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Abstract

In this paper we show how to calculate European-style option prices when

the log-stock price process follows a Lévy-Stable process with index parameter

1 ≤ α ≤ 2 and skewness parameter −1 ≤ β ≤ 1. Key to our result is to model

integrated variance
∫ T
t σ2

sds as an increasing Lévy-Stable process with contin-

uous paths.

Keywords: Lévy-Stable processes, stable Paretian hypothesis, stochastic volatil-

ity, α-stable processes, option pricing, time-changed Brownian motion.

1 Introduction

Up until the early 1990’s most of the underlying stochastic processes used in the

financial literature were based on a combination of Brownian motion and Poisson
∗We are very grateful for comments from Hu McCulloch and seminar participants at the Univer-

sity of Toronto. Corresponding author: a.cartea@bbk.ac.uk
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processes. One of the most fundamental assumptions throughout has been that fi-

nancial asset returns are the cumulative outcome of many small events that happen

very frequently at a ‘microscopic level’ in time, so that their impact may be regarded

as parameterised continuously by time. If these microscopic events are considered sta-

tistically independent with finite variance it is straightforward to characterise their

limiting cumulative behaviour, as the timestep tends to zero, by invoking the Central

Limit Theorem (CLT). Hence, Gaussian-based distributions are a plausible class of

models for financial processes.

More generally, dropping the assumption of finite variance, the sum of many

iid events always has, after appropriate scaling and shifting, a limiting distribution

termed a Lévy-Stable law; this is the generalised version of the Central Limit The-

orem, (GCLT), [ST94]; the Gaussian distribution is one example. Based on this

fundamental result, it is plausible to generalise the assumption of Gaussian price in-

crements by modelling the ‘formation’ of prices in the market by the sum of many

stochastic events with a Lévy-Stable limiting distribution.

An important property of Lévy-Stable distributions is that of stability under ad-

dition: when two independent copies of a Lévy-Stable random variable are added

then, up to scaling and shift, the resulting random variable is again Lévy-Stable with

the same shape. This property is very desirable in models used in finance and par-

ticularly in portfolio analysis and risk management, see for example Fama [Fam71],

Ziemba [Zie74] and the more recent work by Tokat and Schwartz [TS02], Ortobelli et

al [OHS02] and Mittnik et al [MRS02]. Only for Lévy-Stable distributed returns do

we have the property that linear combinations of different return series, for example

portfolios, again have a Lévy-Stable distribution [Fel66].

Based on the GCLT we have, in general terms, two ways of modelling stock prices

or stock returns. If it is believed that stock returns are at least approximately governed

by a Lévy-Stable distribution the accumulation of the random events is additive. On

the other hand, if it is believed that the logarithm of stock prices are approximately

governed by a Lévy-Stable distribution then the accumulation is multiplicative. In

the literature most models have assumed that log-prices, instead of returns, follow

a Lévy-Stable process. McCulloch [McC96] assumes that assets are log Lévy-Stable
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and prices options using a utility maximisation argument; more recently Carr and Wu

[CW03] priced European options when the log-stock price follows a maximally skewed

Lévy-Stable process. Cartea and Howison [CH05] also assume that log prices follow a

Lévy-Stable process and provide a solution to the pricing problem as a distinguished

limit of the Lévy-Stable process.

Finally, based on Mandelbrot and Taylor [Man97], Platen, Hurst and Rachev

[HPR99] provide a model to price European options when returns follow a (sym-

metric) Lévy-Stable process. In their models the Brownian motion that drives the

stochastic shocks to the stock process is subordinated to an intrinsic time process

that represents ‘operational time’ on which the market operates. Option pricing can

be done within the Black-Scholes framework and one can show that the subordinated

Brownian motion is a symmetric Lévy-Stable motion.

The motivation of this paper is as follows. It is well known that if the risk-neutral

stock price process follows

ST = Ste
r(T−t)− 1

2

R T
t

σ2
sds+

R T
t

σsdW Q
s , (1)

where dW Q
t is the increment of the Brownian motion and the volatility is given by

a stochastic process σt where σt and W Q
t are independent for all 0 ≤ t ≤ T , then

the value of a European vanilla option written on the underlying stock price St with

payoff Π(S, T ) is given by

V (S, t) = E
Q

[

VBS

(

St, t, K,

(

1

T − t

∫ T

t

σ2
sds

)1/2

, T

)]

