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ABSTRACT

Traditional dynamic hedging strategies are based onlocal information (ie Delta and

Gamma) of the financial instruments to be hedged. We propose anew dynamic hedg-

ing strategy that employsnon-local information and compare the profit and loss (P&L)

resulting from hedging vanilla options when the classical approach of Delta- and Gamma-

neutrality is employed, to the results delivered by what we label Delta- and Fractional-

Gamma-hedging. For specific cases, such as the FMLS of Carr and Wu (2003a) and

Merton’s Jump-Diffusion model, the volatility of the P&L isconsiderably lower (in some

cases only 25%) than that resulting from Delta- and Gamma-neutrality.
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Since the seminal work of Black and Scholes (1973), a great deal of effort has been ex-

pended on proposing new models to describe the dynamics of securities under both the risk-

neutral and statistical measures. These models include stochastic volatility or time-changed

models, (Heston (1993), Stein and Stein (1991), Carr and Wu (2004)); jump-diffusion models

(Merton (1990), Kou (2002)); and more general jump processes (Madan and Seneta (1990),

Carr, Geman, Madan, and Yor (2002), Carr and Wu (2003a)).

Non-Gaussian models such as those mentioned above may be very versatile at capturing

some of the main characteristics of the distribution of financial securities, including skewness,

heavy tails and correlation. However, although these are characteristics that any model must

take into consideration, there are also the questions of howto price financial instruments

written on an underlying that follows one of these models andhow to estimate the relevant

parameters under both the physical and risk-neutral measures. It is well-known that for the

majority of non-Gaussian models there is no unique equivalent martingale measure (EMM)

under which pricing is performed; exceptions include the fixed jump size Poisson model.

Therefore proposed models must not only look at the range of EMM’s arising from them, but

must also consider how a particular one is chosen, Carr and Wu(2003b).

Although thepricing of derivative instruments is key in financial modelling, thehedgingof

instruments is at least as important. Large market players or market makers are responsible for

the liquidity of instruments that are traded on a regular basis in the different exchanges but they

also trade most over-the-counter instruments such as tailor-made instruments, exotic options,

and other less liquid assets. Critical to the liquidity or availability of these instruments is the

ability to hedge them. Even though the literature seems to have made a great deal of progress

in providing an abundance of models and identifying how to estimate its relevant parameters,

the question of how derivative instruments can be hedged haslargely been overlooked.
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One of the key insights in the work of Black and Scholes (1973)and Merton (1990) was the

ability to hedge a vanilla optionV1(S, t;T1,K1) written on a stockSt , that followed a geometric

Brownian motion, by forming a portfolio

P(S, t) = V1(S, t;T1,K1)−a(S, t)St

and making it risk-free by settinga(S, t) = ∂V(S, t)/∂S at every instant in time. It is well

known that when lnSt follows a non-Gaussian process it is not possible for the writer of an

option to hedge all the risk by continuously trading in the underlying. Therefore, an alternative

approach has been to hedge the option by trading in the underlying and another instrument,

sayV2(S, t;T2,K2), written on the same underlying. This strategy is known as Delta- and

Gamma-hedging. The idea behind this approach is to set up a portfolio

P(S, t) = V1(S, t;T1,K1)−a(S, t)St −b(S, t)V2(S, t;T2,K2)

and make it Delta- and Gamma-neutral, in other words, choosea(S, t) andb(S, t) so that

∂P(S, t)
∂S

= 0 and
∂2P(S, t)

∂S2 = 0.

Although, on average, Delta- and Gamma-hedging generally performs ‘better’ than Delta-

hedging, it still leaves the writer of the option considerably exposed to large movements in

the underlying stock price. One of the reasons why the traditional Delta- and Gamma-neutral

strategy may offer very little protection against large movements in the underlying stock price

is because the information upon which the hedging strategy operates is based on ‘local’ infor-

mation, ie the first and second derivatives of the portfolioP(S, t) with respect toSt . Hence, as

long as the stock price does not move by a ‘considerable’ amount over the next time-step, for

which the quantitiesa(S, t) andb(S, t) are held constant, then the Delta- and Gamma-hedging

strategy will offer reasonable protection to the writer of the option. However, if the stock price

can jump or exhibit large movements over a small period of time or between rebalances of the
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portfolio, a hedging strategy based on local information such as the Delta and Gamma will

perform poorly.

The main contribution of this article is to propose a new dynamic hedging strategy to

hedge financial instruments written on securities that follow a non-Gaussian process. We

generalise the strategy of Delta- and Gamma-hedging by choosing a(S, t) andb(S, t) based

on ‘non-local’ information, which is obtained by looking atfractional (non-integer) integrals

and derivatives of the financial instruments in the portfolio P(S, t). We also show that there

is an interesting connection between some of the most popular jump models for equity and

fractional calculus. Furthermore we show for the first time that the pricing equations for

European-style options, where the underlying follows a wide class of Lévy processes, is given

by what we call the Fractional-Black-Scholes (FBS) equation; this is a pricing equation with

non-integer derivatives and integral operators, ie fractional operators.

The rest of the paper is structured as follows: Section I introduces the concepts of fractional

integrals and fractional derivatives and proposes a novel dynamic hedging strategy, based on

fractional derivatives, that can be used to hedge portfolios written on securities that follow non-

Gaussian processes; Section II describes the family of Lévy processes and looks at specific

cases which have become some of the most important models describing the evolution of

share prices; Section III tests the dynamic hedging strategies identified in section I when

securities follow non-Gaussian processes, including someof the jump processes discussed in

section II; Section IV shows that when it is assumed that stock prices follow some of the

most popular Lévy-based jump models, for example the CGMY or FMLS (Carr, Geman,

Madan, and Yor (2002) and Carr and Wu (2003b)), then the pricing equation satisfied by

European-style options written on these stocks satisfy a fractional partial differential equation;

and Section V concludes.
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I. A Dynamic Hedging Strategy for Non-Gaussian Securities

The principal purpose of this article is to address the question of how financial derivatives can

be hedged when the underlying security follows a non-Gaussian process. We will propose, and

test, a hedging strategy based on the theory of fractional integration and differentiation. We

start by introducing the fundamental concepts of fractional integrals and derivatives as well

as a generalisation of Taylor’s series that we later employ to develop a new dynamic hedging

strategy.

A. Fractional Calculus

Definition 1 The Riemann-Liouville Fractional Integral.The fractional integral of orderγ

of a function f(x) is given by

aD−γ
x f (x) =

1
Γ(γ)

Z x

a
(x−y)γ−1 f (y)dy, γ > 0, (1)

and

xD
−γ
b f (x) =

1
Γ(γ)

Z b

x
(y−x)γ−1 f (y)dy, γ > 0, (2)

whereΓ is the gamma function.

For details we refer the reader to Miller and Ross (1993) and Podlubny (1999).1

One way to obtain fractional derivatives is to ‘view’ them asinteger derivatives (ie common

differentiation) of a fractional integral.
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Definition 2 The Riemann-Liouville Fractional Derivative.If n is the smallest integer larger

than the numberγ, then the right and left fractional derivatives of orderγ of the function f is

given by

aDγ
x f (x) =

1
Γ(n− γ)

dn

dxn

Z x

a
(x−y)n−γ−1 f (y)dy n−1≤ γ < n, (3)

and

xD
γ
b f (x) =

(−1)n

Γ(n− γ)
dn

dxn

Z b

x
(y−x)n−γ−1 f (y)dy n−1≤ γ < n, (4)

where n is a Natural number andΓ is the gamma function.

Note that whena = −∞ andb = ∞ the Fourier transforms of the right and left fractional

derivatives are given by

F {−∞Dγ
x f (x)} = (−iξ)γ f̂ (ξ) and F {xD

γ
∞ f (x)} = (iξ)γ f̂ (ξ), (5)

where

F { f (x)} = f̂ (ξ) =

Z ∞

−∞
eiξx f (x)dx and ξ ∈ C.

There are also different Taylor’s expansions based on fractional operators. We present an

example which we later use to develop dynamic hedging strategies.

