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AUTO-DEPENDENCE STRUCTURE OF ARCH-MODELS: TAIL
DEPENDENCE COEFFICIENTS

RAYMOND BRUMMELHUIS

Abstract. We study autodependence in ARCH-models by computing the

auto-lower tail dependence coefficients and certain generalizations thereof, for
both stationary and non-stationary time series. This study is inspired by

financial risk-management issues, and our results are relevant for estimating

probabilities of consecutive value-at-risk violations.

1. Introduction

One of the striking aspects of empirical financial return-series is volatility-clustering:
although successive returns are roughly uncorrelated, in the well-known phrase of
Mandelbrot [19], ‘large changes tend to be followed by large changes - of either sign
- and small changes tend to be followed by small changes’. Auto-dependence in
time series is mostly studied in terms of auto-correlation, and for financial returns
the squared returns typically exhibit an auto-correlation pattern which is remines-
cent of an ARMA-process. A popular class of financial econometrical models that
capture this kind of behavior is that of the GARCH-models introduced by Engle
[13] and Bollerslev [7]; see also [8], [14].

Although auto-correlation of squared returns provides a satisfactory qualitative
explanation for volatility clustering, and for Mandelbrot’s observation cited above,
it does not always easily provide answers to questions related to the multi-variate
distribution functions associated to the process, like for example the behavior of
conditional quantiles at lags greater than 1 for a GARCH(1, 1) - cf. [9]. Motivated
by recent developments in risk-management (see Embrechts, McNeil and Strau-
mann [12],), we propose to study auto-dependence in time-series from the point
of view of alternative, copula-based, dependence measures like rank-correlations,
concordance measures or, in this paper, tail dependence coefficients. Indeed, as in
risk-management, where linear correlation is the natural dependence measure for
multi-variate normal, or more generally elliptic, linear models, but is less suitable for
non-linear models or for more general classes of multi-variate distributions, we ar-
gue that autocorrelations, while adequate for linear processes, should, for non-linear
processes like the GARCH, be supplemented by other measures of auto-dependence.
As a further motivation to consider alternative auto-dependence measures in time
series, linear autocorrelations are not always defined: in the case of a stationary
GARCH only for a limited parameter range, and not at all if the i.i.d. innovations
which drive the process do not posses a finite variance. Similarly, if one is interested
in the squared process they should at least have a finite fourth moment. (This does
not preclude studying sample autocorrelation functions of such processes; cf. [4]
and its references).

As already mentioned, the particular dependence measure we will study in this
paper is the lower tail dependence coefficient, and certain generalizations thereoff.
The lower tail dependence coefficient λX|Y of two random variables X and Y is
defined as the limit, for α → 0, of the conditional probability that X is smaller

1



2 RAYMOND BRUMMELHUIS

than the α-th quantile of X, given that Y will be below its own α-th quantile; cf.
[12]. As we will see, this measure will pick up non-trivial auto-dependence in a
stationary ARCH, but, somewhat surprisingly, not in a non-stationary one. For
this reason we will introduce certain generalizations, which we will call generalized
lower tail dependence coefficients, a typical example of which would be the limit,
for α tending to 0, of the probability that X will be smaller than its

√
α-th quantile

given that Y than its α-th quantile. Here, the square root can be replaced by more
general functions of α tending to 0 at a suitably slower rate than α itself.

The reasons for considering these particular dependence measures instead of
others like Kendall’s τ or Spearman’s ρ are, firstly, that since these are asymptotic
quantities, they are more amenable to a complete theoretical analysis: in terms of
copulas, to determine λX|Y and its generalizations, we only need to understand the
behavior of the copula of X and Y near the lower left corner point of its domain of
definition, while τ and ρ require a global knowledge of the copula. Secondly, and
from the point of view of applications more importantly, the lower tail dependence
coefficient has a direct relevance for financial risk-management, since it can be
interpreted in terms of value-at-risk: if X = (Xn)n is a stationary time-series,
representing the daily returns of an investment portfolio, the (unconditional) daily
value-at-risk at a confidence level of 1 − α is simply the (absolute value of) the
lower α-th quantile of Xn. The financial interpretation is that with a probability of
1−α, daily (percentage) losses will be less than this value-at-risk. Under the Basle
rules, for a financial institution to suffer losses on its market portfolio exceeding
the value-at-risk at some specified confidence level has regulatory consequences;
cf [3]. The lower tail dependence coefficient λXn+1|Xn

will provide information on
the probability of violating one’s value-at-risk limit on two consecutive days, and
similarly for other time lags.

Value-at-risk, as a risk-measure, has been criticized for two, closely related, rea-
sons: it does not give an estimate of the size of the loss when it occurs, and, when
considering more than one risky asset or portfolio of risky assets, it can fail to be
sub-additive. In the terminology of [2], it is not coherent. (It is coherent when
restricted to portfolios made up of jointly elliptically distributed assets, cf.[12]).
The failure of subadditivity is less relevant if (Xn)n models a financial institutions
entire market portfolio. We note in this respect that Berkowitz and O’Brien [5] re-
port that a simple univariate ARMA + GARCH-model of the total portfolio return
is at least as effective, if not more, for value-at-risk forecasting than the detailed
structural value-at-risk models commonly used by banks. As regards the loss-size,
this can be estimated by the expected shortfall, which is basically the expectation
of Xn given that it is smaller than its α-th quantile. If properly defined for non-
continuous distributions, expected shortfall can be shown to be coherent, cf. [1],
[21]. We won’t however consider expected shortfall here, but limit attention to
quantiles and value-at-risk, this being at the moment the industry standard.

To investigate the relevance of lower tail dependence as auto-dependence mea-
sure for non-linear time-series, we do in this paper a detailed study of the particular,
but representative, example of an ARCH(1)-model, the simplest of the GARCH-
models. Our results are expected to extend to more general GARCH-processes, and
in particular to GARCH(1, 1)’s. If (Xn)n≥0 is an ARCH(1), we will compute the
lower tail dependence coefficient λXn+k|Xn

both for stationary processes (taking for
X0 a stationary solution of the ARCH(1)-equation), and for non-stationary ones
having an a.s. initial value X0 = x0 ∈ R. The latter are of interest for condi-
tional value-at-risk estimation given today’s return; cf. [15]. Under the assumption
that εn is symmetric we will give, in theorem 2.2 below, an explicit expression
for λXn|Xn+k

in the form of a multiple integral involving the pdf fε of εn, the
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auto-regressive ARCH(1)-parameter a1 and the Pareto exponent of the stationary
distribution (which can be computed from the former two), but no other parame-
ters. In particular, more detailed knowledge of the stationary distribution itself is
not required.

The non-stationary case is more delicate, and requires additional hypotheses
on εn. We will suppose that fε, and its first two derivatives have tails with a
Pareto-type inverse power decay. This class of fε was singled out because of its
importance in empirical modelling: see e.g. [15]. Somewhat surprisingly, the tail
dependence coefficients λXn+k|Xn

now turn out to be 0, and to still be able to detect
a non-trivial auto-dependence in the tails, we have to use the generalized coefficient
mentioned above (see definition 2.5 below). The generalized lower tail dependence
coefficients turn out to be all equal to 1/2, both for stationary and non-stationary
processes. Their value is in particular independent of the ARCH(1)-parameters,
which contrasts with the traditional picture provided by the linear auto-correlations
of the squared process.

The paper is organized as follows: in section 2 we recall a number of basic
definitions and facts, define the generalized tail dependence coefficients and state
our main results, which are theorems 2.2 and 2.7 for stationary ARCH(1)’s, and
theorems 2.4 and 2.6 for non-stationary ones. In section 3 we prove the results
for stationary ARCH(1)’s. Sections 4 to 6 are devoted to the technically more
complicated non-stationary case. We first determine, in section 4, the asymptotic
behavior of the probability density function of Xn given an a.s. initial value for X0.
The main technical tool in this section is the Mellin transform. The asymptotics
of section 4 are first used in section 5 to derive the asymptotics of the quantile
function, and then, in section 6, the asymptotic behavior of the tail dependence
function. Using these, our results for non-stationary ARCH(1)’s quickly follow.
Finally, in section 7 we use Monte Carlo simulations to study lower tail dependence
at small but non-zero values of the confidence parameter α. An appendix summa-
rizes, for convenience of the reader, the relationship between Mellin transform and
asymptotic expansions needed in sections 4 and 6.

2. Main Results

All random variables will be defined on some common probability space (Ω,F ,P).
Recall that the left-inverse F← of an increasing function F : R → R is defined by
F←(α) = inf{x : FX(x) ≥ α} for α ∈ R;, cf. [6], [11]. If FX(x) = P(X ≤ x),
x ∈ R is the cumulative distribution function of a random variable X, then the
α-th quantile qX(α) can defined as as the left-inverse of FX ; explicitly,

qX(α) = F←X (α) = inf{x ∈ R : P(X ≤ x) ≥ α}, α ∈ [0, 1].

