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Abstract

We consider the problem of the manager of a storable commodity (e.g. hydro,coal) portfolio facing
demand risk while having access to storage facilities and illiquid spot and forward markets. In this
setting, we emphasize that a dynamically consistent way of managing risk over time must be introduced.
In particular, we demonstrate the temporal inconsistency of static risk objectives based on final wealth
and advocate the use of a new class of recursive risk measures such as those suggested by Epstein et al.
(1989) and Wang (2000) for portfolio optimization and valuation. This type of risk measures not only
provide time-consistent decision plannings but allow the portfolio manager to control independently the
occurrence of cash-flows across time and across random states of nature. We illustrate the discussion in an
empirical section where the trade-off between final wealth risk and bankruptcy risk at an intermediate date

is analyzed and the synergy between the physical assets composing a commodity portfolio is assessed.
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Guillaume Leroy, David Game, and Jean-Jacques Ohana for useful suggestions.



1 Introduction

We consider the situation of a retailer, who is engaged in long-term sale contracts, owns storage facilities
and can trade the commodity in illiquid spot and forward markets. The retailer is facing a portfolio
optimization problem, that translates into deciding at each time step which quantity to inject in or
withdraw from her storage facilities and trade in the spot and forward market, and a portfolio valuation
problem, that consists in assessing the value of the global portfolio and of each asset composing it. The
optimization and the valuation take place in the context of two types of risk: the volume risk that arises
from the random demand of long-term customers and is related to exogenous non traded variables such
as weather, and the price risk that is linked to the volatility of the commodity price.

In this incomplete market setting, the value of the retailer’s portfolio is not uniquely determined by
arbitrage considerations and an integrated portfolio approach is needed to handle liquidity constraints.
The stochastic programming literature, on the one hand, has essentially treated situations where portfolio
management is analyzed through a mean-variance criterion applied to final or intermediate wealths, and
fully defined at the first decision date. In particular, the risks arising at intermediate decision dates
are not taken into account, leading to possible conflicts between decisions taken over time. Examples
of this approach are found in Unger (2002), where a CVaR constraint on the final wealth is addressed
through a Monte-Carlo approach, in Martinez-de-Albeniz et al. (2005), where mean-variance trade-offs
are considered and yield explicit solutions in a one-step framework, and in Kleindorfer et al. (2004), where
the case of a multi-period VaR constraint on cash flows is examined.

The literature on decision theory, on the other hand, has paid a deserved attention to the problem of
dynamic choice under uncertainty. Originally, it was the problem of dynamic consumption planning that
was analyzed by economists. In a seminal paper, Epstein et al. (1989) introduce a set of dynamic utilities,
defined recursively in a discrete time setting, and allowing one to separately account for the issue of
substitution -controlling consumption over time- and risk aversion -controlling consumption across random
states of nature. In finance, dynamic risk measures were recently introduced to account for the occurrence
of a stream of random cash-flows over time. A general requirement for these risk measures is their time-
consistency (see e.g., Artzner et al. (2002)) because, as emphasized by Wang (2000), multi-period risks
are reevaluated as new information becomes available, which raises the issue of the compatibility between

consecutive decisions implied by the risk measure.



Our article, to our knowledge, is the third attempt after Chen et al. (2004) and Eichhorn et al. (2005)
and to use dynamic risk objectives in inventory and contracts portfolio problems. Eichhorn et al. (2005)
use a restriction of the set of coherent dynamic risk measures defined by Artzner et al. (2002) to solve
an electricity portfolio optimization problem but do not raise the problem of time consistency of optimal
strategies. Chen et al. (2004) define their objective function as an additive intertemporal utility of the
consumption process of the portfolio manager. Instead, we choose the Epstein et al. (1989) non additive
intertemporal utility objective and apply it directly to the cash flow process. The impact of this change
is significant : in our setting, the initial wealth is not a state variable, the only state variables being the
inventory level, and the cumulative positions in the forward market for each future delivery period; in
addition, the retailer’s problem appears as a cash-flow stream management one rather than a consumption
planning one; lastly, the flexibility of the non additive intertemporal utility allows the portfolio manager
to separately control the distribution of cash flows across time periods and across states of nature, which
is not allowed by an additive utility objective on the consumption process'.

The contribution of this paper is twofold: i) on the methodological side, we define the concept of time-
consistency of optimal strategies, show that the classically used static risk measures on final wealth are
not time-consistent and advocate the use of recursive utilities as a time-consistent and flexible measure for
portfolio risk management and valuation; ii) on the operational side, we provide a tractable framework to
dynamically manage physical assets under random demand and evolution of spot and forward commodity
prices, and show on a numerical example how the use of recursive utilities can help strike a trade-off
between final and intermediate wealth risk management and assess the synergy between the physical
assets composing a commodity portfolio.

The remainder of the paper is organized as follows. In section 2, we define the time-consistency of optimal
strategies and compare two objectives with respect to the issues of time-consistency, and risk/substitution
preferences. In section 3, we present the retailer’s portfolio management problem and provide a pricing
formula and bid/ask prices for physical commodity assets. Section 4 presents a numerical illustration of

the main findings. Section 5 contains concluding comments.

!Note that our framework reduces to the one of Chen et al.(2004) when substitution preferences are ignored and when CARA

utility functions are used



2 A comparison of dynamic risk objectives

The objective of this section is to present two examples dynamic risk preferences and assess their time-

consistency properties, which we view as an original contribution of the paper.

2.1 Static risk measures

In the case of one period settings, a number of static risk measures have been defined to express preferences
of risk averse agents (see e.g., Artzner et al. (2000) and Frittelli et al. (2002)). Mathematically, a (static)
risk measure is a function, here denoted v, associating to a contingent claim X a real number v(X). v(X)
represents the price that it is acceptable to pay in order to purchase X and —v(—X) represents the capital

that must be provisioned in order to make a short position in X acceptable.

