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Pricing in Electricity Markets: a mean reverting

jump diffusion model with seasonality

Álvaro Cartea and Marcelo G. Figueroa ∗

Birkbeck College, University of London

January 19, 2005

Abstract

In this paper we present a mean-reverting jump diffusion model for the elec-
tricity spot price and derive the corresponding forward in closed-form. Based
on historical spot data and forward data from England and Wales we calibrate
the model and present months, quarters, and seasons–ahead forward surfaces.

Keywords: Energy derivatives, electricity, forward curve, forward surfaces.

1 Introduction

One of the key aspects towards a competitive market is deregulation. In most elec-
tricity markets, this has however only occurred recently. Prior to this, price variations
were often minimal and heavily controlled by regulators. In England and Wales in
particular, prices were set by the Electricity Pool, where due to centralisation and
inflexible arrangements prices failed to reflect falling costs and competition. Deregu-
lation came by the recent introduction on March 27, 2001 of NETA (New Electricity
Trade Arrangement), removing price controls and openly encouraging competition.

Price variations have increased significantly as a consequence of the introduction of
competition, encouraging the pricing of a new breed of energy-based financial products

∗Email: a.cartea@bbk.ac.uk and m.figueroa@econ.bbk.ac.uk. First version, June 2004. We are
grateful for comments from Andrew Shaw, Gareth Davies, Murray Hartley, Raymond Brummelhuis,
Ron Smith, seminar participants at the Commodities Modelling Workshop held at Birkbeck College,
University of London on September 2004, and two anonymous referees. Forthcoming in Applied

Mathematical Finance.
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to hedge the inherent risk, both physical and financial, in this market. Most of the
current transactions of instruments in the electricity markets is carried out through
bilateral contracts ahead of time although electricity is also traded on forward and
futures markets and through power exchanges.

One of the most striking differences that singles out electricity markets is that elec-
tricity is very difficult or too expensive to store, hence markets must be kept in balance
on a second-by-second basis. In England and Wales, this is done by the National Grid
Company which operates a balancing mechanism to ensure system security.1 More-
over, although power markets may have certain similarities with other markets, they
present intrinsic characteristics which distinguish them. Two distinctive features are
present in energy markets in general, and are very evident in electricity markets in
particular: the mean reverting nature of spot prices and the existence of jumps or
spikes in the prices.

In stock markets, prices are allowed to evolve ‘freely’, but this is not true for
electricity prices; these will generally gravitate around the cost of production. Under
abnormal market conditions, price spreads are observed in the short run, but in the
long run supply will be adjusted and prices will move towards the level dictated by the
cost of production. This adjustment can be captured by mean-reverting processes,
which in turn may be combined with jumps to account for the observed spikes.

Therefore, to price energy derivatives it is essential that the most important char-
acteristics of the evolution of the spot, and consequently the forward, are captured.
Several approaches may be taken, generally falling into two classes of models: spot-
based models and forward-based models. Spot models are appealing since they tend
to be quite tractable and also allow for a good mathematical description of the prob-
lem in question. Significant contributions have been made by Schwartz, in [16] for
instance the author introduces an Ornstein-Uhlenbeck type of model which accounts
for the mean reversion of prices, and in [12] Lućıa and Schwartz extend the range of
these models to two-factor models which incorporate a deterministic seasonal com-
ponent. On the other hand forward-based models have been used largely in the Nord
Pool Market of the Scandinavian countries. These rely heavily, however, on a large
data set, which is a limiting constraint in the case of England and Wales. Finally, it
must also be pointed out that the choice of model may sometimes be driven by what
kind of information is required. For example, pricing interruptible contracts would
require a spot-based model while pricing Asian options on a basket of electricity
monthly and seasonal forwards calls for forward-based models.

The spot models described in [16] and [12] capture the mean reverting nature of
electricity prices, but they fail to account for the huge and non-negligible observed

1For more specific information about NETA consult www.ofgem.gov.uk.
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spikes in the market. A natural extension is then to incorporate a jump component
in the model. This class of jump-diffusion models was first introduced by Merton to
model equity dynamics, [13]. Applying these jump-diffusion-type models in electricity
is attractive since solutions for the pricing of European options are available in closed-
form. Nevertheless, it fails to incorporate both mean reversion and jump diffusion at
the same time. Clewlow and Strickland [7] describe an extension to Merton’s model
which accounts for both the mean reversion and the jumps but they do not provide a
closed-form solution for the forward. A similar model to the one we present, although
not specific to the analysis of electricity spot prices, has been analysed in Benth,
Ekeland, Hauge and Nielsen [4].

The main contribution of this paper is twofold. First, we present a model that
captures the most important characteristics of electricity spot prices such as mean
reversion, jumps and seasonality and calibrate the parameters to the England and
Wales market. Second, since we are able to calculate an expression for the forward
curve in closed-form and recognising the lack of sufficient data for robust parameter
estimation, we estimate the model parameters exploiting the fact that we can use both
historical spot data and current forward prices (using the closed-form expression for
the forward).2

The remaining of this paper is structured as follows. In Section 2 we present data
analysis to support the use of a model which incorporates both mean reversion and
jumps. In Section 3 we present details of the spot model and derive in closed-form
the expression for the forward curve. In Section 4 we discuss the calibration of the
model to data from England and Wales. In Section 5 we present forward surfaces
reflecting the months, quarters and seasons–ahead prices. Section 6 concludes.

2All data used in this project has been kindly provided by Oxford Economic Research Associates,
OXERA.
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2 Data Analysis

For over three decades most equity models have tried to ‘fix’ the main drawback from
assuming Gaussian returns. A clear example is the wealth of literature that deals
with stochastic volatility models, jump-diffusion and more recently, the use of Lévy
processes. One of the main reasons to adopt these alternative models is that Gaussian
shocks attach very little probability to large movements in the underlying that are,
on the contrary, frequently observed in financial markets. In this section we will see
that in electricity spot markets assuming Gaussian shocks to explain the evolution of
the spot dynamics is even a poorer assumption than in equity markets.

Electricity markets exhibit their own intrinsic complexities. There is a strong
evidence of mean reversion and of spikes in spot prices, which in general are much more
pronounced than in stock markets. The former can be observed by simple inspection
of the data in both markets. Figure 1 shows daily closes of the FTSE100 index from
2/01/90 to 18/06/04. The nature of the price path can be seen as a combination of
a deterministic trend together with random shocks. In contrast, Figure 2 shows that
for electricity spot prices in England and Wales there is a strong mean reversion.3

This is, prices tend to oscillate or revert around a mean level, with extraordinary
periods of volatility. These extraordinary periods of high volatility are reflected in
the characteristic spikes observed in these markets.
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Figure 1: FTSE100 daily closes from 2/01/90 to 18/06/04.

3As proxy to daily closes of spot prices we have used the daily average of historical quoted
half-hour spot prices from 2/04/01 to 3/03/04.
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Figure 2: Averaged daily prices in England and Wales from 2/04/01 to 3/03/04.

2.1 Normality Tests

In the Black-Scholes model prices are assumed to be log-normally distributed, which
is equivalent to saying that the returns of the prices have a Gaussian or Normal dis-
tribution.4 Although fat tails are observed in data from stock markets, indicating the
probability of rare events being more frequent than predicted by a Normal distribu-
tion, models based on this assumption have been largely used as a benchmark, albeit
modified in order to account for fat tails.

For electricity though, the departure from Normality is more extreme. Figure 3
shows a Normality test for the electricity spot price from 2/04/01 to 3/03/04. If the
returns were indeed Normally distributed the graph would be a straight line. We
can clearly observe this is not the case, as evidenced from the fat tails. For instance,
corresponding to a probability of 0.003 we have returns which are higher than 0.5;
instead if the data were perfectly Normally distributed, the dotted lines suggests the
probability of such returns should be virtually zero.

2.2 Deseasonalisation

One important assumption of the Black-Scholes model is that returns are assumed to
be independently distributed. This can be easily evaluated with an autocorrelation
test. If the data were in fact independently distributed, the correlation coefficient
would be close to zero. A strong level of autocorrelation is evident in electricity

4Here we define “return” as in the classical definition; rt = ln(St+1/St). Note that this is also
referred to as the “log-return” by other authors.
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Figure 3: Normal probability test for returns of electricity prices from 2/04/01 to 3/03/04.

markets, as can be seen from Figure 4. As explained for instance in [15], the evidence
of autocorrelation manifests an underlying seasonality. Furthermore, the lag of days
between highly correlated points in the series reveals the nature of the seasonality. In
this case, we may observe that the returns show significant correlation every 7 days
(there is data for weekends also); which suggests some intra-week seasonality.
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Figure 4: Autocorrelation test for returns of electricity prices from 2/04/01 to 3/03/04.

In order to estimate the parameters of the model, we strip the returns from this
seasonality. Although there are several ways of deseasonalising the data, we follow
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a common approach which is to subtract the mean of every day across the series
according to

Rt = rt − rd, (1)

where Rt is the defined deseasonalised return at time t, rt the return at time t and rd

is the corresponding mean (throughout the series) of the particular day rt represents.
Figure 5 shows the autocorrelation test performed on the deseasonalised returns. As
expected, the strong autocorrelation is no longer evidenced.
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Figure 5: Autocorrelation test for deseasonalised returns of electricity prices.

