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Time-
onsisten
y in managing a 
ommodity portfolio : a dynami
 riskmeasure approa
hH�elyette GEMAN Birkbe
k College, University of London and ESSEC Business S
hoolSteve OHANA Birkbe
k College, University of London�De
ember 2005
Abstra
tWe 
onsider the problem of the manager of a storable 
ommodity (e.g. hydro,
oal) portfolio fa
ingdemand risk while having a

ess to storage fa
ilities and illiquid spot and forward markets. In thissetting, we emphasize that a dynami
ally 
onsistent way of managing risk over time must be introdu
ed.In parti
ular, we demonstrate the temporal in
onsisten
y of stati
 risk obje
tives based on �nal wealthand advo
ate the use of a new 
lass of re
ursive risk measures su
h as those suggested by Epstein et al.(1989) and Wang (2000) for portfolio optimization and valuation. This type of risk measures not onlyprovide time-
onsistent de
ision plannings but allow the portfolio manager to 
ontrol independently theo

urren
e of 
ash-
ows a
ross time and a
ross random states of nature. We illustrate the dis
ussion in anempiri
al se
tion where the trade-o� between �nal wealth risk and bankrupt
y risk at an intermediate dateis analyzed and the synergy between the physi
al assets 
omposing a 
ommodity portfolio is assessed.

�The authors thank Paul Kleindorfer and Stanley Zin for helpful 
omments. They also are grateful to Olivier Bardou,Guillaume Leroy, David Game, and Jean-Ja
ques Ohana for useful suggestions.1



1 Introdu
tionWe 
onsider the situation of a retailer, who is engaged in long-term sale 
ontra
ts, owns storage fa
ilitiesand 
an trade the 
ommodity in illiquid spot and forward markets. The retailer is fa
ing a portfoliooptimization problem, that translates into de
iding at ea
h time step whi
h quantity to inje
t in orwithdraw from her storage fa
ilities and trade in the spot and forward market, and a portfolio valuationproblem, that 
onsists in assessing the value of the global portfolio and of ea
h asset 
omposing it. Theoptimization and the valuation take pla
e in the 
ontext of two types of risk: the volume risk that arisesfrom the random demand of long-term 
ustomers and is related to exogenous non traded variables su
has weather, and the pri
e risk that is linked to the volatility of the 
ommodity pri
e.In this in
omplete market setting, the value of the retailer's portfolio is not uniquely determined byarbitrage 
onsiderations and an integrated portfolio approa
h is needed to handle liquidity 
onstraints.The sto
hasti
 programming literature, on the one hand, has essentially treated situations where portfoliomanagement is analyzed through a mean-varian
e 
riterion applied to �nal or intermediate wealths, andfully de�ned at the �rst de
ision date. In parti
ular, the risks arising at intermediate de
ision datesare not taken into a

ount, leading to possible 
on
i
ts between de
isions taken over time. Examplesof this approa
h are found in Unger (2002), where a CVaR 
onstraint on the �nal wealth is addressedthrough a Monte-Carlo approa
h, in Martinez-de-Albeniz et al. (2005), where mean-varian
e trade-o�sare 
onsidered and yield expli
it solutions in a one-step framework, and in Kleindorfer et al. (2004), wherethe 
ase of a multi-period VaR 
onstraint on 
ash 
ows is examined.The literature on de
ision theory, on the other hand, has paid a deserved attention to the problem ofdynami
 
hoi
e under un
ertainty. Originally, it was the problem of dynami
 
onsumption planning thatwas analyzed by e
onomists. In a seminal paper, Epstein et al. (1989) introdu
e a set of dynami
 utilities,de�ned re
ursively in a dis
rete time setting, and allowing one to separately a

ount for the issue ofsubstitution -
ontrolling 
onsumption over time- and risk aversion -
ontrolling 
onsumption a
ross randomstates of nature. In �nan
e, dynami
 risk measures were re
ently introdu
ed to a

ount for the o

urren
eof a stream of random 
ash-
ows over time. A general requirement for these risk measures is their time-
onsisten
y (see e.g., Artzner et al. (2002)) be
ause, as emphasized by Wang (2000), multi-period risksare reevaluated as new information be
omes available, whi
h raises the issue of the 
ompatibility between
onse
utive de
isions implied by the risk measure. 2



Our arti
le, to our knowledge, is the third attempt after Chen et al. (2004) and Ei
hhorn et al. (2005)and to use dynami
 risk obje
tives in inventory and 
ontra
ts portfolio problems. Ei
hhorn et al. (2005)use a restri
tion of the set of 
oherent dynami
 risk measures de�ned by Artzner et al. (2002) to solvean ele
tri
ity portfolio optimization problem but do not raise the problem of time 
onsisten
y of optimalstrategies. Chen et al. (2004) de�ne their obje
tive fun
tion as an additive intertemporal utility of the
onsumption pro
ess of the portfolio manager. Instead, we 
hoose the Epstein et al. (1989) non additiveintertemporal utility obje
tive and apply it dire
tly to the 
ash 
ow pro
ess. The impa
t of this 
hangeis signi�
ant : in our setting, the initial wealth is not a state variable, the only state variables being theinventory level, and the 
umulative positions in the forward market for ea
h future delivery period; inaddition, the retailer's problem appears as a 
ash-
ow stream management one rather than a 
onsumptionplanning one; lastly, the 
exibility of the non additive intertemporal utility allows the portfolio managerto separately 
ontrol the distribution of 
ash 
ows a
ross time periods and a
ross states of nature, whi
his not allowed by an additive utility obje
tive on the 
onsumption pro
ess1.The 
ontribution of this paper is twofold: i) on the methodologi
al side, we de�ne the 
on
ept of time-
onsisten
y of optimal strategies, show that the 
lassi
ally used stati
 risk measures on �nal wealth arenot time-
onsistent and advo
ate the use of re
ursive utilities as a time-
onsistent and 
exible measure forportfolio risk management and valuation; ii) on the operational side, we provide a tra
table framework todynami
ally manage physi
al assets under random demand and evolution of spot and forward 
ommoditypri
es, and show on a numeri
al example how the use of re
ursive utilities 
an help strike a trade-o�between �nal and intermediate wealth risk management and assess the synergy between the physi
alassets 
omposing a 
ommodity portfolio.The remainder of the paper is organized as follows. In se
tion 2, we de�ne the time-
onsisten
y of optimalstrategies and 
ompare two obje
tives with respe
t to the issues of time-
onsisten
y, and risk/substitutionpreferen
es. In se
tion 3, we present the retailer's portfolio management problem and provide a pri
ingformula and bid/ask pri
es for physi
al 
ommodity assets. Se
tion 4 presents a numeri
al illustration ofthe main �ndings. Se
tion 5 
ontains 
on
luding 
omments.1Note that our framework redu
es to the one of Chen et al.(2004) when substitution preferen
es are ignored and when CARAutility fun
tions are used
3