All probability distributions we will encounter in this paper, or the functions by
which we will be approximate them, will be continuous and strictly increasing in
the regions of interest, so that the left-inverse reduces locally to the ordinary one,
at least locally.

Let (Xn)n≥0 be an ARCH(1)-process, defined by

(1) Xn+1 =
√
a0 + a1X2

n εn,

where a0, a1 > 0, and (εn)n≥1 is an i.i.d. sequence of random variables with mean 0.
We will mostly suppose, for symplicity, that εn is symmetric. We will consider both
stationary and non-stationary ARCH(1)’s. The stationary case amounts to taking
X0 =d X∞, where X∞ is the stationary solution of (1). Stationary solutions exists
if a0 > 0 and E

(
log a1ε

2
1

)
< 0, cf. [20] (reproduced in [14]), [17] or [11], chapter

8.4. Moreover, under mild additional hypothesis on εn, the stationary solution will
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have a Pareto-tailed probability distribution, cf. [18], [17], [16], and [11] for a text-
book treatment of the case of normally distributed εn. Suppose that ε =d εn has
a positive density such that for some h0 ∈ (0,∞], E(|ε|h) < ∞ for all h < h0 and
E(|ε|h0) = ∞, and let κ∞ = 2k∞, where k∞ > 0 is the unique positive solution to

(2) E
(
(a1ε

2)k∞
)

= 1.

Then the probability distribution of the stationary solution X∞ has a Pareto-type
inverse power decay of the tails: there exists a constant c∞ > 0 such that

(3) FX∞(x) ' c∞
|x|κ∞

, x→ −∞,

and similarly for the right tail FX∞(x) = 1 − FX∞(x). This result was recently
generalized to arbitrary GARCH(p, q) in [4].

We next turn to tail dependence.

Definition 2.1. (cf. [12]) Let (X,Y ) be a random vector. The (lower) tail depen-
dence function of X on Y is the function λX|Y : [0, 1] → [0, 1] defined by

(4) λX|Y (α) := P(X ≤ qX(α)|Y ≤ qY (α)), α ∈ [0, 1].

The coefficient of lower tail dependence of X on Y is defined by

(5) λX|Y = lim
α→0

λX|Y (α),

provided the limit exists.

If the limit (5) does not exist, one can consider instead the lim sup and the lim inf,
and interpret these as an upper, respectively lower bound on the dependence of X
on Y in the extreme lower tail. If X and Y are independent, then λX|Y (α) = α
and λX|Y = 0, and if X and Y are co-monotonic or counter-monotonic (meaning
that one is an increasing respectively decreasing function of the other), λX|Y (α) =
λX|Y = 1 respectively -1.

In the case of continuously distributed X and Y , λX|Y (α) will only depend on
the copula CX,Y of X and Y , which in this case can be characterized as the unique
function CX,Y : [0, 1] × [0, 1] → [0, 1] such that the joint probability distribution
FX,Y can be written as

FX,Y (x, y) = CX,Y (FX(x), FY (y)) .

Since for continuous increasing F , F◦F← = id, it follows that λX|Y (α) = α−1CX,Y (α, α).
The lower tail dependence coefficient λX|Y can therefore be interpreted as the di-
rectional derivative, in the direction of the diagonal, of CX,Y in (0, 0).

In financial modelling terms, thinking of X and Y as percentage returns of
financial assets over some fixed common time-period, −qX(α) is interpreted as the
value-at-risk, VaRα, with confidence 1−α over the time period under consideration
(to be multiplied by the amount of capital invested, to be precise). In practice, α
will be small, α = 0.05 or 0.01, and qα(X) will be negative; by convention, losses are
recorded as non-negative numbers, whence the minus-sign. With this terminology
λX|Y (α) is the probability of the losses of X exceeding VaRα(X), given that the
losses of Y already exceed VaRα(Y ). We refer to [12] for a detailed discussion of
copulas and dependence measures, and their applications to risk management.

Our first result gives an expression for the autotaildependence coefficients of a
stationary ARCH(1).
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Theorem 2.2. Let (Xn)n≥0 be a strictly stationary ARCH(1) having symmetrically
distributed innovations εn =d ε with density fε such that the stationary distribution
has a Pareto-type tail decay (3). Let κ∞ be defined by (2) and let Fε be the cumula-
tive distribution function of ε =d εn. Then the coefficient of lower tail dependence
of Xn+p on Xn is given by

λXn+p|Xn
= κ∞

∫ −1

−∞

∫
Rp−1

Fε

(
− 1

a
p/2
1 |x1| · · · |xp−1||z|

)
p−1∏
j=1

fε(xj) |z|−κ∞−1 dxdz,

where dx = dx1 · · · dxp−1. In particular, λXn+p|Xn
6= 0.

The integral on the right is convergent, since Fε is bounded by 1 and κ∞ > 0. It is
easily verified that its value is between 0 and 1. Note that λXn+p|Xn

only depends
on Fε, a1 and κ∞. In particular, it does not depend on any further characteristics
of the, in general unknown, stationary distribution FX∞ , not even on the constant
c∞ in (3).

We next turn to non-stationary ARCH(1)’s starting with an a.s. initial condition
X0 = x0 ∈ R. Let Px0 be the conditional probability Px0 = P(·|X0 = x0) and let
F x0
X , qx0

X (α) and λx0
X|Y denote, respectively, the cumulative distribution function,

quantile and lower tail dependence coefficient with respect to Px0 . In the non-
stationary case we will suppose that ε =d εn has a twice differentiable symmetric
probability density fε whose derivatives up to order 2 satisfy a Pareto-type decay
condition:

Condition 2.3. There exists constants κε, cε > 0 such that

(6) fε(x) =
cε

|x|κε+1
+ ρε(x), x 6= 0,

with remainder ρε satisfying

(7) |ρε|, |x
d

dx
ρε|, |x2 d

2

dx2
ρε| ≤

C

|x|κε+1+η0
, |x| > 0,

for suitable constants C, η0 > 0.

We use κε + 1 as Pareto exponent in (6) since this corresponds to an exponent of
κε for Fε. The hypotheses on fε cover cases like the Student distributions and the
Pareto-type distributions originating from extreme value theory; cf. [12], [15]. It
follows from (6) and (7) that the j-th derivative satisfies f (j)

ε (x) = cj |x|−κε−j−1 +
O
(
|x|−κε−j−1−η0

)
, for j = 0, 1, 2. We then have:

Theorem 2.4. Suppose the pdf fε of εn is symmetric and satisfies condition 2.3.
Then the conditional tail dependence coefficients all vanish: λx0

Xn+k|Xn
= 0 for all

x0 ∈ R, n, k ≥ 1.

This is a somewhat unexpected result, whose apparent contradiction with theorem
2.2 as n → ∞ will be clarified in sections 5 and 6 below, cf. remark 6.2. There
does not seem to be anything special about the εn’s satisfying condition 2.3: using
the results of [9], theorem 2.4 can be shown to be also true for GARCH(1, 1)’s with
normal innovations

The message of theorem 2.4 is that from the point of view of the lower tail
dependence coefficient there is no difference between a non-stationary ARCH(1) and
a strict white noise process. This is counter-intuitive, and to still be able to quantify
the difference between these two cases, we introduce the following generalisation of
the lower tail dependence coefficient.
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Definition 2.5. let (X,Y ) be a real random vector, and let ψ : (0, 1] → (0, 1], such
that limα→0 ψ(α) = 0. We define the generalized lower tail dependence coefficient
of X on Y , λψX|Y , by

(8) λψX|Y := lim
α→0

P (X ≤ qX(ψ(α))|Y ≤ qY (α)) ,

assuming the limit exists.

Only the behavior of ψ at 0 matters and ψ only needs to be defined on some small
sub-interval (0, δ), δ > 0. It is easily seen that for continuous FX and FY , λψX|Y
again only depends on the copula CX,Y , and that

λψX|Y = lim
α→0

1
α
CX,Y (ψ(α), α),

the directional derivative of CX,Y in (0, 0) along the curve α → (ψ(α), α). We
specifically allow curves which are tangential to one of the axes of the copula’s
domain of definition, [0, 1] × [0, 1]. If X and Y are independent, then clearly
P (X < qX(ψ(α))|Y < qY (α)) = ψ(α), and λψX|Y = 0. Embrechts, McNeil and
Strauman [12] call two random variables X and Y asymptotically independent in
the lower tail if λX|Y = 0. More generally, one might call X and Y strongly asymp-
totically independent (in the lower tail) if λψX|Y = 0, for all positive ψ on (0, 1] for
which limα→0 ψ(α) = 0. Theorem 2.4 showed that consecutive values Xn, Xn+p of
a conditional ARCH(1) with a.s. initial condition are asymptotically independent
in the lower-tail. The next theorem shows that they are far from being strongly
asymptotically independent. Let λx0,ψ

X|Y be the twisted lower tail dependence coeffi-
cient (8) computed with respect to the measure Px0 .

