) < ∞
then T (M∗) ≤ 2 and M∗ is stationary.

2. For any ε ∈ (0, 1), ∃ δ̄ < 1 such that, for any δ ∈ (δ̄, 1) and any c ≥ 0, we have

(a) if M∗ ∈ Ωδ(c) is such that T (M∗) < ∞ then
∑

i πi(M
∗) > 1− ε;

(b) if M∗ ∈ Ωδ(c) is such that T (M∗) = ∞ then ∃ τ < ∞ such that
∑

i π
τ
i (M∗) >

1− ε;

(c) if
∑

i ui(a) < 1 ∀a ∈ A then every M∗ ∈ Ωδ(c) is such that T (M∗) ≤ 2, and
hence is stationary, and

∑
i πi(M

∗) > 1− ε.

In fact, when complexity cost c is strictly positive, we obtain a sharper efficiency
result: for a sufficiently large δ, every SPEMc of the negotiation game must be stationary
and hence almost efficient however small that complexity cost is.

Theorem 2 For any c > 0, we have the following: for any ε ∈ (0, 1), ∃ δ̄ < 1 such that,
for any δ ∈ (δ̄, 1), every M∗ ∈ Ωδ(c) is stationary and such that

∑
i πi(M

∗) > 1− ε.

Proof. See Appendix. ‖

We know from Corollary 2 that (almost) efficiency follows from stationarity. The
intuition for stationarity in above Theorem is as follows (for sufficiently patient players).
If equilibrium machines are not stationary then by Proposition 2 there cannot be any
agreement. Next, consider the (first) period, say τη, at which a player, say 2, gets his
maximum continuation payoff in the proposer role. Bargaining can then be used by the
other player in the preceding period to break up the on-going disagreement and save the
state at τη. In particular, since 2 gets his maximum continuation payoff at date τη, there
is a deviation offer by player 1 at date τη − 1 that is acceptable by player 2 and involves
an arbitrarily small loss for 1. Since such deviation induces an agreement at τη − 1 and
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thus saves the state at τη and complexity cost is positive, it follows that 1 is better-off
deviating.26

We can further relate the set of SPEMc in the negotiation game to the structure of the
disagreement game G. For instance, Corollary 3 reports some cases where a stationary
SPE of the negotiation game is efficient independently of the discount factor. In those
cases, we have a stronger set of efficiency results.

Corollary 4 Suppose either G has a unique Nash equilibrium27 or
∑

i ui(a) < 1 − b
∀a ∈ A∗. Then, every M∗ ∈ Ωδ(c) is efficient (i.e.

∑
i πi(M

∗) = 1) if T (M∗) < ∞.
Moreover, ∃ δ̄ < 1 such that for any δ ∈ (δ̄, 1) every M∗ ∈ Ωδ(c) is efficient if either∑

i ui(a) < 1 ∀a ∈ A or c > 0.

2.4 Discussion

Alternative Machine Specifications Since each stage game of the negotiation game
has a sequential structure, we can have alternative machine specifications that employ
more frequent transitions and hence account for finer partitions of histories and contin-
uation strategies.

For example, below we have a definition of a machine, henceforth called the 4SM
specification, that maintains the role distinction and employs distinct sub-machines to
play the bargaining and the disagreement game within each period. Transition thus
takes place twice within each period - once after the bargaining and once after the
disagreement game.28

Definition 9 (Four sub-machine (4SM) specification) A machine,
Mi = {Mip, M̃ip,Mir, M̃ir}, consists of four sub-machines Mik = (Qik, q

1
ik, λik, µik) and

M̃ik = (Q̃ik, q̃
1
ik, λ̃ik, µ̃ik) for k = p, r. Each sub-machine consists of a set of states,

an initial state, an output function and a transition function such that ∀qik ∈ Qik,

26As in the case of Proposition 4, we need δ to be sufficiently large so as to eliminate the importance
of the current period in which the deviation can be followed immediately by an off-the-equilibrium play
of the disagreement game.

27This is true, for example, in the union-firm negotiation models of Fernandez and Glazer [10] and
Haller and Holden [13] in which only one player (the union) acts in the disagreement game and there is
a single strictly dominant action (no strike).

28We can also construct a machine in which transition occurs at each decision node of the stage game.
Six sub-machines will then be required (some of which will in fact serve only to make transition and
not output). There are several other possible specifications. But we conjecture that as long as we keep
the role distinction for the bargaining part the results will remain.
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∀q̃ik ∈ Q̃ik, ∀xi, xj ∈ 42 and ∀a ∈ A,

λip(qip, ∅) ∈ 42; λir(qir, x
j) ∈ {Y, N};

λ̃ip(q̃ip, ∅) ∈ Ai; λ̃ir(q̃ir, ∅) ∈ Ai;

µip(qip, x
i, N) ∈ Q̃ip; µir(qir, x

j, N) ∈ Q̃ir;

µ̃ip(q̃ip, a) ∈ Qir; µ̃ir(q̃ir, a) ∈ Qip .