, (2)

where the expected value is with respect to the random variable Yt,T =
∫ T

t
σ2

sds under

the risk-neutral measure Q and VBS is the usual Black-Scholes value for a European

option. In general, the distribution or characteristic function of the integrated vari-

ance Yt,T is not known, so evaluating (2) is not straightforward, although given the

characteristic function of the integrated variance we can use standard transform meth-

ods to evaluate V (S, t) given by equation (2). In this paper we propose a two-factor

model where the shocks to the stock process are conditionally Gaussian, ie Brownian

motion, and the integrated variance Yt,T follows a Lévy-Stable process, and as a result

the distribution of the log-stock prices is Lévy-Stable.
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The paper is structured as follows. Section 2 presents definitions and properties

of Lévy-Stable processes. In particular we show how symmetric Lévy-Stable random

variables may be ‘built’ as a combination of two independent Lévy-Stable random

variables. Section 3 discusses the path properties required to model integrated vari-

ance as a totally skewed to the right Lévy-Stable process. Section 4 describes the

dynamics of the stock process under both the physical and risk-neutral measure and

shows how option prices are calculated when the stock returns or log-stock process

follows a Lévy-Stable process. Finally, section 5 shows numerical results and section

6 concludes.

2 Lévy-Stable random variables

In this section we show how to obtain any symmetric Lévy-Stable motion as a stochas-

tic process whose innovations are the product of two independent Lévy-Stable random

variables. The only conditions we require (we will make this precise in Proposition

2) are that one of the independent random variables is symmetric and the other is

totally skewed to the right. This is a simple, yet very important, result since we can

choose a Gaussian random variable as one of the building blocks together with any

other totally skewed random variable to ‘produce’ symmetric Lévy-Stable random

variables. Furthermore, choosing a Gaussian random variable as one of the building

blocks of a symmetric random variable will be very convenient since we will be able

to relate any symmetric Lévy-Stable motion as a conditional Brownian motion, con-

ditioned on the other building block, the totally skewed Lévy-Stable random variable

which in our case will be the quantity known as integrated variance.

We recall that the log-characteristic function of a Lévy-Stable process Lt is given

by

ln E[eiθLt ] ≡ Ψt(θ) =

{

−tκα|θ|α {1 − iβsign(θ) tan(απ/2)} + imθ for α 6= 1,

−tκ|θ|
{

1 + 2iβ
π

sign(θ) ln |θ|
}

+ imθ for α = 1,
(3)

where the parameter α ∈ (0, 2] is known as the stability index; κ > 0 is a scaling

parameter; β ∈ [−1, 1] is a skewness parameter and m is a location parameter. If the
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random variable L1 belongs to a Lévy-Stable distribution with parameters α, κ, β, m

we write L1 ∼ Sα(κ, β, m). Bearing in mind the translation invariance with respect

to m and the implicit scaling with respect to κ we define a standard Lévy-Stable

motion by Lα,β
t ∼ Sα(t1/α, β, 0) and the increment by dLα,β

t is thought of as having

the distribution Sα(dt1/α, β, 0). Finally, we point out that when α < 1 and β = −1

(resp. β = 1) the process Lt has support on the negative (resp. positive) line.

It is straightforward to see that for the case 0 < α ≤ 1 the random variable L1

does not have any moments, and for the case 1 < α < 2 only the first moment exists

(the case α = 2 is Gaussian). Moreover, given the asymptotic behaviour of the tails

of the distribution of a Lévy-Stable random variable it can be shown that the Laplace

transform E[e−τL1 ] of L1 exists only when its distribution is totally skewed to the

right, that is β = 1, which we state in the following proposition which we use later.

Proposition 1. The Laplace Transform [ST94]. The Laplace transform E[e−τX ]

with τ ≥ 0 of the Lévy-Stable variable X ∼ Sα(κ, 1, 0) with 0 < α ≤ 2 and scale

parameter κ > 0 satisfies

ln E[e−τX ] =

{

−κατα sec πα
2

for α 6= 1,
2κ
π

τ ln τ for α = 1.
(4)

The existence of the Laplace transform of a totally skewed to the right Lévy-Stable

random variable will enable us to show how to price options as a weighted average

of the classical Black-Scholes price when the shocks to the stock process follow a

Lévy-Stable process. First we see that any symmetric Lévy-Stable random variable

can be represented as the product of a totally skewed with a symmetric Lévy-Stable

variable as shown by the following proposition.

Proposition 2. Constructing Symmetric Variables [ST94]. Let X ∼ Sα′(κ, 0, 0),

Y ∼ Sα/α′((cos πα
2α′

)
α′

α , 1, 0), with 0 < α < α′ ≤ 2, be independent. Then the random

variable

Z = Y 1/α′

X ∼ Sα(κ, 0, 0).