Theorem 2.6. Under the hypotheses of theorem 2.4, we have that

(9) λx0,ψ
Xn+p|Xn

=
1
2
,

for all functions ψ : (0, 1] → (0, 1] satisfying

(10) lim
α→0

ψ(α) = lim
α→0

α(logψ(α)−1)p−1

ψ(α)
= 0.

There is an analogue of theorem 2.6 for stationary ARCH(1)’s:

Theorem 2.7. Under the conditions of theorem 2.2, if (Xn)n≥0 is a stationary
ARCH(1), then λψXn+p|Xn

= 1
2 , for all ψ = ψ(α) satisfying

lim
α→0

ψ(α) = lim
α→0

α

ψ(α)
= 0.

Typical examples of functions ψ(α) satisfying the conditions of theorems 2.6 and
2.7 are ψ(α) = α1−ε, for any ε ∈ (0, 1].

It is instructive to compare these results with the picture provided by classical
correlation. A straightforward computation shows that, if (Xn)n is a stationary
ARCH(1) with E(ε2) = 1 such that a2

1E(ε4) < 1 (which implies existence of fourth
moments), then the linear correlation of X2

n and X2
n+p exists and decays as ap1 if

a1 → 0. To quantify auto-dependence and heteroscedasticity in an ARCH if fourth
moments do not exists one has to look for alternatives to linear correlation. The
lower tail dependence coefficient λXn+p|Xn

will always exist, and also converges to 0
as a1 → 0, by theorem 2.2 and the dominated convergence theorem - the exact order
of convergence is less obvious, though. The generalized tail dependence coefficients
λψXn+k|Xn

for ψ’s such that ψ(α), α/ψ(α) → 0 will all be equal to 1/2, independent
of a1, as long as a1 > 0. Similar remarks apply to non-stationary ARCH(1)’s.
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It would be interesting to determine the precise behavior of λXn+p|Xn
for a

stationary ARCH(1) as either a1 → 0 or p→∞.

Theorems 2.6 and 2.7 are asymptotic results for α tending to 0, and it is reason-
able to ask how indicative they are for what happens at a small but non-zero α.
Taking for example α = 0.01 and ψ(α) =

√
α, how close to 50% is the probability

that Xn+1 will be below its 10% quantile, given that Xn will have been below its
1%-one? In risk management terms, what is the probability that a portfolio will,
on day n + 1, incur a loss exceeding the 10% value-at-risk if on day n it will have
suffered a loss greater than its 1% VaR? In section 7 we briefly investigate this
question using Monte Carlo simulation. As we will see, depending on the value of
a1, this generalized lower tail dependence at say α = 0.01 can be very close to its
asymptotic value of 0.5, and even for values of a1 as small as 0.1 the difference with
the i.i.d. case (corresponding to an a1 equal to 0) is significant.

Another interesting question for future research is whether empirical time series
of financial returns behave like in theorems 2.2, 2.6 and 2.7. We note in this
respect that these theorems provide an attractive quantitative reformulation of
Mandelbrot’s observation quoted in the first sentence of the introduction.

3. Lower tail dependence for stationary ARCH(1)

In this section we will prove theorems 2.2, 2.7 and 2.6. Let us put

FXn+p
(x|Xn = y) = P(Xn+p ≤ x|Xn = y).

Lemma 3.1. Given y ∈ R and n, p ∈ N, p ≥ 1, define functions sp(y; ·) : Rp−1 →
R≥0, by

sp(y;x) :=

(a0 + a0a1x
2
p−1 + a0a

2
1x

2
p−2x

2
p−1 + · · ·+ a0a

p−1
1 x2

1 · · ·x2
p−1 + ap1x

2
1 · · ·x2

p−1y
2)1/2,

were x = (x1, · · · , xp−1). Then for all n ≥ 0 and p ≥ 1,

(11) FXn+p
(x|Xn = y) =

∫
Rp−1

Fε

(
x

sp(y;x)

) p−1∏
j=1

fε(xj)dx.

Proof. Straightforward induction on p, observing that

P(Xn+1 ≤ x|Xn = y) = Fε

(
x√

a0 + a1y2

)
,

and using

P (Xn+p+1 ≤ x|Xn = y) =
∫

R
Fε

 x√
a0 + a1x2

p

 fXn+p
(xp|Xn = y) dxp,

for the induction step. Here, fXn+p
(x|Xn = y) stands for the conditional density,

d
dxF

′
Xn+p

(x|Xn = y) (whose existence also follows by induction). QED

Corollary 3.2. Let x < 0 be arbitrary. Then the function y → FXn+p
(x|Xn = y)

is decreasing on {y < 0}.

Proof. Fix x < 0, and let y ≤ y′ < 0. Then y2 ≥ y′2 and therefore 0 ≤ sp(y′,x) ≤
sp(y;x), for all x ∈ R. Since x < 0, it follows that sp(y′;x)−1x ≤ sp(y;x)−1x and
hence

Fε

(
x

sp(y′;x)

)
≤ Fε

(
x

sp(y;x)

)
.

Integration against fε(x1) · · · fε(xp−1) then proves the corollary. QED
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One can also give a proof by straightforward differentiation. Let qn(α) be the α-th
quantile of FXn

.

Lemma 3.3. Suppose that qn(α) < 0 and let x < 0. Then

(12) FXn+p
(x|Xn = qn(α)) ≤ P (Xn+p ≤ x|Xn ≤ qn(α)) ≤ 1

2
.

Proof. We have that

(13) P(Xn+p ≤ x|Xn ≤ qn(α)) =
1
α

∫ qn(α)

−∞
FXn+p

(x|Xn = y) fXn
(y) dy,

where fXn = F ′Xn
, the probability density. Integrating by parts, and using that

FXn
(qn(α)) = α, we see that (13) equals

FXn+p
(x|Xn = qn(α))−

∫ qn(α)

−∞

d

dy
FXn+p

((x|Xn = y)
FXn

(y)
α

dy

≥ FXn+p (x|Xn = qn(α)) ,

by corollary 3.2. The other inequality in (3.3) follows from

P(Xn+p ≤ 0|Xn ≤ qn(α)) =
1
α

∫ qn(α)

−∞
FXn+p(0|Xn = y) fXn(y) dy

=
1
2
,

by (11), the symmetry of ε and the definition of qn(α). QED

Recall the definition of the twisted tail-dependence coefficients from the intro-
duction. We then can state:

Corollary 3.4. Let ψ =: (0, 1] → (0, 1] be defined in a neighborhood of 0 such that

(14) lim
α→0

qn+p (ψ(α))
qn(α)

= 0.

Then λψXn+p|Xn
= 1/2.

Proof. We first observe that (14) implies that

qn+p(ψ(α))
sp(x, qn(α))

→ 0, α→ 0.

By (11) and dominated convergence, FXn+p (qn+p(α)|Xn = qn(α)) → 1
2 . The corol-

lary now follows from (12). QED

Proof of theorem 2.7. If (Xn)n≥0 is stationary, with X0 = X∞, then qn(α) =
F←X∞(α) ' (c∞/α)1/κ∞ , as α → 0, for all n. It follows that (14) is equivalent to
α = o (ψ(α)), α→ 0. QED

Proof of theorem 2.2. Taking x == qn(α) = F←X∞(α) =: q∞(α) in lemma 3.1 (where
X∞ denotes the stationary ARCH(1)) and using that qn+p(α) = q∞(α) also, lemma
3.1 implies that

(15) λXn+p|Xn
(α) =

1
α

∫ q∞(α)

−∞

∫
Rp−1

Fε

(
q∞(α)
sp(y;x)

) p−1∏
j=1

fε(xj) dx dF∞(y),
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(compare (13), where F∞(y) = FX∞(y), the distribution function of X∞. Integrat-
ing by parts with respect to y, and using that F∞(q∞(α)) = α, we find that

λXn+p|Xn
(α) =

∫
Rp−1

Fε

(
q∞(α)

sp(q∞(α);x)

)
dx(16)

+
q∞(α)
α

∫ q∞(α)

−∞

∫
Rp−1

fε

(
q∞(α)
sp(y;x)

)
ap1x

2
1 · · ·x2

p−1y

sp(y;x)3

p−1∏
j=1

fε(xj)F∞(y) dxdy.