Proposition 1 Fractional Taylor’s Expansion, Samko, Kilbas, and Marichev (1993). Let

γ0 = 0,γ1, . . . ,γm be an increasing sequence of real numbers such that0 < γk − γk−1 ≤ 1,

k = 1,2, . . . ,m. Let x> 0, f(x) having all continuous derivatives and introduce the notation

D{γk} f (x) = 0D−(1−γk−γk−1)
x 0D1+γk−1

x f (x)
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and remark that D{γk} f (x) 6= 0Dγk
x f (x). Then the generalised fractional Taylor’s expansion is

given by

f (x) =
m−1

∑
k=0

D{γk} f (0)

Γ(1+ γk)
xγk +

1
Γ(1+ γm)

Z x

0
(x−y)γm−1D{γm} f (y)dy. (6)

B. Hedging: Delta and Fractional-Gamma neutral strategy

In practice, the pricing of options is as important as the question of how to hedge them. In

the classical Black-Scholes model the hedging of a portfolio P(S, t), consisting of a European-

style derivativeV1(S, t;T1,K1) expiring atT1 and struck atK1, and the underlyingSt , is achieved

by continuous Delta-hedging; that is, holding an amount∂V1(S, t;T1,K1)/∂Sof the underlying

St at every instant in time guarantees that the portfolio is risk-free. In practice however, it

is impossible to employ a dynamic strategy that requires rebalancing the portfolio at every

instant in time; therefore rebalances are done discretely.For example, in the Black-Scholes

framework, the less frequently hedges take place the largerthe hedging error will be, due

mainly to the convexity, known as Gamma, of the value of the option.

Therefore, the classical approach of Delta-hedging a portfolio

P(S, t) = V(S, t;T1,K1)−a(S, t)St, (7)

wherea(S, t) is the number of sharesSt held over the time-step[t, t +∆t), requires thata(S, t)

is chosen such that the portfolio is Delta-neutral, ie∂P(S, t)/∂S= 0. The hedging error will

depend on the size of the higher order terms of the series

∆P(S, t) =
∂P(S, t)

∂t
∆t +

∂P(S, t)
∂S

∆S+
1
2!

∂2P(S, t)
∂S2 (∆S)2+

1
3!

∂3P(S, t)
∂S3 (∆S)3+ · · · . (8)

Hence, if it is not feasible or if it is too expensive to hedge an option as frequently as one would

desire, one approach is to use a portfolio as shown in (7), which includes another instrument

written on the same underlying, and make this new portfolio both Delta- and Gamma-neutral.
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In other words, form a portfolio consisting of the option to be hedged, sayV1(S, t;T1,K1),

and then choose an amounta(S, t) of the underlying stock and an amountb(S, t) of another

instrument, sayV2(S, t;T2,K2), that is also written onSt

P(S, t) = V1(S, t;T1,K1)−a(S, t)St −b(S, t)V2(S, t;T2,K2)

so that∂P(S, t)/∂S= 0 and∂2P(S, t)/∂S2 = 0.

The rest of this section looks at a new dynamic hedging strategy. We must stress that the

hedging strategies we propose below can be applied to hedgeany financial instruments and

therefore it is not a pre-requisite that the instruments arewritten on an underlying that follows

a particular stochastic process. In Section III, the performance of the hedging strategies will

be assessed for different models through the use of simulations; we will look in detail at the

hedging of call options when the underlying follows a geometric Lévy-Stable (LS) process,

geometric FMLS process (both discussed below in section II)and Merton’s Jump-Diffusion

(MJD) process. We identify that it is sufficient, using put-call-parity, to set a static hedge

in order to hedge vanilla options; however, our objective isto construct a dynamic hedging

strategy that will provide insight into the question of how to hedge derivatives written on

securities that follow non-Gaussian processes.

Our proposed hedging strategy is based on the generalised Taylor’s expansion (6). The

idea is the following. Given that most of the processes we areinterested in exhibit large2

movements or jumps in the underlying stock price, using the classical Delta-hedging strategy

will, on average, expose the writer of the option to large hedging errors even if Delta-hedging

is performed as often as possible. As mentioned above, one way to proceed is to use a Delta-

Gamma-neutral strategy. As a generalisation of this approach we propose what we call a

Delta- and Fractional-Gamma strategy that instead of making the portfolio Delta-neutral and

Gamma-neutral, makes the portfolio Delta-neutral and0Dγ
SP(S, t)-neutral with 1< γ ≤ 2.
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Therefore the aim is to set up a portfolioP(S, t) to hedge the optionV1(S, t;T1,K1) by

trading in the underlying and another option:

P(S, t) = V1(S, t;T1,K1)−a(S, t)St −b(S, t)V2(S, t;T2,K2) (9)

whereVi , i = 1,2, are options written on the underlyingSt with expiry T1 < T2 and struck at

K1 andK2 respectively. The quantitiesa(S, t) andb(S, t) are the amounts of the underlying

and the optionV2(S, t;T2,K2) that must be held in the hedge portfolio. Therefore, if we look

at the change in the value of the portfolio using the generalised fractional Taylor’s expansion

presented in (6) above, withγ0 = 0, γ1 = 1 andγ2 = γ and with 1< γ ≤ 2, we obtain

dP(S, t) =
∂P(S, t)

∂S
dS+

0Dγ
SP(S, t)

Γ(1+ γ)
(dS)γ + · · · , (10)

and require

a(S, t) =
∂V1(S, t)

∂S
−

∂V2(S, t)
∂S

b(S, t) (11)

where

b(S, t) =
0Dγ

SV1(S, t)−∂V1(S, t)/∂S0Dγ
SSt

0Dγ
SV2(x, t)−∂V2(x, t)/∂S0Dγ

SSt
, (12)

such that the portfolio is both Delta- and Fractional-Gamma-neutral, ie

∂P(S, t)
∂S

= 0 and 0Dγ
SP(S, t) = 0.

For the specific instance whereγ = 2, the derivative0Dγ
SV(S, t) = ∂2V(S, t)/∂S2, and this

derives the classical Delta- and Gamma-neutral strategy

a(S, t) =
∂V1(S, t)

∂S
−

∂V2(S, t)
∂S

b(S, t) and b(S, t) =
∂2V1(S, t)/∂S2

∂2V2(S, t)/∂S2. (13)

The use of ‘non-integer’ derivatives to hedge a portfolio isintuitively appealing because

the fractional derivative0Dγ
SP(S, t), when 1< γ < 2, weighs information about the value of
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the portfolio in the interval[0,St] as opposed to only using localised information at the point

St . Appendix B depicts fractional derivatives of the value of options written on assets that

follow non-Gaussian processes. For example, Figure 10 shows fractional derivatives of an

optionV(S, t;T,K) with T = 10 andK = 100 where the log-stock price follows an FMLS

process of Carr and Wu (2003b) withα = 1.5, (see subsection A below where we present the

FMLS model). It is clear from the picture that when the traditional measure of Gamma is

very close to zero for stock prices below 90 or above 120, the fractional derivatives for values

γ = {2,1.8,1.6,1.4} still have positive values ranging between 0.01 and 0.25.

Before proceeding it should be noted that it is not necessarily true that performing Delta-

and Gamma-hedging is always ‘better’ than performing Delta-hedging. By inspecting series

(8) it may be the case that, even if the second and third terms in the right-hand-side of the

equation are zero at the beginning of the time-step[t, t + ∆t), the higher order terms of the

series are of considerable magnitude; this depends on the high order derivatives of the options

V1(S, t;T1,K1) andV2(S, t;T2,K2).

II. Jump models

The purpose of this section is twofold. First, since we are interested in testing the proposed

fractional hedging strategies described above, we introduce a class of jump models known

as Lévy processes and focus on particular members of this class. Second, in section IV, we

show another application of fractional calculus in continuous-time finance by showing the

connection between fractional pricing equations and the processes presented here.

The use of jump processes to model the dynamics of securitieshas become a very popular

tool over the last decade. Although Brownian motion, the Lévy-Stable (LS) model proposed

by Mandelbrot (1997) and jump diffusion models, (see Merton(1990)), belong to the family

of Lévy processes, the work of Madan and Seneta (1990) was the first to propose the use of

a particular class of Lévy process, known as the Variance Gamma, to model the uncertainty
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underlying security prices. A stochastic processXt is a Lévy process ifX0 = 0 and if and only

if it has independent and stationary increments. A simple characterisation of Lévy processes is

given by the Lévy-Khintchine representation or characteristic function of the process, which

we present in Proposition 4 in the Appendix.