2 A 
omparison of dynami
 risk obje
tivesThe obje
tive of this se
tion is to present two examples dynami
 risk preferen
es and assess their time-
onsisten
y properties, whi
h we view as an original 
ontribution of the paper.2.1 Stati
 risk measuresIn the 
ase of one period settings, a number of stati
 risk measures have been de�ned to express preferen
esof risk averse agents (see e.g., Artzner et al. (2000) and Frittelli et al. (2002)). Mathemati
ally, a (stati
)risk measure is a fun
tion, here denoted �, asso
iating to a 
ontingent 
laim X a real number �(X). �(X)represents the pri
e that it is a

eptable to pay in order to pur
haseX and ��(�X) represents the 
apitalthat must be provisioned in order to make a short position in X a

eptable.2.2 Risk measure asso
iated to a stream of 
ash 
ows2.2.1 Possible 
riteria for 
ash 
ow streams assessmentDe�ned on a �ltered probability spa
e (
;F ;P; (Ft)), the dis
rete-time sto
hasti
 pro
essG = (Gi)i=1;:::;T ,represents a sequen
e of random 
ash 
ows o

urring at times (�i)i=1;:::;T . G is the set of all F�i-adapted
ash 
ow pro
esses from i = 1 to i = T . We 
hoose F�1 = f;;
g (G1 is deterministi
), and F�T = F , sothat full information is revealed at date �T .A dynami
 value measure V = (Vi)i=1;:::;T 
onsists of mappings Vi : G � 
 ! R that asso
iate to ea
h
ash 
ow pro
ess G 2 G and to ea
h ! 2 
 a real number Vi(G;!). The resulting sto
hasti
 pro
ess(Vi) is F�i-adapted. Finan
ially, it represents the value of the sequen
e of 
ash 
ows (Gk)k=1;:::;T or the
apital requirement to 
over the liabilities (�Gk)k=1;:::;T at date �i.Let us now propose two 
ategories of dynami
 values measures for streams of 
ash 
ows:1. The �rst 
ategory 
onsists of extensions of stati
 
riteria depending on the wealth a

umulatedbetween date �i and date �T : Wi;T := TX�=iG�Vi(G;!) = �(Wi;T jF�i) (1)In the above equation, � is a one-step risk measure and the notation �(:jF�i) refers to 
onditioningon the information available at date �i. 4



2. A se
ond 
ategory of 
riteria (proposed by Epstein et al. (1989) and Wang (2000)) are re
ursively
onstru
ted from the end of the time period by de�ning:VT (G;!) = GTVi(G;!) = W (Gi; �(Vi+1jF�i)) 8i � T � 1 (2)In the above equation, � is a one-step 
ertainty equivalent2 and the mapping W : R2 ! R is 
alledan aggregator. In this framework, the date �i value is assessed re
ursively by aggregation of the
urrent 
ash 
ow Gi and 
ertainty equivalent of Vi+1 seen from date �i. An important observationis that the pro
ess (Vi) is F�i-adapted.2.3 Time 
onsisten
yTime-
onsisten
y is a property whi
h guarantees that preferen
es implied by a dynami
 value measure donot 
on
i
t over time.2.3.1 Examples of time-in
onsisten
yConsider the two 
ash 
ow streams A and B, where all transition probabilities are supposed to equal 0:5:
����������

�����HHHHH
�����HHHHH

3 1(state u)
0(state d)

7(state uu)1(state ud)6(state du)1(state dd)A
����������

�����HHHHH
�����HHHHH

3 2(state u)
1(state d)

4(state uu)1(state ud)3(state du)1(state dd)BLet us evaluate stream A using the dynami
 value measure (1) with �(X) = u�1(E [u(X)℄), u(x) = ln(x):V2(A; u) = exp(E(ln(WA2;3ju))) = exp(0:5(ln(8) + ln(2))) = 4; V2(A; d) = exp(E(ln(WA2;3jd))) = p62We adopt Wang's de�nition of the 
ertainty equivalent, i.e., a stati
 measure � verifying the monotoni
ity property (whi
hinsures that if a random variable X is larger than Y in every state of the world, then �(X) � �(Y )) and redu
ed to the identityon the spa
e of 
onstant random variables. 5



V1(A) = exp(E(ln(W1;3))) = exp(0:25(ln(11) + ln(5) + ln(9) + ln(4))) = (55� 36) 14Now evaluate stream B:V2(B; u) = exp(E(ln(WB2;3ju))) = exp(0:5(ln(6) + ln(3))) = p18; V2(B; d) = exp(E(ln(WB2;3jd))) = p8V1(B) = exp(E(ln(WB1;3))) = exp(0:25(ln(9) + ln(6) + ln(7) + ln(5))) = (54� 35) 14We thus have simultaneously the following inequalities:V2(A; u) < V2(B; u); V2(A; d) < V2(B; d); V1(A) > V1(B)As a result, the dynami
 value measure V de�ned in (1) quali�es B as preferable to A in all states of theworld at time 2 and A preferable to B at time 1, hen
e its time in
onsisten
y.Time 
onsisten
y does not hold either if � is a mean-varian
e instead of an expe
ted utility 
riterionin equation (1). To see this, 
onsider the two following 
ash 
ow streams A (left) and B (right), withtransition probabilities being written on top of ea
h ar
:
����������

�����HHHHH0 0 (state u)
0 (state d)

1 (state uu)0 (state ud)
0

1212
3414

A
����������0 0 (state u)

0 (state d)
0.5
0

1212
BLet us evaluate stream A using the dynami
 value measure (1) with �(X) = E(X) � V ar(X):V2(A; u) = E(WA2;3 ju))� V ar(WA2;3ju)) = 34 � (34 � 916) = 916V2(A; d) = E(WA2;3 jd))� V ar(WA2;3jd)) = 0V1(A) = E(WA1;3 ))� V ar(WA1;3)) = 12 � 34 � (38 � 964) = 964