A minimal machine in the 4SM specification is again a machine whose sub-machines
have only one state each, but it corresponds to an alternative notion of stationarity. In
contrast to the 2SM case, a minimal machine here plays the disagreement game inde-
pendently of partial history within a period. Therefore, it captures Markov-stationary
behavior. Since, by Proposition 1 and Corollary 1 of BW, any Markov-stationary SPE
induces an efficient outcome it follows that a minimal 4SM profile is efficient indepen-
dently of the discount factor. Using this, we can derive for the 4SM specification (see Lee
and Sabourian [15]) a set of NEMc/SPEMc results that contain much the same flavor
as the corresponding results in the 2SM specification above, but are yet sharper: the
discount factor no longer matters in the perpetual disagreement case.29 More formally,
let Ω̃δ(c) denote the set of SPEMc in 4SM given discount factor δ and complexity cost
c. Then we can summarize the SPEMc results under the 4SM specification as follows.

Theorem 3 Consider any δ and any c ≥ 0. Then we have the following:

1. If M∗ ∈ Ω̃δ(c) is such that T (M∗) < ∞, then T (M∗) ≤ 2, M∗ is Markov-stationary
and hence efficient.

2. If M∗ ∈ Ω̃δ(c) is such that T (M∗) = ∞, then for any ε > 0 ∃ τ < ∞ such that∑
i π

τ
i (M∗) > 1− ε .

3. If
∑

i ui(a) < 1 ∀a ∈ A then every M∗ ∈ Ω̃δ(c) induces an immediate agreement,
and hence is Markov-stationary and efficient.

4. If c > 0 then every M∗ ∈ Ω̃δ(c) is Markov-stationary and hence is efficient.

To save space we shall omit the proof of the above and refer the reader to Lee and
Sabourian [15].

The No Discounting Case We also need to mention that our results are not affected
by considering the negotiation game without discounting. In fact, by taking δ = 1 (and
using the limit of means criterion), a sharper result obtains in the perpetual disagreement
case (Proposition 4). This case has to be (exactly) efficient in the long run.

29The definitions of NEMc/SPEMc are as before except that complexity (counting the number of
states) of a 4SM machine now corresponds to the set of continuation strategies of the implemented
strategy at the beginning of each period and at the beginning of the disagreement game in each period.
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3 The Role of Transaction Costs

3.1 Costly Bargaining

AF investigate the impact of transaction costs in two-person negotiation by consider-
ing the following “costly bargaining game”. Unless stated otherwise, the same set of
notations will be used as before.

Two players engage in Rubinstein bargaining over a surplus of one (which accrues
just once, not periodically) with player 1 making offers at odd dates and player 2 at
even dates. There is no disagreement game to be played after a rejection. However, at
the beginning of each period t, each player i has to pay a participation cost, denoted by
ρ ∈ [0, 1

2
], to enter the bargaining.

There are several ways to think about how this decision is made. The players can pay
the cost either simultaneously or sequentially. As it turns out, the exact extensive form
is immaterial to AF’s equilibrium characterization. Let us assume that the cost is paid
sequentially.30 In particular, we assume that at each date t the proposer first decides
whether or not to pay ρ. If he makes the payment, the responder at t then decides
whether or not to pay ρ.

Once both players have sunk the participation cost, the proposer makes an offer, fol-
lowed by the other player’s response. The game ends in case of an acceptance; otherwise
it moves onto the next period. If at least one player does not pay ρ, the game moves
directly onto t + 1 without bargaining.

Let I and N denote a player’s decision to pay and not pay the participation cost
respectively. (We sometimes refer to I simply as “participation”.) In this game, a partial
history within a period, d, belongs to the set

D = {∅, (I), (I, I), (I, I, xi)}i=1,2,xi∈42

where, for example, (I) represents the partial history of payment of the participation
cost by the player who proposes in the period and (I, I) the partial history of sequential
payment of the cost by both players. Thus, we have

Dip = {∅, (I, I)} and Dir = {(I), (I, I, xj)}xj∈42 .

We similarly modify the definition of E, the set of outcomes in a period. Let e denote
an element in this set.

The set of player i’s actions is Ci ≡ I ∪N ∪42 ∪ Y ∪N . We also have

Cip(d) =

{ {I,N} if d = ∅
42 if d = (I, I)

Cir(d) =

{ {I,N} if d = (I)
{Y,N} if d = (I, I, xj) .

30Every result and its proof in this subsection apply to the case of simultaneous payment.
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Given these modifications, the definitions of histories and strategies remain the same
as before. Let us define the payoffs. We denote by ρi(f) the sum of participation costs
that player i pays along the entire outcome path induced by strategy profile f = (f1, f2),
discounted at the appropriate rate. If f induces an agreement z = (z1, z2) ∈ 42 in a
finite period T , then the payoff to i is given by

πi(f) = δT−1
i zi − ρi(f)

while if the strategies induce perpetual disagreement then player i’s payoff is given by

πi(f) = −ρi(f) .