Note that we may use Brownian motion as one of the building blocks to obtain

symmetric Lévy-Stable processes.
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3 Stochastic Volatility with Lévy-Stable Shocks

As motivated in the introduction, the Lévy-Stable hypothesis postulates that the

shocks to the stock process must be Lévy-Stable. If we assume that the returns

process is given by

dSt

St
= µdt + σtdWt so that ST = eµ(T−t)− 1

2

R T
t σ2

sds+
R T
t dWs ,

where µ is a constant and dWt the increment of Brownian motion we could be tempted,

based on Proposition 2, to model volatility by assuming that the integrated variance

is given by

Yt,T =

∫ T

t

σ2
sds =

∫ T

t

dLα/2,1
s . (5)

Note that dL
α/2,1
t is the increment of a positive Lévy-Stable motion so that (5) is an

increasing process. This seems a reasonable choice since

E[eiθ
R T
t

σsdWs] = e
− 1

2α/2
sec(πα/4)(T−t)|θ|α

hence the shocks to the process would be symmetric Lévy-Stable, see Proposition 2.

Unfortunately this model for integrated variance is inconsistent since on the left-

hand side of (5) we have the integrated variance
∫ T

t
σ2

sds which is, by construction, a

continuous process. However, on the right-hand side of the SDE, we have the nonneg-

ative Lévy-Stable motion
∫ T

t
dL

α/2,1
s which is by construction a purely discontinuous

process. The following subsection discusses a way of constructing a process for the

integrated variance that is Lévy-Stable but with continuous paths.

3.1 Sample Path Properties: Modelling Integrated Volatility

In this section we show that it is possible to specify a model for stochastic integrated

variance whose finite-dimensional distribution is a totally skewed to the right Lévy-

Stable distribution possessing continuous paths. We show that a purely discontinuous

process such as the Lévy-Stable motion
∫ T

t
dL

α/2,1
s can be modified to obtain a con-

tinuous process by introducing a suitable deterministic function of time f(s, T ) with
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s ∈ R
+ in the kernel of

∫ T

t
f(s, T )dL

α/2,1
s to ‘damp’ the jump process and ‘force’ it

to be continuous in T . In fact we will require that f(s, T ) = 0 as s → T so the ‘last’

jumps of the process get smoothed out. (For a general discussion of the path behav-

iour of processes of the type
∫ T

t
f(s, T )dL

α/2,1
s see [ST94].) Since we are interested in

pricing options where the underlying stochastic component is driven by a symmetric

Lévy-Stable process we would like to specify a kernel f(s, T ) so the finite-dimensional

distribution of
∫ T

t
σ2

sds =
∫ T

t
f(s, T )dL

α/2,1
s is totally skewed to the right Lévy-Stable.

As we shall show below, there are many such functions; we denote the class of such

functions by F. Below we present a proposition that provides sufficient conditions

satisfied by the functions in F.

Proposition 3. Let f(s, T ) be a continuously differentiable function and define the

process Xt,T =
∫ T

t
f(s, T )dL

α/2,1
s . Then Xt,T is continuous in T .

Proof. Using integration by parts we have that

∫ T

t

f(s, T )dLα/2,1
s = f(s, T )Lα/2,1

s |Tt −
∫ T

t

∂f(s, T )

∂s
Lα/2,1

s ds

= −f(t, T )L
α/2,1
t −

∫ T

t

∂f(s, T )

∂s
Lα/2,1

s ds;

by standard properties of L
α/2,1
t and since f(s, T ) is continuously differentiable, Xt,T

has continuous paths, ie is continuous in T .

�

Two possible choices for f(s, T ) are

f(s, T ) = g(T − s) = T − s T ≥ s ≥ 0, (6)

f(s, T ) = g(T − s) =
1

γ

(

1 − e−γ(T−s)n)

for T, s ≥ 0 and n ≥ 1, (7)

where γ is a positive constant that can be seen as a damping factor which we can

choose freely; when n = 1 we get an Ornstein-Uhlenbeck-type process (OU-type), an

‘extension’ of an OU process in which instead of the shocks being driven by Brownian
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motion they are driven by a Lévy process, see [Wol82]. Barndorff-Nielsen and Shep-

hard [BNS02] were the first to introduce OU-type stochastic volatility models driven

by positive Lévy processes. A third choice is

f(s, T ) = g(T − s) = ln(T − s + 1) for T ≥ s ≥ 0. (8)

Note that for some purposes it is convenient to require that f(s, T ) ≥ 0; all the

examples above have this property.

3.2 Illustration

We now illustrate the different building blocks needed to obtain the integrated vari-

ance process described above. First we simulate a totally skewed to the right Lévy-

Stable motion; then we get the spot variance process, by choosing an appropriate

kernel; then we produce the integrated variance process. We focus on kernels of the

integrated variance of the form

f(s, T ) = g(T − s) =
1

γ

(

1 − e−γ(T−s)n)

.