2.3 Jumps

As seen from the Normality test, the existence of fat tails suggest the probability of
rare events occurring is actually much higher than predicted by a Gaussian distribu-
tion. By simple inspection of Figure 2 we can easily be convinced that the spikes in
electricity data cannot be captured by simple Gaussian shocks.

We extract the jumps from the original series of returns by writing a numeri-
cal algorithm that filters returns with absolute values greater than three times the
standard deviation of the returns of the series at that specific iteration.5 On the
second iteration, the standard deviation of the remaining series (stripped from the
first filtered returns) is again calculated; those returns which are now greater than 3
times this last standard deviation are filtered again. The process is repeated until no

5As can be readily calculated, the probability in a Normal distribution of having returns greater
than 3 standard deviations is 0.0027.
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further returns can be filtered. This algorithm allows us to estimate the cumulative
frequency of jumps and other statistical information of relevance for calibrating the
model.6

The relevance of the jumps in the electricity market is further demonstrated by
comparing Figure 6 to Figure 3; where we can clearly observe that after stripping the
returns from the jumps, the Normality test improves notoriously.
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Figure 6: Normal probability test for filtered returns of electricity prices.

6The calibration will be addressed in Section 4.
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3 The Model: Mean-reversion and Jump Diffusion

in the Electricity Spot

When modelling the electricity market two distinct approaches may be taken: mod-
elling the spot market or modelling the entire forward curve. As mentioned earlier,
one of the appeals for using spot models relies on the fact that it is simple to in-
corporate the observed characteristics of the electricity market. On the other hand,
forward based models rely more heavily on the amount of historical data available.
Since data of electricity prices in England and Wales is only regarded to be liquid
and ‘well priced’ since the incorporation of NETA on March 27, 2001, the amount
of data available is limited. This lack of sufficient data motivates the use of spot-
based models rather than modelling the entire forward curve in the particular case
of this market. It is worth emphasising that different power markets, although sim-
ilar in some aspects, exhibit their own properties and characteristics. Hence, based
on the manifest existence of mean-reversion and jumps on the data for England and
Wales presented in the previous section, we propose a one-factor mean-reversion jump
diffusion model; adjusted to incorporate seasonality effects.

Electricity can be bought in the spot market, but once purchased it must be used
almost immediately, since in most cases electricity cannot be stored, at least not
cheaply. Hedging strategies which typically involve holding certain amounts of the
underlying (in this case electricity) are not possible, therefore in electricity markets
forwards on the spot are typically used instead. As a consequence, it turns out it is
extremely useful to be able to extract a closed-form formula for the forward curve
from the spot-based model, which we are able to do for the model proposed here.

From the data analysis of the previous section we have concluded that two distinc-
tive characteristics of electricity markets should be accounted for in the model; the
mean reversion of the price and the sudden fluctuations in supply and low elasticity
in demand which are reflected in price spikes. Moreover, it would also be important
to incorporate some seasonality component which would be reflected in a varying long
term level of mean reversion.

Schwartz [16] accounts for the mean reversion, and Lućıa and Schwartz [12] extend
the mean reverting model to account for a deterministic seasonality. However, these
models do not incorporate jumps. We propose in this paper a similar model extended
to account for the observed jumps.

As in [12] let us assume that the log-price process, ln St, can be written as

ln St = g(t) + Yt, (2)

9



such that the spot price can be represented as

St = G(t)eYt (3)

where G(t) ≡ eg(t) is a deterministic seasonality function and Yt is a stochastic process
whose dynamics are given by

dYt = −αYtdt + σ(t)dZt + ln Jdqt. (4)

In (4) Yt is a zero level mean-reverting jump diffusion process for the underlying
electricity spot price St, α is the speed of mean reversion, σ(t) the time dependent
volatility, J the proportional random jump size, dZt is the increment of the standard
Brownian motion and dq a Poisson process such that

dqt =

{

1 with probability ldt
0 with probability 1 − ldt;

(5)

where l is the intensity or frequency of the process.7 Moreover, J , dqt and dZt are
independent.

Regarding the jump size, J , the following assumptions are made:

• J is log-Normal, i.e. ln J ∼ N(µJ , σ2
J).

• The risk introduced by the jumps is non-systematic and so diversifiable; fur-
thermore, by assuming E[J ] ≡ 1 we guarantee there is no excess reward for
it.

With the assumptions made above, the properties of J can be summarised as
follows:

J = eφ, φ ∼ N(−
σ2

J

2
, σ2

J); (6)

E[J ] = 1; (7)

E [ln J ] = −
σ2

J

2
; (8)

Var [ln J ] = σ2
J . (9)

Now, from (3) and (4) we can write the SDE for St, namely

dSt = α(ρ(t) − ln St)Stdt + σ(t)StdZt + St(J − 1)dqt, (10)

7Although the process followed by Yt mean reverts around a zero level, it will be shown later that
the stochastic process followed by St will mean revert around a time dependent drift.
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where the time dependent mean reverting level is given by

ρ(t) =
1

α

(

dg(t)

dt
+

1

2
σ2(t)

)

+ g(t). (11)

The interpretation of (10) is as follows. Most of the time dqt = 0, so we simply
have the mean reverting diffusion process. At random times however, St will jump
from the previous value St− to the new value JSt− . Therefore the term St−(J − 1)
gives us the change after and before the jump, ∆St = JSt− − St− .

3.1 Forward Price

The price at time t of the forward expiring at time T is obtained as the expected value
of the spot price at expiry under an equivalent Q-martingale measure, conditional on
the information set available up to time t; namely

F (t, T ) = E
Q
t [ST |Ft] . (12)

Thus, we need to integrate first the SDE in (10) in order to extract ST and later
calculate the expectation.

For the first task we define the log-return as x ≡ ln St and apply Itô’s Lemma to
(10) to arrive at

dxt = α(µ(t) − xt)dt + σ(t)dZt + ln Jdqt, (13)

where

µ(t) =
1

α

dg

dt
+ g(t) (14)

is the time dependent mean reverting level which depends on the seasonality function.

Regarding the expectation, we must calculate it under an equivalent Q-martingale
measure. In a complete market this measure is unique, ensuring only one arbitrage-
free price of the forward. However, in incomplete markets (such as the electricity
market) this measure is not unique, thus we are left with the difficult task of se-
lecting an appropriate measure for the particular market in question. Yet another
approach, common in the literature, is simply to assume that we are already under
an equivalent measure, and thus proceed to perform the pricing directly. This latter
approach would rely however in calibrating the model through implied parameters
from a liquid market. This is certainly difficult to do in young markets, as in the
market of electricity in England and Wales, where there is no liquidity of instruments
which would enable us to do this.

We follow instead Lućıa and Schwartz’ approach in [12], which consists of incor-

porating a market price of risk in the drift, such that µ̂(t) ≡ µ(t)−λ∗ and λ∗ ≡ λσ(t)
α

;
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where λ denotes the market price of risk per unit risk linked to the state variable
xt. This market price of risk, to be calibrated from market information, pins down
the choice of one particular martingale measure. Under this measure we may then
rewrite the stochastic process in (13) for xt as

dxt = α(µ̂(t) − xt)dt + σ(t)dẐt + ln Jdqt, (15)

where

µ̂(t) =
1

α

dg

dt
+ g(t) − λ

σ(t)

α
(16)

and dẐt is the increment of a Brownian motion in the Q-measure specified by the
choice of λ.8

In order to integrate the process we multiply (15) by a suitable integrating factor
and integrate between times t and T to arrive at

xT = g(T ) + (xt − g(t)) e−α(T−t) − λ

∫ T

t

σ(s)e−α(T−s)ds

+

∫ T

t

σ(s)e−α(T−s)dẐs +

∫ T

t

e−α(T−s) ln Jdqs. (17)

Now, since ST = exT , we can replace (17) into (12) to obtain

F (t, T ) = Et [ST |Ft]

= λ̂T
t G(T )

(

S(t)

G(t)

)e−α(T−t)

Et

[

e
R

T

t
σ(s)e−α(T−s)dẐs |Ft

]

Et

[

e
R

T

t
e−α(T−s) ln Jdqs |Ft

]

= λ̂T
t G(T )

(

S(t)

G(t)

)e−α(T−t)

e
1
2

R
T

t
σ(s)2e−2α(T−s)ds

Et

[

e
R

T

t
e−α(T−s) ln Jdqs |Ft

]

(18)

where λ̂T
t ≡ e−λ

R
T

t
σ(s)e−α(T−s)ds and expectations are taken under the risk-neutral

measure. In Appendix C we prove that the expectation in (18) is

Et

[

e
R

T

t
e−α(T−s) ln Jdqs |Ft

]

= exp

[
∫ T

t

e−
σ
2
J

2
e−α(T−s)+

σ
2
J

2
e−2α(T−s)

lds − (T − t)l

]

. (19)

Finally, replacing λ̂T
t and (19) into (18) we obtain the price of the forward as

F (t, T ) = G(T )

(

S(t)

G(t)

)e−α(T−t)

e
R

T

t [ 1
2
σ2(s)e−2α(T−s)−λσ(s)e−α(T−s)]ds+

R
T

t
ξ(σJ ,α,T,s)lds−l(T−t),

(20)

where ξ(σJ , α, T, s) ≡ e−
σ
2
J

2
e−α(T−s)+

σ
2
J

2
e−2α(T−s)

.

8Although the market price of risk itself could be time-dependant, here we assume it constant
for reasons of simplicity.