6



Now evaluate stream B:V2(B; u) = E(WB2;3 ju))� V ar(WB2;3ju)) = 12V2(B; d) = E(WB2;3 jd))� V ar(WB2;3jd)) = 0V1(B) = E(WB1;3 ))� V ar(WB1;3)) = 12 � 12 � (12 � 14 � 116) = 316 = 1264We thus have simultaneously the following inequalities:V2(A; u) > V2(B; u);V2(A; d) � V2(B; d);V1(A) < V1(B)2.3.2 De�nition of time 
onsisten
y and 
omparison of the two 
riteriaWe assume that the 
ash 
ows depend on de
isions that are made at ea
h date �i, using the informationavailable at this date. De
ision at date �i is the result of the optimization of a dynami
 value measure ofthe type des
ribed above. This optimization not only yields the �rst de
ision at that date, but a wholede
ision planning for all subsequent stages. The question we pose in this se
tion is the following: areoptimal plannings 
onsistent over time?Let us de�ne the problem formally: 
onsider a 
ash 
ow sequen
e (Gi)1�i�T , o

urring at dates (�i)i�1,depending on de
isions (qi)1�i�T and on a multi-dimensional random pro
ess (�i)1�i�T : Gi := f(qi; �i).(�i) is assumed to be of the type �i+1 = g(�i; �i+1) for some reasonably behaved fun
tion g, and a whitenoise ve
tor pro
ess (�i).We introdu
e the state variables xi on whi
h depend de
isions at time �i and denote A(xi) the set ofadmissible strategies (qk)i�k�T at time �i. We suppose that, after de
ision qi is made at time �i, the statexi leads to xi+1 = h(xi; qi; �i+1; �i+1), where h is a deterministi
 fun
tion and (�i) a white noise ve
torpro
ess possibly 
orrelated with (�i). We denote (F�i) the �ltration generated by the pro
esses (�i; �i);(qi) is supposed to be an (F�i)-adapted pro
ess.Lastly, we 
onsider the following optimization problem, related to a dynami
 value measure V :Ji(xi) := Max(qk)k�t2A(xi)Vi(G) (3)We denote (q�ik (xi))k�i the resulting (F�i)-adapted optimal strategy de
ided at date �i3. The question of
onsisten
y of optimal strategies 
an be formulated in the following way:Is q�ii+1(xi; �i+1; �i+1) equal to (q�(i+1)i+1 (xi+1)), where xi+1 = h(xi; q�i(xi); �i+1; �i+1)?3We suppose throughout this se
tion that all en
ountered optimization problems have a unique solution7



We now turn to the time 
onsisten
y of optimal strategies derived from the two dynami
 value measuresde�ned above.- First, let us 
onsider the �nal wealth obje
tive de�ned in equation (1) with �(X) = u�1(E [u(X)℄),i.e,Vi(G;!) = u�1 (E(u(Gi +Gi+1 + :::+GT )jF�i)))4:Ji(xi) : = Max(qk)k�i2A(xi)Vi(G)= u�1�Maxqi Max(qk)k�i+1E�i (E�i+1 (u(Gt +Gi+1 + :::+GT )))�= u�1�Maxqi E�i ( Max(qk)k�i+12A(xi+1)E�i+1 (u(Gi +Gi+1 + :::+GT )))�The date �i+1 implied problem Max(qk)k�i+1E�i+1 (u(Gi +Gi+1 + :::+GT ))) di�ers from the one derived fromthe dynami
 value measure (Vi), i.e., Max(qk)k�i+1Vi+1 = E�i+1 (u(Gi+1 +Gi+2 + ::: +GT )). As a result, theoptimal strategy de
ided at time i di�ers from the optimal strategy exhibited at time i+ 1.Time in
onsisten
y remains if we use a mean-varian
e obje
tive instead of an expe
ted utility. In orderto further investigate this issue, let us 
onsider a sequen
e of three 
ash 
ows (G1; G2; G3), depending onthe (F�i)-adapted pro
ess (��i)i=1;2;3 and F�i-measurable de
isions (qi)i=1;2;3, and let us de
ompose thevarian
e of the sum of these 
ash 
ows. As usual, we denote V ar�i(X) := V ar(X jF�i).V ar�1(G1 +G2 +G3) = V ar�1(G2 +G3) = E�1 [(G2 +G3)2℄� [E�1 (G2 +G3)℄2= E�1 [E�2 ((G2 +G3)2)℄� [E�1 (E�2 (G2 +G3))℄2= E�1 [E�2 ((G2 +G3)2)℄� E�1 ([E�2 (G2 +G3)℄2) + E�1 ([E�2 (G2 +G3)℄2)� [E�1 (E�2 (G2 +G3))℄2= E�1 [V ar�2(G2 +G3)℄ + V ar�1(E�2 (G2 +G3)) = E�1 [V ar�2(G3)℄ + V ar�1(G2 + E�2 (G3))The last equality illuminates why total varian
e is time in
onsistent: the F�1-measurable term V ar�1(G2+E�2 (G3)) is 
ontrolled by both de
isions q1 and q2, in 
ontrast to the term G1, whi
h depends only on thede
ision q1. This fa
t 
ompromises the existen
e of any dynami
 programming equation linking optimalstrategies at dates �1 and �2:J1(x1) : = Max(qk)k=1;2;32A(x1) fE�1 (G1 +G2 +G3)� V ar�1(G1 +G2 +G3)g= Max(qk)k=1;2;3 fG1(q1)� V ar�1(G2 + E�2 (G3)) + E�1 (E�2 (G2 +G3)� V ar�2(G3))g6= Maxq1 �G1(q1)� V ar�1(G2 + E�2 (G3)) + E�1 ( Max(qk)k=2;32A(x2)E�2 (G2 +G3)� V ar�2(G3))�4From now on, we will denote E(X jF�i ) = E�i (X) 8



- We now turn to the dynami
 value measures des
ribed in equation (2).As a �rst observation, let us 
onsider the 
ase of a linear aggregatorW (x; y) = x+y. The date �i obje
tivederived from the value measure Vi de�ned by equation (2) is then:Ji(xi) : = Max(qk)k�i2A(xi)Vi(G)= Max(qk)k�i fGi(qi) + ��i(Vi+1)g= Maxqi �Gi(qi) + Max(qk)k�i+12A(xi+1)��i(Vi+1)�The question at this stage is to know whether permuting the operatorsMax and operator � is legitimatein the last equality, i.e., if the following property holds:Max(qk)k�i+1��i(Vi+1) ?= ��i( Max(qk)k�i+1Vi+1) (4)If the permutation is valid, then the optimal strategies will be time-
onsistent sin
e the date �i+1 impliedproblem Max(qk)k�i+1Vi+1 will 
oin
ide with the optimization problem at stage i+1; otherwise, they will not.Let us try the aggregatorW (x; y) = ��1(�(x)+��(y)) and 
ertainty equivalent �(X) = u�1(E [u(X)℄),where u and � are in
reasing fun
tions and � is a positive dis
ounting fa
tor5:Ji(xi) : = Max(qk)k�i2A(xi)Vi(G) = Max(qk)k�i2A(xi)��1(�(Gi(qi) + ��(��i(Vi+1)))= ��1 � Max(qk)k�i2A(xi) f�(Gi(qi)) + ��(��i(Vi+1))g�= ��1 �Maxqi ��(Gi(qi)) + ��( Max(qk)k�i+1��i(Vi+1))��The inversion between operators Max and � in the last equality is permitted asMax(qk)k�i+1��i(Vi+1) = Max(qk)k�i+1u�1 (E�i (u(Vi+1))) = u�1�E�i ( Max(qk)k�i+12A(xi+1)u(Vi+1))�= u�1�E�i (u( Max(qk)k�i+12A(xi+1)Vi+1))� = ��i( Max(qk)k�i+12A(xi+1)Vi+1)We 
an now present a general suÆ
ient 
ondition of time 
onsisten
y for optimal strategies:Property 2.1: If there exist non de
reasing fun
tions a b, 
, and d and positive numbers �t su
h thatVi(G) = a hfb(Gi(qi)) + �i
 [E i (d (Vi+1(G))℄gi (5)then the dynami
 value measure (Vi) leads to time-
onsistent optimal strategies.For the re
ursive value pro
ess de�ned by utility fun
tions � and u, equation (5) holds with a = ��1,5This parti
ular 
hoi
e for the aggregator and the 
ertainty equivalent was �rst suggested by Epstein and Zin (1989) andlater on extended by Wang (2000) to in
orporate ambiguity aversion9