One fundamental question that must be answered is what criteria should be employed

when choosing a particular Lévy process to model the evolution of a specific underlying. In

the case of stock prices this question has been asked, and answered, at different points in time.

Arguably the most intuitive and theoretically sound choiceof a Lévy model for share prices, is

that of Carr, Geman, Madan, and Yor (2002) which is based on the structure of asset returns.

Their starting point is to replace Brownian motion, as the driving stochastic component in

the formation of prices, with a process that can provide a much richer structure for moments

of high order. The authors justify the choice of the Lévy density w(x), which determines

the frequency and magnitude of jumps in the process, based onsimple, yet very important,

characteristics observed in the markets. For example, it seems plausible to expect that the

larger the size of the jump in the stock price, the less frequently they occur. Conversely, the

smaller the jump size the more frequently they occur. Therefore, by restricting the choice of

the density of jumps, and imposing the requirement that exponential moments as well as high

order moments exist, a very simple functional form for the L´evy density is arrived at; they

labelled the resulting process the CGMY process. Boyarchenko and Levendorskiǐ (2000) also

proposed a family of Lévy processes, very similar to the CGMY, called KoBoL or Damped

Lévy (DL), which was based on the work of Mantegna and Stanley (2000) and Koponen

(1995).

Another interesting choice of Lévy process to model equityprices is in the recent work of

Carr and Wu (2003a). They show that one way to capture the termstructure of the implied

volatility of S&P 500 option prices is by assuming that the shocks to the log-stock process

follow a maximally skewed LS process; they christened this the Finite Moment Log Stable

process (FMLS).
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We now proceed to discuss LS processes for the first time and itwill become clear that

the other processes (CGMY, DL, KoBoL) can be ‘constructed’ by introducing an exponential

damping in the tails of the LS process.

A. Stock Price Models

We first look at the LS model introduced by Mandelbrot (1997) in the 1960s. His choice of

model was driven by two important considerations. Empirically, Gaussian models do not fit

data well due to the fast decay of the tails. Theoretically, if underlying security prices are the

cumulative outcome of many small independent events then, by the Generalised Central Limit

Theorem, Feller (1966), their cumulative behaviour is characterised by a limiting distribution;

namely the LS distribution. One of the most important shortcomings of working with LS

processes, with the exception of the Gaussian case, is that variance is infinite and exponential

moments, unless the distribution is maximally skewed, do not exist. If Xt is an LS process

then the behaviour of its jumps is determined by the Lévy density

wLS(x) =







Cq|x|−1−α for x < 0,

Cpx−1−α for x > 0,

and the natural logarithm of its characteristic function isgiven in terms of the parametersα,

κ, β andm by

lnE[eiξXt ] ≡ tΨ(ξ) =







−tκα|ξ|α{1− iβsign(ξ) tan(απ/2)}+ imtξ for α 6= 1,

−tκ|ξ|
{

1+ 2iβ
π sign(ξ) ln |ξ|

}

+ imtξ for α = 1.
(14)

If the random variableX belongs to an LS distribution with parametersα, κ, β, m, we write

X ∼ Sα (κ,β,m). The parameterα is known as the stability index or characteristic exponent,κ

is a scaling parameter,β is a skewness parameter andm is a location parameter. We note that if

X is an LS random variable with characteristic exponent 0< α ≤ 2, then for the case 0< α≤ 1
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the random variableX does not have any integer moments and for the case 1< α < 2 only

the first integer moment exists. Whenα = 2 the random variableX is Gaussian. Moreover,

exponential moments are finite whenX is maximally skewed to the left, ieβ = −1.

As mentioned above, another process that has rapidly becomea very powerful model for

financial securities is the CGMY. This process is a pure jump Lévy process (ie it has no

Brownian motion component) with Lévy measureW(dx) = wCGMY(x)dx

wCGMY(x) =







Ce−G|x|

|x|1+Y for x < 0,

Ce−Mx

x1+Y for x > 0,
(15)

and log-characteristic function given by

tΨCGMY(ξ) = tCΓ(Y)
{

(M− iξ)Y −MY +(G+ iξ)Y −GY}

. (16)

HereC > 0, G≥ 0, M ≥ 0 andY < 2.3 The parameterC may be viewed as a measure of the

overall level of activity. The parametersG andM control the exponential decay of the left and

right tail respectively. Moreover, whenG = M, the distribution is symmetric.

Finally, the DL or KoBoL process is also a pure jump Lévy process with Lévy density

wDL(x) =







Cq|x|−1−α e−λ|x| for x < 0,

Cpx−1−αe−λx for x > 0,
(17)

whereas in the LS case, 0< α ≤ 2, C > 0, λ ≥ 0 and p,q ≥ 0 with p+ q = 1. The log-

characteristic function is given by

tΨDL(ξ) = tκα{p(λ− iξ)α +q(λ+ iξ)α−λα}+ imtξ,

tΨDL(ξ) = tκα {

p(λ− iξ)α +q(λ+ iξ)α−λα − iξαλα−1(q− p)
}

+ imtξ,
(18)

for 0 < α < 1 and for 1< α ≤ 2 respectively.
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When X belongs to a DL distribution with parametersα, κ, p, q, m and λ we write

X ∼ DLα(κ, p,q,m,λ) and the parameters have a similar interpretation as in the LSprocess.

Note thatλ introduces an exponential damping in the tails of the distribution and the DL and

LS are the same whenλ = 0.4

Before testing the proposed fractional hedging strategieswe must also discuss the connec-

tion between the risk-neutral and statistical dynamics of the stock price. The pricing of finan-

cial instruments, where the underlying security is modelled via exponential Lévy processes,

is not as straightforward as that based on Brownian motion. Markets are not complete when

there are jumps in the underlying stock price and therefore there is no unique martingale

measure under which prices are calculated. It is the market who ‘chooses’ the correspond-

ing risk-neutral EMM. Moreover, in theory, hedging strategies could be constructed where

every possible jump in the underlying is hedged with anotherfinancial instrument. However,

this seems impossible in practice since a continuum of options would be required for such a

strategy to work.

In the Lévy process literature it is generally assumed thatthe underlying security follows

both a Lévy process under the physical and risk-neutral measures and different EMMs have

been proposed to link these two measures. One simple method to derive an EMM is to assume

that the process under both the physical and statistical measures has the same shape but a

different location. Another method is to use the Esscher transform, see Schoutens (2003),

Cont and Tankov (2004).5

In the case of the CGMY process, Carr, Geman, Madan, and Yor (2002) assume that

log-stock prices follow a CGMY process under the statistical and physical measures where

the risk-neutral parameters of the stock process, sayC̃, G̃, M̃ andỸ, may differ from their

statistical counterpartsC, G, M andY.

Finally, McCulloch (2003) showed that, if it is assumed thatunder the physical measure

asset prices follow a geometric LS process (with no restriction on the skewness of the distrib-

ution of the LS shocks), then the pricing of derivatives under the risk-neutral measure can be
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performed by assuming that the logarithm of the underlying follows a combination of two in-

dependent processes: a maximally negatively skewed process (ie the FMLS) and a maximally

skewed to the right DL process (iep = 1 in (18)).

III. Simulations

In this section we test how our Delta- and Fractional-Gamma-neutral strategy performs. We

have assumed that there are no transaction costs and that themarkets are liquid. For illustrative

purposes we will compare the profit and loss (P&L) obtained from hedging a portfolio using

the fractional strategy proposed above, with the results given by performing the more common

Delta- and Gamma-neutral strategy. For completeness, we also show what happens when

only Delta-hedging is employed and in Appendix C we show how to evaluate the fractional

derivatives used in the hedging strategies. We look in detail at the FMLS process, the LS

process, and the MJD process.