AF first show that the costly bargaining game admits a SPE in which neither player
ever pays the participation cost and therefore disagreement persists forever. (Henceforth,
we shall refer to this equilibrium as perpetual disagreement.) Using this SPE as a penal
code, they demonstrate that there exists a continuum of equilibrium outcome paths.
Furthermore, perpetual disagreement is the only stationary SPE.31’32

AF Theorem In the costly bargaining game with positive participation cost ρ, we have
the following:33

1. If ρ is sufficiently large (ρ > δ
1+2δ

), perpetual disagreement is the unique SPE.

2. For other values of ρ (ρ ≤ δ
1+2δ

),

(a) perpetual disagreement is a stationary SPE;

(b) there exists a SPE that induces an immediate agreement at x = (x1, x2) ∈
42 if and only if x1 ∈ [1− δ(1− 2ρ),1-ρ];

(c) every x ∈ 42 that can be supported as an immediate agreement by a SPE
can also be supported by a SPE involving an arbitrary length of delay.

3. Perpetual disagreement is the unique stationary SPE.

Let us now consider how complexity considerations affect the set of equilibria in the
costly bargaining game. We assume that machines have the 2SM specification as in the

31Otherwise, there is a stationary SPE with an agreement at some T such that the responder at T
would be indifferent between accepting the final offer and waiting until the next period. But, in order
to receive the offer, he would have paid the participation cost. It would then be strictly better for him
to hold up the payment and wait, which gives a contradiction.

32AF also report a stronger result in which perpetual disagreement is the unique SPE when, at each
period, players forget the past history with a probability less than, but sufficiently close to, 1.

33AF characterize the equilibria only for the case of simultaneous participation decision, but it is clear
that the same qualitative statement can be made also for the sequential case.
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previous section. Any strategy in this game can be implemented by a 2SM machine. All
the other definitions and notations on complexity and machines remain the same and
the result of Kalai and Stanford [14] (Proposition 1) equally extends.

We continue to investigate the set of NEMc and SPEMc. We begin by making the
following observation.

Lemma 5 Fix any ρ > 0, and assume that M∗ = (M∗
1 ,M∗

2 ) is a NEMc in the costly
bargaining game such that T (M∗) = ∞. Then, (i) neither player pays ρ in any period
and (ii) M∗

i is minimal for all i.

Proof. (i) Since T (M∗) = ∞, this follows immediately from the observation that
any player can always obtain a zero payoff by not participating in any period.

(ii) Suppose not; then M∗
i is not minimal for some i. But, consider another machine

M ′
i for i which has just one state in each role and never pays ρ in any period in any

role. Clearly, ‖M∗
i ‖ > ‖M ′

i‖. Moreover, by (i) above, πi(M
′
i ,M

∗
−i) = πi(M

∗) = 0. This
contradicts NEMc. ‖

Note that Lemmas 1-3 above also hold here in the costly bargaining game. To save
space we shall omit their statements and proofs.

Next it is obvious that the unique stationary SPE (part 3 of AF Theorem), in which
neither player pays ρ in any period and bargaining never takes place, is also a SPEMc.34

We now show that this is indeed the unique SPEMc if ρ > 0. To demonstrate this, we
first show that, for any SPEMc, if there is an agreement it must be at period 1. The basic
arguments here are similar to those for Proposition 4 in the previous section. Because of
complexity considerations any deviation can be punished only by what happens on the
equilibrium path. This implies in this bargaining setup that, if there is a delay in agree-
ment and a deviating offer is made in the last period, rejection leads to a strictly lower
continuation payoff for the responder (because of discounting and/or positive partici-
pation cost). It then follows from subgame-perfection that there must exist a deviating
offer for the last period’s proposer which the responder will accept and improves his
payoff.

Proposition 5 Fix any ρ > 0, and assume that M∗ is a SPEMc in the costly bargaining
game such that T (M∗) < ∞. Then, T (M∗) = 1.

Proof. Suppose not. Then ∃ a SPEMc profile M∗ that induces an agreement on
some z = (z1, z2) ∈ 42 at some finite period T ≥ 2. Let i be the proposer at T .

Now, given M∗
i , consider j’s continuation payoff after rejecting any offer in any period

at which j is the responder. Since (i) every state of M∗
i appears on the equilibrium path

34This is because stationary strategies can be implemented by minimal machines.
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of M∗ (Lemma 1) and (ii) πt
j = maxfj

(fj,M
∗
i (qt

i)) ∀t (Lemma 2), j’s continuation payoff
if he rejects any offer (given M∗

i ) is at most δ2(zj−ρ) ≥ 0. This implies that if receives an
offer z′ = (zi + ε, zj− ε) ∈ 42 such that (1− δ2)zj + δ2ρ > ε > 0, by subgame-perfection,
it must always accept.

Now, consider i using another machine M ′
i = {M ′

ip,M
′
ir} which is identical to M∗

i

except that λ′ip(q
T
i , (I, I)) = z′.