b = �, 
 = �Æu�1, and d = u. In the 
ase of 
lassi
al expe
tation maximization (risk-neutrality), equation(5) holds with a = b = 
 = d = Id.2.4 Risk and substitutionWe have mentioned earlier that the problem of dynami
 optimization under un
ertainty involves twodimensions, one with respe
t to the distribution of 
ash 
ows a
ross states of nature, the other over 
on-se
utive time periods. The �rst dimension has an e�e
t on the �nal wealth distribution while the se
ondone impa
ts the likelihood of bankrupt
y within the time period.Dynami
 value measures de�ned in equations (1) are not appropriate to 
apture the risk atta
hed to in-termediate 
ash 
ows sin
e they are based on �nal wealth. By 
ontrast, re
ursive dynami
 value measuresallows one to disentangle randomness and time 
omponents, via the 
ertainty equivalent � and the ag-gregator W (respe
tively a

ounting for the risk aversion and the substitution preferen
es of the de
isionmaker). For instan
e, in the 
ase of re
ursive dynami
 value measures based on utility fun
tions, the
on
avity of the fun
tions u and � leads to the smoothing of 
ash 
ows distributions in both dimensionsand in turn to a joint 
ontrol of the �nal wealth risk and bankrupt
y risk.Remark: The 
hoi
e u = � in re
ursive value measures derived from utility fun
tions u and � leads to the
lassi
al obje
tive: Vi(G) = u�1(E�i (PTk=i ��k��iu(Gk))), whi
h has been widely used in 
onsumptionand portfolio 
hoi
e problems in �nan
e (e.g., 
onsumption-based CAPM). Of 
ourse, this obje
tive istime 
onsistent and 
aptures both risk aversion and substitution; its drawba
k is that it does not o�eras mu
h 
exibility as a more general re
ursive value measure sin
e risk aversion and substitution arerepresented by the same fun
tion u.As a 
on
lusion of this se
tion, we 
an state that re
ursive dynami
 value measures with utility typeaggregator and 
ertainty equivalent are satisfa
tory in regard to time 
onsisten
y of optimal strategiesand inter-temporal risk management.

10



3 The retailer's portfolio problem3.1 The modelWe adopt a dis
rete time setting, with a �nite horizon. The de
ision periods are denoted (pi), i = 1; :::; T(typi
ally months or quarters). The dates (�i) are de�ning the periods (pi). -date 1 date 2 ... date T�1 �2 �Tperiod 1 period 2 ... period TWe assume from now on that the retailer's portfolio is 
omposed of one sale 
ontra
t and one storagereservoir. In addition, the 
ommodity is supposed to be traded, stored, and 
onsumed in the samelo
ation (in order to avoid transmission 
osts and 
onstraints). The problem 
an be represented in astylized diagram:
-66??retailerstorage

market 
lient
Lmax is the maximal level of storage, Lmin is the minimal level of storage (at any date), Linit is theinitial storage level, Lend is the minimal storage level at the end of the horizon. Li represents the storagelevel at the end of period pi. Qinji denotes maximal inje
tion in period pi, Qdrawi maximal withdrawal; wesuppose there are no inje
tion/withdrawal 
osts nor holding 
ost. di denotes the 
lient's random demandin period pi, Ksi is the �xed selling pri
e of the 
ommodity for period i.Only forward 
ontra
ts are 
onsidered; 
ash 
ows due to forward 
ontra
ting are settled at maturityof the 
ontra
t and 
ounterparty risk ignored. We denote by F (i; j) the forward pri
e of the 
ommodityquoted during pi for delivery in period pj6 (j � i) and Si the spot pri
e of the 
ommodity, whereSi := F (i; i).Remarks:6Here, F (i; j) 
an be 
onsidered as the average pri
e over all the quotation dates belonging to period pi of all forward
ontra
ts for delivery in period pj 11



1. In our model, trading is only authorized at de
ision dates2. Even in the 
ase of illiquid markets, the retailer is assumed to be a pri
e-taker, meaning that hertrading de
isions will have no impa
t on market pri
esStorage de
ision variables 
orresponding to period pi are subje
t to the following 
onstraints:0 � qinji � Qinji ; 0 � qdrawi � Qdrawi i � 1 (6)L0 := Linit; Li+1 = Li + qinji � qdrawi 0 � i � T (7)Lmin � Li � Lmax 8i = 1; :::; T ; LT � Lend (8)n(i; j) denotes the net number of forward 
ontra
ts bought during period pi for delivery in period pj(j � i), the 
ase i = j being a spot transa
tion. N(i; j) represents the total forward position at the endof period pi for delivery in period pj and satis�es the 
onditions:N(0; j) := 0 8j � 1; N(i; j) = N(i� 1; j) + n(i; j) 8 1 � i � j (9)We model the sequen
e of events and de
isions in the following way: during period pi, the retailer dis
oversthe 
lient's demand and de
ides on date �i whi
h quantities n(i; j) to buy on the spot and forward marketand qinji or qdrawi to inje
t in or withdraw from storage, respe
ting the physi
al balan
e of 
ommodity
ows during period pi i.e., N(i; i) + qdrawi � qinji = di 8 1 � i � T (10)Equation (10) expresses that market and storage are the two ways to serve demand at period pi.We de�ne the dis
rete set of states of nature 
. Ea
h ! 2 
 represents a realization of the pro
ess�i = (di; F (i; j)j�i), i = 1:::T . We denote by (F�i) the �ltration generated by (�i). Throughout thepaper, we assume the absen
e of arbitrage opportunities in the 
ommodity spot and forward markets. On(
;F ;F�i), we de�ne a risk-neutral probability measure P, under whi
h forward pri
es are martingales7.We de�ne the set A of admissible strategies as:A := n(qi)i�1 = (qdrawi ; qinji ; n(i; j)j�i)i�1 F�i �measurable and verifying 
onstraints (6) to (10)o7We 
hoose here to work under a risk-neutral probability measure P to rule out a spe
ulative use of the spot and forwardmarkets; indeed, if forward pri
es were not martingales under P, the trading de
isions implied by our model 
ould be in
uen
edby possible spreads between forward pri
es and P-expe
ted values of spot pri
es, a feature whi
h is not relevant in the retailer's
ontext 12