A. Hedging in the FMLS model

Here we illustrate how the Fractional-hedging strategy performs when compared to simple

Delta-hedging and to the more common Delta- and Gamma-neutral hedging strategies, when

the log-stock process follows an FMLS process. In this modelthe statistical dynamics of the

stock price are given by

d(lnSt) = µdt+σdLFMLS
t

and under the risk-neutral measure it follows

d(lnSt) = (r +σα sec(απ/2))dt+σdLFMLS
t

whereµ> 0, dLFMLS
t ∼ Sα

(

dt1/α,−1,0
)

is a maximally skewed LS motion and 1< α ≤ 2.
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In order to test the proposed dynamic strategy we must simulate price paths for the maxi-

mally skewed LS motion. The shocks to an LS motion are given by∆t1/αφ where

φ ∼ Sα(1,β,0) and∆t is the time-step. Skewed LS random variables can be constructed by

combining symmetric LS; Proposition 6 in Appendix D shows how symmetric LS random

variables can be generated.

Figure 1 shows a histogram of the P&L function of a portfolio that has been Delta-hedged

daily for a European call option expiring in one month, ieT1 = 20 working days. The log-

stock price follows an FMLS process withµ = .05,σ = 0.20,β = −1 andα = 1.5. We have

assumed thatr = 0, S0 = 100,K1 = 100, that the stock pays no dividends, and we have per-

formedN = 10,000 simulations. As expected, performing Delta-hedging isnot enough to

hedge the frequent and often sizeable jumps in the underlying. On average, the P&L of the

Delta-hedged portfolio is £ -0.06 but with a standard deviation of 5.01 and values ranging from

min= £ -94.75 to max= £ 2.43. Although it is impossible to hedge all of the jumps in the

underlying, one possibility is to hedge the portfolio, using a second option written on the

same underlying, by making it Delta- and Gamma-neutral. Thesecond option used in the

hedge portfolio had an expiry date ofT2 = 25 working days and a strike ofK2 = 100. Fig-

ure 2 shows the results for this strategy. As expected, sincewe are using two instruments

in the hedging strategy, the results are considerably better than those resulting from simple

Delta-hedging. On average the P&L function of the Delta- andGamma-neutral portfolio is

£ -0.007 with a standard deviation of 1.58 and values rangingbetween min= £ -57.69 and

max= £ 46.10. Finally, Figure 3 shows the results from employing our proposed Delta- and

Fractional-Gamma-neutral strategy withγ = 1.5. The improvement over the traditional Delta-

and Gamma-neutral strategy is substantial. The fractionalstrategy considerably reduces the

exposure to large movements in the underlying. The mean of the P&L function is £ -0.0004

with a standard deviation of 0.42 and values ranging from min= £ -8.03 to max= £ 18.16. Ta-

ble I summarises these results and also shows the results from Delta- and Fractional-Gamma

hedging for a range of values between 1.1 and 1.7 forγ. It is important to note that the frac-

tional strategy that delivered the smallest standard deviation of the P&L wasγ = 1.5 and the

15
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FMLS Delta hedging, α=1.5
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Figure 1. Daily Delta-Hedging.P&L resulting from daily Delta-hedging under the assump-
tion that the stock price follows an FMLS process.

one that delivered the highest lower bound for the P&L was theone performed usingγ = 1.6.

Moreover, we repeat the simulations but vary the strike price of the second option. Table II

summarises the results from usingK2 = 95 and Table III from usingK2 = 105. In both cases

the fractional strategies deliver better results than Delta- and Gamma-hedging.

FMLS, α = 1.5, S0 = 100,K1 = 100,K2 = 100,T1 = 20,T2 = 25
γ = 1.1 γ = 1.2 γ = 1.3 γ = 1.4 γ = 1.5 γ = 1.6 γ = 1.7 γ = 2 Delta

Mean -0.0029 -0.0028 -0.0025 -0.0016 -0.0004 0.0034 0.0063-0.0070 -0.0604
STD 0.5191 0.5113 0.4937 0.4606 0.4288 0.4853 0.67411.5894 5.0198
Max 21.02 20.77 20.30 19.57 18.16 20.70 25.4046.10 2.43
Min -12.77 -12.39 -11.55 -9.99 -8.03 -7.78 -12.81-57.69 -94.75

Table I
P&L statistics from N = 10,000simulations. We show Delta- and

Fractional-Gamma-neutral strategies for variousγ’s and the last two columns show the
Delta-Gamma-neutral strategy (ieγ = 2) and Delta-neutral strategy respectively.
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FMLS Delta−Gamma hedging, α=1.5
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Figure 2. Daily Delta- and Gamma-Hedging.P&L resulting from employing a Delta- and
Gamma-neutral strategy when the underlying follows an FMLSprocess.
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FMLS Delta−Fractional−Gamma hedging, α=1.5, γ=1.5

Mean= −0.0004
STD=      0.42
Max=    18.16
Min=      −8.03

Figure 3. Daily Delta- and Fractional-Gamma-Hedging.P&L resulting from employing a
Delta- and Fractional-Gamma strategy when the underlying follows an FMLS process.
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FMLS, α = 1.5, S0 = 100,K1 = 100,K2 = 95,T1 = 20,T2 = 25
γ = 1.1 γ = 1.2 γ = 1.3 γ = 1.4 γ = 1.5 γ = 1.6 γ = 1.7 γ = 2 Delta

Mean -0.0284 -0.0285 -0.0288 -0.0295 -0.0312 -0.0339 -0.0374-0.1540 0.0946
STD 1.6325 1.6281 1.6187 1.6011 1.5774 1.5729 1.62915.7067 4.0185
Max 49.54 49.24 48.49 46.69 42.82 37.35 41.47197.87 2.46
Min -5.29 -5.24 -5.23 -5.22 -5.22 -5.27 -6.18 -30.57 -81.00

Table II
P&L statistics from N = 10,000simulations. We show Delta- and

Fractional-Gamma-neutral strategies for variousγ’s and the last two columns show the
Delta-Gamma-neutral strategy (ieγ = 2) and Delta-neutral strategy respectively.

FMLS, α = 1.5, S0 = 100,K1 = 100,K2 = 105,T1 = 20,T2 = 25
γ = 1.1 γ = 1.2 γ = 1.3 γ = 1.4 γ = 1.5 γ = 1.6 γ = 1.7 γ = 2 Delta

Mean 0.0017 0.0017 0.0017 0.0016 0.0015 0.0011 0.0004-0.0043 0.0087
STD 2.3193 2.3166 2.3097 2.2936 2.2614 2.2136 2.17052.4742 4.6324
Max 4.07 4.07 4.06 4.03 3.96 3.79 3.97 1.64 2.37
Min -45.56 -45.52 -45.39 -45.07 -44.36 -43.21 -42.04-56.82 -89.84

Table III
P&L statistics from N = 10,000simulations in the LS model. We show

Delta-Fractional-Gamma-neutral strategies for variousγ’s and the last two columns
show the Delta- and Gamma-neutral strategy (ieγ = 2) and Delta-neutral strategy

respectively.

B. Hedging in the LS model

Here we assume that under the physical measure the price process follows a geometric LS

process

d(lnSt) = µdt+σdLLS
t , (19)

wheredLLS
t ∼ Sα(dt1/α,β,0) with 0 ≤ α ≤ 2, −1 ≤ β ≤ 1, µ > 0 andσ > 0. Under the

risk-neutral measure, see (D9) in the appendix, it follows that

d(lnSt) = (r −βσα sec(απ/2))dt+σdL̃LS
t +σdL̃DL

t

18



wheredL̃LS
t anddL̃DL

t are independent and as stated in (D10). This is not only an interesting

case from a financial point of view but also one that can be usedto stress-test hedging strategies

given the heavy tails of the process. As mentioned earlier, the shocks to the stock dynamics

shown in (19) above, have infinite variance and exponential moments do not exist.

We proceed as above and compare the results of hedging a European call option, (where

S0 = 100,K1 = 100 andT1 = 20) with a second option (whereK2 = 100 andT2 = 25), using

the Delta- and Fractional-Gamma-neutral strategy, with the more familiar Delta- and Gamma-

neutral strategy. For illustrative purposes we simulate stock prices using Proposition 6 (in

Appendix D) whenα = 1.7, β = −0.5, µ = 0.05 andσ = 0.20. Moreover, for simplicity, we

assume that the risk-free rater = 0 and that the stock pays no dividends.