Note that πt
j(M

∗) 6= πT
j (M∗) ∀t < T ; therefore, by Lemma 3 qT

j 6= qt
i ∀t < T. This

together with M∗
j always accepting z′ implies that M ′

i , played against M∗
j , will generate

the same outcome path up to T −1 as M∗
i and then agreement on z′ at T . This improves

i’s payoff, and we have a contradiction against SPEMc. ‖

Combining AF Theorem, Lemma 5 and Proposition 5, we now state our next Theo-
rem. Complexity together with any positive participation cost selects a unique equilib-
rium outcome in two-person bargaining, which is extremely inefficient.

Theorem 4 For any ρ > 0, every SPEMc profile M∗ in the costly bargaining game
is such that (i) T (M∗) = ∞, (ii) neither player pays ρ in any period, and (iii) M∗

i is
minimal for all i.

Proof. By Lemma 5 it suffices to show T (M∗) = ∞. To show this, suppose other-
wise; then by Proposition 5 we must have that T (M∗) = 1. But then, by Lemma 1, M∗

i

is minimal ∀i. Since by (part 3 of) AF Theorem perpetual disagreement is the unique
stationary SPE, it follows that T (M∗) = ∞. This is a contradiction. ‖

As in AF, the above selection result has been stated for the case in which the players
discount the future. However, it also holds for the case of no discounting because all the
proofs in this subsection are unaffected if δ = 1.35

3.2 Costly Negotiation

Let us now investigate the impact of transaction costs on our selection results in the
negotiation game. We consider the following “costly negotiation game”.

Extending the ideas of AF, we assume that in order for the players to enter bargaining
(but not the disagreement game) in each period both must sequentially pay a cost
ρ ∈ [0, 1

2
] at the beginning of each period. In odd (even) periods, player 1 (2) first decides

whether or not to pay ρ. If he makes the payment, player 2 (1) then decides whether
or not to pay ρ. Bargaining in that period occurs if and only if both players sink the
cost; otherwise the game moves directly to the disagreement game before moving onto

35The claim in AF that perpetual disagreement is the unique SPE is also valid if there in no dis-
counting.
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the next period. (The precise details of the results here actually depend on the extensive
form; whether the participation cost is paid sequentially or simultaneously. We shall
discuss the latter case below.)

Let us modify some notations for the costly negotiation game. A partial history, d,
now belongs to the set

D = {∅, (I), (N ), (I,N ), (I, I), (I, I, xi), (I, I, xi, N)}i=1,2,xi∈42 .

We then have

Dip = {∅, (I, I), (N ), (I,N ), (I, I, xi, N)}xi∈42

Dir = {(I), (I, I, xj), (N ), (I,N ), (I, I, xi, N)}xj∈42 .

The set of player i’s actions is Ci ≡ I ∪N ∪42 ∪ Y ∪N ∪ Ai. Also, we have

Cip(d) =




{I,N} if d = ∅
42 if d = (I, I)
Ai if d ∈ {(N ), (I,N ), (I, I, xi, N)}xi∈42

Cir(d) =




{I,N} if d = (I)
{Y,N} if d = (I, I, xj)
Ai if d ∈ {(N ), (I,N ), (I, I, xj, N)}xj∈42 .

With this set of modifications, all previous definitions and notations in the previous
section on histories, strategies, complexity and machines also carry to the costly negotia-
tion game. Also, let ρt

i be the (discounted) sum of participation costs that player i incurs
between periods t and T under profile M . Now we can define player i’s (discounted) av-
erage continuation payoff at period t when M is chosen as

πt
i =





(1− δ) [
∑∞

τ=t δ
τ−tui(a

τ )− ρt
i] if T = ∞

(1− δ)
[∑T−1

τ=t δτ−tui (a
τ )− ρt

i

]
+ δT−tzi if t < T < ∞

zi − (1− δ)ρ if t = T < ∞
We begin the NEMc/SPEMc characterization here by noting that by exactly the

same reasoning as in the previous section the properties of NEMc profiles specified in
Lemmas 1-4 above also hold for the costly negotiation game. To save space we shall omit
their statements and proofs.

It turns out that the introduction of the transaction cost dramatically alters our
selection results. We first establish, as in Proposition 2 above, that if an agreement
takes place in some finite period as a NEMc outcome of the costly negotiation game
it must be in the first stage. The proof builds on from some of the arguments behind
Proposition 2.
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Proposition 6 Fix any ρ > 0, and assume that M∗ is a NEMc in the costly negotiation
game such that T (M∗) < ∞. Then, T (M∗) ≤ 2.