2.2 Risk measure associated to a stream of cash flows

2.2.1 Possible criteria for cash flow streams assessment

Defined on a filtered probability space (2, F,P, (F;)), the discrete-time stochastic process G = (G;)i=1,...T,
represents a sequence of random cash flows occurring at times (;);=1,.... 7. G is the set of all Fy,-adapted
cash flow processes from ¢ =1 to i = T. We choose Fy, = {0, Q} (G, is deterministic), and Fy, = F, so
that full information is revealed at date 6.

A dynamic value measure V' = (V;);=1, . 7 consists of mappings V; : G x @ — R that associate to each
cash flow process G € G and to each w € Q a real number V;(G,w). The resulting stochastic process
(V;) is Fy,-adapted. Financially, it represents the value of the sequence of cash flows (G)g=1,...,7 or the
capital requirement to cover the liabilities (—G)r=1,.. .7 at date 6;.

Let us now propose two categories of dynamic values measures for streams of cash flows:

1. The first category consists of extensions of static criteria depending on the wealth accumulated

between date 6; and date 67:

T
WLT = Z G-
‘/;'(va) = H(Wl7T|f01) (1)

In the above equation, u is a one-step risk measure and the notation u(.|Fp,) refers to conditioning

on the information available at date 6;.



2. A second category of criteria (proposed by Epstein et al. (1989) and Wang (2000)) are recursively

constructed from the end of the time period by defining:
Vr(G,w) = Gr
ViGw) = W(Ghu(ViilFo)) Vi<T—1 (2)

In the above equation, y is a one-step certainty equivalent? and the mapping W : R? — R is called
an aggregator. In this framework, the date 8; value is assessed recursively by aggregation of the
current cash flow G; and certainty equivalent of V;; seen from date #;. An important observation

is that the process (V;) is Fy,-adapted.

2.3 Time consistency

Time-consistency is a property which guarantees that preferences implied by a dynamic value measure do

not conflict over time.

2.3.1 Examples of time-inconsistency
Consider the two cash flow streams A and B, where all transition probabilities are supposed to equal 0.5:

7(state uu) 4(state uu)

1(state ud)
1(state ud)

6(state du) 3(state du)

O(state d)

1(state dd)
1(state dd)

Let us evaluate stream A using the dynamic value measure (1) with p(X) = u=H(E[u(X)]), u(z) = In(z):

Vo (A, u) = exp(E(In(Ws's[u)) = exp(0.5(In(8) +1n(2))) = 4; Va(4,d) = exp(E(In(W3}5|d))) = V6

*We adopt Wang’s definition of the certainty equivalent, i.e., a static measure v verifying the monotonicity property (which
insures that if a random variable X is larger than Y in every state of the world, then v(X) > v(Y")) and reduced to the identity

on the space of constant random variables.



Vi(A) = exp(E(In (W 3))) = exp(0.25(In(11) + In(5) + In(9) + In(4))) = (55 x 36)+
Now evaluate stream B:
Va(B,u) = exp(E(ln (W |u))) = exp(0.5(In(6) + In(3))) = V18; Va(B,d) = exp(E(In(Wy%|d))) = V8
Vi(B) = exp(E(In(W,))) = exp(0.25(1n(9) + In(6) + In(7) + In(5))) = (54 x 35)1
We thus have simultaneously the following inequalities:
Va(A,u) <Va(B,u); Va(4,d) <Va(B,d); Vi(A) >Vi(B)

As a result, the dynamic value measure V' defined in (1) qualifies B as preferable to A in all states of the
world at time 2 and A preferable to B at time 1, hence its time inconsistency.

Time consistency does not hold either if y is a mean-variance instead of an expected utility criterion
in equation (1). To see this, consider the two following cash flow streams A (left) and B (right), with

transition probabilities being written on top of each arc:

1 (state uu)
3

0 (state u)
1
2
0
1
2
0 (state d) 0 (state d)
A B

Let us evaluate stream A using the dynamic value measure (1) with u(X) =E(X) — Var(X):

Va(Au) = EWsslu) —Var(Wislu) =7 = (5 — 12) = =

V2(4, d)

E(W3}3|d)) — Var(Wsls|d)) =

Vi(4)

E(WY)) — Var(Wyy)) =



Now evaluate stream B:

1
Va(Biu) = E(Wg)|u) = Var(Wyhlu)) = 5
Va(B,d) = E(W3)|d) = Var(Wy}|d)) =0
1 1 1 1 3 12
_ B _ B i - _ (= Z )y = = _ =

We thus have simultaneously the following inequalities:

Va(A,u) > Va(B,u); Va(A,d) 2 Va(B,d); Vi(4) < Vi(B)

2.3.2 Definition of time consistency and comparison of the two criteria

We assume that the cash flows depend on decisions that are made at each date 6;, using the information
available at this date. Decision at date 8; is the result of the optimization of a dynamic value measure of
the type described above. This optimization not only yields the first decision at that date, but a whole
decision planning for all subsequent stages. The question we pose in this section is the following: are
optimal plannings consistent over time?

Let us define the problem formally: consider a cash flow sequence (G;)1<i<T, occurring at dates (6;);>1,
depending on decisions (¢;)1<i<7 and on a multi-dimensional random process (&;)1<i<7 @ Gi := f(gi,&).
(&;) is assumed to be of the type &11 = g(&;, €;+1) for some reasonably behaved function g, and a white
noise vector process (¢;).