12



4 Calibration

One of the arguments in favour of spot-based models is that they can provide a
reliable description of the evolution of electricity prices. Moreover, these models are
versatile in the sense that it is relatively simple to aggregate ‘characteristics’ to an
existing family or class of models like for example adding a seasonality function. On
the other hand, one of the drawbacks of these models is that it is quite difficult to
estimate parameters given the relatively large number of parameters combined with
a very small sample data, see for example [6], [10], [11].

One approach is to estimate all the parameters involved from historical data us-
ing maximum likelihood estimators (MLE) through the approximations presented by
Ball and Torous [2], [3].9 However, for the data of England and Wales this method
yielded incorrect estimates, i.e. negative values for certain parameters that should
otherwise be positive and estimates which depended heavily on the starting value of
the parameters. We believe this is mainly due to the scarcity of data in this market.

As an alternative we propose a ‘hybrid’ approach that uses both historical spot
data and forward market data. The former is used to calculate the seasonality com-
ponent, the rolling historical volatility, the mean reversion rate and the frequency and
standard deviation of the jumps.10 The latter is used to estimate the market price of
risk.

4.1 Spot-based Estimates

4.1.1 Seasonality Function

In (3), G(t) is a deterministic function which accounts for the observed seasonality
in power markets. The form of this seasonality function inevitably depends on the
market in question. For instance, some electricity markets will exhibit a discernible
pattern between summer and winter months. In such cases a sinusoidal function
could be suitable (as suggested e.g. by Pilipović in [14]). Other alternatives in-
clude a constant piece-wise function, as for instance in [11]. Furthermore, Lućıa and
Schwartz [12] introduce a deterministic function which discerns between weekdays
and a monthly seasonal component.

However sophisticated these functions may be, they all rely on the inclusion of
dummy variables and on being able to calibrate them correctly from the sample of

9In these papers they demonstrate that for low values of the intensity parameter the Poisson
process can be approximated by a Bernoulli distribution, such that the density function can be
written as a mixture of Normals.

10By the restriction imposed in (7) we have reduced the need to calibrate the mean of the jumps
in the spot.
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historical data. As discussed earlier, this might be a serious constraint when dealing
with markets with not enough historical data. Moreover, although it is reasonable to
assume that there might be a distinguishable pattern between summer and winters
in England and Wales, this is yet not evident from the available data.

Hence, including a seasonality function dependent on parameters to estimate from
historical data would only add difficulty and unreliability to the already difficult cali-
bration of the model. Instead, we have chosen to introduce a deterministic seasonality
function which is a fit of the monthly averages of the available historical data with a
Fourier series of order 5. In this way, we introduce a seasonality component into the
model, but do not accentuate even further the problems involved in the calibration.11

The seasonality function is shown in Figure 7.
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Figure 7: Seasonality function based on historical averaged months.

4.1.2 Rolling Historical Volatility

It can easily be shown that volatility is not constant across time in electricity markets.
One common approach then, is to use as an estimate a rolling (or moving) historical
volatility, as described in [10] for instance. In this case, we use a yearly averaged
rolling historical volatility with a window of 30 days.

11Although in electricity there is also evidence of intra-day seasonality, it is not necessary to
account for it in this model since we take as spot prices the average of intra-day half-hour prices.
The weekly pattern of seasonality however, could be accounted for, albeit at the cost of introducing
yet another parameter into the model.
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4.1.3 Mean reversion rate

The mean reversion is usually estimated using linear regression. In this case we
regressed the increments of the returns ∆xt versus the series of returns xt of the spot
price.

4.1.4 Jump Parameters

In order to estimate the parameters of the jump component of the spot dynamics, we
filtered the data of returns using the code that was previously explained in Section
2.3. As an output of the code, we estimated the standard deviation of the jumps,
σJ , and the frequency of the jumps, l, which is defined as the total number of jumps
divided by the annualised number of observations.

4.2 Forward-based Estimate

We estimate the remaining parameter, the market price of risk λ, by minimising the
square distances of the theoretical forward curve for different maturities (obtained
through (20)) to given market prices of equal maturities.12

4.3 Results

The results obtained are summarised in the following table:

σJ l α λ(%)
0.67 8.58 1.18 (1.12, 1.24) 0.38 (0.37, 0.41)

Table 1: Annualised estimates for the standard deviation of the jumps σJ , frequency
of the jumps l, mean reversion rate α and market price of risk λ. When available, the
95% confidence bounds are presented in parenthesis.

Based on the result obtained for the standard deviation of the jumps through
the filtering process discussed previously we could not conclude that the relationship
imposed in the model between the mean and the variance of the logarithm of the
jumps (through (8) and (9)) holds in each iteration. However, as mentioned earlier,
this condition can be easily relaxed. This would lead, nonetheless, to the inclusion of
an extra parameter to be estimated (the mean of the logarithm of the jumps). At this
point, one must compromise between the imposed assumptions and the feasibility of
calibrating a model dependent on too many parameters. The estimated frequency of

12The market quotes in reference were obtained from “Argus” and represent forward prices at
May 7, 2004 for the next six months.
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jumps suggests that there are between 8 and 9 jumps per year, which is in agreement
with observed historical data.

The estimated mean reversion rate represents a daily estimate. To interpret what
the estimated value of mean reversion implies, let us re-write (15) in an Euler discre-
tised form in a period ∆t where no random shocks or jumps have occurred, namely

xt+1 = α(µ̂(t) − xt)∆t + xt. (21)

We may easily see that when we multiply the daily estimate by the appropriate
annualisation factor (in this case 365), and since ∆t = 1/365; when α = 1 we have
xt+1 = µ̂(t).

This is, when α = 1 the process mean reverts to its equilibrium level over the next
time step. In our case, the estimated parameter suggests it mean reverts very rapidly,
in 0.84 days, this is, almost in a day. This is not surprising in electricity markets, and
may already be inferred by the nature of the spot price series, as seen in Figure (2).

Escribano et al. and Knittel et al. in [1] and [11] respectively have extensively
calibrated mean reverting jump diffusion models to electricity data for different mar-
kets. In both cases, they calibrate discrete-time parameters. The connection between
the time continuous parameters and the discrete version can be seen by writing the
MRJD process defined in (15) as

xt = θt + βxt−1 + ηt, (22)

where
θt ≡ µ̂(t)

(

1 − e−α
)

and β ≡ e−α, (23)

and ηt represents the integral of the Brownian motion and the jump component
between times t − 1 and t.

From (23) we may recover the discrete-time parameter corresponding to the mean
reversion rate, which gives β = 0.31; which is such that |β| < 1, guaranteeing that the
process mean reverts back to its non-constant mean. Moreover, our estimate of β is
slightly lower (which in turn implies a higher mean reversion rate) than the estimates
presented in [1] and [11] for different markets; thus revealing that the mean reversion
of prices in the electricity market of England and Wales occurs more rapidly.

Finally, regarding the market price of risk, the estimated value implies a reduction,
in the risk-adjusted measure Q, in the mean level of the spot price in around 30%.
Schwartz and Smith [17] report 15.7% for their estimated short-term risk premium
using historical oil futures and forward prices in their analysis. Although our estimate
seems still too high, we believe this drawback could be corrected incorporating a time-
dependant market price of risk in the model, however compromising the analytical
tractability and calibration of the model.
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5 Applications

Pricing a European call option on a forward was first addressed by Black in 1976.
Based solely on arbitrage arguments one can obtain the price of a forward contract
under a GBM very easily, simple arguments then lead to a closed-form solution for a
call option written on a forward, which is widely known as Black’s formula.13

However, when departing from the very idealised GBM, and incorporating both
mean reversion and jump-diffusion to the process; closed-form solutions are very hard,
if possible at all, to obtain. Duffie, Pan and Singleton in [8] are able to extract semi-
closed-form solutions provided that the underlying follows an affine jump-diffusion
(AJD); which they define basically as a jump-diffusion process in which the drift vec-
tor, instantaneous covariance matrix and jump intensities all have affine dependence
on the state vector.

On the other hand, without imposing these dependencies, a closed-form analytical
solution might prove significantly harder to obtain. Hence, the pricing of these models
is generally done numerically. Regardless of the numerical method employed, ulti-
mately the performance of the model relies on the capability of successfully capturing
the discussed characteristics of this market.

For instance, the model (once calibrated) must yield price paths for the price of
electricity which resemble those observed in the market. In Figure 8 we show a simu-
lated random walk which results from discretising (13) and later recovering the spot
price as St = ext ; subject to the calibration discussed in the preceding section.14 Here
we observe that the price path succeeds in capturing the mean reversion and incor-
porating the jumps, which are mostly (as desired) upwards. Moreover, the monthly
averages of the simulated price path closely resembles the seasonality function, which
is evidence that the process is mean reverting towards a time-dependent equilibrium
level dictated mainly by the seasonality function, as expected from (14).

In order to further test the validity of the model, we show in Figure 9 the cali-
brated forward curve with its 95% confidence interval, the averaged months from the
calibrated forward curve and the monthly market forwards. We can observe that the
forward curve sticks on average to levels close to the market curve; albeit showing a
great degree of flexibility. By this we mean that the curve exhibits all the variety of
shapes observed commonly in the market; which are commonly known as backwarda-

tion (decrease in prices with maturity), contango (increase in prices with maturity)
and seasonal (a combination of both).

13This derivation can be found in many textbooks, for a simple and intuitive explanation see e.g.
[5].