As α→ 0, the integrand of the first term on the right tends to

Fε

(
q∞(α)

sp(q∞(α);x)

)
→ Fε

(
−1

a
p/2
1 |x1| · · · |xp−1|

)
.

We next change variables in the second integral on the right hand side of (16):
y = |q∞(α)|z . Since F∞(x) ' c∞|x|−κ∞ and |q∞(α)| ' (c∞/α)1/κ∞ , it follows
that

α−1 F∞ (|q∞(α)|z) → |z|−κ∞ , α→ 0.

Since |q∞(α)|3/sp(q∞(α)z,x)3 → a
−3p/2
1 |x1|−3 · · · |xp−1|−3|z|−3. We therefore find

that, momentarily writing A = a
p/2
1 |x1| · · · |xp−1|,

λXn+p|Xn
=

∫
Rp−1

Fε

(
− 1
A

) p−1∏
j=1

fε(xj) dx

−
∫ −1

−∞

∫
Rp−1

fε

(
− 1
A|z|

)
1
A

z

|z|3
p−1∏
j=1

fε(xj) |z|−κ∞dxdz

= κ∞

∫ −1

−∞

∫
Rp−1

Fε

(
− 1
A|z|

) p−1∏
j=1

fε(xj) |z|−κ∞−1 dxdz,

after a second integration by parts, which proves (6). QED

Remark 3.5. The proof would simplify if we would know that X∞ has a density
F ′∞(x) with the differentiated asymptotics κ∞c∞|x|−κ∞−1, |x| → ∞, since then
the partial integrations would no longer be necessary.

4. Asymptotic probabilities for non-stationary ARCH(1)’s

Let (Xn)n∈N be the ARCH(1)-process (1), starting with an a.s. initial value
X0 = x0 ∈ R. We assume that fε is symmetric and satisfies condition 2.3: letting
κ′ = κε + 1, then

(17) fε(x) =
cε
xκ′

+ ρε(x),

where

(18)
∣∣∣∣(x d

dx

)ν
ρε(x)

∣∣∣∣ ≤ C

xκ′+η0
, ν = 0, 1, 2,

for suitable constants η0, C > 0, for all x > 0. The successive realizations Xn of the
ARCH(1) will then have a density fXn which, because of the Markov property of
the ARCH(1), will be given by

(19) fXn+1(x) =
∫

R
fε

(
x√

a0 + a1y2

)
fXn

(y)
dy√

a0 + a1y2
,

with fX1 = σ−1fε(x/σ1), σ1 =
√
a0 + a1x2

0. In this section we will prove the
following truncated asymptotic expansion for the fXn

; observe that, by symmetry,
we can limit ourselves to x > 0.
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Theorem 4.1. With the above notations we have that

(20) fXn(x) =
1

σ1a
(n−1)/2
1

ϕn

(
x

σ1a
(n−1)/2
1

)
,

with the function ϕn having a truncated expansion

(21) ϕn(x) =
n−1∑
ν=0

cν;n
(log x)ν

xκ′
+ rn(x), x > 0,

whose error rn(x) satisfies, for any positive η < η0, an estimate

(22) |rn(x)| ≤
Cη
xκ′+η

.

The coefficients cν;n and the remainder-function rn may depend on a0, a1 and σ1,
but both the cν;n and the constants Cη in (22) will remain bounded as long as
max(σ−1

1 a
−1/2
1 a0, · · · , σ−1

1 a
−(n−1)/2
1 a0) remains bounded. Moreover, the top order

coefficient is given by

(23) cn−1;n = 2n−1 cnε
(n− 1)!

,

and is therefore independent of a0, a1 and σ1.

We obtain a corresponding result for the cumulative distribution function FXn

by integration. We limit ourselves to the top-order asymptotics. Recalling that
κ = κ′ − 1, a simple integration by parts gives:

Corollary 4.2. We have that

(24) FXn
(x) = Φn

(
x

σ1a
(n−1)/2
1

)
,

where, as x→ −∞,

(25) Φn(x) = Cn
(log |x|)n−1

|x|κ
+Rn(x),

with Cn = cn−1;n/κ = 2n−1cnε /κ(n− 1)!, and error Rn(x) satisfying

(26) |Rn(x)| ≤ C
|log |x||n−2

|x|κ
, x < 0,

with uniformly bounded constant C whenever max(σ−1a
−1/2
1 a0, · · · , σ−1

1 a
−(n−1)/2
1 a0)

stays bounded.

Remark 4.3. The asymptotics for x fixed, n → ∞ are different from those for n
fixed |x| → ∞. It would be interesting to derive joint asymptotics in (x, n).

Theorem 4.1 will be proved by induction on n, based on (19). We will first
analyze the case of a1 = σ1 = 1, to which the case of general a0, a1 and σ1 will then
be reduced.
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4.1. The case a1 = 1. We first take both a1 and σ1 equal to 1, and look for a
truncated asymptotic expansion of fXn

which is uniform in the parameter a0 for
bounded a0: a0 ∈ [0, 1] say (we might have let a0 be restricted to any bounded
interval in [0,∞)). Define the operator F on L1([0,∞)) by

(27) F (v)(x) =
∫ ∞

0

fε

(
x√

a0 + y2

)
v(y)

dy√
a0 + y2

;

F is a positivity-preserving operator on L1 ([0,∞)) of norm 1. Let || · ||1 be the
L1-norm with respect to Lebesgue-measure on [0,∞).

Lemma 4.4. Let {v(· ; a0) ; a0 ≥ 0} be a family of non-negative functions in
C1 ([0,∞)), such that ||v(· ; a0)||1 = 1, for all a0, and such that v(x; a0) has the
truncated asymptotic expansion

(28) v(x; a0) =
n−1∑
ν=0

cν
(log x)ν

xκ′
+ r(x), x > 0,

with constants cν = cν(v; a0) uniformly bounded in a0 ≤ 1, and with remainder
r(x) = r(x; v, a0) satisfying

(29)
∣∣∣∣(x d

dx

)ν
r(x)

∣∣∣∣ ≤ C

xκ′+η
, x > 0, ν = 0, 1,

for suitable positive constants C and η with η < 1, uniformly for a0 ≤ 1. Let
u = u(·; a0) be given by

u(x; a0) = F (v(· ; a0)) (x).
Then u ∈ C1([0,∞)), u ≥ 0, and u has a truncated expansion

(30) u(x; a0) =
n∑
ν=0

c′ν
(log x)ν

xκ′
+ r′(x), x > 0,

with the coefficients c′ν = cν(u; a0) again uniformly bounded in a0 ≤ 1 and r′(x) =
r′(x; v, a0) satisfying estimates (29) with η replaced by any smaller η′ < η, also
uniformly in a0 ≤ 1. Moreover

(31) c′n =
cεcn−1

n
.

The truncated expansion (28) is compatible with v(·; a0) being in L1 since κ′ > 1.

Proof. The idea is to write u as a Mellin convolution (see Appendix), by making
the change of variables z =

√
y2 + a0. This gives

u(x) = fε ∗ ṽ(x)

=
∫ ∞

0

fε

(x
z

)
ṽ(z)

dz

z
,

with

(32) ṽ(z) =
z√

z2 − a0

v
(√

z2 − a0

)
1[
√
a0,∞)(z),

1A being the indicator function of a set A. However, in doing so we introduce
a singularity at z =

√
a0, which would spoil the decay properties of the Mellin

transform needed later, and which we will therefore eliminate by a preliminary
smooth cut-off. Let χ ∈ C∞ ([0,∞)) be such that 0 ≤ χ ≤ 1, supp (χ) ⊂ [A,∞),
χ = 1 on [2A,∞), where A > 0 will be chosen below, and write v = v(x; a0) as

(33) v = v0 + v1, v1 = χv, v0 = (1− χ)v.

We then study u0 := F (v0) and u1 := F (v1) separately.
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First of all, by the hypothesis (17) on fε, we have that

F (v0)(x) =
∫∞
0
fε

(
x√
y2+a0

)
v0(y) dy√

a0+y2

= x−κ
′
cε
∫∞
0

(y2 + a0)
κ′−1

2 v0(y)dy +
∫∞
0

(y2 + a0)−1/2ρε
(
(y2 + a0)−1/2x

)
v0(y)dy

=: c′0
xκ′ + r′0(x),

with

(34) c′0 = c′0(a0) := cε

∫ ∞
0

(y2 + a0)
κ′−1

2 v0(y)dy,

and

(35) r′0(x) = r′0(x; a0) =
∫ ∞

0

ρε

(
x√

y2 + a0

)
dy√
y2 + a0

.