We introduce the state variables z; on which depend decisions at time 6; and denote A(z;) the set of
admissible strategies (qx)i<r<7 at time ;. We suppose that, after decision ¢; is made at time 6;, the state
x; leads to x;+1 = h(x;,qi, €i+1,Mi+1), where h is a deterministic function and (7;) a white noise vector
process possibly correlated with (¢;). We denote (Fy,) the filtration generated by the processes (e;,7;);
(gi) is supposed to be an (Fp,)-adapted process.

Lastly, we consider the following optimization problem, related to a dynamic value measure V:

(i) o e (@) (3)

We denote (g;'(z;))r>i the resulting (Fp,)-adapted optimal strategy decided at date 6;>. The question of
consistency of optimal strategies can be formulated in the following way:

Is q;iy (%, €541, Mi41) equal to (Qﬁ?l)(ﬂ«"iﬂ))a where z;1 = h(x, ¢ (25), €541, Ni41)?

3We suppose throughout this section that all encountered optimization problems have a unique solution



We now turn to the time consistency of optimal strategies derived from the two dynamic value measures
defined above.
- First, let us consider the final wealth objective defined in equation (1) with u(X) = v~ (E[u(X)]),i-e,

Vi(G,w) = u (E(u(Gi + Gip1 + ... + G1)|Fo)))*:

Ji(zi): = Maz  Vi(G)

(gr)r>i €A(z:)

= u! <MCLCE Maz T, (E0i+1 (w(Gt + Gig1 + ... + GT)))>

T (qr)r>it1

= U,_l <MCLCE]E91 ( Max E9i+1 (u(Gl + GH'I +ot GT)))>

i (are)k>i+1€A(Ti41)
The date §;41 implied problem Max Ey,,, (u(G; + Giy1 + ...+ Gr))) differs from the one derived from

(qr)e>it1

the dynamic value measure (V;), i.e., Max Viz1 = By, , (u(Giy1 + Giza + ... + Gr)). As a result, the

1
(qr)k>it1 ‘

optimal strategy decided at time i differs from the optimal strategy exhibited at time i + 1.

Time inconsistency remains if we use a mean-variance objective instead of an expected utility. In order
to further investigate this issue, let us consider a sequence of three cash flows (G1, G2, G3), depending on
the (Fy,)-adapted process (£p,)i=1,2,3 and Fp,-measurable decisions (g;);=1,2,3, and let us decompose the

variance of the sum of these cash flows. As usual, we denote Vary, (X) := Var(X|F,).

Varg, (G1 + Gy + G3) = Vary, (GQ + G3) = [y, [(GQ + G3)2] — []Egl (GQ + G3)]2
= By, [Eg, (G2 + G3)*)] — [Eo, (Bg, (G2 + G3))°
= Ey, [Eg, (G2 + G3)°)] — By, ([Ba, (G2 + G3)]*) + B, ([Eo, (G2 + G3)]*) — [Eg, (Eg, (G2 + G3))]?

= [Ey, [VG,T'92 (GQ + G3)] + Varg, (E92 (GQ + G3)) = [y, [Var92 (G3)] + Varg, (G2 + Ey, (G3))

The last equality illuminates why total variance is time inconsistent: the Fy, -measurable term Varg, (G2 +
Eg, (G3)) is controlled by both decisions ¢; and ¢, in contrast to the term G4, which depends only on the
decision ¢;. This fact compromises the existence of any dynamic programming equation linking optimal

strategies at dates 6 and 65:

Ji(r1): = Mazx {Ep, (G1 + G2 + G3) = Vary, (G1 + G2 + G3)}
(qr)k=1,2,3EA(z1)

Maz {Gi(q1) —Varg, (G2 + Ey, (G3)) + Eg, (Eg, (G2 + G3) — Vary,(G3))}

(qr)k=1,2,3

4 Mar {Gl(cn) Varg, (Gy +Egy (Ga)) + B, Maz  Eg,(Gs + Gs) — Varg, <G3>>}

(qr)k=2,3€A(z2)

*From now on, we will denote E(X|Fp,) = Fy, (X)

i



- We now turn to the dynamic value measures described in equation (2).
As afirst observation, let us consider the case of a linear aggregator W (z,y) = x+y. The date 6; objective

derived from the value measure V; defined by equation (2) is then:

Ji i) - = M V;G
(i) (Qk)kzicele(m) @)

Maz {Gi(q;) + po, Viz1)}

(qr)e>i

= Mq@ﬂf {Gi(qz') + Mazx uoi(ViH)}

(26)k>i+1€A(Ti41)

The question at this stage is to know whether permuting the operators Maz and operator y is legitimate

in the last equality, i.e., if the following property holds:

o
Maz pg,(Vier) = po,( Maw Viga) (4)

(qr)k>it1 (qr)k>it1
If the permutation is valid, then the optimal strategies will be time-consistent since the date #;;; implied
problem ( J\)I ax Vi1 will coincide with the optimization problem at stage i 4+ 1; otherwise, they will not.
Ak )ke>i+1

Let us try the aggregator W (z,y) = ¢ 1 (¢(2)+B8¢(y)) and certainty equivalent pu(X) = v~ (E[u(X)]),

where u and ¢ are increasing functions and 3 is a positive discounting factor®:

Sl = (Qk)k]\i%a(zi)%(G) - (qk)’f\i%a(mi)(ﬁil((ﬂGi(Qi) + Bd(ug, (Vixr)))
= ¢! <(qk) Mag {0(Gi(9:) + B (e, (ml))})

o (s {otcita + 56( Moz (Vi) })

Qr)k>it1

The inversion between operators Max and p in the last equality is permitted as

Maz po, (Vi) = Maz = (Es, (u(Vig1)) = u™" <]E0i( Maz u(ViH)))

(qk)k>it1 (qk)k>it1 (ax)k>i+1€A(Ti11)

= u! (Ee (u( Maz Vi+1))> = g, ( Maz Vit1)

(1) k>it1€A(Ti+1) (gx)e>it1EA(Ti41)
We can now present a general sufficient condition of time consistency for optimal strategies:

Property 2.1: If there exist non decreasing functions a b, ¢, and d and positive numbers B; such that
Vi(G) = a{({b(Gi(qi)) + Bic[Ei (d (Virr (G))]}) (5)

then the dynamic value measure (V;) leads to time-consistent optimal strategies.