The solid line in the two bottom graphs of Figure 1 represents the case with n = 1,

t = 0, 0 ≤ T ≤ 1 and γ = 25 which would yield a standard OU-type process. In the

same figure the dotted lines represent the case n = 1.2, T = 1 and γ = 25. Note that

the higher the constant n is the ‘smoother’ is the path of the integrated variance.

4 Model dynamics and option prices

In this section we present the model dynamics for the stock price and show how to

price vanilla options. For ease of presentation subsection 4.1 looks at a model where

the shocks to the returns or log-stock process are symmetric and then subsection 4.2

extends it to a model where shocks can also be asymmetric. Finally, subsection 4.3

shows how to price vanilla options when the shocks to the underlying stock process

follow a Lévy-Stable process for α > 1 and −1 ≤ β ≤ 1.
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Lévy−Stable Motion, α = 0.8, β = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8
Spot Variance, n = 1, n = 1.2, γ = 25

Time

σ(
T)

2  =
  ∫

0T e−γ
 (T

−s
)n dL

s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

Time

∫ 0T σ2 s d
s

Integrated Variance

Figure 1: Simulated integrated variance with kernel g(T − s) = 25−1
(

1 − e−25(T−s)n)

with n = 1, T = 1, solid line, and n = 1.2, T = 1, dotted line.

Given the nature of the model it is obvious that there will not be a unique equiv-

alent martingale measure (EMM). In line with most of the Lévy process literature we

choose an EMM that is structure preserving since, among other features (see [CT04]),

transform methods for pricing are straightforward to implement; this will be discussed

at the end of subsection 4.2.

4.1 Modelling returns

As pointed out in the introduction we can either model returns or stock prices. In

our case we may assume that when shocks are symmetric we can take either route.

For example, if we believe that the shocks to the returns process follow a Lévy-Stable
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distribution we assume that

dSt

St
= µdt + σtdWt (9)

∫ T

t

σ2
sds = σ̂α/2

∫ T

t

g(T − s)dLα/2,1
s , (10)

where dWt denotes the increment of the standard Brownian motion, g(T − s) ∈ F,

σ̂ ≥ 0 and µ are constants. In appendix A we show that by modelling integrated

variance as in (10) the shocks to the stock process (9) are symmetric Lévy-Stable.

Note that we might also stipulate that our departure point is the risk-neutral

dynamics for the stock process and that our model is given as above with µ = r. In

this case the risk-neutral dynamics follow

dSt

St
= rdt + σtdW Q

t (11)

with
∫ T

t
σ2

sds as in (10). However, we need not specify the risk-neutral dynamics as a

starting point since it is possible to postulate the physical dynamics and then choose

an EMM. We discuss this change of measure below for the model that also allows for

asymmetric Lévy-Stable shocks and the symmetric case then becomes a particular

case.

Before proceeding we remark that the stochastic integral
∫ T

t
σsdWs can be seen as

a time-changed Brownian motion [KS02]. In this case the integrated variance
∫ T

t
σ2

sds

represents the time-change and it is straightforward to show that

∫ T

t

σsdWs
d
= WT̂t,T

where T̂t,T =
∫ T

t
σ2

sds.

4.2 Modelling Log-Stock Prices

Financial data suggests that returns are skewed rather than symmetric, see for exam-

ple [KL76], [CLM97], [CW03]. The symmetric model above can be extended to allow

the dynamics of the log-stock process to follow an asymmetric Lévy-Stable process.
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In stochastic volatility models one way to introduce skewness in the log-stock

process is to correlate the random shocks of the volatility process to the shocks of the

stock process. It is typical in the literature to assume that the Brownian motion of

the stock process, say dWt, is correlated with the Brownian motion of the volatility

process, say dZt. Thus E[dWtdZt] = ρdt and we can write Z̃t = ρWt +
√

1 − ρ2Zt,

where Z̃t is independent of Wt. The correlation parameter ρ is also known in the

literature as the leverage effect and empirical studies suggest that ρ < 0 [FPS00]. In

our case we may also include a leverage effect via a parameter ℓ to produce skewness

in the stock returns. However, the notion of ‘correlation’ does not apply in our

case because for Lévy-Stable random variables, as given that moments of second and

higher order do not exist, nor do correlations.

Hence to allow for asymmetric Lévy-Stable shocks, under the physical measure

we assume that

ln(ST /St) = µ(T − t) +

∫ T

t

σsdWs + ℓσ̃α

∫ T

t

dL̃α,−1
s (12)

∫ T

t

σ2
sds = σ̂α/2

∫ T

t

g(T − s)dLα/2,1
s . (13)

Here dWt denotes the increment of the standard Brownian motion independent of

both dL̃α,−1
t and dL

α/2,1
t and we note that dL̃α,−1

t is totally skewed to the left and

that α < 2, ie the stability index α is not restricted to be less than unity. Moreover,

µ, σ̃ ≥ 0, σ̂ ≥ 0 are constants, g(T − s) ∈ F and the leverage parameter ℓ ≥ 0.1 In

appendix B we show that the shocks to the price process are asymmetric Lévy-Stable.