Since κ′ > 1 and v0 is supported in [0, 2A], it follows that c′0(a0) is uniformly
bounded, for a0 ≤ 1, by

cε(4A2 + 1)
κ′−1

2 ||v0||1 = cε(4A2 + 1)
κ′−1

2 ,

since 0 ≤ (1− χ) ≤ 1 and ||v||1 = 1.
Likewise, for r′0(x; a0) we estimate, using (18) (with ν = 0):

|r′0(x; a0)| ≤ C

xκ′+η0

∫ A

0

(y2 + a0)
κ′+η0−1

2 v0(y)dy

≤ C ′

xκ′+η0
,

with C ′ = C(4A2 + a0)(κ
′+η0−1)/2. This proves that F (v0) has a truncated asymp-

totic series of the desired form (30), (29).

We next turn to u1 = F (v1). First rewrite u1 as a Mellin transform, u1 = fε ∗ ṽ1,
with ṽ1 defined by (32) , with v replaced by v1. Observe that if we take A > 1 ≥ a0,
then ṽ1 will be C1 on [0,∞). From (28), (29), and remembering that η < 1, we
easily obtain that

ṽ1(x) = (χ v)
(√

x2 − a0

) x√
x2 − a0

=
n−1∑
ν=0

cν
(log x)ν

xκ′
+ r̃1(x),

with r̃1 = r̃1(x; a0) satisfying (29), uniformly in a0 ≤ 1 (with the same η but
possibly a different C). It follows that the Mellin transform ṽ#

1 = ṽ#
1 is holomorphic

on {s ∈ C : −κ′ < Re s < 0}, and meromorphic on {s : −κ′− η < Re (s) < 0} with

(36) ṽ#
1 =

n∑
ν=1

a−ν
(s+ κ′)ν

+ h(s),

with a−ν = (ν − 1)!cν−1 and h = h(s) holomorphic on {s : −κ′ − η < Re (s) < 0}
(cf. the Appendix). It is easily verified that (28) and (29), together with the
differentiability of v, imply that the truncated series (28) can be differentiated, and
that

x
d

dx
ṽ1(x) =

n−1∑
ν=0

c′′ν
(log x)ν

xκ′
+ x

d

dx
r̃1(x),
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for suitable constants c′′ν , which are simply obtained by term-by term differentiation
of the truncated expansion for ṽ1. (A similar remark applies to (17) and (18).)
Taking Mellin transforms, we conclude that, given that r̃1 satisfies (29) with ν = 1,

sṽ#
1 (s) =

n−1∑
ν=0

Aν
(s+ κ′)ν

+ g(s),

with g = g(s) holomorphic on {s : −κ′ − η < Re (s) < 0}, and bounded on each
closed sub-strip {s : −κ′ − η + ε ≤ Re (s) ≤ −ε}, ε > 0. From this we conclude
that

(i) If σ ∈ (−κ′ − η, 0) and σ 6= −κ′, then

(37) t→ ṽ#
1 (σ + it) ∈ L2(R),

and

(ii) For any closed sub-interval [a, b] ⊂ (−κ′ − η, 0), we have that

(38) max
σ∈[a,b]

∣∣∣ṽ#
1 (σ ± iR)

∣∣∣→ 0 as R→∞.

Similar assertions can be proved, in the same way, for f#(s), starting from (17)
and (18) with ν = 0 and 1. It follows that for arbitrary ρ ∈ (−κ′, 0) we can apply
the inversion formula for the Mellin transform to write u1(x) = F (v1)(x) as

(39) u1(x) =
1

2πi

∫ σ+i∞

σ−i∞
f#(s)ṽ#

1 (s)xsds,

(the integral converges since the product f#(s)ṽ#
1 (s) is in L1 of the line {Re (s) =

σ}). Moreover, the right conditions are met to shift the integration path to {Re s =
−κ − η′}, where η′ < η is arbitrary. In doing so, we will pick up the residue in
s = −κ′:

1
2πi

Res s=−κ′

((
cε

s+ κ′

) ( n∑
ν=1

(ν − 1)!cν−1

(s+ κ′)ν
+ h(s)

)
xs

)

=
n∑
ν=0

c′ν
(log x)ν

xκ′
,(40)

as one sees by writing xs = x−κ
′
exp ((s+ κ′) log x). It follows in particular that

(41) c′n =
cεcn−1

n
.

Hence

u1(x) =
n∑
ν=0

c′ν
(log x)ν

xκ′
+ r′(x),

where the remainder term is given by the line-integral over Re s = −κ− η′:

r′(x) =
1

2πi

∫
Re s=−κ−η′

f#(s)ṽ#
1 (s)xsds,

which, by an obvious estimate, will satisfy

(42) |r′(x)| ≤ C/xκ
′+η′ .

To show that x(d/dx)r′ satisfies the same estimate, we first differentiate u1, to find

x
d

dx
u1 =

(
x
dfε
dx

)
∗ ṽ1.
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Now since xdfε/dx satisfies (17) and (18) for ν = 0, 1, we can repeat the argument
above to conclude that there exist constants c′′ν such that

x
d

dx
u1 =

c∑
ν=0

c′′ν
(log x)ν

xκ′
+ r′′(x),

with r′′(x) satisfying an estimate of the type (42). That is, x(d/dx)u1 will have a
truncated asymptotic series of the same type as u1. A moment’s thought then shows
that, since the differential operator xd/dx, formally applied to the expansion of u1,
yields an expansion of the same form, we necessarily must have that r′′ = (xd/dx)r′.
This shows that r′ satisfies (29) (with η′ instead of η), and completes the proof of
the Main Lemma. QED

4.2. Proof of theorem 4.1. Lemma 4.4 allows us to quickly prove theorem 4.1,
using induction on n. Fix an initial value x0 ∈ R and put σ1 =

√
a0 + a1x2

0.
Our induction hypothesis is that fXn

(x) is of the form (20), with ϕn(x) having
a truncated expansion (21), with the cν;n and rn satisfying the stated uniformity
conditions. For n = 1, this is satisfied with ϕ1 = fε, by the hypothesis on fε.

Let Fa0,a1 be the norm-preserving positive operator on L1(R≥0 defined by

(43) Fa0,a1(v)(x) = 2
∫ ∞

0

fε

(
x√

a0 + a1y2

)
v(y)

dy√
a0 + a1y2

,

so that the F defined by (27) equals Fa0,1. Then we have, by the Markov property
of our ARCH(1)-process, and the symmetry of fε, that

fXn+1(x) = 2 Fa0,a1 (fXn
) (x)

= 2 Fa0,a1

(
1

σ1a
(n−1)/2
1

ϕn

(
y

σ1a
(n−1)/2
1

))
(x)

=
2

σ1a
n/2
1

F
σ−1a

−n/2
1 a0,1

(ϕn)

(
x

σ1a
n/2
1

)
,

by an easy change of variables in the integral defining Fa0,a1 . Put

ϕn+1 := F
σ−1a

−n/2
1 a0,1

(ϕn).

Then by lemma 4.4, applied to v = ϕn, we find that

ϕn+1(x) =
n∑
ν=0

cν;n+1
(log x)ν

xκ′
+ rn+1(x),

with rn+1 satisfying (29), uniformly in max(σ−1
1 a

−1/2
1 a0, · · · , σ−1

1 a
−n/2
1 a0), and uni-

formly bounded coefficients cν;n+1 for these values of the parameters. Moreover,
cn;n+1 = 2cεcn−1;n/n and therefore, since c0;1 = cε, cn−1;n = 2n−1cnε /(n−1)!. QED

5. Asymptotic behavior of the non-stationary VaR

For the computation of the α → 0 asymptotics of the tail-dependence function
λx0
Xn+p|Xn

(α) we need to know the asymptotic behavior of the quantile functions
qx0
Xn

(α) = F x0,←
Xn

(α). This can be computed from corollary 4.2:

Lemma 5.1. As α→ 0,

(44) qx0
Xn

(α) ' σ1a
(n−1)/2
1

(
Cn
α

)1/κ ( log(α−1Cn)
κ

)n−1
κ

,

in the usual sense of the quotient of the two sides tending to 1.
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Proof. Since it is not true in general that the map F → F← is continuous with
respect to the uniform topologies, we proceed cautiously.

First of all, since F x0
Xn

(x) = Φn(x/σ1a
(n−1)/2
1 ), we immediately have that

(45) qx0
Xn

(α) = σ1a
(n−1)/2
1 Φ←n (α).

From corollary 4.2 we see that for any ε > 0 we can find a positive real number
R(ε) such that if x < −R(ε), then

(Cn − ε)
(log |x|)n−1

|x|κ
≤ ΦXn

(x) ≤ (Cn + ε)
(log |x|)n−1

|x|κ
.