For the recursive value process defined by utility functions ¢ and u, equation (5) holds with a = ¢~ 1,

®This particular choice for the aggregator and the certainty equivalent was first suggested by Epstein and Zin (1989) and

later on extended by Wang (2000) to incorporate ambiguity aversion



b=¢,c=¢ou!, and d = u. In the case of classical expectation maximization (risk-neutrality), equation

(5) holds with a =b=c=d = Id.

2.4 Risk and substitution

We have mentioned earlier that the problem of dynamic optimization under uncertainty involves two
dimensions, one with respect to the distribution of cash flows across states of nature, the other over con-
secutive time periods. The first dimension has an effect on the final wealth distribution while the second
one impacts the likelihood of bankruptcy within the time period.

Dynamic value measures defined in equations (1) are not appropriate to capture the risk attached to in-
termediate cash flows since they are based on final wealth. By contrast, recursive dynamic value measures
allows one to disentangle randomness and time components, via the certainty equivalent u and the ag-
gregator W (respectively accounting for the risk aversion and the substitution preferences of the decision
maker). For instance, in the case of recursive dynamic value measures based on utility functions, the
concavity of the functions u and ¢ leads to the smoothing of cash flows distributions in both dimensions
and in turn to a joint control of the final wealth risk and bankruptcy risk.

Remark: The choice u = ¢ in recursive value measures derived from utility functions v and ¢ leads to the
classical objective: V;(@) = u1(Ey, (Zz:l B9 =iy (G4))), which has been widely used in consumption
and portfolio choice problems in finance (e.g., consumption-based CAPM). Of course, this objective is
time consistent and captures both risk aversion and substitution; its drawback is that it does not offer
as much flexibility as a more general recursive value measure since risk aversion and substitution are

represented by the same function w.
As a conclusion of this section, we can state that recursive dynamic value measures with utility type

aggregator and certainty equivalent are satisfactory in regard to time consistency of optimal strategies

and inter-temporal risk management.

10



3 The retailer’s portfolio problem

3.1 The model

We adopt a discrete time setting, with a finite horizon. The decision periods are denoted (p;), i =1,...,T

(typically months or quarters). The dates (6;) are defining the periods (p;)-

date 1 date 2 date T
| |

|
period 1 bl period 2 (1)2 period T éT

We assume from now on that the retailer’s portfolio is composed of one sale contract and one storage
reservoir. In addition, the commodity is supposed to be traded, stored, and consumed in the same
location (in order to avoid transmission costs and constraints). The problem can be represented in a

stylized diagram:

storage

retailer client

market

L4z is the maximal level of storage, L, is the minimal level of storage (at any date), Lip; is the
initial storage level, L,q is the minimal storage level at the end of the horizon. L; represents the storage
level at the end of period p;. Qﬁ"j denotes maximal injection in period p;, Q¢"** maximal withdrawal; we
suppose there are no injection/withdrawal costs nor holding cost. d; denotes the client’s random demand
in period p;, K is the fixed selling price of the commodity for period .

Only forward contracts are considered; cash flows due to forward contracting are settled at maturity
of the contract and counterparty risk ignored. We denote by F(i,j) the forward price of the commodity
quoted during p; for delivery in period p;% (j > i) and S; the spot price of the commodity, where
S; == F(i,1).

Remarks:

SHere, F(i,j) can be considered as the average price over all the quotation dates belonging to period p; of all forward

contracts for delivery in period p;

11



1. In our model, trading is only authorized at decision dates

2. Even in the case of illiquid markets, the retailer is assumed to be a price-taker, meaning that her

trading decisions will have no impact on market prices

Storage decision variables corresponding to period p; are subject to the following constraints:

0< g™ <QM™; 0< gl <Qir™  i>1 (6)
Lo := Linit; Lisi=Li+q” —q™ 0<i<T (7)
Lpin < L; < Loz Vi = 17 ---7T§ Lt > Leng (8)

n(i,j) denotes the net number of forward contracts bought during period p; for delivery in period p;
(j > 1), the case i = j being a spot transaction. N (i, j) represents the total forward position at the end

of period p; for delivery in period p; and satisfies the conditions:
N(0,j):=0 Vj>1; N(i,j)=N(i—-1,j)+n(i,j) V1<i<j (9)

We model the sequence of events and decisions in the following way: during period p;, the retailer discovers
the client’s demand and decides on date 6; which quantities n(i, j) to buy on the spot and forward market
and qf”j or ¢I"® to inject in or withdraw from storage, respecting the physical balance of commodity

flows during period p; i.e.,

N(iyi)+¢r — ¢ =d; ¥V 1<i<T (10)

Equation (10) expresses that market and storage are the two ways to serve demand at period p;.

We define the discrete set of states of nature 2. Each w €  represents a realization of the process
& = (di, F(i,§)j>i), @ = 1..T. We denote by (Fp,) the filtration generated by (&;). Throughout the
paper, we assume the absence of arbitrage opportunities in the commodity spot and forward markets. On
(Q,F,Fp,), we define a risk-neutral probability measure P, under which forward prices are martingales”.