Proof. Suppose not. Then an agreement z ∈ 42 occurs at some finite T > 2 under
some NEMc M∗. We know from Lemma 4 that qT

1 and qT
2 are both distinct. Now let i

be the proposer at T and consider three possible cases.
Case A: Bargaining occurs at some τ < T where τ ∈ tip ≡ {t | i plays role p}.
But then, we can use the arguments in Proposition 2 to derive a contradiction against

NEMc.
Case B: No bargaining occurs at any τ < T where τ ∈ tip.
There are two sub-cases to consider here.
Case B1 : i does not pay ρ at any τ < T where τ ∈ tip.
Consider another machine M ′

j = {M ′
jp,M

′
jr} which is identical to M∗

j except that

(i) qT
j is dropped, (ii) µ′jp(q

T−1
j , eT−1) = qj 6= qT

j for some arbitrary but fixed qj ∈ Qjr

(such qj exists since T > 2 and qT
j is distinct by Lemma 4), and (iii) λ′jr(qj, (I)) = I

and λ′jr(qj, (I, I, z)) = Y .
Since the partial histories (I) and (I, I, z) do not appear at any τ < T where τ ∈ tip

on the original equilibrium path, M ′
j (given M∗

i ) does not affect the outcome and payoff.
But, since qT

j is dropped, ‖M∗
j ‖ > ‖M ′

j‖. This contradicts NEMc.
Case B2 : ∃ some τ < T where τ ∈ tip and i pays ρ.
Consider another machine M ′

i = {M ′
ip,M

′
ir} which is identical to M∗

i except that (i)

qT
i is dropped, (ii) µ′ir(q

T−1
i , eT−1) = qτ

i (note that qτ
i 6= qT

i since T > 2 and qT
i is distinct

by Lemma 4), and (iii) λ′ip(q
τ
i , (I, I)) = z.

Again, M
′
i (given M∗

j ) generates an identical outcome path and payoff as M∗
i . But

since qT
i is dropped, ‖M∗

i ‖ > ‖M ′
i‖. This contradicts NEMc. ‖

We are now ready to state our next Theorem. Let, as before, A∗ be the set of Nash
equilibria in G and define b ≡ maxi supa,a′∈A∗ [ui(a)− ui(a

′)].

Theorem 5 Every SPEMc profile M∗ in the costly negotiation game is such that:

1. if ρ > b then T (M∗) = ∞ and neither player pays ρ in any period;

2. if 0 < ρ ≤ b then either T (M∗) ≤ 2 or T (M∗) = ∞.

Proof. Part 2 follows immediately from Proposition 6. To establish part 1, by Propo-
sition 6, it suffices to show that if ρ > b then T (M∗) ≤ 2 is not possible.

Suppose not. So, suppose that ρ > b and T (M∗) = 1. (The other possible case in
which T (M∗) = 2 can be treated in exactly the same way.) Let the agreement be z ∈ 42.
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It then follows from Lemma 1 that M∗
i is minimal ∀i. Given minimality of M∗ and

the subgame-perfection requirement, it must be that z2 = (1 − δ)u2(a) + δπ2
2(M

∗) for
some a ∈ A∗.

Now, consider player 2 using another machine M ′
2 = {M ′

2p,M
′
2r} which is identical

to M∗
2 except that λ′2r(q

1
2, (I)) = N .

Since M ′
2 is minimal, we then must have

π2(M
∗
1 ,M ′

2) = (1− δ)u2(a
′) + δπ2

2(M
∗)

for some a′ ∈ A∗. This implies that

π2(M
∗
1 , M ′

2)− π2(M
∗) = π2(M

∗
1 , M ′

2)− z2 + (1− δ)ρ

= (1− δ)[u2(a
′)− u2(a)] + (1− δ)ρ > 0,

where the last inequality comes from ρ > b. Thus, such deviation is profitable for 2 and
we have a contradiction against SPEMc. ‖

We can then immediately claim the following Corollaries.

Corollary 5 Suppose that we have
∑

i ui(a) < 1 ∀a ∈ A. Then, for any ρ > b, every
SPEMc of the costly negotiation game is inefficient.

Corollary 6 Suppose that G has a unique Nash equilibrium. Then, for any ρ > 0, every
SPEMc M∗ of the costly negotiation game is such that (i) T (M∗) = ∞, (ii) neither player
pays ρ in any period, and (iii) if

∑
i ui(a) < 1 ∀a ∈ A then the outcome is inefficient.

Notice the stark contrast between the above two corollaries and Theorem 1/Corollary
4 above for the case in which every disagreement game outcome is dominated by an
agreement (i.e.

∑
i ui(a) < 1 ∀a ∈ A). In particular, when in addition G has a unique

Nash equilibrium, the only feasible SPEMc outcome in the negotiation game with no
participation cost is an agreement in the very first stage which is therefore efficient
(in the limit); with the participation cost, we only have perpetual disagreement and
inefficiency.

In the costly negotiation game, perpetual disagreement is not the unique equilib-
rium outcome if the disagreement game has multiple Nash equilibria and 0 < ρ ≤ b.
This is simply because with the 2SM machine specification the disagreement game ac-
tions of a given machine in a given state can be contingent on partial histories within
a period. If we consider a complexity measure based on finer partitions of histories,
the result becomes sharper. Take, for instance, the 4SM specification which uses two
distinct sub-machines to play bargaining (now including the participation decision) and
the disagreement game within each period, and consider a corresponding SPEMc that
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induces immediate agreement (at t = 1). Then for any minimal machine profile, the
associated sub-machines that play the disagreement game all have just one state and
will therefore play the same (Nash equilibrium) actions whenever called upon. Thus, by
the arguments behind part 1 of Theorem 5, for any ρ > 0 we cannot have a SPEMc
inducing agreement in the first stage of the game. Together with Proposition 6 (which
also holds under 4SM), this observation leads to our next Theorem. (We omit the proof
and again refer the reader to Lee and Sabourian [15].)