14Figures 8-12 can be found at the end of this section.
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In Figure 10 we show a forward surface for 5 months ahead. To understand this
graph better, let us concentrate on the first month of July. For each day in June
2004 we calculate the forwards with starting date ti, i ∈ (1, 30) with maturities Tk,
k ∈ (1, 31); where i sweeps across the days in June and k across maturities in July.
The forward for each day in June then is calculated as the average of the forwards of
maturity Tk, thus reflecting the price of a forward contract of electricity for the entire
month of July, as quoted on the ith day of June. Similarly, in Figures 11 and 12 we
show forward surface for quarters and seasons ahead.

As can be seen from Figure 10 for instance, the surface evolves in accordance to
the monthly seasonalities, sticking to higher prices towards the end of the winter of
2004. This is again observed in Figure 11, where the prices for quarter 4, 2005 are
higher, as expected. In Figure 12, we observe that for the second and third season
ahead the calculated forward price exhibits little variation (seen as an almost straight
line in the x-y plane). This is due to the fact that these are long-term contracts and
the shocks become insignificant as maturity increases.

It should also be pointed out that the surfaces exhibit a high correlation across
months. For instance, in Figure 11 we observe that the hump around the day 150
(within July ’04 - March ’05) is noted across the different quarters. This is due to
the fact that the forward equation derived depends on the starting level of the spot
price. Hence, if at t = 150 we have a spike in the simulated walk, this will be reflected
across different maturities with the same starting date.
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Figure 9: Optimised Forward curve: the circles represent the forward; the lower triangles the upper
bound of the estimated forward; the upper triangles the lower bound of the estimated forward; the
solid line the monthly average of the estimated forward and the dotted line the market forward.
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Figure 10: 5-months ahead forward prices for each day in June ‘04.
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Figure 11: 3-quarters ahead forward prices for each day within July ‘04 and March ‘05. Q2 05
represents April-June ‘05, Q3 05 July-September ‘05 and Q4 05 October-December ‘05.
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6 Conclusions

In the present paper we have analysed electricity spot prices in the market of England
and Wales. The introduction of NETA changed in a fundamental way the behaviour
of this market introducing competition and price variations. However, its implemen-
tation only took place in March 27, 2001, resulting in not enough data, as of to day,
to estimate or test models. Driven by this lack of data we proposed a spot-based
model from which we can also extract in closed-form the forward curve. We then use
both historical spot data as well as market forwards data to calibrate the parameters
of the model.

Regarding the calibration of the model, we have circumvented a known drawback
in electricity spot-based models, which is the overwhelming dependence on a great
number of parameters to estimate. As the market evolves and more data becomes
available (or possibly when using high-frequency data, thus extending the data-set)
it will be possible to estimate all the parameters more robustly; as already pointed
out by some papers which have analysed more mature markets. In the meantime,
we have reduced the number of parameters to be estimated in the model. In doing
so, we have used a ‘hybrid’ approach which combines estimating some parameters
from historical spot data and the remaining from market forward prices. It can be
argued that this is an arbitrary choice, since calibrating to a market curve starting at
a different point might yield different parameters. Even if this were the case, this is
not a serious flaw. This would imply re-calibrating the forward curve with respect to
a different market curve. In a dynamic hedging-strategy this could be done as many
times as necessary, depending on the exposure and the nature of the contract.

As to the output of the model, the simulated price path resembles accurately the
evolution of electricity spot prices as observed in this market. With regards to the
forward curve shown, it succeeds in capturing changing convexities, which is a serious
flaw in models that fail to incorporate seasonality or enough factors. Moreover, as
seen from the months-ahead forward surface for instance, the forward monthly prices
increase with maturity until the end of the year, in accordance with market forward
quotes.

Finally, the unequivocal evidence of fat tails in the distributions of electricity
returns, together with the complexities on the calibration of these spot-based models
and the existing problem of the exiguous data in this market suggests the exploration
of different alternatives. An interesting line of work to pursue is that which involves
models that depart from Gaussian distributions, as for instance those involving Lévy
processes.
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A Proof of Expected Value in Forward Equation

We want to evaluate

Et

[

e
R

T

t
e−α(T−s) ln Jsdqs

]

= Et

[

e
R

T

t
αsdqs

]

, (A 1)

where
αs ≡ e−α(T−s) ln Js. (A 2)

We will first calculate (A 1) in the interval [0, t] to later extend the calculation to
the interval [t, T ].

Let us start by defining Lt such that

Lt ≡ e
R

t

0 αsdqs

≡ emt , (A 3)

where mt is then

mt =

∫ t

0

αsdqs. (A 4)

and equivalently
dmt = αtdqt. (A 5)

In order to write the SDE followed by Lt for the process defined in (A 5) we
need to generalize Itô’s Lemma in order to incorporate the jumps. We will use the
generalisation followed by Etheridge in [9] to write the SDE followed by Lt as15

dLt =
∂Lt (mt−)

∂mt

dmt −
∂Lt (mt−)

∂mt

(mt − mt−) dq + (Lt − Lt−) dq, (A 6)

where we have not included any second derivative since the process defined by (A 5)
is only a pure jump process.

In order to evaluate (A 6) let us first clarify the notation. If there is a jump in
{mt}t>0 it is of size αt and such that

mt = mt− + αt; (A 7)

where if a jump takes place at time t, the time t− indicates the time interval just
before the jump has occurred.

15See pages 176-177 in this reference for more details.
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Hence by (A 4) we can also write (A 7) as

mt =

∫ t

0

αsdqs =

∫ t−

0

αsdqs + αt. (A 8)

Using (A 7) we can rewrite (A 3) as

Lt = emt

= em
t−

+αt

= Lt−eαt . (A 9)

Noting that
∂Lt(m

t−)
∂mt

= Lt− and replacing back (A 5), (A 7) and (A 9) into (A 6)
we get

dLt = Lt− (eαt − 1) dqt; (A 10)

which we can integrate between 0 and t to obtain

Lt = 1 +

∫ t

0

Ls (eαs − 1) dqs, (A 11)

where we have used that L0 = 1.

By taking expectations to the above equation we arrive to

E0[Lt] = 1 +

∫ t

0

E0[Ls] (E0 [eαs ] − 1) lds, (A 12)

where we are using the fact that E0[dq] = ldt and l is the intensity of the Poisson
process as had been defined in (5).

Defining now E0[Lt] ≡ nt we can rewrite (A 12) as

nt = 1 +

∫ t

0

ns (E0 [eαs ] − 1) lds, (A 13)

which we can differentiate with respect to t to obtain

dnt

dt
= nt (E0 [eαt ] − 1) l (A 14)

Integrating now over the interval [0, t] we get

∫ t

0

dnt

nt

=

∫ t

0

(E0 [eαs ] − 1) lds. (A 15)
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Finally, upon integrating and noting that n0 = L0 = 1 and replacing the definitions
of nt and Lt we obtain

E0

[

e
R

t

0 αsdqs

]

= e
R

t

0 (E0[eαs ]−1)lds. (A 16)

It is then straightforward to show that

Et

[

e
R

T

t
αsdqs

]

= e
R

T

t
(E0[eαs ]−1)lds; (A 17)

which proves (A 1).

Alternatively we can show the result in the following way. Note that the process
∫ t

0
ln Jsdqs is a compound Poisson process, hence it is a Lévy process. Let

∫ t

0
ln Jsdqs =

∫ t

0
dLs with moment generating function, based on the Lévy-Khintchine representa-

tion,

E[eθLt ] = elt(Ψln J (θ)−1), (A 18)

where Ψln J(θ) is the moment generating function of the jumps ln J . It is a well
known fact that for a deterministic function f(t) and a Lévy process L̃t the moment
generating function of the process

∫ t

0
f(s)dL̃s, when it exists, is given by

E[eθ
R

t

0 f(s)dL̃s ] = e
R

t

0 Ψ(f(s)θ)ds, (A 19)

where Ψ(θ) is the log-moment generating function of the Lévy process L̃t. Therefore

E[eθ
R

t

0 e−α(t−s) ln Jdq] = el
R

t

0(Ψln J(e−α(t−s)θ)−1)ds (A 20)

and by evaluating at θ = 1 delivers the desired result.

Evaluating the integral

In order to evaluate (A 17) we must calculate first the expected value of eαs . Thus,
from (A 2) we wish to calculate

E0 [eαs ] = E0

[

ee−α(T−s) ln Js

]

; (A 21)

and calling h(s) = e−α(T−s) then

E0 [eαs ] = E0

[

eh(s) ln Js

]

= E0

[

eh(s)φ
]

; (A 22)
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since we had defined that the jumps J were drawn from a Normal distribution, and

by requiring that E[J ] = 1 we had that φ ∼ N(−
σ2

J

2
, σ2

J), where σJ is the standard
deviation of the jumps.

Thus, (A 22) yields

E0 [eαs ] = e−
σ
2
J

2
h(s)+

σ
2
J

2
h2(s), (A 23)

and therefore (A 17) becomes

Et

[

e
R

T

t
αsdqs

]

= e
R

T

t
(E0[eαs ]−1)lds

= exp

[
∫ T

t

e−
σ
2
J

2
h(s)+

σ
2
J

2
h2(s)lds −

∫ T

t

lds

]

= exp

[
∫ T

t

e−
σ
2
J

2
e−α(T−s)+

σ
2
J

2
e−2α(T−s)

lds − l(T − t)

]

. (A 24)
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Pricing in Electricity Markets: a mean reverting
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Abstract

In this paper we present a mean-reverting jump diffusion model for the elec-
tricity spot price and derive the corresponding forward in closed-form. Based
on historical spot data and forward data from England and Wales we calibrate
the model and present months, quarters, and seasons–ahead forward surfaces.