Figures 4, 5 and 6 show histograms of the P&L and Table IV summarises the results of

the simulations using a range of fractional derivatives. Wehighlight that in this case we can-

not show the standard deviation of the P&L since, under the physical measure, exponential

moments of the log-stock price do not exist. Note that when the traditional Delta- Gamma-

neutral strategy is employed, assumingK2 = 100, the resulting P&L is within the interval

[−101.46,630.04] which contrasts sharply with the range[−5.45,7.70], obtained when frac-

tional strategies are used withγ = 1.4. Moreover, Table V shows the results from another set

of simulations assuming that the strike of the second optionis K2 = 105. In this case the Delta-

Gamma-neutral strategy delivers P&L results within the interval[−41.66,452.15] whereas for

all the fractional strategies the resulting P&L lie between[−39,81].6
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LS Delta hedging, α=1.7, β=−0.5
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Figure 4. Daily Delta-Hedging.P&L resulting from using the Black-Scholes Delta-hedging
strategy.
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LS Delta−Gamma hedging, α=1.7, β=−0.5
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Figure 5. Daily Delta- and Gamma-Hedging. P&L resulting from using a Delta- and
Gamma-neutral strategy.
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Figure 6. Daily Delta- and Fractional-Gamma-Hedging.P&L resulting from using a Delta-
and Fractional-Gamma strategy withγ = 1.4.

C. Hedging in the MJD model

Here we show how Delta- and Fractional-Gamma-hedging compares to Delta- and Gamma-

hedging when the underlying security follows a jump diffusion model as proposed by Merton

(1990). This model proposes that under the physical measure, St follows

dSt

St−
= µdt+σdWt +(J−1)dqt

whereµ is a constant,σ ≥ 0,dWt is the increment of a standard Wiener process,qt is a Poisson

process with intensity parameterλt andJi is a sequence of i.i.d. random variables such that

lnJ ∼ N(µJ,σ2
J) andWt , qt andJi ’s are independent.

We assume that under the risk-neutral measure the stock price follows

dSt

St−
=

(

r −
1
2

σ2−λ(EJ[J]−1)

)

dt+σdW̃t +(J−1)dqt

wherer is the risk-free rate anddW̃t is the increment of Brownian motion.
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LS, α = 1.7, β = −0.5, S0 = 100,K1 = 100,K2 = 100,T1 = 20,T2 = 25
γ = 1.1 γ = 1.2 γ = 1.3 γ = 1.4 γ = 1.5 γ = 1.6 γ = 1.7 γ = 2 Delta

Mean -0.0073 -0.0069 -0.0059 -0.0027 0.0050 0.019 0.0390.055 -0.508
Max 7.19 7.25 7.40 7.70 63.70 190.00 362.72630.04 2.34
Min -37.18 -34.51 -25.77 -5.45 -5.89 -8.62 -12.30-101.46 -4,353

Table IV
P&L statistics from N = 10,000simulations in the LS model. We show

Delta-Fractional-Gamma-neutral strategies for variousγ’s and the last two columns
show the Delta- and Gamma-neutral strategy (ieγ = 2) and Delta-neutral strategy

respectively.

LS, α = 1.7, β = −0.5, S0 = 100,K1 = 100,K2 = 105,T1 = 20,T2 = 25
γ = 1.1 γ = 1.2 γ = 1.3 γ = 1.4 γ = 1.5 γ = 1.6 γ = 1.7 γ = 2 Delta

Mean 0.0268 0.0269 0.0270 0.0274 0.0285 0.0306 0.03370.1069 -0.0449
Max 74.47 74.67 75.12 76.04 77.62 79.47 80.31452.15 2.53
Min -38.46 -38.37 -38.17 -37.73 -36.93 -35.82 -34.92-41.66 -199.12

Table V
P&L statistics from N = 10,000simulations in the LS model. We show

Delta-Fractional-Gamma-neutral strategies for variousγ’s and the last two columns
show the Delta- and Gamma-neutral strategy (ieγ = 2) and Delta-neutral strategy

respectively.

Table VI shows results fromN = 10,000 simulations for the MJD model with parameters

µ = .05, σ = 0.2, σJ = 0.2, µJ = 0 and assuming that the stock price jumps on averageλ =

5 times per year. As above, we have assumed thatr = 0, T1 = 20, T2 = 25, K1 = K2 =

100 andS0 = 100. It can be appreciated from the results that the Delta- Fractional-Gamma

strategy with 1.1≤ γ ≤ 1.7 delivers considerably better results than the Delta- Gamma-neutral

strategy. Figures 7 and 8 show the histograms for the P&L resulting from the simulations for

Delta hedging and Delta- and Gamma hedging. Figure 9 shows the histogram for Delta- and

Fractional-Gamma hedging whenγ = 1.1. This value delivered the lowest volatility, which is

approximately 30% of the volatility of the P&L resulting from the classical Delta- and Gamma
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Figure 7. Daily Delta-Hedging.P&L resulting from using the Black-Scholes Delta-hedging
strategy.

hedging strategy. Moreover, Tables VII and VIII show simulations for the cases whereK2 = 95

andK2 = 105 respectively.

MJD, S0 = 100,K1 = 100,K2 = 100,T1 = 20,T2 = 25,λ = 5
γ = 1.1 γ = 1.2 γ = 1.3 γ = 1.4 γ = 1.5 γ = 1.6 γ = 1.7 γ = 2 Delta

Mean 0.0005 0.0004 0.0001 -0.0008 -0.0033 -0.0086 -0.0168-0.0521 -0.0173
STD 0.7453 0.7465 0.7492 0.7582 0.7975 0.9361 1.23062.4194 5.5602
Max 10.07 10.23 10.66 11.66 13.67 16.48 21.8941.90 3.74
Min -9.87 -10.08 -10.60 -11.86 -14.83 -20.99 -31.53-68.28 -74.14

Table VI
P&L statistics from N = 10,000simulations in the LS model. We show

Delta-Fractional-Gamma-neutral strategies for variousγ’s and the last two columns
show the Delta- and Gamma-neutral strategy (ieγ = 2) and Delta-neutral strategy

respectively.
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Figure 8. Daily Delta- and Gamma-Hedging. P&L resulting from using a Delta- and
Gamma-neutral strategy.
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Figure 9. Daily Delta- and Fractional-Gamma-Hedging.P&L resulting from using a Delta-
and Fractional-Gamma strategy withγ = 1.1.
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MJD, S0 = 100,K1 = 100,K2 = 95,T1 = 20,T2 = 25,λ = 5
γ = 1.1 γ = 1.2 γ = 1.3 γ = 1.4 γ = 1.5 γ = 1.6 γ = 1.7 γ = 2 Delta

Mean -0.0044 -0.0043 -0.0043 -0.0044 -0.0048 -0.0060 -0.0085-0.0282 -0.0418
STD 2.66 2.66 2.66 2.65 2.66 2.69 2.78 8.42 5.44
Max 23.94 23.77 23.36 22.38 20.48 19.26 22.28263.53 3.80
Min -38.45 -38.51 -38.65 -38.96 -39.57 -40.47 -41.06-51.11 -55.57

Table VII
P&L statistics from N = 10,000simulations in the LS model. We show

Delta-Fractional-Gamma-neutral strategies for variousγ’s and the last two columns
show the Delta- and Gamma-neutral strategy (ieγ = 2) and Delta-neutral strategy

respectively.

MJD, S0 = 100,K1 = 100,K2 = 105,T1 = 20,T2 = 25,λ = 5
γ = 1.1 γ = 1.2 γ = 1.3 γ = 1.4 γ = 1.5 γ = 1.6 γ = 1.7 γ = 2 Delta

Mean -0.0483 -0.0485 -0.0489 -0.0499 -0.0519 -0.0547 -0.0573-0.0899 0.0302
STD 2.49 2.49 2.50 2.54 2.62 2.77 3.02 12.96 5.35
Max 38.71 38.86 39.20 39.85 40.88 41.87 48.07321.89 3.98
Min -23.36 -23.32 -23.26 -23.21 -23.30 -23.86 -38.56-58.27 -67.43

Table VIII
P&L statistics from N = 10,000simulations in the LS model. We show

Delta-Fractional-Gamma-neutral strategies for variousγ’s and the last two columns
show the Delta- and Gamma-neutral strategy (ieγ = 2) and Delta-neutral strategy

respectively.