Theorem 6 Consider the machine game of the costly negotiation model with with 4SM
specification (similar to Definition 9 above). Then, for any ρ > 0, every SPEMc profile
M∗ in the costly negotiation game is such that (i) T (M∗) = ∞, (ii) neither player pays
ρ in any period, and (iii) if

∑
i ui(a) < 1 ∀a ∈ A then the outcome is inefficient.

Finally, we want to mention how the analysis changes if we consider an alternative
extensive form for the costly negotiation game in which the players pay the participation
cost simultaneously.

In this case, the above selection results do not hold under lexicographic preferences
(c = 0); in order to reproduce them we need (any) positive complexity cost (c > 0)
and sufficiently patient players. More specifically, with sequential participation decision
we first showed that if a NEMc induces an agreement then it must do so in the first
two periods (Proposition 6); with simultaneous participation decision this is no longer
the case if preferences are lexicographic. In such a case, a machine profile that results
in an agreement at some finite T > 2 and no participation cost being paid (hence no
bargaining) at any period before T can be a NEMc.36 This is because neither player
can deviate to a less complex machine without affecting the outcome path and payoffs.
But, if c > 0 and δ is sufficiently high, we can show that there is a profitable deviating
opportunity for a player who trades off a small loss in payoff for a saving in complexity
cost. This allows us to establish the results of Proposition 6 for the case of c > 0 and
sufficiently high δ.

Proposition 7 Consider the costly negotiation game with simultaneous participation
decision. Fix any c > 0 and any ρ > 0. Then, ∃ δ̄ < 1 such that, for any δ ∈ (δ̄, 1), if
M∗ is a NEMc such that T (M∗) < ∞ we have T (M∗) ≤ 2.

36In such an equilibrium, player i’s machine would have T states {q1
i , .., qT

i } with initial state q1
i , and

output and transition functions satisfying respectively

λi(qt
i , ∅) =

{ N if t < T
I if t = T

µi(qt
i , e) =

{
qt+1
i if e = (N ,N ) and t < T

q1
i otherwise
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Proof. See Appendix. ‖

By the same reasoning as in Theorem 5 and its Corollaries, Proposition 7 enables us
to deliver the same conclusion for the case of simultaneous participation decision with
c > 0 and sufficiently high δ.

Theorem 7 Consider the costly negotiation game with simultaneous participation deci-
sion. Fix any c > 0 and any ρ > b. Then ∃ δ̄ < 1 such that, for any δ ∈ (δ̄, 1), every
SPEMc profile M∗ is such that (i) T (M∗) = ∞, (ii) neither player pays ρ in any period,
and (iii) if

∑
i ui(a) < 1 ∀a ∈ A then the outcome is inefficient.37

4 Conclusion

By considering players who care for complexity of a strategy (at the margin) as well
as payoffs, we can provide very sharp predictions in several games of negotiation which
otherwise admit a large number of equilibria.

The nature of the selected equilibria, however, differs markedly in these games. While
the negotiation game only admits equilibria (SPEMc) that are efficient, the only SPEMc
outcome in the costly bargaining game is its most inefficient one that involves perpetual
disagreement. Moreover, we find that introducing small transaction costs to the negoti-
ation game can swing the selection results sharply towards inefficiency: the only SPEMc
outcome in the costly negotiation game is perpetual disagreement, which is of course
inefficient if every disagreement game outcome is dominated by an agreement.

We draw the following conclusions. First, the efficiency property of the selected equi-
libria in the negotiation game suggests that the Coase Theorem can be indeed extended
to negotiation models in which disagreement payoffs are endogenously determined. In
other words, the theorem is valid even in repeated game contexts. We thus complement
the existing repeated game literature in which considering complexity or bargaining alone
has produced only a limited selection result. Second, the selection results in the costly
bargaining and negotiation games demonstrate that transaction costs are a critical ingre-
dient of a robust account of why inefficient outcomes can arise in two-person negotiation
even with complete information. It is particularly interesting to observe that only an
infinitesimal amount of transaction cost can shift the SPEMc outcome so dramatically
from efficiency to inefficiency in the negotiation game.

37As with the sequential model (Theorem 6), the assumption ρ > b in Theorem 7 can be replaced by
ρ > 0 if G has a unique Nash equilibrium and/or we adopt 4SM.
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5 Appendix: Relegated Proofs

Proof of Proposition 1. This proof is a direct extension of the proof of Theorem 1
in KS. Let Mi = {Mip,Mir} be any machine that implements some strategy fi where
Mik = (Qik, q

1
ik, λik, µik) for k = p, r.