Keywords: Energy derivatives, electricity, forward curve, forward surfaces.

1 Introduction

One of the key aspects towards a competitive market is deregulation. In most elec-
tricity markets, this has however only occurred recently. Prior to this, price variations
were often minimal and heavily controlled by regulators. In England and Wales in
particular, prices were set by the Electricity Pool, where due to centralisation and
inflexible arrangements prices failed to reflect falling costs and competition. Deregu-
lation came by the recent introduction on March 27, 2001 of NETA (New Electricity
Trade Arrangement), removing price controls and openly encouraging competition.

Price variations have increased significantly as a consequence of the introduction of
competition, encouraging the pricing of a new breed of energy-based financial products
to hedge the inherent risk, both physical and financial, in this market. Most of the

∗Email: a.cartea@bbk.ac.uk and m.figueroa@econ.bbk.ac.uk. First version, June 2004. We are
grateful for comments from Andrew Shaw, Gareth Davies, Murray Hartley, Raymond Brummelhuis,
Ron Smith, seminar participants at the Commodities Modelling Workshop held at Birkbeck College,
University of London on September 2004, and two anonymous referees.
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current transactions of instruments in the electricity markets is carried out through
bilateral contracts ahead of time although electricity is also traded on forward and
futures markets and through power exchanges.

One of the most striking differences that singles out electricity markets is that elec-
tricity is very difficult or too expensive to store, hence markets must be kept in balance
on a second-by-second basis. In England and Wales, this is done by the National Grid
Company which operates a balancing mechanism to ensure system security.1 More-
over, although power markets may have certain similarities with other markets, they
present intrinsic characteristics which distinguish them. Two distinctive features are
present in energy markets in general, and are very evident in electricity markets in
particular: the mean reverting nature of spot prices and the existence of jumps or
spikes in the prices.

In stock markets, prices are allowed to evolve ‘freely’, but this is not true for
electricity prices; these will generally gravitate around the cost of production. Under
abnormal market conditions, price spreads are observed in the short run, but in the
long run supply will be adjusted and prices will move towards the level dictated by the
cost of production. This adjustment can be captured by mean-reverting processes,
which in turn may be combined with jumps to account for the observed spikes.

Therefore, to price energy derivatives it is essential that the most important char-
acteristics of the evolution of the spot, and consequently the forward, are captured.
Several approaches may be taken, generally falling into two classes of models: spot-
based models and forward-based models. Spot models are appealing since they tend
to be quite tractable and also allow for a good mathematical description of the prob-
lem in question. Significant contributions have been made by Schwartz, in [17] for
instance the author introduces an Ornstein-Uhlenbeck type of model which accounts
for the mean reversion of prices, and in [13] Lućıa and Schwartz extend the range of
these models to two-factor models which incorporate a deterministic seasonal com-
ponent. On the other hand forward-based models have been used largely in the Nord
Pool Market of the Scandinavian countries. These rely heavily, however, on a large
data set, which is a limiting constraint in the case of England and Wales. Finally, it
must also be pointed out that the choice of model may sometimes be driven by what
kind of information is required. For example, pricing interruptible contracts would
require a spot-based model while pricing Asian options on a basket of electricity
monthly and seasonal forwards calls for forward-based models.

The spot models described in [17] and [13] capture the mean reverting nature of
electricity prices, but they fail to account for the huge and non-negligible observed
spikes in the market. A natural extension is then to incorporate a jump component

1For more specific information about NETA consult www.ofgem.gov.uk.
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in the model. This class of jump-diffusion models was first introduced by Merton to
model equity dynamics, [14]. Applying these jump-diffusion-type models in electricity
is attractive since solutions for the pricing of European options are available in closed-
form. Nevertheless, it fails to incorporate both mean reversion and jump diffusion at
the same time. Clewlow and Strickland [8] describe an extension to Merton’s model
which accounts for both the mean reversion and the jumps but they do not provide a
closed-form solution for the forward. A similar model to the one we present, although
not specific to the analysis of electricity spot prices, has been analysed in Benth,
Ekeland, Hauge and Nielsen [4].

The main contribution of this paper is twofold. First, we present a model that
captures the most important characteristics of electricity spot prices such as mean
reversion, jumps and seasonality and calibrate the parameters to the England and
Wales market. Second, since we are able to calculate an expression for the forward
curve in closed-form and recognising the lack of sufficient data for robust parameter
estimation, we estimate the model parameters exploiting the fact that we can use both
historical spot data and current forward prices (using the closed-form expression for
the forward).2

The remaining of this paper is structured as follows. In Section 2 we present data
analysis to support the use of a model which incorporates both mean reversion and
jumps. In Section 3 we present details of the spot model and derive in closed-form
the expression for the forward curve. In Section 4 we discuss the calibration of the
model to data from England and Wales. In Section 5 we present forward surfaces
reflecting the months, quarters and seasons–ahead prices. Section 6 concludes.

2All data used in this project has been kindly provided by Oxford Economic Research Associates,
OXERA.
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2 Data Analysis

For over three decades most equity models have tried to ‘fix’ the main drawback from
assuming Gaussian returns. A clear example is the wealth of literature that deals
with stochastic volatility models, jump-diffusion and more recently, the use of Lévy
processes. One of the main reasons to adopt these alternative models is that Gaussian
shocks attach very little probability to large movements in the underlying that are,
on the contrary, frequently observed in financial markets. In this section we will see
that in electricity spot markets assuming Gaussian shocks to explain the evolution of
the spot dynamics is even a poorer assumption than in equity markets.

Electricity markets exhibit their own intrinsic complexities. There is a strong
evidence of mean reversion and of spikes in spot prices, which in general are much more
pronounced than in stock markets. The former can be observed by simple inspection
of the data in both markets. Figure 1 shows daily closes of the FTSE100 index from
2/01/90 to 18/06/04. The nature of the price path can be seen as a combination of
a deterministic trend together with random shocks. In contrast, Figure 2 shows that
for electricity spot prices in England and Wales there is a strong mean reversion.3

This is, prices tend to oscillate or revert around a mean level, with extraordinary
periods of volatility. These extraordinary periods of high volatility are reflected in
the characteristic spikes observed in these markets.
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Figure 1: FTSE100 daily closes from 2/01/90 to 18/06/04.

3As proxy to daily closes of spot prices we have used the daily average of historical quoted
half-hour spot prices from 2/04/01 to 3/03/04.
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Figure 2: Averaged daily prices in England and Wales from 2/04/01 to 3/03/04.

2.1 Normality Tests

In the Black-Scholes model prices are assumed to be log-normally distributed, which
is equivalent to saying that the returns of the prices have a Gaussian or Normal dis-
tribution.4 Although fat tails are observed in data from stock markets, indicating the
probability of rare events being more frequent than predicted by a Normal distribu-
tion, models based on this assumption have been largely used as a benchmark, albeit
modified in order to account for fat tails.

For electricity though, the departure from Normality is more extreme. Figure 3
shows a Normality test for the electricity spot price from 2/04/01 to 3/03/04. If the
returns were indeed Normally distributed the graph would be a straight line. We
can clearly observe this is not the case, as evidenced from the fat tails. For instance,
corresponding to a probability of 0.003 we have returns which are higher than 0.5;
instead if the data were perfectly Normally distributed, the dotted lines suggests the
probability of such returns should be virtually zero.

2.2 Deseasonalisation

One important assumption of the Black-Scholes model is that returns are assumed to
be independently distributed. This can be easily evaluated with an autocorrelation
test. If the data were in fact independently distributed, the correlation coefficient
would be close to zero. A strong level of autocorrelation is evident in electricity

4Here we define “return” as in the classical definition; rt = ln(St+1/St). Note that this is also
referred to as the “log-return” by other authors.
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Figure 3: Normal probability test for returns of electricity prices from 2/04/01 to 3/03/04.

markets, as can be seen from Figure 4. As explained for instance in [16], the evidence
of autocorrelation manifests an underlying seasonality. Furthermore, the lag of days
between highly correlated points in the series reveals the nature of the seasonality. In
this case, we may observe that the returns show significant correlation every 7 days
(there is data for weekends also); which suggests some intra-week seasonality.

In order to estimate the parameters of the model, we strip the returns from this
seasonality. Although there are several ways of deseasonalising the data, we follow
a common approach which is to subtract the mean of every day across the series
according to

Rt = rt − rd, (1)

where Rt is the defined deseasonalised return at time t, rt the return at time t and rd

is the corresponding mean (throughout the series) of the particular day rt represents.
Figure 5 shows the autocorrelation test performed on the deseasonalised returns. As
expected, the strong autocorrelation is no longer evidenced.

2.3 Jumps

As seen from the Normality test, the existence of fat tails suggest the probability of
rare events occurring is actually much higher than predicted by a Gaussian distribu-
tion. By simple inspection of Figure 2 we can easily be convinced that the spikes in
electricity data cannot be captured by simple Gaussian shocks.

We extract the jumps from the original series of returns by writing a numeri-
cal algorithm that filters returns with absolute values greater than three times the

6
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Figure 4: Autocorrelation test for returns of electricity prices from 2/04/01 to 3/03/04.

standard deviation of the returns of the series at that specific iteration.5 On the
second iteration, the standard deviation of the remaining series (stripped from the
first filtered returns) is again calculated; those returns which are now greater than 3
times this last standard deviation are filtered again. The process is repeated until no
further returns can be filtered. This algorithm allows us to estimate the cumulative
frequency of jumps and other statistical information of relevance for calibrating the
model.6

The relevance of the jumps in the electricity market is further demonstrated by
comparing Figure 6 to Figure 3; where we can clearly observe that after stripping the
returns from the jumps, the Normality test improves notoriously.

