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Inertia in Taylor Rules∗

John Driffill†and Zeno Rotondi‡

Abstract

The inertia found in econometric estimates of interest rate
rules is a continuing puzzle. Many reasons for it have been of-
fered, though unsatisfactorily, and the issue remains open. In the
empirical literature on interest rate rules, inertia in setting inter-
est rates is typically modeled by specifying a Taylor rule with the
lagged policy rate on the right hand side. We argue that inertia
in the policy rule may simply reflect the inertia in the economy
itself, since optimal rules typically inherit the inertia present in
the model of the economy. Our hypothesis receives some sup-
port from US data. Hence we agree with Rudebusch (2002) that
monetary inertia is, at least partly, an illusion, but for different
reasons.
JEL Classification: E52, E58
Keywords: Monetary Policy, Interest Rate Rules, Taylor rule,

Interest Rate Smoothing, Monetary Policy Inertia, Predictability
of Interest Rates, Term Structure, Expectations Hypothesis

1 Introduction

There is a conventional view that central banks adjust interest rates
gradually in response to macroeconomic developments. The empirical
evidence on the behaviour of central banks in the last two decades has
∗We thank numerous colleagues at many seminars and conferences who have com-

mented on earlier versions of this paper. The usual disclaimer applies. Driffill grate-
fully acknowledges support received under the ESRC World Economy and Finance
Research Programme.
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been summarized as an inertial Taylor (1993) rule, where the nominal
interest rate adjusts only partially to inflation and the output gap, as
there is an interest rate smoothing component.1. A typical formula-
tion has the policy rate responding to its own lagged value as well as a
measure of the output gap and the inflation rate, such as the following:

it = ρit−1 + (1− ρ) (μππt + μyyt)

Here it is some sort of nominal interest rate that is used as a policy
instrument, πt is a measure of the inflation rate, and yt represents a
measure of the output gap. The coefficient ρ (∈ [0, 1]) is taken to rep-
resent the degree of inertia or interest-rate-smoothing. (The coefficients
μπ and μy are the usual long-run responses of the policy rate to inflation
and the output gap.)
Numerous explanations for smoothing have been offered, but they all

seem in some sense unsatisfactory. The main reason for the unsatisfac-
toriness is that Central Banks say they do not do it.
A list of popular explanations for the apparent gradualism includes

the following:

• Financial stability.2 It is argued that by adjusting interest rates
in small steps spread out over time, less pressure is put on the
balance sheets of financial institutions which might otherwise be
caught out by large unexpected changes.

• Financial markets may react adversely to frequent changes in the
direction of movement of short-term interest rates (Goodfriend
1991). Frequent reversals may give the impression that the Cen-
tral Bank is incompetent.

• Uncertainty about the structure of the macroeconomic model or
about the values of its the parameters

• Measurement errors in relevant data.3
1See for instance Clarida, Galì and Gertler (2000), who enphasize the empirical

importance of including a lagged interest rate in a monetary policy rule for the United
States. For a similar result for other industrial countries see Clarida, Galì and Gertler
(1998).

2Reviews of this literature are provided by Cukierman (1992), Goodhart (1996),
Walsh (2003), Sack and Wieland (2000).

3The importance of such uncertainties for gradualism is examined by Sack
(1998,2000), Startz (2003), Orphanides (2003), Rudebusch (2001), Wieland (1998),
among others.
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• The linkage between future monetary policy and aggregate demand
can be exploited by central banks in order to stabilize the economy
optimally. When the current state of the economy is affected by
expectations of future inflation (and other variables) it may be
optimal to adjust the interest rate with some inertia.4

• It may be desirable to choose a central banker with an explicit
interest rate smoothing objective, in a regime in which policy is
delegated to a central banker who pursues policy in a discretionary
(i.e., non-precommitted) manner.5

While many scholars accept that the apparent inertia is real, Rude-
busch (2002) argues that it is an illusion. Since the coefficient of the
lagged policy rate in empirical analyses frequently turns out to be large
and highly significant, interest rates should be highly predictable.6 How-
ever, on the basis of data on yield curves, he argues that they are not. He
suggests that empirical Taylor rules may be misspecified and that what
looks like inertia may actually be caused by serially correlated shocks.7

English, Nelson and Sack (2003) show that it is possible to test directly
the null hypothesis of serial correlated errors against the alternative of
partial adjustment; but they are unable to reject the presence of either
of them. Söderlind, Söderström and Vredin (2002) take up the question
of predictability, and find further evidence against the inertial Taylor
rule. They argue that a high coefficient of the partial adjustment com-
ponent is a necessary but not sufficient condition for having a highly
predictable interest rate. Predictability depends also on the other vari-
ables, namely the output gap and inflation. They find that, while it
is relatively easy to predict these, it is very difficult to predict interest
rates. They conjecture that this might result from the omission of an
unpredictable variable from the Taylor rule.
In this paper we try to reconcile monetary policy inertia with the

low predictability of short-term interest rates by proposing a different
inertial Taylor rule than the one usually considered in the literature.
We argue that the apparent inertia might arise from the the central

4See Woodford (1999).
5See Woodford (2003a). The previous two arguments for the optimality of mone-

tary inertia considered in the text do not presume a central bank’s loss function trad-
ing off objectives related to macroeconomic stability with an interest rate smoothing
objective (usually interpreted as a financial stability motive).