First, we show that |Qik| ≥ |Fik(fi)| ∀k. For any qi ∈ Qik and k = p, r, let Mi(qi) =
{Mik(qi),Mil} be the machine that is identical to Mi except that it starts with the sub-
machine Mik(qi) where Mik(qi) = (Qik, qi, λik, µik) is the sub-machine identical to Mik

except for the initial state qi.
Note that for every f̄i ∈ Fik(fi) and k = p, r, there exists some h ∈ H∞

ik such that
f̄i = fi|h. Now define a function Γik : Qik → Fik(fi) such that Γik(q̄i) is the strategy
implemented by Mi(q̄i) for any q̄i ∈ Qik. It then follows that for every f̄i ∈ Fik(fi), there
must exist a distinct state q̄i ∈ Qik such that Γik(q̄i) = f̄i. Simply let q̄i = qi(h) (as
defined inductively in Section 3) where h is the history such that f̄i = fi|h.38

Second, we show that there exists a machine implementation of fi which only uses
Fip(fi) and Fir(fi) as the set of states for its corresponding sub-machines.

Define M̄i = {M̄ip, M̄ir} such that, for k = p, r, M̄ik = (Fik(fi), f
1
ik, λ̄ik, µ̄ik) where

• f 1
ik ∈ Fik(fi) is the initial state and if i plays role k at the initial history then

f 1
ik = fi

• for any f̄i ∈ Fik(fi) and d ∈ Dik, λ̄ik(f̄i, d) = f̄i(∅, d) where ∅ is the empty history

• µ̄ik(f̄i, e) = f̄i|h, e for any h ∈ H∞
ik and e ∈ E.

This machine has
∑

k |Fik(fi)| states (each k sub-machine with |Fik(fi)| states) and im-
plements fi. ‖

Proof of Proposition 3. (i) Necessity follows from the property that in any station-
ary SPE the players must play a Nash equilibrium of G after any rejection. Sufficiency
follows from Corollary 1 of BW.

(ii) Suppose not. Then f is a stationary SPE, and for some ε > 0,

∑
i

πi(f) + ε < 1− (1− δ)b . (12)

Next, consider player 1 making a deviating offer z = (z1, z2) ∈ 42 at t = 1 such that

z2 = (1− δ)(u2(a
1) + b) + δπ2

2(f) + ε = π2(f) + (1− δ)b + ε (13)

38It is critical here that each sub-machine uses its own distinct set of states. Otherwise, a single state
can be used to activate two distinct continuation strategies, one in each role.
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where a1 is the disagreement game equilibrium outcome in t = 1 when f is chosen.
Clearly, given subgame-perfection of the stationary profile f and the definition of b, f2

will accept such offer. Also, by subgame-perfection such deviation must be unprofitable
for player 1; therefore z1 ≤ π1(f). This, together with (13), implies that

1− π2(f)− (1− δ)b− ε ≤ π1(f) .

But this contradicts (12). ‖

Proof of Corollary 3. (i) If G has a unique Nash equilibrium, b = 0. Thus, the
claim follows from Proposition 3.

(ii) Let f be a stationary SPE and assume it is inefficient. There are two possible
cases to consider.

Case A: There is one period of delay, followed by an agreement. We know from
Proposition 3 that

∑
i πi(f) ≥ 1− (1− δ)b. Thus, it must be that

(1− δ)
∑

i

ui(a) + δ ≥ 1− (1− δ)b

where a ∈ A∗ is the disagreement game outcome in the first period. But this is clearly
not possible if ∀a ∈ A∗ ∑

i ui(a) < 1− b as in the claim.
Case B: There is infinite delay. Let a1 ∈ A∗ and a2 ∈ A∗ be the disagreement

outcome in odd and even periods respectively. Then, by Proposition 3, we must have

∑
i ui(a

1) + δ
∑

i ui(a
2)

1 + δ
≥ 1− (1− δ)b .

Again, this is not possible if
∑

i ui(a) < 1− b, ∀a ∈ A∗. ‖

Proof of Theorem 2. Fix any c ∈ (0, 1).39 Define δ̄ = 1 − c
β

where β is given by

(4) above. By Corollary 2, it suffices to establish that for any δ ∈ (δ̄, 1) every SPEMc
is stationary. Suppose not; then there exist a discount factor δ ∈ (δ̄, 1) and a profile
M∗ = (M∗

1 ,M∗
2 ) ∈ Ωδ(c) such that both equilibrium machines M∗

1 and M∗
2 are non-

minimal. (Clearly, if one equilibrium machine is minimal then the other equilibrium
machine also has to be minimal.) Also, by Proposition 2, it must be that T (M∗) = ∞.