IV. Other Applications: Fractional Black-Scholes equations

The pricing of European-style options written on assets that follow non-Gaussian processes,

such as Lévy processes, has become a very straightforward task when transform methods are

used, Carr and Madan (1999) and Lewis (2001). On the other hand, although progress has

been made with regards to the pricing of other types of options, such as American and exotic,

there is still scope to develop better and more accurate methods.
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Although until now the theory of fractional calculus had notbeen applied to the field

of finance, there is a wealth of literature, and associated findings, from the theory of frac-

tional differential equations that may prove useful in helping to solve current problems in

continuous-time finance. Therefore in this section we show another way in which financial

instruments are closely related to fractional calculus. Weshow that if the risk-neutral dynam-

ics of the log-stock process follow a Lévy process such as the specific cases discussed above

in section II, then the corresponding pricing equation satisfied by instruments written on these

assets satisfies a FBS, which is a pricing equation with fractional derivatives or fractional inte-

grals. Below, we use the following proposition to show the connection between these families

of Lévy processes and their corresponding FBS equations. The proposition shows that the

(Fourier transformed) value of a European-style option, where the underlying follows a Lévy

process, satisfies an ordinary differential equation (ODE).

Proposition 2 The Pricing ODE.Let xt = lnSt follow, under the risk-neutral measure,

dxt = µdt+σdLt , (20)

where St is the underlying stock price, µ andσ are constants and dLt is the increment of a

Lévy process with log-characteristic functionΨ(ξ). Moreover, we let

V̂(ξ, t) =
Z ∞

−∞
eiξxV(x, t)dx, with ξ ∈ C,

denote the Fourier transform of the value of a European-style option with final payoffΠ(xT ,T).

ThenV̂(ξ, t) satisfies the ODE

∂V̂(ξ, t)
∂t

= [r + iξµ−Ψ(−ξ)]V̂(ξ, t), (21)

with boundary condition̂V(ξ,T) = Π̂(ξ,T).

For a proof see Appendix D.
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Here we show that if the risk-neutral dynamics of the stock price follow a LS, CGMY, DL

or KoBoL process then the pricing equation satisfied by European-style derivatives contains

fractional derivatives and integrals.

Proposition 3 The Lévy-Stable FBS equation.Let the log-price xt = lnSt process follow,

under the physical measure, an arithmetic LS process

dxt = µdt+σdLLS
t ,

where dLLS
t ∼ Sα(dt1/α,β,0) is the increment of an LS process with0 < α ≤ 2, −1≤ β ≤ 1,

σ > 0 and µ is a constant. Then the value of a European-style optionwith final payoffΠ(xT ,T)

satisfies the following fractional differential equation

rV (x, t) =
∂V(x, t)

∂t
+(r −βσα sec(απ/2))

∂V(x, t)
∂x

−κα
2 sec(απ/2) −∞Dα

xV(x, t)

+κα
1 sec(απ/2)

(

V(x, t)−ex
xD

γ
∞e−xV(x, t)

)

, (22)

where

κα
2 =

1−β
2

σα and κα
1 =

1+β
2

σα. (23)

For a proof see Appendix D.

Note that the case whenα = 2 andβ = 0 yields

rV (x, t) =
∂V(x, t)

∂t
+

(

r −σ2) ∂V(x, t)
∂x

+
1
2

σ2
−∞D2

xV(x, t)+
1
2

σ2
xD

2
∞V(x, t)

=
∂V(x, t)

∂t
+

(

r −σ2) ∂V(x, t)
∂x

+σ2∂2V(x, t)
∂x2 , (24)

which is the classical Black-Scholes partial differentialequation inxt = lnSt . Note also that

given the parametrisation of the LS distribution we use here, whenX ∼ S2(σ,0,0), the ex-

pected valueE
[

X2
]

= 2σ2. This is the reason why the constant coefficients showσ2 instead

of the usualσ2/2 in the classical Black-Scholes operator shown above.
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Another very important case is whenα > 1 andβ =−1; this is known as the FMLS process

of Carr and Wu (2003a).

European-style options written on an underlying that follows the risk-neutral process (D9)

with β = −1

d(lnSt) = (r +σα sec(απ/2))dt+σdL̃LS
t

satisfy the FMLS FBS equation

rV (x, t) =
∂V(x, t)

∂t
+(r +σα sec(απ/2))

∂V(x, t)
∂x

−σα sec(απ/2) −∞Dα
xV(x, t). (25)

Moreover, to derive the corresponding FBS equation, when the risk-neutral dynamics of

the stock price are driven by a CGMY process, we proceed as above. The stock dynamics are

given by

dxt = (r −wcgmy)dt+dL̃CGMY
t

wherext = lnSt and

wcgmy= CΓ(Y)
{

(M−1)Y −MY +(G+1)Y −GY}

. (26)

Hence the CGMY FBS is given by

∂V(x, t)
∂t

=
(

r +σ(MY +GY)
)

V(x, t)− (r −wcgmy)
∂V(x, t)

∂x

−σ
[

eMx
−∞DY

x

(

e−MxV(x, t)
)

+e−Gx
xD

Y
∞

(

eGxV(x, t)
)]

, (27)

whereσ = CΓ(−Y).
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Note thatY < 2, so that in the case whereY < 0 the fractional operators shown in (27)

are in fact fractional integrals as shown in Definition 1. Moreover, we also need the condition

M ≥ 1 to be satisfied so thatEt [ST ] < ∞.

Finally, for the DL or KoBoL process we proceed as above to obtain the corresponding

FBS equation; see (D13) in the appendix for details.

V. Conclusions

This paper shows that the calculus of fractional operators is related to some of the most im-

portant jump processes used in the financial literature, forexample the FMLS, KoBoL, Kopo-

nen’s DL and CGMY. More importantly, we have devised a dynamic hedging strategy based

on fractional operators and tested it for different models.We have compared our proposed

Delta-Fractional-Gamma hedging strategy with the well-known approach of Delta-Gamma-

neutrality and looked in detail at simulations under the FMLS, LS and MJD models. We have

seen that due to the large movements or jumps in the underlying stock price, fractional opera-

tors provide a much better hedge than the traditional Delta-and Gamma-neutral approach. It

was argued that since fractional operators take into account information about the value and

curvature of the portfolio for a range of the stock price between zero and the current stock

price, ie[0,St], hedging strategies will perform better according to metrics such as the range

in which the P&L lies, or when applicable, the volatility of the P&L. We showed that in cases

such as the MJD and the FMLS the volatility of the P&L is withinthe range of 25% to 30% of

that resulting from employing Delta- and Gamma-neutrality. Moreover, in very extreme cases

such as the LS model, where under the physical measure the log-stock price (due to the heavy

tails of the distribution of the underlying uncertainty) exhibits infinite variance, we showed

that the fractional strategies considerably reduce the exposure of the P&L to large shocks. For

example, the results from Delta- and Gamma-hedging resulted in P&L values ranging between
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[−101,630] whereas the results in the same simulation when fractional hedging strategies are

applied ranged between[−5,7].
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Appendix A. L évy process

Proposition 4 Lévy-Khintchine representation.Let Xt be a Ĺevy process. Then the natural logarithm

of the characteristic function can be written as

lnE[eiξXt ] = citξ−
1
2

d2tξ2 + t
Z

R\{0}

(

eiξx−1− iξxI |x|<1

)

W(dx), (A1)

where c∈ R, d≥ 0, ξ ∈ C, I is the indicator function and the Lévy measure W must satisfyZ
R

min{1,x2}W(dx) < ∞. (A2)

A Lévy process can be seen as a combination of a drift component, a Brownian motion (Gaussian)

component and a jump component. These three components are determined by the Lévy-Khintchine

triplet (c,d2,W). The parameterc parametrises the ‘trend’ component which is responsible for the

development of the processXt on the average. The parameterd2 defines the variance of the continuous

Gaussian component ofXt . The Lévy measureW is responsible for the behaviour of the jump compo-

nent ofXt and determines the frequency and magnitude of jumps. Finally, if the Lévy measure is of the

form W(dx) = w(x)dx, we callw(x) the Lévy density, which measures the arrival rate of the jumps of

the underlying processx. We note that in (A1) above we can have different centering functions; that

is, instead of having the termiξxI |x|<1, we may have other functional forms that guarantee integrability

around zero. For example we could simply choose to haveiξx (ie without the indicator function) and

the difference in the Lévy-Khintchine representation will be in the drift component. Moreover, for

some types of processes, like the CGMY, it is sufficient to have,
R ∞
−∞

(

eiξx−1
)

W(dx) for the jump part

of the process, see Carr, Geman, Madan, and Yor (2002).