5As can be readily calculated, the probability in a Normal distribution of having returns greater
than 3 standard deviations is 0.0027.

6The calibration will be addressed in Section 4.
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Figure 5: Autocorrelation test for deseasonalised returns of electricity prices.

3 The Model: Mean-reversion and Jump Diffusion

in the Electricity Spot

When modelling the electricity market two distinct approaches may be taken: mod-
elling the spot market or modelling the entire forward curve. As mentioned earlier,
one of the appeals for using spot models relies on the fact that it is simple to in-
corporate the observed characteristics of the electricity market. On the other hand,
forward based models rely more heavily on the amount of historical data available.
Since data of electricity prices in England and Wales is only regarded to be liquid
and ‘well priced’ since the incorporation of NETA on March 27, 2001, the amount
of data available is limited. This lack of sufficient data motivates the use of spot-
based models rather than modelling the entire forward curve in the particular case
of this market. It is worth emphasising that different power markets, although sim-
ilar in some aspects, exhibit their own properties and characteristics. Hence, based
on the manifest existence of mean-reversion and jumps on the data for England and
Wales presented in the previous section, we propose a one-factor mean-reversion jump
diffusion model; adjusted to incorporate seasonality effects.

Electricity can be bought in the spot market, but once purchased it must be used
almost immediately, since in most cases electricity cannot be stored, at least not
cheaply. Hedging strategies which typically involve holding certain amounts of the
underlying (in this case electricity) are not possible, therefore in electricity markets
forwards on the spot are typically used instead. As a consequence, it turns out it is
extremely useful to be able to extract a closed-form formula for the forward curve

8
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Figure 6: Normal probability test for filtered returns of electricity prices.

from the spot-based model, which we are able to do for the model proposed here.

From the data analysis of the previous section we have concluded that two distinc-
tive characteristics of electricity markets should be accounted for in the model; the
mean reversion of the price and the sudden fluctuations in supply and low elasticity
in demand which are reflected in price spikes. Moreover, it would also be important
to incorporate some seasonality component which would be reflected in a varying long
term level of mean reversion.

Schwartz [17] accounts for the mean reversion, and Lućıa and Schwartz [13] extend
the mean reverting model to account for a deterministic seasonality. However, these
models do not incorporate jumps. We propose in this paper a similar model extended
to account for the observed jumps.

As in [13] let us assume that the log-price process, ln St, can be written as

ln St = g(t) + Yt, (2)

such that the spot price can be represented as

St = G(t)eYt (3)

where G(t) ≡ eg(t) is a deterministic seasonality function and Yt is a stochastic process
whose dynamics are given by

dYt = −αYtdt + σ(t)dZt + ln Jdqt. (4)

9



In (4) Yt is a zero level mean-reverting jump diffusion process for the underlying
electricity spot price St, α is the speed of mean reversion, σ(t) the time dependent
volatility, J the proportional random jump size, dZt is the increment of the standard
Brownian motion and dq a Poisson process such that

dqt =

{
1 with probability ldt
0 with probability 1− ldt;

(5)

where l is the intensity or frequency of the process.7 Moreover, J , dqt and dZt are
independent.

Regarding the jump size, J , the following assumptions are made:

• J is log-Normal, i.e. ln J ∼ N(µJ , σ2
J).

• The risk introduced by the jumps is non-systematic and so diversifiable; fur-
thermore, by assuming E[J ] ≡ 1 we guarantee there is no excess reward for
it.

With the assumptions made above, the properties of J can be summarised as
follows:

J = eφ, φ ∼ N(−σ2
J

2
, σ2

J); (6)

E[J ] = 1; (7)

E [ln J ] = −σ2
J

2
; (8)

Var [ln J ] = σ2
J . (9)

Now, from (3) and (4) we can write the SDE for St, namely

dSt = α(ρ(t)− ln St)Stdt + σ(t)StdZt + St(J − 1)dqt, (10)

where the time dependent mean reverting level is given by

ρ(t) =
1

α

(
dg(t)

dt
+

1

2
σ2(t)

)
+ g(t). (11)

The interpretation of (10) is as follows. Most of the time dqt = 0, so we simply
have the mean reverting diffusion process. At random times however, St will jump
from the previous value St− to the new value JSt− . Therefore the term St−(J − 1)
gives us the change after and before the jump, ∆St = JSt− − St− .

7Although the process followed by Yt mean reverts around a zero level, it will be shown later that
the stochastic process followed by St will mean revert around a time dependent drift.
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3.1 Forward Price

The price at time t of the forward expiring at time T is obtained as the expected value
of the spot price at expiry under an equivalent Q-martingale measure, conditional on
the information set available up to time t; namely

F (t, T ) = EQt [ST |Ft] . (12)

Thus, we need to integrate first the SDE in (10) in order to extract ST and later
calculate the expectation.

For the first task we define xt ≡ ln St and apply Itô’s Lemma to (10) to arrive at

dxt = α(µ(t)− xt)dt + σ(t)dZt + ln Jdqt, (13)

where

µ(t) =
1

α

dg

dt
+ g(t) (14)

is the time dependent mean reverting level which depends on the seasonality function.

Regarding the expectation, we must calculate it under an equivalent Q-martingale
measure. In a complete market this measure is unique, ensuring only one arbitrage-
free price of the forward. However, in incomplete markets (such as the electricity
market) this measure is not unique, thus we are left with the difficult task of se-
lecting an appropriate measure for the particular market in question. Yet another
approach, common in the literature, is simply to assume that we are already under
an equivalent measure, and thus proceed to perform the pricing directly. This latter
approach would rely however in calibrating the model through implied parameters
from a liquid market. This is certainly difficult to do in young markets, as in the
market of electricity in England and Wales, where there is no liquidity of instruments
which would enable us to do this.

We follow instead Lućıa and Schwartz’ approach in [13], which consists of incor-

porating a market price of risk in the drift, such that µ̂(t) ≡ µ(t)−λ∗ and λ∗ ≡ λσ(t)
α

;
where λ denotes the market price of risk per unit risk linked to the state variable
xt. This market price of risk, to be calibrated from market information, pins down
the choice of one particular martingale measure. Under this measure we may then
rewrite the stochastic process in (13) for xt as

dxt = α(µ̂(t)− xt)dt + σ(t)dẐt + ln Jdqt, (15)

where

µ̂(t) =
1

α

dg

dt
+ g(t)− λ

σ(t)

α
(16)
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and dẐt is the increment of a Brownian motion in the Q-measure specified by the
choice of λ.8

In order to integrate the process we multiply (15) by a suitable integrating factor
and integrate between times t and T to arrive at

xT = g(T ) + (xt − g(t)) e−α(T−t) − λ

∫ T

t

σ(s)e−α(T−s)ds

+

∫ T

t

σ(s)e−α(T−s)dẐs +

∫ T

t

e−α(T−s) ln Jdqs. (17)

Now, since ST = exT , we can replace (17) into (12) to obtain

F (t, T ) = Et [ST |Ft]

= λ̂T
t G(T )

(
S(t)

G(t)

)e−α(T−t)

Et

[
e
R T

t σ(s)e−α(T−s)dẐs|Ft

]
Et

[
e
R T

t e−α(T−s) ln Jdqs|Ft

]

= λ̂T
t G(T )

(
S(t)

G(t)

)e−α(T−t)

e
1
2

R T
t σ(s)2e−2α(T−s)dsEt

[
e
R T

t e−α(T−s) ln Jdqs|Ft

]
(18)

where λ̂T
t ≡ e−λ

R T
t σ(s)e−α(T−s)ds and expectations are taken under the risk-neutral

measure. In Appendix C we prove that the expectation in (18) is

Et

[
e
R T

t e−α(T−s) ln Jdqs|Ft

]
= exp

[∫ T

t

e−
σ2

J
2

e−α(T−s)+
σ2

J
2

e−2α(T−s)

lds− (T − t)l

]
. (19)

Finally, replacing λ̂T
t and (19) into (18) we obtain the price of the forward as

F (t, T ) = G(T )

(
S(t)

G(t)

)e−α(T−t)

e
R T

t [ 1
2
σ2(s)e−2α(T−s)−λσ(s)e−α(T−s)]ds+

R T
t ξ(σJ ,α,T,s)lds−l(T−s),

(20)

where ξ(σJ , α, T, s) ≡ e−
σ2

J
2

e−α(T−s)+
σ2

J
2

e−2α(T−s)
.

8Although the market price of risk itself could be time-dependant, here we assume it constant
for reasons of simplicity.
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4 Calibration

One of the arguments in favour of spot-based models is that they can provide a
reliable description of the evolution of electricity prices. Moreover, these models are
versatile in the sense that it is relatively simple to aggregate ‘characteristics’ to an
existing family or class of models like for example adding a seasonality function. On
the other hand, one of the drawbacks of these models is that it is quite difficult to
estimate parameters given the relatively large number of parameters combined with
a very small sample data, see for example [7], [11], [12].