Similarly to the proof of Proposition 4 above, define η such that

0 < η < c− β(1− δ) . (14)

39The case of c ≥ 1 is trivial because then complexity cost (weakly) dominates any feasible average
payoff for each player in the negotiation game and thus any equilibrium machine must be minimal. We
can refer to BW Result 1 for SPEMc characterization in this case.
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Define as before tik, τη, and τ (see (6), (7), and (9)).
We need to consider the following two cases separately.
Case A: τη > 2.
First note that

qt
1 6= q

τη

1 ∀t < τη . (15)

Otherwise, qt
1 = q

τη

1 for some t < τη. But then, πt
2 = π

τη

2 by Lemma 3. This contradicts
the definition of τη.

Next, consider player 1 using another machine M ′
1 = {M ′

1p,M
′
1r} which is identical

to M∗
1 except that (i) q

τη

1 is dropped and (ii) λ′1p(q
τη−1
1 , ∅) = (1−πmax

2r , πmax
2r ) = z′, where

πmax
2r is defined by (8) with η now given by (14).

By (15), dropping q
τη

1 does not affect the outcome path up to τ . Therefore, by similar
arguments as in the proof of Proposition 4, the deviation would induce agreement z′ in
period τ . It then follows that 1’s deviation payoff here is given also by 1− πmax

2r , and as
in (11), we have

1− πmax
2r ≥ 1− (πτ

2 + (1− δ)β + δη) .

We also have that 1− πτ
2 ≥ πτ

1 . Thus, 1’s loss from such deviation is

πτ
1 − (1− πmax

2r ) ≤ (1− δ)β + δη .

But M ′
1 has one less state than M∗

1 (since q
τη

1 has been dropped) implying that the
deviation also results in a saving on complexity cost by c > 0. Since c > (1− δ)β + η by
(14), we have

πτ
1 − (1− πmax

2r ) < c ,

and therefore, the loss from deviation is less than c. Thus, M ′
1 is a c-best response to M∗

2

and has one less state. This contradicts SPEMc.
Case B: τη = 2.
We know that M∗

1 is not minimal. Then, consider player 1 using another minimal
machine M ′

1 = {M ′
1p,M

′
1r} which is constructed such that Q′

1p = {q1
1}, Q′

1r = {q2
1} and

λ′1p(q
1
1, ∅) = z′ (where z′ is as appearing in Case A above).

By similar arguments to those behind Case A above, such deviation induces imme-
diate agreement on z′ and is (overall) profitable for 1 since M ′

1 is minimal and has less
states than M∗

1 . Thus we again have a contradiction against SPEMc. ‖

Proof of Proposition 7. Suppose not. Let β be as defined by (4) above, and define

δ̄ = 1− c

β + ρ
< 1 .

Then ∃ δ ∈ (δ̄, 1) and a profile M∗ that is a NEMc in the game with discount factor δ
such that T (M∗) ∈ (2,∞). Let i be the proposer at T . Also, define

τ = min{t ∈ tir | πt
i ≤ πt′

i ∀t′ ∈ tir} .

40



We know that:

• qt
i is distinct for ∀t ≤ T and ∀i (Lemma 4)

• neither player pays ρ at any t ∈ tip where t < T (otherwise, use similar arguments
behind Proposition 6 to show a contradiction).

Now, consider another machine M ′
i = {M ′

ip,M
′
ir} which is identical to M∗

i except that

(i) qτ−1
i is dropped and replaced by qT

i (thus µ′ir(q
τ−2
i , eτ−2) = qT

i ) and (ii) transition from
qT
i is such that µ′ip(q

T
i , ẽ) = qτ ′

i , where

ẽ =
(I,N , λ∗i (q

T
i , (I,N )), λ∗j(q

τ−1
j , (I,N ))

) ∈ E

is the outcome generated by qT
i and qτ−1

j ) and τ ′ ∈ tir is such that µ∗j(q
τ−1
j , ẽ) = qτ ′

j .
Since every qt

i (t ≤ T ) is distinct, playing M ′
i against M∗

j replicates the outcome path
up to τ − 2 and then generate a deviation at τ − 1 (where i now pays ρ). By Lemma 1
and the definition of τ , this implies that

π(M ′
i ,M

∗
j ) ≥ (1− δ)

[
τ−2∑
t=1

δt−1ui(a
t)− ρτ−2

i + δτ−2(inf
a

ui(a)− ρ)

]
+ δτ−1πτ

i .

Since

πi(M
∗) < (1− δ)

[
τ−2∑
t=1

δt−1ui(a
t)− ρτ−2

i + δτ−2 sup
a

ui(a)

]
+ δτ−1πτ

i ,

it then follows that

πi(M
∗)− πi(M

′
i ,M

∗
j ) ≤ (1− δ)δτ−2

[
sup
a,a′

(ui(a)− ui(a
′)) + ρ

]

< (1− δ)

[
sup
a,a′

(ui(a)− ui(a
′)) + ρ

]
,

where the second inequality follows from δ < 1.
Thus, playing M ′

i is overall profitable for i (given c > 0) if

c > (1− δ)

[
sup
a,a′

(ui(a)− ui(a
′)) + ρ

]

which is indeed the case given δ > δ̄. This contradicts NEMc. ‖
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