Before proceeding we discuss the connection of the dynamics of the stock price un-

der the physical measure P and the risk-neutral measure Q. Recall that a probability

1Note that here we model log-stock prices since we cannot include a leverage effect in equation

(9) in the form

dSt

St
= µdt + σtdWt + ℓσ̃αdL̃

α,−1

t (14)

∫ T

t

σ2

sds = σ̂α/2

∫ T

t

g(T − s)dLα/2,1
s ,

because the solution to the SDE with leverage (14) will deliver a stock process St that allows negative

prices due to the jumps of the increments of the Lévy-Stable motion dL̃
α,−1

t .
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measure Q is called an EMM if it is equivalent to the physical probability P and the

discounted price process is a martingale. It is straightforward to see that in the model

proposed here the set of EEMs is not unique, hence we must motivate the choice of a

particular EMM. Based on Theorem 3.1 in [NV03] we choose a structure-preserving

measure where the risk-neutral dynamics of the model (12) and (13) follows

ln(ST /St) = r(T − t) −
∫ T

t

σ2
sds +

1

2
(T − t)ℓασα

ℓ sec
πα

2
+

∫ T

t

σsdW Q
s + ℓσ̃α

∫ T

t

dL̃α,−1
s .

Note that if ℓ = 0 we obtain the risk-neutral dynamics for the case when the

returns or log-stock process follows a symmetric Lévy-Stable process under P .

4.3 Option Pricing with Lévy-Stable Volatility

The preceding sections were devoted to finding a suitable model for stochastic volatil-

ity that would enable us to model the unconditional returns process or log-stock

process as a Lévy-Stable process. Moreover, as motivated in the introduction by

equations (1) and (2), it is straightforward to see that if we assume the dynamics

given by (12) and (13) the price of a vanilla option is given by the iterated expecta-

tions

V (S, t) = E
Q

L̃α,−1
t

[

E
Q
σt

[

E
Q

[

VBS

(

Ste
ℓ
R T
t

dL̃s , t, K,

(

1

T − t

∫ T

t

σ2
sds

)1/2

, T

)]

L̃α,−1
t , σt|L̃α,−1

t

]]

,(15)

where Q is the risk-neutral measure and VBS is the Black-Scholes value for a European

option.

Remark 1. Note that if we let g(T − s) = 0 then the model reduces to

ln(ST /St) = µ(T − t) + ℓσ̃α

∫ T

t

dL̃α,−1
s ,

which is the Finite Moment Log-Stable (FMLS) model of [CW03].

Proposition 4. It is possible to extend the results above to price European call and

put options when the skewness coefficient β ∈ [0, 1].
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Proof. Using put-call inversion [McC96], we have by no-arbitrage that European call

and put options are related by

C(S, t; K, T, α, β) = SKP (S−1, t; K−1, T, α,−β).

�

Note that using put-call inversion allows us to obtain put prices when the log-stock

price follows a positively skewed Lévy-Stable process, based on call prices where the

underlying log-stock price follows a negatively skewed Lévy-Stable process. Further-

more, put-call parity allows us to obtain call prices when the skewness parameter

−1 ≤ β ≤ 0.

As an example, we can use the approach above to derive closed-form solutions for

option prices when the random shocks to the price process are distributed according

to a Cauchy Lévy-Stable process, α = 1 and β = 0.

Remark 2. Closed-form Solution when Returns follow a Cauchy Process.

By letting α = 1 and ℓ = 0 in (12) and (13) we have that option prices, under the

risk-adjusted measure Q, are given by

V (S, t) =

∫ T

t
g(T − s)1/2ds

(T − t)
√

2π

∫ ∞

0

VBS(St, t, K, Y
1/2

t,T , T )
1

y3/2
e
−

� RT
t g(T−s)1/2ds

T−t

�2

/2y
dy,

where Y t,T = 1
T−t

∫ T

t
σ2

sds.