Appendix B. Fractional Derivatives

In this section we depict fractional derivatives for European call options using different assumptions

for the stochastic process followed by the underlying security St .

33



60 70 80 90 100 110 120 130 140
0

0.05

0.1

0.15

0.2

0.25
FMLS Fractional Derivative, α=1.5, K=100, T=10 days
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Figure 10. Fractional Derivative for FMLS. The figure shows fractional derivatives
0Dγ

SV(S, t;K,T) with γ = 2,γ = 1.7,γ = 1.5 andγ = 1.3 for a European call withS0 = 100,
K = 100 andT = 10 days to expiry when the underlying follows, under the risk-neutral mea-
sure, an FMLS process withσ = 0.2, α = 1.5 and driftµ= 0.05.
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Figure 11. Fractional Derivative for FMLS. The figure shows fractional derivatives
0Dγ

SV(S, t;K,T) with γ = 2,γ = 1.7,γ = 1.5 andγ = 1.3 for a European call withS0 = 100,
K = 100 andT = 5 days to expiry when the underlying follows, under the risk-neutral mea-
sure, an FMLS process withσ = 0.2, α = 1.5 and driftµ= 0.05
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Figure 12. Fractional Derivative for LS. The figure shows fractional derivatives
0Dγ

SV(S, t;K,T) with γ = 2,γ = 1.8,γ = 1.6 andγ = 1.4 for a European call withS0 = 100,
K = 100 andT = 10 days to expiry when the underlying follows, under the risk-neutral mea-
sure, an LS process withσ = 0.2, α = 1.7, β = −0.5 and driftµ= 0.05.
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Figure 13. Fractional Derivative for LS. The figure shows fractional derivatives
0Dγ

SV(S, t;K,T) with γ = 2,γ = 1.8,γ = 1.6 andγ = 1.4 for a European call withS0 = 100,
K = 100 andT = 5 days to expiry when the underlying follows, under the risk-neutral mea-
sure, an LS process withσ = 0.2, α = 1.7, β = −0.5 and driftµ= 0.05
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Figure 14. Fractional Derivative for Classical Black-Scholes. The figure shows fractional
derivatives0Dγ

SV(S, t;K,T) with γ = 2,γ = 1.8,γ = 1.6 andγ = 1.4 for a European call with
S0 = 100,K = 100 andT = 10 days to expiry when the underlying follows, under the risk-
neutral measure, a geometric Brownian motion with volatility σ = 0.2, and driftµ= 0.05.
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Figure 15. Fractional Derivative for Classical Black-Scholes. The figure shows fractional
derivatives0Dγ

SV(S, t;K,T) with γ = 2,γ = 1.8,γ = 1.6 andγ = 1.4 for a European call with
S0 = 100, K = 100 andT = 5 days to expiry when the underlying follows, under the risk-
neutral measure, a geometric Brownian motion with volatility σ = 0.2, and driftµ= 0.05.
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Figure 16. Fractional Derivative for MJD. The figure shows fractional derivatives
0Dγ

SV(S, t;K,T) with γ = 2,γ = 1.8,γ = 1.6 andγ = 1.4 for a European call withS0 = 100,
K = 100 andT = 10 days to expiry when the underlying follows, under the risk-neutral mea-
sure, a MJD process withσ = 0.2, λ = 5, σJ = 0.2 andµJ = 0.
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Figure 17. Fractional Derivative for MJD. The figure shows fractional derivatives
0Dγ

SV(S, t;K,T) with γ = 2,γ = 1.8,γ = 1.6 andγ = 1.4 for a European call withS0 = 100,
K = 100 andT = 10 days to expiry when the underlying follows, under the risk-neutral mea-
sure, a MJD process withσ = 0.2, λ = 5, σJ = 0.2 andµJ = 0.
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Appendix C. Calculation of fractional derivatives in the com-

plex plane

In the fractional Taylor’s expansion we use derivatives of the form

0Dγ
SV(S, t) =

1
Γ(n− γ)

dn

dSn

Z S

0
(S−y)n−1−γV(y, t)dy.

We calculate these derivatives by numerically inverting their Fourier transforms; these are given in

the following proposition.

Proposition 5 Let1 < γ < 2. Then

F {0Dγ
SV(S, t)} = F

{

S1−γ

Γ(2− γ)
dV(S, t)

dS
|S=0

}

+
Γ(−iξ−1+ γ)

Γ(−iξ−1)
V̂(ξ− i(2− γ), t)

Proof: First we use integration by parts to write

0Dγ
SV(S, t) =

1
Γ(2− γ)

dV(S, t)
dS

|S=0+
1

Γ(2− γ)

Z S

0
(S−y)1−γ d2V(y, t)

dy2 dy.

Now let us focus on the second term on the right-hand side of the equation above substitutey = uS

to obtain

1
Γ(2− γ)

Z S

0
(S−y)1−γ d2V(y, t)

dy2 dy =
S2−γ

Γ(2− γ)

Z 1

0
(1−u)1−γ d2V(uS, t)

du2 du (C3)

Now let’s take the Fourier transform with respect to the stock priceS= ex.

F

{

S2−γ

Γ(2− γ)

Z 1

0
(1−u)1−γ d2

du2V(uS, t)du

}

=
1

Γ(2− γ)

Z 1

0
(1−u)1−γ d2

du2F

{

e(2−γ)xV(uex, t)
}

du
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F

{

e(2−γ)xV(uex, t)
}

=
Z ∞

−∞
eiξxe(2−γ)xV(ex+lnu, t)dx, now letm= x+ lnu

=
Z ∞

−∞
e(iξ+2−γ)(m−lnu)V(em, t)dm

= e−(iξ+2−γ) lnu
Z ∞

−∞
ei(ξ−i(2−γ))mV(em, t)dm

= e−(iξ+2−γ) lnuV̂(ξ− i(2− γ), t).

Combining the results together we obtain

F

{

S2−γ

Γ(2− γ)

Z 1

0
(1−u)1−γ d2V(uS, t)

du2 du

}

=
1

Γ(2− γ)

Z 1

0
(1−u)1−γ d2

du2 e−(iξ+2−γ) lnuV̂(ξ− i(2− γ), t)du

=
1

Γ(2− γ)

Z 1

0
(1−u)1−γ d2

du2 u−(iξ+2−γ)V̂(ξ− i(2− γ), t)du

=
(iξ+2− γ)(iξ+3− γ)

Γ(2− γ)

Z 1

0
(1−u)1−γu−(iξ+4−γ)V̂(ξ− i(2− γ), t)du

=
(iξ+2− γ)(iξ+3− γ)

Γ(2− γ)
V̂(ξ− i(2− γ), t)

Z 1

0
(1−u)1−γu−(iξ+4−γ)du

=
(iξ+2− γ)(iξ+3− γ)

Γ(2− γ)
V̂(ξ− i(2− γ), t)B(−iξ−3+ γ,2− γ)

=
(iξ+2− γ)(iξ+3− γ)

Γ(2− γ)
Γ(−iξ−3+ γ)Γ(2− γ)

Γ(−iξ−1)
V̂(ξ− i(2− γ), t)

= (iξ+2− γ)(iξ+3− γ)
Γ(−iξ−3+ γ)

Γ(−iξ−1)
V̂(ξ− i(2− γ), t)

= −(iξ+2− γ)
Γ(−iξ−2+ γ)

Γ(−iξ−1)
V̂(ξ− i(2− γ), t)

=
Γ(−iξ−1+ γ)

Γ(−iξ−1)
V̂(ξ− i(2− γ), t),

where B(w,z) = Γ(w)Γ(z)/Γ(z+w) is the Beta function and we have usedΓ(z+1) = zΓ(z).