We define the set A of admissible strategies as:

A= {(qi)i21 = (qf"* ¢! n(i,§);>i)i>1 Fo, — measurable and verifying constraints (6) to (10)}

"We choose here to work under a risk-neutral probability measure P to rule out a speculative use of the spot and forward
markets; indeed, if forward prices were not martingales under P, the trading decisions implied by our model could be influenced
by possible spreads between forward prices and P-expected values of spot prices, a feature which is not relevant in the retailer’s

context

12



3.2 Decomposition results in two particular cases

In this section, it is assumed that there are neither constraints nor costs associated to trading in the
forward market. The risk-free interest rate r is supposed constant. The goal here is to present two cases
where the pricing issues and management of the portfolio are particularly simple:

- the first case is the one of a liquid market and deterministic demand

- the second case includes uncertain demand but assumes risk-neutrality of the retailer, hence the use of
a criterion of expected profit maximization

In both cases, a full decomposition of the portfolio value and management is possible.

The total cash flow during period p; is denoted as G; and may be written as:
T
Gi = diK; =Y e " TF (i, j)n(i, j) (11)
j=i

Remark: Cash flows due to forward trading are in this paper registered at transaction date and discounted
from delivery date at the risk free interest rate r. We adopt this unusual rule because we want cash

flows at dates #; to depend only on date #; decisions and not on previous ones®

, as would be the case
if cash flows from forward transaction had been registered at delivery date. Since interest rates are
considered deterministic, this representation has no consequences on the final wealth but may have some
on intermediate wealths?.

Assuming liquid spot markets, the coupling constraint (10) can be treated as an implicit one and we face

a fully decomposable problem, with constraints only on individual assets.

Deriving from (9) and (10) the volume n(i,4) of spot transactions, equation (11) becomes:

T
4K —n(i,i)S; — Y e "0 (i, j)F(i, j)

G =
j=i+1
T
= S — gV S+ di(K; — Si) + N(i—1,0)8; — Y e "= (i, j)F (i, j)
j=i+1

In this form, G; appears like the sum of three components:

1. gfrovs,; — qf”j S; = period p; payoff from the storage facility. Storage decisions taken over time are

inter-dependent due to the capacity constraints expressed in equation (6)

2. d;(K} — S;) = period p; payoff from the sale contract devoided of any optionality, which is in fact a

%in accordance with the setting defined in section 2.3.2

we thus assume here that the retailer provisions in advance all the future gains or liabilities at the signature of a forward

contract

13



strip of swaps exchanging the sale contract price K for the spot price S;. The volume involved at

period p; is either fixed (deterministic demand) or random (unknown demand)
3. N(@i—1,i)S; — ZJ'T:i+1 e "0i=9%)n(i, j)F(i,j) = period p; cash flow from forward contracts

Under this form, the portfolio appears as a combination of various options written on the commodity
spot price while the forward market appears as a way to hedge the spot price risk. The above splitting
of cash flows suggests a decomposition of the portfolio’s value. In fact, the latter will only be possible in

two particular cases:

e Portfolio decomposition in a complete market setting: here, we assume that the demand process (d;)
is deterministic (e.g., the contract sets a fixed volume to be delivered in all future periods). Then,
the arbitrage price of the portfolio is the sum of maximal expected cash flows under the (unique)
risk-neutral probability measure; this value is the sum of the arbitrage prices of storage and sale
contract. In this framework, the obvious strategy for the portfolio manager consists in optimizing
independently the storage facility against the spot market under the risk-neutral measure, and

hedging spot price risk using the forward market.

e Portfolio decomposition for a risk-neutral retailer in a liquid market: we assume here that the retailer
faces both demand and price risks but is risk-neutral, i.e.,she only tries to maximize her expected
profit. Under the assumption that the physical measure is a risk-neutral measure, the optimal
strategy for the risk-neutral retailer consists again in optimizing independently the storage facility
against the spot market and doing no trade in the forward market. Moreover, under deterministic
demand, the optimum of the risk-neutral retailer’s objective corresponds to the arbitrage price of

the portfolio.

3.3 The retailer problem in an incomplete/illiquid market

Mliquidity is modeled by deterministic volume constraints on spot and forward trading, of the form:

np(i,i+7) <ny (i, 1), ns(i,i +71) <ny*(i,1) (12)

8§

where n(i,7) and ns(i, j) stand for the number of bought and sold forward contracts during period p;

for delivery in period p; (with n(i,j) = n(Z, §) — ns(i, 7).
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We define the set of admissible strategies from state z;:

draw _inj

A(z;) == {(Qk)kZi = (g """, q,” ,n(k,j)j>k)k>i Fr — measurable verifying admissibility constraints}
(13)
and the analogous set of illiquid market admissible strategies A" (z;). The restrictions of the previous
decision sets to date ¢, defining the admissibility sets for decisions ¢; only, will be denoted by 4;(x:) and
AL ().

We can now formulate the retailer’s optimization problem as:

Ji(z;) == Max Vi(@) (14)

(ar)e>i €A (2;)
where the state z; is defined by z; = (L;, N(4,.),&;), G by (11) and V;(G) by the recursive equation (2),
with aggregator W and certainty equivalent p derived from concave increasing functions ¢ and u and

positive discount factors (5;):
W(z,y) = ¢~ (d(z) + Bid(y)); w(X) =u"" (E[u(X)])

We denote such a dynamic value measure as V;*"*(G).