To see this, first we note that the combination of a Gaussian, the Brownian motion

in (12), and Lévy-Smirnov S1/2(κ, 1, 0), the process followed by the integrated variance

in (13), random variables results in a Cauchy random variable S1(κ, 0, 0). This can

be seen by calculating the convolution of their respective pdf’s. Now, recall that the

pdf for a Lévy-Smirnov random variable S1/2(κ, 1, 0) is given by (κ/2π)1/2 x−3/2e−κ/2x

with support (0,∞); hence in our case the distribution of the average integrated

variance is given by

Y ≡ 1

T − t

∫ T

t

g(T − s)dLα/2,1
s ∼ S1/2

(

1

(T − t)2

(
∫ T

t

g(T − s)1/2ds

)2

, 1, 0

)

;
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thus the value of the option is

V (S, t) =

∫ T

t
g(T − s)1/2ds

(T − t)
√

2π

∫ ∞

0

VBS(St, K, Y
1/2

t,T , T )
1

y3/2
e
−

� RT
t g(T−s)1/2ds

T−t

�2

/2y
dy.

5 Numerical illustration: Lévy-Stable Option Prices

In this section we show how vanilla option prices are calculated according to the above

derivations. One route is to calculate the expected value of the Black-Scholes formula

weighted by the stochastic volatility component and the leverage effect. Another route

to price vanilla options for stock prices that follow a geometric Lévy-Stable processes

is to compute the option value as an integral in Fourier space, using Complex Fourier

Transform techniques [Lew01], [CM99].

We use the Black-Scholes model as a benchmark to compare the option prices

obtained when the returns follow a Lévy-Stable process. Our results are consistent

with the findings in [HW87] where the Black-Scholes model underprices in- and out-

of-the-money call option prices and overprices at-the-money options.

5.1 Option Prices for Symmetric Lévy-Stable log-Stock Prices

In this subsection we obtain option prices and implied volatilities when the log-stock

prices follow symmetric Lévy-Stable process. Recall that, under the risk-neutral

measure Q, the stock price and variance process are given by

ST = Ste
r(T−t)− 1

2

R T
t

σ2
sds+

R T
t

σsdW Q
s ,

∫ T

t

σ2
sds = σ̂α/2

∫ T

t

g(T − s)dLα/2,1
s .

The first step we take is to calculate the characteristic function of the process

Zt,T = −1

2

∫ T

t

σ2
sds +

∫ T

t

σsdW Q
s .
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Proposition 5. The characteristic function of Zt,T is given by

E
Q[eiξZt,T ] = e−

1
2
σα

LS(iξ+ξ2)
α/2 R T

t g(T−s)2/αds, (16)

where ξ = ξr + iξi and −1 ≤ ξi ≤ 0 and σLS ≥ 0 (see (20) in appendix A). Moreover,

the characteristic function is analytic in the strip −1 < ξi < 0.

Proof. The characteristic function is given by

E
Q
[

eiξZt,T
]

= E
Q
[

e−
1
2
iξ
R T
t

σ2
sds+iξ

R T
t

σsdWs

]

= E
Q
[

e−
1
2
iξ
R T
t σ2

sds− 1
2
ξ2
R T
t σ2

sds
]

= E
Q
[

e−
1
2(iξ+ξ2)

R T
t g(T−s)dL

α/2,1
s

]

= e−
1
2
σα

LS(iξ+ξ2)
α/2 R T

t g(T−s)2/αds.

The last step is possible since the expected value exists if ξ is restricted so that

ξ2
r − ξ2

i + ξi ≥ 0, by consideration of the penultimate line. The region where this is

true contains the strip −1 ≤ ξi ≤ 0. Finally, it is straightforward to observe that the

characterisitc function is analytic in this strip.

�

To price call options we proceed as above and use the following expression:

C(x, t) = ext − 1

2π
e−r(T−t)K

iξi+∞
∫

iξi−∞

e−iξxt
Kiξ

ξ2 − iξ
e(T−t)Ψ(−ξ)dξ (17)

where xt = lnSt, 0 < ξi < 1, and Ψ(ξ) is the characteristic function of the process

ln ST .

5.1.1 Numerics for Symmetric Lévy-Stable log-Stock Prices

We now calculate European-style option prices when log-stock or stock returns are

symmetric Lévy-Stable using (17). In order to compare these prices with those ob-

tained using the Black-Scholes pricing formula, we have to decide how to choose the

15



relevant parameters of the two models. In fact, the only parameter that we must care-

fully examine is the scaling parameter of the Lévy-Stable process; we opt for one that

can be related to the standard deviation used when the classical Black-Scholes model

is used. One approach is to proceed as in [HPR99] and match a given percentile of the

Normal and a symmetric Lévy-Stable distribution. For example, if we want to match

the first and third quartile of a Brownian motion with standard deviation σ = 0.20

to a symmetric Lévy-Stable motion κdLα,0 with characteristic exponent α = 1.7, we

would require the scaling parameter κ = 0.1401. We have chosen these parameters

so that for options with 3 months to expiry these quartiles match. Moreover, in the

examples below, we use the kernel g(T − s) = 1
25

(

1 − e−25(T−s)
)

where for illustrative

purposes we have assumed mean-reversion over a two week period, ie γ = 25.