Call the two functions on the left and right of this inequality Φ±εn . Since these are
strictly increasing, and since Φ−εn (x) ≤ Φn(x) ≤ Φεn(x), we will have that

(Φεn)
−1(α) ≤ Φ←n (α) ≤ (Φ−εn )−1(α),

at least for those α for which the biggest of these three numbers is ≤ −R(ε). (By
theorem 4.1, Φ′n(x) = ϕn(x) is strictly positive if x is sufficiently small, so that we
could have replaced Φ←n by its ordinary inverse also). To compute (Φεn)

−1(α) we
use the following elementary lemma.

Lemma 5.2. Let a > 0 and let x = x(a) be the (unique) positive solution to

(log x)n−1

xκ
= a.

Then

x(a) = a−1/κ

(
log a−1

κ

)n−1
κ

g(a),

where g(a) → 1 as a→ 0.

Proof. Put log x = y, x = x(a). Then y has to solve

y − n− 1
κ

log y = log(a−1/κ) =: A.

If we try a solution of the form y = A + n−1
κ logA + y′, then y′ = y′(A) will have

to solve:

y′ =
n− 1
κ

log
(

1 +
n− 1
κ

logA+ y′

A

)
≤

(
n− 1
κ

)2( logA+ y′

A

)
.

Hence we find that1

0 < y′ ≤
(
n− 1
κ

)2 logA/A(
1−

(
n−1
κ

)2
A−1

)
≤ 2

(
n− 1
κ

)2 logA
A

,

provided that A ≥ 2κ−2(n − 1)2. Exponentiating, and putting g(a) := exp y′(A),
we find that

x(a) = a−1/κ

(
log a−1

κ

)(n−1)/κ

g(a),

where

(46) 1 ≤ g(a) ≤ exp
(
2(n− 1)2 logA/κ2A

)
,

1observe that if y0 := A + (n− 1) log A/κ, then y0 − (n− 1) log y0/κ ≤ A, so that y′ will have
to be strictly positive
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if log a−1/κ ≥ 2κ−2(n− 1)2. Hence g(a) → 1 as a→ 0. QED

Returning to the proof of lemma 5.1, it follows that(
Φ±εn

)−1 =
(

(Cn ± ε)
α

)1/κ( log(α−1(Cn ± ε))
κ

)(n−1)/κ

g±ε(α),

with g±ε(α) → 1 as α → 0, uniformly in 0 ≤ ε ≤ ε0 < Cn (as a glance at (46)
shows). Putting

Qn(α) =
(
Cn
α

)1/κ( log(α−1Cn)
κ

)(n−1)/κ

,

we see that (
Cn − ε

Cn

)(
log(α−1Cn − ε)

log(α−1Cn)

)(n−1)/κ

g−ε(α)

≤ Φ←n (α)
Qn(α)

≤
(
Cn + ε

Cn

)(
log(α−1Cn + ε)

log(α−1Cn)

)(n−1)/κ

gε(α).

Letting α→ 0, we conclude that for all sufficiently small ε > 0,

(1− ε

Cn
) ≤ lim inf

α→0

Φ←n (α)
Qn(α)

≤ lim sup
α→0

Φ←n (α)
Qn(α)

≤ (1 +
ε

Cn
),

and the lemma follows by letting ε→ 0. QED

6. Asymptotics of the non-stationary tail-dependence function

The asymptotic behavior of the conditional lower tail dependence function can be
determined quite precisely, and turns out to be universal for the class of ARCH(1)’s
whose innovations (εn)n satisfy condition 2.3 with a given κε and cε, in the sense
that it does not depend on either a0, a1 or the initial value x0, nor on the further
details of fε:

Theorem 6.1. Let (Xn)n∈N be an ARCH(1) with a.s. initial value X0 = x0

and a1 > 0 strictly positive. Suppose that εn has a twice differentiable symmetric
probability density satisfying condition 2.3. Then for all n, p ≥ 1,

(47) λx0
Xn+p|Xn

(α) ' γn,p

(
log(logα−1)

)p
(logα−1)p

, α→ 0,

where

(48) γn,p =
22n+2p−3

p!(n− 1)!(n+ p− 1)!
c2n+2p
ε

κ2
ε

.

In particular, λx0
Xn+p|Xn

= limα→0λ
x0
Xn+p|Xn

(α) = 0.

Remarks 6.2. (i) Observe that the conditional lower tail dependence function (47)
tends to 0 at an exponentially slower rate than for independent random variables.
For values of a1 such that the ARCH(1) has a stationary solution, the different
conclusions of theorems 2.2 and 6.1 may appear strange, in view of the geometric
ergodicity of the process (cf. [4] and its references). The explanation is that, in
case of a stationary process, qXn

(α) = qX∞(α) = qXn+p
(α) for all n and p, while for

a conditional ARCH(1) and n, p ≥ 1, qXn+p(α)/qXn(α) → ∞ as α → 0 (although
slowly), as follows from lemma 5.1.

(ii) The results of [9] can be used to derive the asymptotics of λx0
Xn+p|Xn

in case of
normally distributed εn. These have a qualitatively different behavior.



TAIL DEPENDENCE COEFFICIENTS FOR ARCH 17

Proof of theorem 6.1 To simplify notations, we will write qn(α) for qx0
Xn

(α), and we
will generally leave off the super-index x0. Since the joint probability density of
(Xn+p, Xn) is a product of the conditional density of Xn+p|Xn and the density of
Xn, we see as before that

P (Xn+p ≤ qn+p(α)|Xn ≤ qn(α)

=
1
α

∫ qn(α)

−∞
FXn+p(qn+p(α)|Xn = y) fXn(y) dy

=
1
α

∫ qn(α)

−∞
Φp

(
qn+p(α)

a
(p−1)/2
1

√
a0 + a1y2

)
ϕn

(
y

σ1a
(n−1)/2
1

)
dy

σ1a
(n−1)/2
1

,

=
1
α

∫ ∞
1

Φp

(
− qn+p(α)/qn(α)

a
(p−1)/2
1

√
a0 + a1y2

)
ϕn

(
qn(α)y

σ1a
(n−1)/2
1

)
qn(α)

σ1a
(n−1)/2
1 ;

dy,

where we have used (24) for FXn+p
(·|Xn = y), with n instead of p and Xn = y

instead X0 = x0. Since qn(α)/σ1a
(n−1)/2
1 = Φ←n (α), we have that

qn+p(α)/qn(α)

a
(p−1)/2
1

√
a0 + a1y2

=
Φ←n+p(α)/Φ←n (α)√

ã0 + y2
,

where we have put ã0 := a−1
1 a0. In what follows we will, without further com-

ment, replace various quantities by their asymptotic equivalents: this can be made
rigorous by standard estimates. First of all, by theorem 4.1,

P (Xn+p ≤ qn+p(α)|Xn ≤ qn(α))(49)

' cn−1;n

α
(Φ←n (α))−κ

∫ ∞
1

Φp

(
Φ←n+p(α)/Φ←n (α)√

ã0 + y2

)
(log Φ←n (α)y)n−1

yκ+1
dy.

By lemma 5.1,

(Φ←n ) (α))−κ ' α

Cn

(
logα−1Cn

κ

)−(n−1)

,

where the α will cancel the 1/α in front of (49). To simplify notations, we put
λ := α−1Cn and Λ := log Φ←n (α) ' κ−1 log λ. Then, using lemma 5.1 once more,
we see that

Φ←n+p(α)/Φ←n (α) ' γ(log λ)p/κ, γ = γn,p := (C−1
n Cn+p)1/κ

and (49) equals

cn−1;n

Cn

(
κ

log λ

)n−1 n−1∑
ν=0

(
n− 1
ν

)
·(50)

Λn−1−ν
∫ ∞

1

Φp

(
−γ(log λ)p/κ√

ã0 + y2

)
(log y)ν

yκ
dy

y
.

If we make the change of variables z =
√
ã0 + y2, we recognize the integrals as

being the Mellin convolution, evaluated in γ(log λ)p/κ), of Φp(z) 1(−∞,0) with

gν(z) :=
(log

√
z2 − ã0 )ν

(z2 − ã0)(κ+1)/2

z√
z2 − ã0

1[ã0+1,∞)(z),

which asymptotically still equals (log z)ν/zκ. By the analysis of section 2, we know
that the Mellin transform of Φp 1(−∞,0) is meromorphic on a strip {−κ − η <
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Re s < 0}, 0 < η < 1, with a unique pole of order p in s = −κ and principal part∑p
ν=0 a−ν(s+ κ)−ν , with ap = (p− 1)! Cp. The Mellin transform of gν equals

g#
ν (s) =

∫ ∞
ã0+1

(log y)ν

yκ
(y2 + ã0)−s/2

dy

y

=
∫ ∞

1

(log y)ν

yκ
y−s

(
1 +

ã0

y2

)s/2
dy

y

=
ν!