The optimal value J;(z;) satisfies the dynamic programming equation:

Ji(wi) = ¢~ ( Max ){¢(Gi(qi))+51"15°Uil(Ei(“(JiH(le))))}) (15)

qi EAiiq(m
where the state ;11 is given by the transition equation ;11 = (Li-l-qz:nj —qdrew N(i,.)+n(i,.), (&, €ir1))-

The existence of equation (15) guarantees the time consistency of optimal strategies, as shown in the

previous section.

3.4 A concavity property for J;

Proposition 3.4.1:

Choosing CARA type utilities ¢(x) = —e™"* and u(z) = —e™* such that 0 < p < X, for all dates t, and all
states y such that A (z) # 0, the mazimization problem . e]%gagﬂ) {d(Gi(qr)) + Brop o u™" (B (u(Jpg1 (2241)))) }
is concave with respect to decisions q:. Moreover, the decision set Aiiq(a:t) is convex. The result also holds

for ¢ = Id and u of CARA type.

The proof is available from the authors on request.
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3.5 J; as the arbitrage price of the portfolio in complete markets

In this section, we show that, in complete markets, J; is the arbitrage price of the portfolio under the

two conditons: ¢(x) = x (no preference for smooth versus irregular cash flows in time dimension) and

B; = e "(Bir1—0i) (one period discount factor). These two assumptions will hold throughout section 3.5.
Property 3.5.1:

Ji(x;) = Mazx ‘/;Id’"(G) is never greater than the risk-neutral objective JI™(z;) = Mazx ‘/;Id’ld(G)

(qr)e>i €A (2;) (qr)e>i €A (2;)

Proof: The concavity of u implies that for all random variables X:

u”H(E[u(X)]) < E(X) (16)

It results, by a simple recursion, that:
VG € G, Vie T, V/(G) = G+ B (B, (u(V5") < Gr + By, (VT = V@)

and the property holds. [

Property 3.5.2: When conditional values Vi1 computed at stages k (k =1i,..,T —1) are non stochastic,
then Vild’" is the sum of discounted cash flows from stage i to stage T

Proof: In this case, u™! ([, (u(VkIf’lu))) = Vklfi“ for all k = 4,...,T — 1, and, therefore, V;**(G) =
G+ &V}ﬂ_d{" = Z{:Z e "0=9) G by a simple recursion.]

The consequence is that, in a complete market setting (i.e., deterministic demand and no liquidity con-

straints), J; is at least equal to the arbitrage price of the portfolio.

Property 3.5.3: In a situation of market completeness, J;(x;) is equal to the arbitrage price of the

portfolio J'*(z;) = ( )Maiv“( )Ete@, (Z{:z e TO=0)G ), where Q is the (unique) risk-neutral measure
@ )k>i €A(T;) "

Proof: This property is derived from the following observations:
- Ji(z)) < Max ViIde(G), as exhibited in property 3.5.1
(gr)r>i €A(z:)

T )Maiv“( )Vild’ld(G) = J"(x;), because the optimal value of the risk-neutral retailer’s portfolio is
k) >i €A(T:

equal to its arbitrage price.

- Ji(z;) > JP(x;), as shown in property 3.5.2.0

Property 3.5.4: If markets are complete and u strictly concave, then the risk of the optimal strat-

egy (g )k>i s null.
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Proof: The equality between J;(x;) and J/™(z;) implies an equality in equation (16) for each X = Vj44,
and, because the fonction w is stricly concave, the equality is possible only if uncertainty on all V; is null.(]
Consequently, we obtain the satisfactory property that the optimization programme also provides a hedg-
ing strategy.

To conclude this paragraph, we can note that the question of estimating the ask and bid prices of a
physical asset or financial contract in incomplete markets remains to be solved. As often done in the
literature , we define the ask (bid) price as the difference of the values of J;, with and without the bought
(sold) asset. Under this definition, the bid and ask prices of an asset depend not only on the risk aversion

of the manager but also on her initial portfolio, a classical property in a situation of incompleteness.

3.6 A model for the evolution of the forward curve and demand

We assume a classical one-factor evolution model for the market forward curve F(i, j):
F(i,§) = F(i —1,5)M; jexp(e ¥ 0i=0) X)) Vj > iVi> 2 (17)

where (X;);>2 is a discrete-time stochastic process composed of independent variables with law N (0, (¢i%)?),
(k;) are positive parameters, and (M; ;);>; are positive constants ensuring that F'(i,j);<; are martingale
processes. In this model, only one type of shock is allowed for the forward curve, namely translations,

with an amplitude vanishing with time to delivery.

Regarding the demand process (d;);>2, we assume that it is driven by a discrete-time stochastic pro-

Y

cess (Y;) (typically the temperature), composed of independent variables with law N (0, (0))?) positively

correlated with the price process with correlation coefficients (p;):
di = maa:(fi, CZZ + Y;) (18)

where (f;) are positive floors ensuring that the demand process is positive, and (d;) are the average
demands at each period.

As a conclusion, to simulate the joint evolution of forward curve and demand at periods (p;), we only
need to jointly simulate the random variables (X;) and (Y;) for i = 1,...,T and then use formulas (17)

and (18).
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4 Numerical results

4.1 The event tree

We use here a standard stochastic programming technique to solve the problem. The set of realizations of
the demand and the forward curve is represented on an event tree with nodes n € A/, the decisions ¢(t, w)
are indexed on the nodes of the tree, and the time-1 objective is maximized numerically with respect to
all decisions (¢, )nenr using a large scale non linear solver.

To build the event tree, we use a two-dimensional lattice (see Webber (1997)), replicating exactly the first
two moments of the process (X,Y") at each time step.