Figure 2 shows the difference between European call options when the stock re-

turns are distributed according to a symmetric Lévy-Stable motion with α = 1.7

and when returns follow a Brownian motion with annual volatility σBS = 0.20. The

figure shows that for out-of-the-money call options the Lévy-Stable call prices are

higher than the Black-Scholes and for at-the-money options Black-Scholes delivers

higher prices. These results are a direct consequence of the heavier tails under the

Lévy-Stable case.

5.2 Option Prices for Asymmetric Lévy-Stable log-Stock Prices

In this subsection we obtain option prices and implied volatilities when there is a

negative leverage effect, ie log-stock prices follow an asymmetric Lévy-Stable process.

Recall that, under the risk-neutral measure Q, the stock price and variance process

are given by

ST = Ste
r(T−t)− 1

2

R T
t σ2

sds+ 1
2
(T−t)ℓασα

ℓ sec πα
2

+
R T
t σsdW Q

s +ℓσ̃α
R T
t dL̃α,−1

s ,
∫ T

t

σ2
sds = σ̂α/2

∫ T

t

g(T − s)dLα/2,1
s .

We proceed as above and calculate the characteristic function of the process

Zℓ
t,T = −1

2

∫ T

t

σ2
sds +

∫ T

t

σsdWs + ℓσ̃α

∫ T

t

dL̃α,−1
s .
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Figure 2: Difference between Lévy-Stable and Black-Scholes call option prices for dif-

ferent expiry dates: one, three and six months. In the Black-Scholes annual volatility

is σBS = 20%.

Proposition 6. The characteristic function of Zℓ
t,T is given by

E
Q[eZℓ

t,T ] = e
− 1

2

�
σα

LS(iξ+ξ2)
α/2 R T

t
g(T−s)2/αds+(T−t)(iξℓ)ασα

ℓ sec πα
2

�
, (18)

where −1 ≤ ξi ≤ 0, ξ = ξr + iξr. Moreover, the characteristic function is analytic in

the strip −1 < ξi < 0.

Proof. The proof is very similar to the one above. It suffices to note that for ξi ≤ 0

∣

∣

∣
E

Q
[

eiξ
R T
t dL̃α,−1

s

]
∣

∣

∣
≤ E

Q
[
∣

∣

∣
eiξ

R T
t dL̃α,−1

s

∣

∣

∣

]

= E
Q
[

e−ξi

R T
t

dL̃α,−1
s

]

< ∞.

Moreover, for ξi < 0 we have that E
Q
[

eiξ
R T
t dL̃α,−1

s

]

is analytic, ie

∣

∣

∣

∣

d

dξ
E

Q
[

eiξ
R T
t

dL̃α,−1
s

]

∣

∣

∣

∣

=

∣

∣

∣

∣

E
Q

[

i

∫ T

t

dL̃α,−1
s eiξ

R T
t

dL̃α,−1
s

]
∣

∣

∣

∣

< ∞.
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Figure 3: Black-Scholes implied volatility for the Lévy-Stable call option prices when

returns follow a symmetric Lévy-Stable motion with α = 1.7, β = 0 and three expiry

dates: one, three and six months.

Putting these results together with the results from Proposition 5 we get the desired

result. Note that the requirement is −1 < ξi < 0 because dL̃α,−1
t is totally skewed to

the left, therefore we need −ξi > 0.

�

We use the same g(T −s) as above and include a leverage parameter ℓ = 1 so that

returns follow a negatively skewed process with β(t, T ) = −0.5 when there is 3 months

to expiry. Figure 4 shows the difference between Lévy-Stable and Black-Scholes call

option prices for different expiry dates. In the Black-Scholes case annual volatility

is σBS = 0.20 and in the asymmetric Lévy-Stable case with scaling coefficient σℓ =

0.1401 (see (20) and (21) in appendix B). Finally, Figure 5 shows the corresponding

implied volatility. The negative skewness introduced produces a ‘hump’ for call prices

with strike below 100. This is financially intuitive since relative to the Black-Scholes

the risk-neutral probability of the call option ending out-of-the-money is substantially

higher in the Lévy-Stable case.
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Figure 4: Difference between Lévy-Stable and Black-Scholes call option prices for dif-

ferent expiry dates: one, three and six months. In the Black-Scholes annual volatility

is σBS = 0.20 and in the asymmetric Lévy-Stable case the scaling parameters are

σLS = 0.7673 and σℓ = 0.1401.
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Figure 5: Black-Scholes implied volatility for the Lévy-Stable call option prices when

returns follow a symmetric Lévy-Stable motion with α = 1.7, σLS = 0.7673 and

σℓ = 0.1401 and three expiry dates: one, three and six months.
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6 Conclusion

The GCLT provides a very strong theoretical foundation to argue that the limiting

distribution of stock returns or log-stock prices follow a Lévy-Stable process. In this

paper we have shown that it is possible to model stock returns and log-stock prices

where the stochastic component is Lévy-Stable distributed covering the whole range

of skewness β ∈ [−1, 1]. We showed that European-style option prices are straight-

forward to calculate using transform methods and we compare them to Black-Scholes

prices where we obtain the expected volatility smile encountered in the markets.