3.2 De
omposition results in two parti
ular 
asesIn this se
tion, it is assumed that there are neither 
onstraints nor 
osts asso
iated to trading in theforward market. The risk-free interest rate r is supposed 
onstant. The goal here is to present two 
aseswhere the pri
ing issues and management of the portfolio are parti
ularly simple:- the �rst 
ase is the one of a liquid market and deterministi
 demand- the se
ond 
ase in
ludes un
ertain demand but assumes risk-neutrality of the retailer, hen
e the use ofa 
riterion of expe
ted pro�t maximizationIn both 
ases, a full de
omposition of the portfolio value and management is possible.The total 
ash 
ow during period pi is denoted as Gi and may be written as:Gi = diKsi � TXj=i e�r(�j��i)F (i; j)n(i; j) (11)Remark: Cash 
ows due to forward trading are in this paper registered at transa
tion date and dis
ountedfrom delivery date at the risk free interest rate r. We adopt this unusual rule be
ause we want 
ash
ows at dates �i to depend only on date �i de
isions and not on previous ones8, as would be the 
aseif 
ash 
ows from forward transa
tion had been registered at delivery date. Sin
e interest rates are
onsidered deterministi
, this representation has no 
onsequen
es on the �nal wealth but may have someon intermediate wealths9.Assuming liquid spot markets, the 
oupling 
onstraint (10) 
an be treated as an impli
it one and we fa
ea fully de
omposable problem, with 
onstraints only on individual assets.Deriving from (9) and (10) the volume n(i; i) of spot transa
tions, equation (11) be
omes:Gi = diKsi � n(i; i)Si � TXj=i+1 e�r(�j��i)n(i; j)F (i; j)= qdrawi Si � qinji Si + di(Ksi � Si) +N(i� 1; i)Si � TXj=i+1 e�r(�j��i)n(i; j)F (i; j)In this form, Gi appears like the sum of three 
omponents:1. qdrawi Si � qinji Si = period pi payo� from the storage fa
ility. Storage de
isions taken over time areinter-dependent due to the 
apa
ity 
onstraints expressed in equation (6)2. di(Ksi �Si) = period pi payo� from the sale 
ontra
t devoided of any optionality, whi
h is in fa
t a8in a

ordan
e with the setting de�ned in se
tion 2.3.29we thus assume here that the retailer provisions in advan
e all the future gains or liabilities at the signature of a forward
ontra
t 13



strip of swaps ex
hanging the sale 
ontra
t pri
e Ksi for the spot pri
e Si. The volume involved atperiod pi is either �xed (deterministi
 demand) or random (unknown demand)3. N(i� 1; i)Si �PTj=i+1 e�r(�j��i)n(i; j)F (i; j) = period pi 
ash 
ow from forward 
ontra
tsUnder this form, the portfolio appears as a 
ombination of various options written on the 
ommodityspot pri
e while the forward market appears as a way to hedge the spot pri
e risk. The above splittingof 
ash 
ows suggests a de
omposition of the portfolio's value. In fa
t, the latter will only be possible intwo parti
ular 
ases:� Portfolio de
omposition in a 
omplete market setting: here, we assume that the demand pro
ess (di)is deterministi
 (e.g., the 
ontra
t sets a �xed volume to be delivered in all future periods). Then,the arbitrage pri
e of the portfolio is the sum of maximal expe
ted 
ash 
ows under the (unique)risk-neutral probability measure; this value is the sum of the arbitrage pri
es of storage and sale
ontra
t. In this framework, the obvious strategy for the portfolio manager 
onsists in optimizingindependently the storage fa
ility against the spot market under the risk-neutral measure, andhedging spot pri
e risk using the forward market.� Portfolio de
omposition for a risk-neutral retailer in a liquid market: we assume here that the retailerfa
es both demand and pri
e risks but is risk-neutral, i.e.,she only tries to maximize her expe
tedpro�t. Under the assumption that the physi
al measure is a risk-neutral measure, the optimalstrategy for the risk-neutral retailer 
onsists again in optimizing independently the storage fa
ilityagainst the spot market and doing no trade in the forward market. Moreover, under deterministi
demand, the optimum of the risk-neutral retailer's obje
tive 
orresponds to the arbitrage pri
e ofthe portfolio.3.3 The retailer problem in an in
omplete/illiquid marketIlliquidity is modeled by deterministi
 volume 
onstraints on spot and forward trading, of the form:nb(i; i+ �) � nmaxb (i; �); ns(i; i+ �) � nmaxs (i; �) (12)where nb(i; j) and ns(i; j) stand for the number of bought and sold forward 
ontra
ts during period pifor delivery in period pj (with n(i; j) = nb(i; j)� ns(i; j)).
14



We de�ne the set of admissible strategies from state xi:A(xi) := n(qk)k�i = (qdrawk ; qinjk ; n(k; j)j�k)k�i Fk �measurable verifying admissibility 
onstraintso(13)and the analogous set of illiquid market admissible strategies Aliq(xi). The restri
tions of the previousde
ision sets to date t, de�ning the admissibility sets for de
isions qt only, will be denoted by At(xt) andAliqt (xt).We 
an now formulate the retailer's optimization problem as:Ji(xi) := Max(qk)k�i2Aliq(xi)Vi(G) (14)where the state xi is de�ned by xi = (Li; N(i; :); �i), G by (11) and Vi(G) by the re
ursive equation (2),with aggregator W and 
ertainty equivalent � derived from 
on
ave in
reasing fun
tions � and u andpositive dis
ount fa
tors (�i):W (x; y) = ��1(�(x) + �i�(y)); �(X) = u�1(E [u(X)℄)We denote su
h a dynami
 value measure as V �;ut (G).The optimal value Ji(xi) satis�es the dynami
 programming equation:Ji(xi) = ��1( Maxqi2Aliqi (xi)��(Gi(qi)) + �i� Æ u�1(E i (u(Ji+1(xi+1))))	) (15)where the state xi+1 is given by the transition equation xi+1 = (Li+qinji �qdrawi ; N(i; :)+n(i; :); g(�i; �i+1)).The existen
e of equation (15) guarantees the time 
onsisten
y of optimal strategies, as shown in theprevious se
tion.3.4 A 
on
avity property for JiProposition 3.4.1:Choosing CARA type utilities �(x) = �e��x and u(x) = �e��x su
h that 0 < � � �, for all dates t, and allstates xt su
h that Aliqt (xt) 6= ;, the maximization problem Maxqt2Aliqt (xt)��(Gt(qt)) + �t� Æ u�1(E t (u(Jt+1(xt+1))))	is 
on
ave with respe
t to de
isions qt. Moreover, the de
ision set Aliqt (xt) is 
onvex. The result also holdsfor � = Id and u of CARA type.The proof is available from the authors on request.15