One approach is to estimate all the parameters involved from historical data us-
ing maximum likelihood estimators (MLE) through the approximations presented by
Ball and Torous [2], [3].9 However, for the data of England and Wales this method
yielded incorrect estimates, i.e. negative values for certain parameters that should
otherwise be positive and estimates which depended heavily on the starting value of
the parameters. We believe this is mainly due to the scarcity of data in this market.

As an alternative we propose a ‘hybrid’ approach that uses both historical spot
data and forward market data. The former is used to calculate the seasonality com-
ponent, the rolling historical volatility, the mean reversion rate and the frequency and
standard deviation of the jumps.10 The latter is used to estimate the market price of
risk.

4.1 Spot-based Estimates

4.1.1 Seasonality Function

In (3), G(t) is a deterministic function which accounts for the observed seasonality
in power markets. The form of this seasonality function inevitably depends on the
market in question. For instance, some electricity markets will exhibit a discernible
pattern between summer and winter months. In such cases a sinusoidal function
could be suitable (as suggested e.g. by Pilipović in [15]). Other alternatives in-
clude a constant piece-wise function, as for instance in [12]. Furthermore, Lućıa and
Schwartz [13] introduce a deterministic function which discerns between weekdays
and a monthly seasonal component.

However sophisticated these functions may be, they all rely on the inclusion of
dummy variables and on being able to calibrate them correctly from the sample of

9In these papers they demonstrate that for low values of the intensity parameter the Poisson
process can be approximated by a Bernoulli distribution, such that the density function can be
written as a mixture of Normals.

10By the restriction imposed in (7) we have reduced the need to calibrate the mean of the jumps
in the spot.
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historical data. As discussed earlier, this might be a serious constraint when dealing
with markets with not enough historical data. Moreover, although it is reasonable to
assume that there might be a distinguishable pattern between summer and winters
in England and Wales, this is yet not evident from the available data.

Hence, including a seasonality function dependent on parameters to estimate from
historical data would only add difficulty and unreliability to the already difficult cali-
bration of the model. Instead, we have chosen to introduce a deterministic seasonality
function which is a fit of the monthly averages of the available historical data with a
Fourier series of order 5. In this way, we introduce a seasonality component into the
model, but do not accentuate even further the problems involved in the calibration.11

The seasonality function is shown in Figure 7.
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Figure 7: Seasonality function based on historical averaged months.

4.1.2 Rolling Historical Volatility

It can easily be shown that volatility is not constant across time in electricity markets.
One common approach then, is to use as an estimate a rolling (or moving) historical
volatility, as described in [11] for instance. In this case, we use a yearly averaged
rolling historical volatility with a window of 30 days.

11Although in electricity there is also evidence of intra-day seasonality, it is not necessary to
account for it in this model since we take as spot prices the average of intra-day half-hour prices.
The weekly pattern of seasonality however, could be accounted for, albeit at the cost of introducing
yet another parameter into the model.
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4.1.3 Mean reversion rate

The mean reversion is usually estimated using a linear regression. In this case we
regressed the returns ∆xt versus the series xt of the log-spot price.

4.1.4 Jump Parameters

In order to estimate the parameters of the jump component of the spot dynamics, we
filtered the data of returns using the code that was previously explained in Section
2.3. As an output of the code, we estimated the standard deviation of the jumps,
σJ , and the frequency of the jumps, l, which is defined as the total number of jumps
divided by the annualised number of observations.

4.2 Forward-based Estimate

We estimate the remaining parameter, the market price of risk λ, by minimising the
square distances of the theoretical forward curve for different maturities (obtained
through (20)) to given market prices of equal maturities.12

4.3 Results

The results obtained are summarised in the following table:

σJ l α 〈λ∗〉(%)
0.67 8.58 0.2853 (0.2431, 0.3274) -0.2481 (-0.2550, -0.2413)

Table 1: Annualised estimates for the standard deviation of the jumps σJ , frequency of
the jumps l, mean reversion rate α and average (denoted by 〈·〉) market price of risk per
unit risk λ∗. When available, the 95% confidence bounds are presented in parenthesis.

Based on the result obtained for the standard deviation of the jumps through
the filtering process discussed previously we could not conclude that the relationship
imposed in the model between the mean and the variance of the logarithm of the
jumps (through (8) and (9)) holds in each iteration. However, as mentioned earlier,
this condition can be easily relaxed. This would lead, nonetheless, to the inclusion of
an extra parameter to be estimated (the mean of the logarithm of the jumps). At this
point, one must compromise between the imposed assumptions and the feasibility of
calibrating a model dependent on too many parameters. The estimated frequency of

12The market quotes in reference were obtained from “Argus” and represent forward prices at
May 7, 2004 for the next six months.
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jumps suggests that there are between 8 and 9 jumps per year, which is in agreement
with observed historical data.

The estimated mean reversion rate represents a daily estimate. To interpret what
the estimated value of mean reversion implies, let us re-write (15) in an Euler discre-
tised form in a period ∆t where no random shocks or jumps have occurred, namely

xt+1 = α(µ̂(t)− xt)∆t + xt. (21)

We may easily see that when we multiply the daily estimate by the appropriate
annualisation factor (e.g. 365), and since ∆t = 1/365; when α = 1 we have xt+1 =
µ̂(t).

This is, when α = 1 the process mean reverts to its equilibrium level over the
next time step. In our case, the estimated parameter suggests it mean reverts very
rapidly, in 3.5 days. This is not surprising in electricity markets, and may already be
inferred by the nature of the spot price series, as seen in Figure (2).

Escribano et al. and Knittel et al. in [1] and [12] respectively have extensively
calibrated mean reverting jump diffusion models to electricity data for different mar-
kets. In both cases, they calibrate discrete-time parameters. The connection between
the time continuous parameters and the discrete version can be seen by writing the
MRJD process defined in (15) as

xt = θt + βxt−1 + ηt, (22)

where
θt ≡ µ̂(t)

(
1− e−α

)
and β ≡ e−α, (23)

and ηt represents the integral of the Brownian motion and the jump component
between times t− 1 and t.

From (23) we may recover the discrete-time parameter corresponding to the mean
reversion rate, which gives β = 0.7518; which is such that |β| < 1, guaranteeing
that the process mean reverts back to its non-constant mean. Moreover, our estimate
of β is entirely compatible with the estimates presented in [1] and [12] for different
electricity markets.

Finally, let us interpret the results obtained for the market price of risk per unit
risk. In Table 1 we have shown an average value of the market price of risk; the average
value results from taking an average historical volatility of the rolling volatility we
have estimated.13 Through (15) and (16) we note that the the drift of xt is given

13When reconstructing the spot and forward prices however, we multiply at each time-step the
market price of risk by the appropriate volatility at that time, as indicated by (16).
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mainly by α (g(t)− λ∗), since the term 1
α

dg
dt

is practically zero. Hence, the drift is
being pushed upwards by our market price of risk. The fact that this market price of
risk is negative, does not seem uncommon in some energy markets, and in electricity
markets in particular. In fact, Botterud et al. [6] make an empirical study of the risk
premium in the Scandinavian electricity market and find negative values for their
estimates. They explain the risk premium in terms of the difference in the number
of participants on the supply and demand sides. In this context, a negative risk
premium would be consequence of an excess demand for futures contracts.
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5 Applications

Pricing a European call option on a forward was first addressed by Black in 1976.
Based solely on arbitrage arguments one can obtain the price of a forward contract
under a GBM very easily, simple arguments then lead to a closed-form solution for a
call option written on a forward, which is widely known as Black’s formula.14

However, when departing from the very idealised GBM, and incorporating both
mean reversion and jump-diffusion to the process; closed-form solutions are very hard,
if possible at all, to obtain. Duffie, Pan and Singleton in [9] are able to extract semi-
closed-form solutions provided that the underlying follows an affine jump-diffusion
(AJD); which they define basically as a jump-diffusion process in which the drift vec-
tor, instantaneous covariance matrix and jump intensities all have affine dependence
on the state vector.

On the other hand, without imposing these dependencies, a closed-form analytical
solution might prove significantly harder to obtain. Hence, the pricing of these models
is generally done numerically. Regardless of the numerical method employed, ulti-
mately the performance of the model relies on the capability of successfully capturing
the discussed characteristics of this market.

For instance, the model (once calibrated) must yield price paths for the price of
electricity which resemble those observed in the market. In Figure 8 we show a simu-
lated random walk which results from discretising (13) and later recovering the spot
price as St = ext ; subject to the calibration discussed in the preceding section.15 Here
we observe that the price path succeeds in capturing the mean reversion and incor-
porating the jumps, which are mostly (as desired) upwards. Moreover, the monthly
averages of the simulated price path closely resembles the seasonality function, which
is evidence that the process is mean reverting towards a time-dependent equilibrium
level dictated mainly by the seasonality function, as expected from (14).

In order to further test the validity of the model, we show in Figure 9 the cali-
brated forward curve with its 95% confidence interval, the averaged months from the
calibrated forward curve and the monthly market forwards. We can observe that the
forward curve sticks on average to levels close to the market curve; albeit showing a
great degree of flexibility. By this we mean that the curve exhibits all the variety of
shapes observed commonly in the market; which are commonly known as backwarda-
tion (decrease in prices with maturity), contango (increase in prices with maturity)
and seasonal (a combination of both).

14This derivation can be found in many textbooks, for a simple and intuitive explanation see e.g.
[5].