(s+ κ)ν+1
+H(s),

where

H(s) =
∫ ∞

1

((
1 +

ã0

y2

)s/2
− 1

)
(log y)ν

yκ+s+1
dy,

is holomorphic on {−κ − 1 < Res < 0}, as follows easily form the asymptotic
behavior of (1 + ã0y

−2)s/2 − 1 as y → ∞. Using the arguments of section 3, one
finds that

Λn−1−ν ·
∫ ∞

1

Φp

(
−γ(log λ)p/κ√

ã0 + y2

)
(log y)ν

yκ
dy

y

' Λn−1−ν · Constν ·
(
log(γ(log λ)p/κ)

)p+ν
γκ(log λ)p

= O

(
(log λ)n−1−ν · (log(log λ))p+ν

(log λ)p

)
.

It follows that the dominant term in (50) is the one with ν = 0. Computing the
constant Const0, which gives Cp/p, we find that (49) is asymptotically equivalent
to

cn−1;n Cp
p Cn

(
κ

log λ

)n−1

Λn−1 (log log λ)p

(Cn+p/Cn)(log λ)p

' cn−1;n CpCp+n
p

(log logα−1)n−1

(logα−1)p
.

This proves theorem 6.1. QED

Proof of theorem 2.4. Immediate from (47). QED

Proof of theorem 2.6. We may use lemma 3.3 and corollary 3.4., with P, qn(α) and
λψX|Y replaced by Px0 , qx0

n (α), and λψ,x0
Xn+p|Xn

. By lemma 5.1, (44), we see that,
modulo an immaterial constant,

qx0
n+p(ψ(α))
qx0
n (α)

'
(

α

ψ(α)

)1/κ (logψ(α)−1Cn+p

)(n+p−1)/κ

(logα−1Cn)
(n−1)/κ

,

for α→ 0. If ψ(α) → 0 and α (logψ(α)−1)p/ψ(α) → 0, then certainly α/ψ(α) → 0
and consequently logψ(α)−1 = O(logα−1) (using that ψ(α) < 1 for sufficiently
small α). It follows that the expression on the right hand side will be dominated
by a constant times

(
α(logψ(α)−1)p/ψ(α)

)1/κ and hence tends to 0 with α. QED

7. Generalized lower tail dependence functions at non-zero α

Consider a stationary ARCH(1) (Xn)n≥0 and let

(51) λψ(α) := P
(
Xn+p < qXn+p

(ψ(α))|Xn < qXn
(α)
)
,

which may be called a generalized lower tail dependence function. Theorems 2.6
and 2.7 show that the limit of λψ(α, p) as α→ 0 is equal to 1/2, under appropriate
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conditions on ψ. To see what happens at a small but non-zero α we have computed
some λψ(α, p) using Monte Carlo simulations. What follows is not intended as a
complete simulation study into the behavior of these functions, but as a simple ex-
ploratory investigation. Its main aim is to illustrate that our theorems are relevant
at values of α equal to 0.01 or 0.05, which are the values typically used in risk
management. We have not, in particular, tried to improve the precision by using
any variance reduction or importance sampling tecniques, leaving these for future
work. We will also limit ourselves to ψ(α) =

√
α, as a typical example of a function

ψ satisfying the conditions in theorems 2.6 and 2.7.
It is important to note that what is important at non-zero α is not the conditional

tail probability (51) itself, but rather its difference with ψ(α), the tail probability
for the independent case. Remembering that we took ψ(α) =

√
α, we therefore

introduce the (generalized) excess lower tail probability

(52) e(α, p) := λ
√
·(α, p)−

√
α.

We first look at stationary processes. Taking a0 = 0.001, we have simulated 250
ARCH(1)’s of length 104 with Student t4 innovations εn and a1 ranging from 0
to 1.6 with step-size 0.1. We note that such an ARCH(1) is strictly stationary
if a1 <

√
e ' 1.6489. For each Monte Carlo run we computed the empirical

conditional probabilities (51) and the difference (52), and taken their averages over
the different runs, to be denoted by λ̂

√
·(α, p), ê(α, p), as well as their standard

deviation of, to assess the significance of the estimated values. The results, rounded
off to two significant figures, are given in the following table.

a1 λ̂
√
·(0.05, 1) ê(0.05, 1) std λ̂

√
·(0.01, 1) ê(0.01, 1) std

0 0.23 0 0.02 0.1 0 0.03
0.1 0.29 0.06 0.02 0.23 0.13 0.04
0.2 0.32 0.1 0.02 0.3 0.2 0.05
0.3 0.35 0.13 0.02 0.34 0.24 0.05
0.4 0.37 0.15 0.02 0.38 0.28 0.05
0.5 0.39 0.17 0.02 0.40 0.30 0.05
0.6 0.41 0.19 0.02 0.43 0.33 0.05
0.7 0.43 0.20 0.02 0.44 0.34 0.05
0.8 0.44 0.22 0.02 0.45 0.35 0.05
0.9 0.45 0.23 0.02 0.47 0.37 0.05
1.0 0.47 0.24 0.02 0.48 0.38 0.05
1.1 0.47 0.25 0.02 0.49 0.39 0.05
1.2 0.48 0.26 0.02 0.49 0.39 0.05
1.3 0.49 0.26 0.02 0.49 0.39 0.05
1.4 0.49 0.27 0.02 0.5 0.4 0.05
1.5 0.49 0.27 0.02 0.49 0.39 0.05
1.6 0.49 0.27 0.02 0.5 0.4 0.05

Table 7.1 - Stationary tail probabilities as function of a1.

The table shows for example that for a value of a1 = 0.5 there is a close to 40%
change that Xn+1 will exceed its 95% VaR, given that Xn will have done so. This
conditional probability is about the same for the 99% VaR, and in that case about
30% bigger than what it would have been had succesive returns been independent.
The effect becomes more pronounced with increasing values of a1.

The next table gives estimated excess tail probabilities ê(p) := ê(0.01, p) for lags
p varying from 1 to 10, at an α = 1% and for three values of a1, namely a1 = 0.5, 1
and 1.5. We take a0 = 0.001 and ε ∼ t4, as before.
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p ê(p)(std), a1 = 0.5 ê(p)(std), a1 = 1 ê(p)(std), a1 = 1.5
1 0.31 (0.05) 0.38 (0.05) 0.40 (0.05)
2 0.20 (0.05) 0.35 (0.06) 0.39 (0.05)
3 0.13 (0.05) 0.30 (0.06) 0.38 (0.05)
4 0.07 (0.04) 0.26 (0.06) 0.37 (0.06)
5 0.05 (0.04) 0.22 (0.06) 0.36 (0.05)
6 0.03 (0.04) 0.19 (0.06) 0.35 (0.06)
7 0.02 (0.03) 0.16 (0.06) 0.34 (0.06)
8 0.01 (0.04) 0.14 (0.06) 0.32 (0.06)
9 0.01 (0.03) 0.11 (0.05) 0.31 (0.07)
10 0 (0.03) 0.10 (0.05) 0.29 (0.07)

Table 7.2 - Stationary excess tail probabilities as function of the lag p.

As was to be expected, the excess tail probabilities decrease with p. This decrease
is slower the larger a1 is (and the more pronounced therefore the ARCH-effect): for
a1 = 0.5, our estimate of e(0.01, p) is no longer significantly different from 0 from
p = 6 onwards, while for a1 = 1.5, we found for example that ê(0.01, p = 20) =
0.16(0.08), which indicates a long persistence of return shocks at time 1.

We have repeated these computations for non-stationary ARCH(1)’s with a.s.
initial value X0 = x0. Let

(53) λ
√
·;x0(α; k, k + p) := Px0

(
Xn+p < qXn+p

(
√
α)|Xn < qXn

(α)
)

and ex0(α; k, k+p) = λ
√
·;x0(α; k, k+p)−

√
α. We will limit ourselves to k = 1, since

this would seem to be the most relevant case for day-to-day risk-management: one
would want to know the after-effects of a possible value-at-risk violation tomorrow.
Note that for large values of k it is to be expected that ex0(α; k, k + p) ' e(α, p),
at least for such values of a1 for which the ARCH(1) has a unique (in distribution)
stationary solution.