3.5 Ji as the arbitrage pri
e of the portfolio in 
omplete marketsIn this se
tion, we show that, in 
omplete markets, Jt is the arbitrage pri
e of the portfolio under thetwo 
onditons: �(x) = x (no preferen
e for smooth versus irregular 
ash 
ows in time dimension) and�i = e�r(�i+1��i) (one period dis
ount fa
tor). These two assumptions will hold throughout se
tion 3.5.Property 3.5.1:Ji(xi) = Max(qk)k�i2Aliq(xi)V Id;ui (G) is never greater than the risk-neutral obje
tive Jrni (xi) = Max(qk)k�i2Aliq(xi)V Id;Idi (G)Proof : The 
on
avity of u implies that for all random variables X :u�1(E [u(X)℄) � E(X) (16)It results, by a simple re
ursion, that:8G 2 G; 8i 2 T ; V Id;ui (G) = Gi + �iu�1(E�i (u(V Id;ut+1 ))) � Gt + �iE�i (V Id;Idi+1 ) = V Id;Idi (G)and the property holds. �Property 3.5.2: When 
onditional values Vk+1 
omputed at stages k (k = i; ::; T �1) are non sto
hasti
,then V Id;ui is the sum of dis
ounted 
ash 
ows from stage i to stage TProof : In this 
ase, u�1(E�i (u(V Id;uk+1 ))) = V Id;uk+1 for all k = i; :::; T � 1, and, therefore, V Id;ui (G) =Gi + �iV Id;ui+1 =PTk=i e�r(�k��i)Gk, by a simple re
ursion.�The 
onsequen
e is that, in a 
omplete market setting (i.e., deterministi
 demand and no liquidity 
on-straints), Ji is at least equal to the arbitrage pri
e of the portfolio.Property 3.5.3: In a situation of market 
ompleteness, Ji(xi) is equal to the arbitrage pri
e of theportfolio Japi (xi) = Max(qk)k�i2A(xi)EQ�i (PTk=i e�r(�k��i)Gk), where Q is the (unique) risk-neutral measureProof : This property is derived from the following observations:- Ji(xi) � Max(qk)k�i2A(xi)V Id;Idi (G), as exhibited in property 3.5.1- Max(qk)k�i2A(xi)V Id;Idi (G) = Japi (xi), be
ause the optimal value of the risk-neutral retailer's portfolio isequal to its arbitrage pri
e.- Ji(xi) � Japi (xi), as shown in property 3.5.2.�Property 3.5.4: If markets are 
omplete and u stri
tly 
on
ave, then the risk of the optimal strat-egy (q�k)k�i is null. 16



Proof : The equality between Ji(xi) and Jrni (xi) implies an equality in equation (16) for ea
h X = Vi+1,and, be
ause the fon
tion u is stri
ly 
on
ave, the equality is possible only if un
ertainty on all Vt is null.�Consequently, we obtain the satisfa
tory property that the optimization programme also provides a hedg-ing strategy.To 
on
lude this paragraph, we 
an note that the question of estimating the ask and bid pri
es of aphysi
al asset or �nan
ial 
ontra
t in in
omplete markets remains to be solved. As often done in theliterature , we de�ne the ask (bid) pri
e as the di�eren
e of the values of Ji, with and without the bought(sold) asset. Under this de�nition, the bid and ask pri
es of an asset depend not only on the risk aversionof the manager but also on her initial portfolio, a 
lassi
al property in a situation of in
ompleteness.3.6 A model for the evolution of the forward 
urve and demandWe assume a 
lassi
al one-fa
tor evolution model for the market forward 
urve F (i; j):F (i; j) = F (i� 1; j)Mi;jexp(e�ki(�j��i)Xi) 8j � i8i � 2 (17)where (Xi)i�2 is a dis
rete-time sto
hasti
 pro
ess 
omposed of independent variables with lawN(0; (�Xi )2),(ki) are positive parameters, and (Mi;j)j�i are positive 
onstants ensuring that F (i; j)i�j are martingalepro
esses. In this model, only one type of sho
k is allowed for the forward 
urve, namely translations,with an amplitude vanishing with time to delivery.Regarding the demand pro
ess (di)i�2, we assume that it is driven by a dis
rete-time sto
hasti
 pro-
ess (Yi) (typi
ally the temperature), 
omposed of independent variables with law N(0; (�Yi )2) positively
orrelated with the pri
e pro
ess with 
orrelation 
oeÆ
ients (�i):di = max(fi; �di + Yi) (18)where (fi) are positive 
oors ensuring that the demand pro
ess is positive, and ( �di) are the averagedemands at ea
h period.As a 
on
lusion, to simulate the joint evolution of forward 
urve and demand at periods (pi), we onlyneed to jointly simulate the random variables (Xi) and (Yi) for i = 1; :::; T and then use formulas (17)and (18).
17



4 Numeri
al results4.1 The event treeWe use here a standard sto
hasti
 programming te
hnique to solve the problem. The set of realizations ofthe demand and the forward 
urve is represented on an event tree with nodes n 2 N , the de
isions q(t; !)are indexed on the nodes of the tree, and the time-1 obje
tive is maximized numeri
ally with respe
t toall de
isions (qn)n2N using a large s
ale non linear solver.To build the event tree, we use a two-dimensional latti
e (see Webber (1997)), repli
ating exa
tly the �rsttwo moments of the pro
ess (X;Y ) at ea
h time step.The four vertexes of the unit square �rst provide the equiprobable joint realizations of a ve
tor ~Z = ( ~X; ~Y )of two un
orrelated zero mean unit varian
e random variables:
-

6 Æ
Æ

Æ
Æ

(1; 1)
(1;�1)