The four vertexes of the unit square first provide the equiprobable joint realizations of a vector Z = ()~( , )7)

of two uncorrelated zero mean unit variance random variables:

Figure 1: Scenarios for two uncorrelated random variables

The extension to two correlated variables is straightforward: considering a vector of two uncorre-

lated unit variance variables Z = (X,Y), the vector of random variables Z = (X,Y) = AZ with

2
Oz 0 . . (02)°  pogoy
A= have zero mean and covariance matrix ¥ =

poy /1= p’oy pozoy  (0y)?

Therefore, we proceed in the following way to build the event tree on the price/demand process:

1 1 -1 -1
- first, using the matrix M = , whose columns represent the four joint realiza-

1 -1 1 -1

tions of a vector (X,Y") of two uncorrelated zero mean, unit variance variables, we form the 2 x 4 matrix
N = AM, whose columns are the realizations of the vector (X1, Y1), representing the price/demand nodes
at time 1

- then, we attach to each node of period 1 the son nodes given by the matrix N = AM, and so on, until

18
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Figure 2: Event tree

the last period
- finally, we apply formulas (17) and (18) to get the forward curve and the demand at each node, the term
M;,; being determined by the martingale condition at node n:
. . . 1 .
Fn(l_l,J):En(Fm(laj)): Z ZFm(Z,J) (19)
meS(n)

where S(n) is the set of sons of node n, which gives:

1
M; ;= 08 (20)
" Yomes(n) pexp(ek:0i=0) xm)

It is important to point out here that the term M depends only on ¢ and j and not of node n because
the variables (X;,Y;) are independent of (X;_1,Y;_1), hence the sets {X[™, m € S(n)} are the same for

every node n of date 6; 1.

We obtain 47! different scenarios from period 1 to period T'.
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4.2 The setting

We assume the following setting:

- the retailer is trading an energy product, whose price is expressed in €/MWh

- there are five periods of one quarter each: during the first quarter, the retailer faces no demand and
replenishes her storage facility using the spot market in order to meet the unknown client’s demand in
the following year

- the storage has an initial level at 20 TWh, a maximal withdrawalinjection/withdrawal per period of 10
TWh, a maximal (resp. minimal) storage level of 50 TWh (resp. 0), and a minimal end level of 20 TWh
- the forward price dynamics are represented by the model described in equation (17) with parameters
k; = 2 years™' and volatility G'iX = 0.2 Vi > 2; the initial forward curve is supposed to be flat at the level
20 €/MWh; in particular, the initial spot price equals 20 €/MWh

- the maximal allowed traded volume in the market decreases withtime-to-delivery: it equals 30 TWh for
contracts delivering in the present quarter (”spot” transaction), 10 TWh for contracts delivering in the
next quarter, 5 TWh for contracts delivering in two quarters, and 0 TWh for contracts delivering in the
following periods

- the selling price on the sale contract is 21 €/MWh (hence a margin of 5% with respect to the average
market forward price); regarding the demand characteristics, we suppose that d; = 0, and Vi > 2: o¥ = 10
TWh, d; = 20 TWh, f; = %, and p; = 0.5. The realizations of (X,Y") at each time step are represented
on figure (2(c)): we note that there are four different realizations for the demand process and two only
for the price process

- we adopt CARA utility functions u(z) = —e™** and ¢(z) = —e™"® to represent risk aversion and
substitution preferences, with varying risk aversion and substitution parameters A and pu; interest rates
are set, to 0.

Figures (2(a)) and (2(b)) show the forward curve and demand scenarios. The mean-reverting nature of

the spot price is visible.
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4.3 Effect of optimal strategies on the final and minimal wealths

Figure (3(a)) shows the mean variance trade-off in the final wealth obtained when risk aversion varies and
the function ¢ remains equal to identity. When the risk is defined as the Conditional Value at Risk'® on
the final wealth Wy!tt:

CVaR, (W) = E(~Wr| — Wr > VaR,(W)) (21)

the expected mean is an increasing function of risk, as shown in figure (3(a)). For example, a decrease of
the 0.5% (resp. 5%) CVaR on final wealth from 611 (resp. 505) to 371 (resp. 291) M€ implies a decrease
of the expected final wealth from 67 to 15 M€. Figure (3(b)) represents the trade-off between the risks
of the final wealth and temporal minimal wealth!?. Figure (3(b)) shows that it is possible to exchange
bankruptcy risk for final wealth risk by decreasing the ratio of parameter A to parameter y. For example,
to cut the 0.5% (resp. 5%) CVaR on temporal minimal wealth from 1059 to 545 (resp. 473) M€, one
has to accept a rise of the 0.5% (resp. 5%) CVaR on final wealth from 365 (resp. 296) to 516 (resp. 458)
M<€. However, the exchange of bankruptcy risk for final wealth risk has limits: Figure (3(b)) shows in
particular that it is not possible to bring down the 0.5% (resp. 5%) CVaR on temporal minimal wealth
below a certain threshold, corresponding to the pair (A = 0.1, x = 0.001) (resp. (A = 0.01, x = 0.0005)).
Figures (4(a)) shows the cumulative function of the final wealth over the 256 tree scenarios used in
the optimization procedure under different values of risk aversion. In figure (4(a)), we observe that a
risk aversion of 0.02 allows to significantly reduce the left tail up to 5% of the distribution obtained
under a risk-neutral strategy. The cost of a higher risk aversion is that the main part of the final wealth
distribution (to the right of the 10% quantile) is significantly moved upright. Figure (4(b)) shows the
distribution of the minimal wealth over time: we see that a more concave function ¢ significantly reduces
the likelihood of a very negative minimal temporal wealth, which is a consequence of the smoothing
of cash flows in the time dimension. However, as shown by figure (4(a)), if the ratio & becomes too
high (e.g.(A = 0.01, z = 0.0005)), the final wealth distribution exhibits a large left tail. If the portfolio
manager seeks to strike a balance between final wealth and bankruptcy risk management, he may choose