We estimated ex0(α; 1, 2) for a1’s between 0 and 2, with x0 = 1 and a0 = 0.001
and ε ∼ t4 as before. It turns out that êx0(α; 1, 2) now increases very rapidly for
a1’s between 0 and 0.1, and then remains practically constant:

a1 êx0=1(0.05; 1, 2) std êx0=1(0.01; 1, 2) std
0 0 0.02 0 0.03

0.01 0.06 0.02 0.12 0.04
0.02 0.11 0.02 0.2 0.05
0.03 0.14 0.02 0.23 0.05
0.04 0.16 0.02 0.25 0.05
0.05 0.17 0.02 0.26 0.05
0.06 0.18 0.02 0.28 0.04
0.07 0.18 0.02 0.27 0.04
0.08 0.19 0.02 0.28 0.05
0.09 0.19 0.02 0.28 0.05
0.1 0.19 0.02 0.28 0.05

Table 7.3 - Non-stationary excess tail probabilities as function of a1.

For values of a1 slightly bigger than 0.1, ê(0.05; 1, 2) increases to 0.2 (0.02), and
then stays this level. A similar thing happens with ê(0.01; 1, 2), which becomes
constant equal to 0.29 (0.05) just after a1 = 0.1 - we checked this up to a1 = 10,
an unrealistically large value from the point of view of applications. Contrary to
the stationary case, the conditional excess probabilities rise very quickly with a1.
However, neither π̂x0(0.05; 1, 2) = êx0(0.05; 1, 2) +

√
0.05 ' êx0(0.05; 1, 2) + 0.2236
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or π̂x0(0.01; 1, 2) = êx0(0.01; 1, 2) + 0.1 come as close to the α → 0-limit of 0.5 as
in the stationary case, for the range of a1’s considered.

We next look at the dependence of e1(1, 1 + p) := ex0=1(α; 1, 1 + p) on the lag
p, for α = 0.01 and a1 = 0.05, 0.1, 0.2 and 0.5; as before, the number in brackets is
the standard deviation of our Monte Carlo estimate.

p\ê1(1, 1 + p) a1 = 0.05 a1 = 0.1 a1 = 0.2 a1 = 0.5
1 0.27 (0.05) 0.28 (0.05) 0.29 (0.05) 0.29 (0.05)
2 0.1 (0.04) 0.17 (0.04) 0.21 (0.04) 0.22 (0.05)
3 0.01 (0.03) 0.07 (0.04) 0.14 (0.04) 0.18 (0.05)
4 0.01 (0.03) 0.02 (0.03) 0.07 (0.04) 0.15 (0.04)

Table 7.4 - Non-stationary excess tail probabilites as function of the lag.

The excess probabilities start at roughly the same level, but their decay with in-
creasing p is slower the larger a1 is (for a1 = 0.05 they are already indistinguishable
from 0, within the precision of our MC calculations, from p = 3 onwards).

We finally take a look at the dependence on x0. The next table gives an example,
again with α = 0.01, k = 1 and lag p = 1, and for three values of a1:

x0\êx0(1, 2 a1 = 0.05 a1 = 0.1 a1 = 0.15
0 0.07 (0.04) 0.11 (0.04) 0.14 (0.04)

0.1 0.1 (0.04) 0.16 (0.04) 0.18 (0.05)
0.2 0.14 (0.04) 0.21 (0.05) 0.23 (0.05)
0.3 0.18 (0.04) 0.24 (0.05) 0.26 (0.05)
0.4 0.20 (0.05) 0.25 (0.05) 0.27 (0.05)
0.5 0.22 (0.05) 0.26 (0.05) 0.27 (0.05)
0.6 0.24 (0.05) 0.28 (0.05) 0.28 (0.05)
0.7 0.25 (0.05) 0.28 (0.05) 0.28 (0.05)
0.8 0.25 (0.05) 0.28 (0.05) 0.28 (0.05)
0.9 0.26 (0.05) 0.28 (0.05) 0.28 (0.05)
1 0.27 (0.05) 0.28 (0.05) 0.29 (0.05)

Table 7.5 - Non-stationary excess tail probabilities as function of x0.

For small x0 there is a notable effect on the size of the excess probability, with
initially an roughly linear increase which for large values of x0 flattens out.

Appendix A. Asymptotic expansions Mellin transforms

We recall some basic facts regarding the Mellin transform, and its relation with
asymptotic expansions of integrals. If u : [0,∞) → R is a locally integrable function
which is bounded near 0, and has polynomial decay |u(x)| ≤ C|x|−k, then its Mellin
transform u#(s), defined by

(54) u#(s) =
∫ ∞

0

u(x)x−s−1dx, Re s < 0.

The integral is absolutely convergent, and defines a holomorphic function on {s =
σ+ iη ∈ C : −k < σ < 0}, which is bounded on each sub-strip {−k+ ε < σ < −ε},
ε > 0.

If u#(s) is integrable on the line (σ − i∞, σ + i∞), −k < σ < 0, then we can
recuperate u from u# using Mellin’s inversion formula:

(55) u(x) =
1

2πi

∫ σ+i∞

σ−i∞
u#(s)xsds.
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Integrability and other decay-properties of u#(s) will generally follow from smooth-
ness properties of u, using integration by parts. A very useful property of the Mellin
transform is that it turns convolution on the multiplicative group R>0 into a prod-
uct: if

(56) u ∗ v(x) :=
∫ ∞

0

u(y)v(y−1x)
dy

y
,

then

(57) (u ∗ v)# (s) = u#(s)v#(s),

whenever both sides make sense.

The (classical) connection between the Mellin transform of u and the asymptotics
of u(x) for x → ∞ is based on the following observation: suppose that, under the
above hypothesis, u#(s), s = σ + iη, extends to a meromorphic function on a
slightly larger strip {−k′ < σ < 0} (where k′ > k), and has a single simple pole
in s = −k ∈ R<0. Then by shifting the integration path of (55) from Re s = σ to
Re s = −k − ε, ε < k′ − k, and formally applying Cauchy’s residue theorem, we
obtain that

u(x) = Ress=−k
[
u#(s)x−s

]
+ (2πi)−1

∫
Re (s)=−k−ε

u#(s)x−sds

= cx−k +O(x−k−ε),

with
c = Res s=−k

[
u#(s)

]
= lim
s→−k

(s+ k)u#(s).

This can easily be made rigorous under the condition that u#(s) is integrable on
the line Re (s) = −k − ε and that |u#(σ + iη)| → 0 as η → ±∞, uniformly for
s[−k−ε, k+ε].Multiple poles can be handled similarly, but will introduce logaritmic
terms: if u#(s) has a pole of order p in s = −k, then

Ress=−k
[
u#(s)x−s

]
= lim

s→−k

dp−1

dsp−1

(
(s+ k)pu#(s)xs

)
(58)

=
p−1∑
ν=0

cν(log x)νx−k.

The coefficients cν can be computed by noting that if

u#(s) =
a−p

(s+ k)p
+

a−(p−1)

(s+ k)p−1
+ · · ·+ a−1

s+ k
+ a0 + a1(s+ k) + · · · ,

is the Laurent expansion of u#(s) around s = −k, then the residue in (58) is
the coefficient of (s + k)−1 in the Laurent expansion of the product u#(s)xs =
x−ku#(s)e(s+k) log x. This gives

(59) cν =
a−(ν+1)

ν!
.

In case there is more than one pole, one simply adds the contributions the individual
poles. than one pole, we simply add up the contribution of each of the poles to the
asymptotics. In particular, if u#(σ+ iη) extends merorphically to {−k−N < σ <
0}, with poles We summarize this discussion in the following lemma:

Lemma A.1. (i) Suppose that, for suitable p, cν ∈ C and η > 0, we have

(60) u(x) =
p−1∑
ν=1

cν(log x)νx−k +O(x−k−η), x→∞.
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Then u# is of the form

(61) u#(s) =
p∑
j=1

a−j(s+ k)−j + h(s),

with h = h(s) holomorphic on −k − η < Re s < 0.

(ii) Conversely, suppose that u#(s) is given by (61), with t → u#(σ + it) inte-
grable, and |u#(σ + it)| → 0 as t → ±∞, uniformly for σ in compact subsets of
(−k − η, 0). Then we have that, for all ε > 0, u(x) has the truncated asymptotic
expansion (60), with η replaced by η − ε.

Proof. (i) This follows from

u#(s) =
p−1∑
ν=0

∫ ∞
1

cν
(log x)ν

xk+s+1
dx+ h(s),

with h(s) holomorphic on −k − α < Re s < 0, and∫ ∞
1

(log x)ν

xν+1
x−sdx = (−1)ν

(
d

ds

)ν ∫ ∞
1

dx

xk+s+1
=

ν!
s+ k

.

(ii) By shifting the integration path, as explained above. QED
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