(�1; 1)
(�1;�1)Figure 1: S
enarios for two un
orrelated random variablesThe extension to two 
orrelated variables is straightforward: 
onsidering a ve
tor of two un
orre-lated unit varian
e variables ~Z = ( ~X; ~Y ), the ve
tor of random variables Z = (X;Y ) = A ~Z withA = 0BB� �x 0��y p1� �2�y 1CCA have zero mean and 
ovarian
e matrix � = 0BB� (�x)2 ��x�y��x�y (�y)2 1CCA.Therefore, we pro
eed in the following way to build the event tree on the pri
e/demand pro
ess:- �rst, using the matrix M = 0BB� 1 1 �1 �11 �1 1 �1 1CCA, whose 
olumns represent the four joint realiza-tions of a ve
tor ( ~X; ~Y ) of two un
orrelated zero mean, unit varian
e variables, we form the 2� 4 matrixN = AM , whose 
olumns are the realizations of the ve
tor (X1; Y1), representing the pri
e/demand nodesat time 1- then, we atta
h to ea
h node of period 1 the son nodes given by the matrix N = AM , and so on, until18



(a) Realizations of the forward 
urve (e/MWh) (b) Realizations of demand (TWh)

(
) Two-dimensional representation of the pri
e anddemand pro
esses (X;Y ) at ea
h time step: the re-alizations of the pri
e pro
ess X 
an be read on thex-axis Figure 2: Event treethe last period- �nally, we apply formulas (17) and (18) to get the forward 
urve and the demand at ea
h node, the termMi;j being determined by the martingale 
ondition at node n:Fn(i� 1; j) = En (Fm(i; j)) = Xm2S(n) 14Fm(i; j) (19)where S(n) is the set of sons of node n, whi
h gives:Mi;j = 1Pm2S(n) 14 exp(e�ki(�j��i)Xmi ) (20)It is important to point out here that the term M depends only on i and j and not of node n be
ausethe variables (Xi; Yi) are independent of (Xi�1; Yi�1), hen
e the sets fXmi ; m 2 S(n)g are the same forevery node n of date �i�1.We obtain 4T�1 di�erent s
enarios from period 1 to period T .19



4.2 The settingWe assume the following setting:- the retailer is trading an energy produ
t, whose pri
e is expressed in e/MWh- there are �ve periods of one quarter ea
h: during the �rst quarter, the retailer fa
es no demand andreplenishes her storage fa
ility using the spot market in order to meet the unknown 
lient's demand inthe following year- the storage has an initial level at 20 TWh, a maximal withdrawalinje
tion/withdrawal per period of 10TWh, a maximal (resp. minimal) storage level of 50 TWh (resp. 0), and a minimal end level of 20 TWh- the forward pri
e dynami
s are represented by the model des
ribed in equation (17) with parameterski = 2 years�1 and volatility �Xi = 0:2 8i � 2; the initial forward 
urve is supposed to be 
at at the level20 e/MWh; in parti
ular, the initial spot pri
e equals 20 e/MWh- the maximal allowed traded volume in the market de
reases withtime-to-delivery: it equals 30 TWh for
ontra
ts delivering in the present quarter ("spot" transa
tion), 10 TWh for 
ontra
ts delivering in thenext quarter, 5 TWh for 
ontra
ts delivering in two quarters, and 0 TWh for 
ontra
ts delivering in thefollowing periods- the selling pri
e on the sale 
ontra
t is 21 e/MWh (hen
e a margin of 5% with respe
t to the averagemarket forward pri
e); regarding the demand 
hara
teristi
s, we suppose that d1 = 0, and 8i � 2: �Yi = 10TWh, �di = 20 TWh, fi = �di3 , and �i = 0:5. The realizations of (X;Y ) at ea
h time step are representedon �gure (2(
)): we note that there are four di�erent realizations for the demand pro
ess and two onlyfor the pri
e pro
ess- we adopt CARA utility fun
tions u(x) = �e��x and �(x) = �e��x to represent risk aversion andsubstitution preferen
es, with varying risk aversion and substitution parameters � and �; interest ratesare set to 0.Figures (2(a)) and (2(b)) show the forward 
urve and demand s
enarios. The mean-reverting nature ofthe spot pri
e is visible.
20



4.3 E�e
t of optimal strategies on the �nal and minimal wealthsFigure (3(a)) shows the mean varian
e trade-o� in the �nal wealth obtained when risk aversion varies andthe fun
tion � remains equal to identity. When the risk is de�ned as the Conditional Value at Risk10 onthe �nal wealth WT 11: CV aRq(W ) = E(�WT j �WT > V aRq(W )) (21)the expe
ted mean is an in
reasing fun
tion of risk, as shown in �gure (3(a)). For example, a de
rease ofthe 0.5% (resp. 5%) CVaR on �nal wealth from 611 (resp. 505) to 371 (resp. 291) Me implies a de
reaseof the expe
ted �nal wealth from 67 to 15 Me. Figure (3(b)) represents the trade-o� between the risksof the �nal wealth and temporal minimal wealth12. Figure (3(b)) shows that it is possible to ex
hangebankrupt
y risk for �nal wealth risk by de
reasing the ratio of parameter � to parameter �. For example,to 
ut the 0.5% (resp. 5%) CVaR on temporal minimal wealth from 1059 to 545 (resp. 473) Me, onehas to a

ept a rise of the 0.5% (resp. 5%) CVaR on �nal wealth from 365 (resp. 296) to 516 (resp. 458)Me. However, the ex
hange of bankrupt
y risk for �nal wealth risk has limits: Figure (3(b)) shows inparti
ular that it is not possible to bring down the 0.5% (resp. 5%) CVaR on temporal minimal wealthbelow a 
ertain threshold, 
orresponding to the pair (� = 0:1; � = 0:001) (resp. (� = 0:01; � = 0:0005)).Figures (4(a)) shows the 
umulative fun
tion of the �nal wealth over the 256 tree s
enarios used inthe optimization pro
edure under di�erent values of risk aversion. In �gure (4(a)), we observe that arisk aversion of 0:02 allows to signi�
antly redu
e the left tail up to 5% of the distribution obtainedunder a risk-neutral strategy. The 
ost of a higher risk aversion is that the main part of the �nal wealthdistribution (to the right of the 10% quantile) is signi�
antly moved upright. Figure (4(b)) shows thedistribution of the minimal wealth over time: we see that a more 
on
ave fun
tion � signi�
antly redu
esthe likelihood of a very negative minimal temporal wealth, whi
h is a 
onsequen
e of the smoothingof 
ash 
ows in the time dimension. However, as shown by �gure (4(a)), if the ratio �� be
omes toohigh (e.g.(� = 0:01; � = 0:0005)), the �nal wealth distribution exhibits a large left tail. If the portfoliomanager seeks to strike a balan
e between �nal wealth and bankrupt
y risk management, he may 
hoose(� = 0:1; � = 0:001) or (� = 0:01; � = 0:0001). Figure (5) represents the intermediate wealths obtained10V aRq(W ) is the well-known Value-at-Risk asso
iated to quantile q11the wealth Wi at the end of period pi is de�ned as the 
umulative sum of 
ash 
ows from period p1 to period pi12Temporal minimal wealth is de�ned as mini2f1;2;3;4;5gWi; the temporal minimal wealth distribution is thus dire
tly linkedto bankrupt
y risk 21