�

Note that forγ = 2 we obtain((iξ)2 + iξ)V̂(ξ, t), which is the Fourier transform ofS2VSS(S, t).
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Appendix D. Other propositions and proofs

Proof of Proposition 2

The value of the option satisfies

V(x, t) = e−r(T−t)
Et [Π(xT ,T)].

Now assume that the payoffΠ(xT ,T) has a complex Fourier transform (CFT), denoted by a circumflex,

F {Π(xT ,T)} ≡ Π̂(ξ,T) =
Z ∞+iξi

−∞+iξi

eiξxT Π(xT ,T)dxT ,

in the stripa < ξi < b, where we denoteξi = Im ξ. Then we can write

V(x, t) =
e−r(T−t)

2π
Et

[Z ∞+iξi

−∞+iξi

e−ixT ξΠ̂(ξ,T)dξ
]

. (D4)

Now taking the expectation operator inside the integral, see Lewis (2001), we obtain

V(x, t) =
e−r(T−t)

2π

Z ∞+iξi

−∞+iξi

Et [e
−ixT ξ]Π̂(ξ,T)dξ

=
e−r(T−t)

2π

Z ∞+iξi

−∞+iξi

e−iξxt−iξµ(T−t)e(T−t)Ψ(−ξ)Π̂(ξ,T)dξ, (D5)

whereeΨ(ξ) is the characteristic function ofσ
R 1

0 dLs. Note that we requireeΨ(−ξ) to be analytic in a

strip that intersects the strip where the CFT of the payoff exists.

It is straightforward to see that (D5) can be written as

1
2π

Z ∞+iξi

−∞+iξi

e−iξxtV̂(ξ, t)dξ =
e−r(T−t)

2π

Z ∞+iξi

−∞+iξi

e−iξxt−iξµ(T−t)e(T−t)Ψ(−ξ)Π̂(ξ,T)dξ, (D6)

and, by applying the Fourier transformF to both sides of equation (D6), we obtain

V̂(ξ, t) = e−r(T−t)e−iξµ(T−t)e(T−t)Ψ(−ξ)Π̂(ξ,T).
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Reordering terms, and taking the principal value of the logarithm function, yields

ln
(

V̂(ξ, t)/Π̂(ξ,T)
)

= −r(T − t)− iξµ(T − t)+ (T − t)Ψ(−ξ). (D7)

Now, differentiating with respect to time (∂/∂t), we note that (D7) is the solution of the ordinary

differential equation (ODE)

∂V̂(ξ, t)
∂t

= [r + iξµ−Ψ(−ξ)]V̂(ξ, t)

with boundary condition̂V(ξ,T) = Π̂(ξ,T).

Moreover, note that we can use this ODE to find the integro-differential equation satisfied by the

value of options written on a stock that follows a geometric Lévy process. For simplicity let us assume

that the Lévy triplet is(0,0,W), ie that it has no location and no Gaussian component. Then the next

step is to apply the inverse Fourier transformF −1 to the ODE above. Thus

∂V(x, t)
∂t

=
1
2π

Z ∞+iξi

−∞+iξi

e−iξxt [r + iξµ−Ψ(−ξ)]V̂(ξ, t)dξ

=
1
2π

Z ∞+iξi

−∞+iξi

e−iξxt (r + iξµ)V̂(ξ, t)dξ−
1
2π

Z ∞+iξi

−∞+iξi

e−iξxt Ψ(−ξ)V̂(ξ, t)dξ

= rV (x, t)−µ
∂V(x, t)

∂x

−
1
2π

Z ∞+iξi

−∞+iξi

e−iξxt

Z ∞

−∞

(

e−iξy−1+ iξyI |y|<1

)

W(dy)V̂(ξ, t)dξ

= rV (x, t)−µ
∂V(x, t)

∂x

−
1
2π

Z ∞

−∞

Z ∞+iξi

−∞+iξi

e−iξxt

(

e−iξy−1+ iξyI |y|<1

)

V̂(ξ, t)dξW(dy) (D8)

= rV (x, t)−µ
∂V(x, t)

∂x

−

Z ∞

−∞

(

V(x+y, t)−V(x, t)−y
∂V(x, t)

∂x
I |y|<1

)

W(dy).

Note that by applying Fubini’s theorem we can interchange the order of integration to obtain (D8).

�
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Proof of Proposition 3

McCulloch (2003) showed that the corresponding risk-neutral process is given by

d(lnSt) = (r −βσα sec(απ/2))dt+ σdL̃LS
t + σdL̃DL

t (D9)

wheredL̃LS
t anddL̃DL

t are independent and are the increments of a maximally negatively skewed LS

process and the increment of a maximally positively skewed DL process, ie.

σL̃LS
1 ∼ Sα(κ2,−1,0) and σL̃DL

1 ∼ DLα(κ1,1,0,0,1) (D10)

with κ1 andκ2 as in (23).

In this case the ODE (21) becomes

∂V̂(ξ, t)
∂t

= [r + iξ(r −βσα sec(απ/2))−ΨLS(−ξ)−ΨDL(−ξ)]V̂(ξ, t), (D11)

where

ΨLS(−ξ) = κα
2 sec(απ/2)(−iξ)α

and

ΨDL(−ξ) = κα
1 sec(απ/2)(1− (1+ iξ)α) .

Taking the inverse Fourier transform of (D11) delivers the result.

�

The KoBoL or DL FBS equation

To obtain the DL or KoBoL FBS equation we assume that the risk-neutral log-stock price dynamics

follow a DL process

dxt = (r −wdl)dt +dLDL
t , (D12)
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where

wdl = κα {

p(λ−1)α +q(λ+1)α −λα −αλα−1(q− p)
}

,

xt = lnSt andr is the risk-free rate. Then, proceeding as above, the value of a European-style option

with final payoffΠ(x,T) satisfies the following FBS equation

(r + καλα)V(x, t) =
∂V(x, t)

∂t
+

(

r −wdl −λα−1(q− p)
) ∂V(x, t)

∂x

+κα
[

peλx
−∞Dα

x e−λxV(x, t)+qe−λx
xD

α
∞eλxV(x, t)

]

. (D13)

Note that if we letα = 2, p = q = 1/2 andλ = 0 we obtain the Black-Scholes PDE.

Proposition 6 Letϑ be a uniform random variable on(−π/2,π/2) and letε be exponential with mean

1. Assumeϑ andε are independent. Then

X =
sinαϑ

(cosϑ)1/α

(

cos((1−α)ϑ)

ε

)(1−α)/α

is Sα(1,0,0).

For a proof see Samorodnitsky and Taqqu (1994).
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Notes

1Note that a sufficient condition for the integrals (1) and (2)to converge is that

f (x) = O(|x|−γ−ε) for ε > 0 asx→±∞.

2By large we mean that the movements of the underlying are muchlarger than those pre-

dicted by Gaussian shocks.

3Note that the condition on the value ofY is given by (A2).

4It is interesting to note that the Lévy density of the CGMY and the DL process is essen-

tially the same as that of the LS process except that the exponential damping factor ensures

exponential, instead of polynomial, decay at infinity. We also point out that in the DL case

for ‘short-time’ scales, depending on the magnitude of the damping factorλ, the distribution

of the DL can be seen as a very good approximation to the distribution of the LS, see Matacz

(2000).

5If we assume that under the physical measure the log-stock price follows a CGMY, DL,

KoBoL or FMLS process, then the Esscher transformed processwill again be a Lévy process

where the corresponding pricing equation can be expressed as a FBS equation.

6We note that we do not enquire about the performance of the hedge whenK2 < K1 be-

cause the stock price exhibits very large and frequent positive jumps and it is very difficult to

implement a Delta- and Gamma-neutral strategy. If simulations were performed, then for a

considerable amount of runs, the gamma ofV2(S, t;K2,T2) would approach zero much faster

than that ofV1(S, t;K1,T1), therefore, in these cases, the hedging strategy would require ex-

tremely large amounts, given by

b(S, t) =
∂2V1(S, t)/∂S2

∂2V2(S, t)/∂S2,

44



of V2(S, t;K2,T2) to be purchased.
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