15Figures 8-12 can be found at the end of this section.
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In Figure 10 we show a forward surface for 5 months ahead.16 To understand this
graph better, let us concentrate on the first month of July. For each day in June
2004 we calculate the forwards with starting date ti, i ∈ (1, 30) with maturities Tk,
k ∈ (1, 31); where i sweeps across the days in June and k across maturities in July.
The forward for each day in June then is calculated as the average of the forwards of
maturity Tk, thus reflecting the price of a forward contract of electricity for the entire
month of July, as quoted on the ith day of June. Similarly, in Figures 11 and 12 we
show forward surface for quarters and seasons ahead.

As can be seen from Figure 10 for instance, the surface evolves in accordance to
the monthly seasonalities, sticking to higher prices towards the end of the winter of
2004. This is again observed in Figure 11, where the prices for quarter 4, 2005 are
higher, as expected. In Figure 12, we observe that for the second and third season
ahead the calculated forward price exhibits little variation (seen as an almost straight
line in the x-y plane). This is due to the fact that these are long-term contracts and
the shocks become insignificant as maturity increases.

It should also be pointed out that the surfaces exhibit a high correlation across
months. For instance, in Figure 11 we observe that the hump around the day 150
(within July ’04 - March ’05) is noted across the different quarters. This is due to
the fact that the forward equation derived depends on the starting level of the spot
price. Hence, if at t = 150 we have a spike in the simulated walk, this will be reflected
across different maturities with the same starting date.

16The forward surfaces have been calculated with a considerably lower mean reversion rate in
order to capture the dynamics of longer maturities more realistically.
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Figure 8: Simulated price path.
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Figure 9: Optimised Forward curve: the circles represent the forward; the lower triangles the
upper bound of the estimated forward; the upper triangles the lower bound of the estimated
forward; the solid line the monthly average of the estimated forward and the dotted line the
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Figure 10: 5-months ahead forward prices for each day in June ‘04.
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Figure 11: 3-quarters ahead forward prices for each day within July ‘04 and March ‘05.
Q2 05 represents April-June ‘05, Q3 05 July-September ‘05 and Q4 05 October-December ‘05.
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Figure 12: 4-seasons ahead forward prices for each day within July ‘04 and September ‘04.
W04-05 represents October ‘04-March ‘05; S05 April-September ‘05, W05-06 October ‘05-March
‘06 and S06 April-September ‘06.
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6 Conclusions

In the present paper we have analysed electricity spot prices in the market of England
and Wales. The introduction of NETA changed in a fundamental way the behaviour
of this market introducing competition and price variations. However, its implemen-
tation only took place in March 27, 2001, resulting in not enough data, as of to day,
to estimate or test models. Driven by this lack of data we proposed a spot-based
model from which we can also extract in closed-form the forward curve. We then use
both historical spot data as well as market forwards data to calibrate the parameters
of the model.

Regarding the calibration of the model, we have circumvented a known drawback
in electricity spot-based models, which is the overwhelming dependence on a great
number of parameters to estimate. As the market evolves and more data becomes
available (or possibly when using high-frequency data, thus extending the data-set)
it will be possible to estimate all the parameters more robustly; as already pointed
out by some papers which have analysed more mature markets. In the meantime,
we have reduced the number of parameters to be estimated in the model. In doing
so, we have used a ‘hybrid’ approach which combines estimating some parameters
from historical spot data and the remaining from market forward prices. It can be
argued that this is an arbitrary choice, since calibrating to a market curve starting at
a different point might yield different parameters. Even if this were the case, this is
not a serious flaw. This would imply re-calibrating the forward curve with respect to
a different market curve. In a dynamic hedging-strategy this could be done as many
times as necessary, depending on the exposure and the nature of the contract.

As to the output of the model, the simulated price path resembles accurately the
evolution of electricity spot prices as observed in this market. With regards to the
forward curve shown, it succeeds in capturing changing convexities, which is a serious
flaw in models that fail to incorporate seasonality or enough factors.

Finally, the unequivocal evidence of fat tails in the distributions of electricity
returns, together with the complexities on the calibration of these spot-based models
and the existing problem of the exiguous data in this market suggests the exploration
of different alternatives. An interesting line of work to pursue is that which involves
models that depart from Gaussian distributions, as for instance those involving Lévy
processes.
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A Proof of Expected Value in Forward Equation

We want to evaluate

Et

[
e
R T

t e−α(T−s) ln Jsdqs

]
= Et

[
e
R T

t αsdqs

]
, (A 1)

where
αs ≡ e−α(T−s) ln Js. (A 2)

We will first calculate (A 1) in the interval [0, t] to later extend the calculation to
the interval [t, T ].

Let us start by defining Lt such that

Lt ≡ e
R t
0 αsdqs

≡ emt , (A 3)

where mt is then

mt =

∫ t

0

αsdqs. (A 4)

and equivalently
dmt = αtdqt. (A 5)

In order to write the SDE followed by Lt for the process defined in (A 5) we
need to generalize Itô’s Lemma in order to incorporate the jumps. We will use the
generalisation followed by Etheridge in [10] to write the SDE followed by Lt as17

dLt =
∂Lt (mt−)

∂mt

dmt − ∂Lt (mt−)

∂mt

(mt −mt−) dq + (Lt − Lt−) dq, (A 6)

where we have not included any second derivative since the process defined by (A 5)
is only a pure jump process.

In order to evaluate (A 6) let us first clarify the notation. If there is a jump in
{mt}t>0 it is of size αt and such that

mt = mt− + αt; (A 7)

where if a jump takes place at time t, the time t− indicates the time interval just
before the jump has occurred.

17See pages 176-177 in this reference for more details.
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Hence by (A 4) we can also write (A 7) as

mt =

∫ t

0

αsdqs =

∫ t−

0

αsdqs + αt. (A 8)

Using (A 7) we can rewrite (A 3) as

Lt = emt

= emt−+αt

= Lt−eαt . (A 9)

Noting that
∂Lt(mt−)

∂mt
= Lt− and replacing back (A 5), (A 7) and (A 9) into (A 6)

we get
dLt = Lt− (eαt − 1) dqt; (A 10)

which we can integrate between 0 and t to obtain

Lt = 1 +

∫ t

0

Ls (eαs − 1) dqs, (A 11)

where we have used that L0 = 1.

By taking expectations to the above equation we arrive to

E0[Lt] = 1 +

∫ t

0

E0[Ls] (E0 [eαs ]− 1) lds, (A 12)

where we are using the fact that E0[dq] = ldt and l is the intensity of the Poisson
process as had been defined in (5).

Defining now E0[Lt] ≡ nt we can rewrite (A 12) as

nt = 1 +

∫ t

0

ns (E0 [eαs ]− 1) lds, (A 13)

which we can differentiate with respect to t to obtain

dnt

dt
= nt (E0 [eαt ]− 1) l (A 14)

Integrating now over the interval [0, t] we get

∫ t

0

dnt

nt

=

∫ t

0

(E0 [eαs ]− 1) lds. (A 15)
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Finally, upon integrating and noting that n0 = L0 = 1 and replacing the definitions
of nt and Lt we obtain

E0

[
e
R t
0 αsdqs

]
= e

R t
0 (E0[eαs ]−1)lds. (A 16)

It is then straightforward to show that

Et

[
e
R T

t αsdqs

]
= e

R T
t (E0[eαs ]−1)lds; (A 17)

which proves (A 1).

Alternatively we can show the result in the following way. Note that the pro-
cess

∫ t

0
ln Jsdqs is a compound Poisson process, hence it is a Lévy process. Let∫ t

0
ln Jsdqs =

∫ t

0
dLs with moment generating function, based on the Lévy-Khintchine

representation,

E[eθLt ] = elt(Ψln J (θ)−1), (A 18)

where Ψln J(θ) is the moment generating function of the jumps ln J . It is a well
known fact that for a deterministic function f(t) and a Lévy process L̃t the moment
generating function of the process

∫ t

0
f(s)dL̃s, when it exists, is given by

E[eθ
R t
0 f(s)dL̃s ] = e

R t
0 Ψ(f(s)θ)ds, (A 19)

where Ψ(θ) is the log-moment generating function of the Lévy process L̃t. Therefore

E[eθ
R t
0 e−α(t−s) ln Jdq] = el

R t
0(Ψln J(e−α(t−s)θ)−1)ds (A 20)

and by evaluating at θ = 1 delivers the desired result.

Evaluating the integral

In order to evaluate (A 17) we must calculate first the expected value of eαs . Thus,
from (A2) we wish to calculate

E0 [eαs ] = E0

[
ee−α(T−s) ln Js

]
; (A 21)

and calling h(s) = e−α(T−s) then

E0 [eαs ] = E0

[
eh(s) ln Js

]

= E0

[
eh(s)φ

]
; (A 22)
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since we had defined that the jumps J were drawn from a Normal distribution, and

by requiring that E[J ] = 1 we had that φ ∼ N(−σ2
J

2
, σ2

J), where σJ is the standard
deviation of the jumps.

Thus, (A 22) yields

E0 [eαs ] = e−
σ2

J
2

h(s)+
σ2

J
2

h2(s), (A 23)

and therefore (A 17) becomes

Et

[
e
R T

t αsdqs

]
= e

R T
t (E0[eαs ]−1)lds

= exp

[∫ T

t

e−
σ2

J
2

h(s)+
σ2

J
2

h2(s)lds−
∫ T

t

lds

]

= exp

[∫ T

t

e−
σ2

J
2

e−α(T−s)+
σ2

J
2

e−2α(T−s)

lds− l(T − t)

]
. (A 24)

2
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