Moreover, we show that we can model integrated variance directly as an increasing

continuous Lévy-Stable process.
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A Appendix A

Here we show that if the stock process, as assumed above in section 4.1, follows

dSt

St
= µdt + σtdWt

∫ T

t

σ2
sds = σ̂α/2

∫ T

t

g(T − s)dLα/2,1
s ,

where dWt denotes the increment of the standard Brownian motion, g(T − s) ∈ F, σ̂

and µ are constants, it is straightforward to show that the shocks to the process are

symmetric Lévy-Stable.

First note that the stochastic component of the log-stock process is given by

Ut,T =

∫ T

t

σsdWs. (19)

and for convenience choose2

σ̂ = 2

(

1

2
cos

πα

4

)2/α

σ2
LS. (20)

Now we calculate the characteristic function of the random process Ut,T . We have

E[eiθUt,T ] = E[eiθ
R T
t

σsdWs],

and conditioning on the path of σs for t ≤ s ≤ T and using iterated expectations we

get

E[eiθUt,T ] = E

[

e−
1
2
θ2
R T

t
σ2

sds
]

.

Now, given that
∫ T

t
σ2

sds =
∫ T

t
g(T − s)dL

α/2,1
s and using Proposition 1 we write

E[eiθUt,T ] = E

[

e−
1
2
θ2
R T
t

g(T−s)dL
α/2,1
s

]

= e−
1
2
σα

LS

R T
t g(T−s)2/αds|θ|α.

This is clearly the characteristic function of a symmetric Lévy-Stable process with

index α.

2We chose σ̂ in this way just for convenience in the calculations since it does not have any effect

on the overall qualitative result that the shocks in the process are symmetric Lévy-Stable.
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B Appendix B

Suppose that the stock process, as assumed above in section 4.2, follows

ln(ST /St) = µ(T − t) +

∫ T

t

σsdWs + ℓσ̃α

∫ T

t

dL̃α,−1
s

∫ T

t

σ2
sds = σ̂α/2

∫ T

t

g(T − s)dLα/2,1
s ,

under P where dWt denotes the increment of the standard Brownian motion inde-

pendent of both dL̃α,−1
t and dL

α/2,1
t . Then it is straightforward to verify that the

shocks to the above log-stock process under the measure P are those of a Lévy-Stable

process with negative skewness β ∈ (−1, 0]. Let G(t, T ) =
∫ T

t
g(T − s)α/2ds and, for

simplicity in the calculations, assume that σ̂ is given by (20) and

σ̃ =
1

21/α
σℓ. (21)

Now consider the process

U ℓ
t,T =

∫ T

t

σsdWs + ℓ

∫ T

t

dL̃α,−1
s .

The characteristic function of U ℓ
t,T is given by

E

[

eiθUℓ
t,T

]

= E

[

eiθ(
R T
t

σsdWs+ℓσ̃α
R T
t

dL̃α,−1
s )

]

= e−
1
2
G(T,t)σα

LS |θ|α
E

[

eiθℓσ̃α
R T

t dL̃α,−1
s

]

= e−
1
2
G(t,T )σα

LS |θ|αe−
1
2
(T−t)ℓασα

ℓ |θ|α{1+isign(θ) tan(πα/2)}

= e
− 1

2
(G(t,T )σα

LS+(T−t)ℓασα
ℓ )|θ|α

�
1−

−(T−t)ℓασα
ℓ

G(t,T )σα
LS

+(T−t)ℓασα
ℓ

isign(θ) tan(πα/2)

�
.

This is obviously the characteristic function of a skewed Lévy-Stable process with

skewness parameter

β(t, T ) =
−(T − t)ℓασα

ℓ

G(t, T )σα
LS + (T − t)ℓασα

ℓ

∈ (−1, 0].

Moreover, when ℓ = 0 we obtain β = 0 and β → −1 as ℓ → ∞ .

Note that the integrated variance does not have a finite first moment since α/2 <

1. However, in the case of the leverage effect
∫ T

t
dL̃α,−1

s its first moment exists, ie

E[
∫ T

t
dL̃α,−1

s ] < ∞ since 1 < α < 2.
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