(A =0.1,u = 0.001) or (A =0.01,x = 0.0001). Figure (5) represents the intermediate wealths obtained

YV aR,(W) is the well-known Value-at-Risk associated to quantile ¢
Uthe wealth W; at the end of period p; is defined as the cumulative sum of cash flows from period p; to period p;

12Temporal minimal wealth is defined as Minic(1,2,3,4,5} Wi; the temporal minimal wealth distribution is thus directly linked

to bankruptcy risk
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Figure 3: Trade-offs between expected wealth/final wealth risk and final wealth risk/bankruptcy risk

22



20%
18%
16% -
14%
12%

10%

%

6%

4%

2%

0%

RJ@??&D@?J@&@P@ﬁ@ﬁ@ﬁ@&@&@l\@h&,@ &P

(a) Final wealth cumulative function (in M€); the case

XA =0 (resp. p = 0) corresponds to a function u (resp.

@) equal to identity

100% —; l. |[
90% — 02, p=0 ' J|
et | IR y e 1 ] J
70% A0.01, 4=0.0005 7
E0% o
i, / r
A% ] I i
o | {f —

0 | — /
10% 'Il ,
FF P PSP P TP P

(b) Temporal minimal wealth (in M€) cumulative func-

tion in incomplete markets; the case A = 0 (resp. pu = 0)

corresponds to a function u (resp. ¢) equal to identity

Figure 4: Final and temporal minimal wealth cumulative functions for different risk aversion and substitution

parameters

at the different nodes of the event tree for different couples of (A, ) and confirms the above conclusions:
choosing (A = 0.01,x = 0.0005) allows one to control the intermediate wealth risk but implies a great
dispersion of the final wealth; conversely, choosing (A = 0.02, u = 0) offers a very narrow range of final

wealths but with a high bankruptcy risk at the end of the second period; the choice (A = 0.01, x = 0.0001)

represents a trade-off between and final and intermediate wealth risks.
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Figure 5: Cumulative wealths (in M€) in the different nodes of the event tree for different pairs (X, p)

4.4 Portfolio value

Figure (6(a)) represents the portfolio value defined in section 3.5 for different risk aversion parameters.
The portfolio value is a decreasing function of the risk aversion parameter. The spread between the
risk-neutral and positive risk aversion values can be interpreted as a risk premium, whose value increases
logically with the risk aversion parameter.

The value of the sale contract, obtained by setting the storage flexibility to zero in the original portfolio'?,
behaves similarly. The storage value, obtained by setting the client’s demand to zero in the retailer’s
portfolio, does not depend on the risk aversion parameter: this is due to the fact that, under the liquidity
assumptions made in section 4.2, the storage facility has a unique arbitrage value (here 55.26 M€) which
can be secured by appropriate forward transactions; in this context, the optimum .J; of the storage
management problem reduces to the storage arbitrage value, as explained in section 3.4. The synergy

value which is defined as the spread between the portfolio value, on the one hand, and the sum of the sale

13Setting the storage flexibility to zero may cause the problem to be infeasible in the case of illiquid markets and non-
interruptible clients; estimating the sale contract value may thus require in some situations the introduction of artificial inter-
ruption/emergency supply costs to relax the possibly too restrictive volume constraints; in our example, the clients’ demand

could be met in every scenario only with the illiquid market
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aversion parameters and different demand volatilities

contract and storage separate values'#, on the other hand, is null for a risk-neutral retailer and increases
with the risk aversion parameter, which expresses the fact that the synergy between sale contract and
storage facility is in term of risk management rather than in term of expected return.

Figure (6(b)) represents the synergy value in term of the risk aversion parameter under different demand
volatilities. It is observed that the synergy value increases with demand volatility, which means that the
storage facility’s value-added in the retailer’s portfolio increases with the demand uncertainty. Figure (7)
shows that the storage’s value added becomes null in a context of high forward market liquidity, even in
the presence of volume uncertainty: the synergy effect arises only under an illiquid forward market. In
addition, the portfolio value varies from —89 to 37 M€, depending on the forward market liquidity, which

points out the importance of liquidity assumption for portfolio valuation.

"the synergy value also equals the spread between the storage portfolio value defined in section 3.5 and the storage arbitrage

value
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Figure 7: Portfolio and synergy values (in M€) for the different settings of forward market liquidity described

in table (1) (with A = 0.01 and demand volatility ¢ = 10 TWh)

Q) QI Q2 Q3 Q4

low liquidity setting 30 10 b 0 0

medium liquidity setting 30 10 10 10 10

high liquidity setting 30 30 30 30 30

Table 1: Description of the three liquidity settings: QO represents the maximal volume of ”spot” transactions,
Q1 the maximal volume for delivery in the next quarter, Q2 the maximal volume for delivery in the next

following quarter...

5 Conclusion

We have developed in this paper a tractable model to introduce time-consistency in managing a commodity
portfolio. In this order, we assessed two different types of risk objectives: only the recursive dynamic
value measure based on a utility-type aggregator and certainty equivalent was found to be time-consistent.
Moreover, this form of dynamic value measure has the appealing feature of disentangling the components
of risk across states of nature and temporal substitution and making them transparent to the decision
maker. These properties are illustrated on a numerical example. The use of the model significantly
reduces the left tail in the final wealth distribution, and leads to a satisfactory trade-off between final

wealth risk and expected wealth when risk is represented by Conditional Value at Risk. Lastly, the model
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allows one to define an optimal strategy between decreasing the risk of the final wealth and reducing the

likelihood of a bankruptcy within the time horizon.
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