(a) Expe
ted �nal wealth in terms of CVaR (in Me); ea
h 
urve
orresponds to a di�erent CVaR quantile and is 
onstru
tedwith � taking the values f0; 0:001; 0:005; 0:01; 0:02g

(b) CVaR of the temporal minimal wealth in terms of CVaR ofthe �nal wealth (in Me); ea
h 
urve 
orresponds to a di�erentCVaR quantile and is 
onstru
ted with (�; �) taking the values(0:1; 0); (0:05; 0:0001); (0:02; 0:0001); (0:01; 0:0001); (0:1; 0:001); (0:01; 0:005);(0:01; 0:001); (0:001; 0:0001)Figure 3: Trade-o�s between expe
ted wealth/�nal wealth risk and �nal wealth risk/bankrupt
y risk
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(a) Final wealth 
umulative fun
tion (in Me); the 
ase� = 0 (resp. � = 0) 
orresponds to a fun
tion u (resp.�) equal to identity

(b) Temporal minimal wealth (in Me) 
umulative fun
-tion in in
omplete markets; the 
ase � = 0 (resp. � = 0)
orresponds to a fun
tion u (resp. �) equal to identityFigure 4: Final and temporal minimal wealth 
umulative fun
tions for di�erent risk aversion and substitutionparametersat the di�erent nodes of the event tree for di�erent 
ouples of (�; �) and 
on�rms the above 
on
lusions:
hoosing (� = 0:01; � = 0:0005) allows one to 
ontrol the intermediate wealth risk but implies a greatdispersion of the �nal wealth; 
onversely, 
hoosing (� = 0:02; � = 0) o�ers a very narrow range of �nalwealths but with a high bankrupt
y risk at the end of the se
ond period; the 
hoi
e (� = 0:01; � = 0:0001)represents a trade-o� between and �nal and intermediate wealth risks.
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(a) Wealth pro�le in the 
ase (0,0) (b) Wealth pro�le in the 
ase (0.02,0)
(
) Wealth pro�le in the 
ase (0.01,0.0001) (d) Wealth pro�le in the 
ase (0.01,0.0005)Figure 5: Cumulative wealths (in Me) in the di�erent nodes of the event tree for di�erent pairs (�; �)4.4 Portfolio valueFigure (6(a)) represents the portfolio value de�ned in se
tion 3.5 for di�erent risk aversion parameters.The portfolio value is a de
reasing fun
tion of the risk aversion parameter. The spread between therisk-neutral and positive risk aversion values 
an be interpreted as a risk premium, whose value in
reaseslogi
ally with the risk aversion parameter.The value of the sale 
ontra
t, obtained by setting the storage 
exibility to zero in the original portfolio13,behaves similarly. The storage value, obtained by setting the 
lient's demand to zero in the retailer'sportfolio, does not depend on the risk aversion parameter: this is due to the fa
t that, under the liquidityassumptions made in se
tion 4.2, the storage fa
ility has a unique arbitrage value (here 55.26 Me) whi
h
an be se
ured by appropriate forward transa
tions; in this 
ontext, the optimum J1 of the storagemanagement problem redu
es to the storage arbitrage value, as explained in se
tion 3.4. The synergyvalue whi
h is de�ned as the spread between the portfolio value, on the one hand, and the sum of the sale13Setting the storage 
exibility to zero may 
ause the problem to be infeasible in the 
ase of illiquid markets and non-interruptible 
lients; estimating the sale 
ontra
t value may thus require in some situations the introdu
tion of arti�
ial inter-ruption/emergen
y supply 
osts to relax the possibly too restri
tive volume 
onstraints; in our example, the 
lients' demand
ould be met in every s
enario only with the illiquid market 24



(a) De
omposition of portfolio value for di�erent risk aversionparameters (b) Synergy value in term of risk aversion parameter for dif-ferent demand volatilities �Figure 6: De
omposition of J1(x1) = Max(qk)k�12Aliq(x1)V Id;u1 (G) (in Me) and synergy value for di�erent riskaversion parameters and di�erent demand volatilities
ontra
t and storage separate values14, on the other hand, is null for a risk-neutral retailer and in
reaseswith the risk aversion parameter, whi
h expresses the fa
t that the synergy between sale 
ontra
t andstorage fa
ility is in term of risk management rather than in term of expe
ted return.Figure (6(b)) represents the synergy value in term of the risk aversion parameter under di�erent demandvolatilities. It is observed that the synergy value in
reases with demand volatility, whi
h means that thestorage fa
ility's value-added in the retailer's portfolio in
reases with the demand un
ertainty. Figure (7)shows that the storage's value added be
omes null in a 
ontext of high forward market liquidity, even inthe presen
e of volume un
ertainty: the synergy e�e
t arises only under an illiquid forward market. Inaddition, the portfolio value varies from �89 to 37 Me, depending on the forward market liquidity, whi
hpoints out the importan
e of liquidity assumption for portfolio valuation.

14the synergy value also equals the spread between the storage portfolio value de�ned in se
tion 3.5 and the storage arbitragevalue 25



Figure 7: Portfolio and synergy values (in Me) for the di�erent settings of forward market liquidity des
ribedin table (1) (with � = 0:01 and demand volatility � = 10 TWh)Q0 Q1 Q2 Q3 Q4low liquidity setting 30 10 5 0 0medium liquidity setting 30 10 10 10 10high liquidity setting 30 30 30 30 30Table 1: Des
ription of the three liquidity settings: Q0 represents the maximal volume of "spot" transa
tions,Q1 the maximal volume for delivery in the next quarter, Q2 the maximal volume for delivery in the nextfollowing quarter...
5 Con
lusionWe have developed in this paper a tra
table model to introdu
e time-
onsisten
y in managing a 
ommodityportfolio. In this order, we assessed two di�erent types of risk obje
tives: only the re
ursive dynami
value measure based on a utility-type aggregator and 
ertainty equivalent was found to be time-
onsistent.Moreover, this form of dynami
 value measure has the appealing feature of disentangling the 
omponentsof risk a
ross states of nature and temporal substitution and making them transparent to the de
isionmaker. These properties are illustrated on a numeri
al example. The use of the model signi�
antlyredu
es the left tail in the �nal wealth distribution, and leads to a satisfa
tory trade-o� between �nalwealth risk and expe
ted wealth when risk is represented by Conditional Value at Risk. Lastly, the model26



allows one to de�ne an optimal strategy between de
reasing the risk of the �nal wealth and redu
ing thelikelihood of a bankrupt
y within the time horizon.6 Referen
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