6In the empirical literature the estimated coefficient for the lagged policy rate is
ranging from .7 to .9. See Rudebusch (2002) for a review of the estimates found in
the literature.

7See also Lansing (2002) for a theorical support of the ‘illusion of monetary inertia’
hypothesis, based on real-time estimation of trend output.
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bank’s pursuing an optimal rule (or something of a similar character —
an ‘optimal-ish’ rule) for interest rates, which therefore inherits the iner-
tia in the economy itself. If the evolution of the output gap and inflation
depend on their own lagged values, the optimal rule for the interest rate
will typically do so too. We will argue that, for a given coefficient of par-
tial adjustment, our alternative specification implies lower predictability
of the interest rate than that implied by the standard specification of
the inertial Taylor rule. In our empirical analysis we find support for
the alternative specification against the standard specification. More-
over, in the alternative specification, the estimated coefficient of partial
adjustment is below 0.5, which is lower than is usually found in the
literature.
The structure of the paper is as follows. In section 2 we consider

a simple empirical macro-economic model, along the lines of Svensson
(1997), and derive the optimal interest rate rule for the central bank.
We show that under certain conditions, this may be a simple rule that
looks rather like an inertial Taylor rule. Section 3 discusses our empirical
findings based on this alternative inertial Taylor rule. Section 4 makes
some concluding observations and address future research.

2 A simple framework

2.1 The model
Here we use a simple framework for examining the optimal interest rate
rule for a central bank, which is an extended version of the model used
by Svensson (1997).8 He argues that, even if there is no explicit role for
private agents’ expectations, the model has many similarities with more
elaborate models used by central banks.9

Consider the following model10

πt+1 = α1yt + (1− α2) πt + α2πt−1 + t+1, (1)

8In the litereature, Svensson’s (1997) model has been extended in several direc-
tions: for examining nominal income targeting (Ball 1999); for studying the im-
plications of monetary policy for the yield curve (Ellingsen and Söderström 2001;
Eijffinger, Schaling and Verhagen 2000); for examining model uncertainty, interest
rate smoothing and interest rate stabilization - i.e. for studying the optimality of a
more gradual adjustment of the monetary instrument (Svensson 1999). Moreover,
Rudebusch and Svensson (1999) provide empirical estimates for a model similar to
Svensson (1997) and use a calibrated version of the model in order to evaluate a large
number of interest rate rules.

9See for instance the discussions in Rudebusch and Svensson (1999) and Rude-
busch (2001).
10We have used the same notation as in Svensson (1997).
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and

yt+1 = β01yt − β2 (it −Etπt+1) + β3yt−1 + ηt+1, (2)

where πt is the inflation rate, yt is the output gap, it is the nominal repo
rate, i.e. the monetary instrument of the central bank, and t, ηt are
i.i.d. shocks.11 All the variables are considered as deviations from their
long-run average levels, which are normalized to zero for simplicity.
After substituting Etπt+1 with the expectation of expression (1), ex-

pression (2) becomes:

yt+1 = β1yt − β2it + β3yt−1 + β4πt + β5πt−1 + ηt+1, (3)

with

β1≡β01 + β2α1; (4)

β4≡β2 (1− α2) ;

β5≡β2α2.

The coefficients in (1) and (3) are all assumed to be positive, with 0 <
α2 < 1. Equations (1) and (3) coincide with those considered in Svensson
(1997) (equations 6.4 and 6.5 in his text) when α2 = β3 = 0.12 The
restriction that the sum of the lag coefficients of inflation in (1) equals
1 is consistent with the empirical evidence.13 An important feature of
this model is the presence of lags in the transmission of monetary policy.
In particular, the repo rate affects output with a one-period lag, while
affects inflation with a two-period lag. This feature is broadly consistent
with the "stylized facts" of the impact of monetary policy on output and
inflation.
Finally, suppose that monetary policy is conducted by a central bank

with the following period loss function

L (πt, yt) =
1

2

£
π2t + λy2t

¤
, (5)

11See Svensson (1997) for the details on the model and in particular for the impli-
cations of substituting the long-term nominal rate with the repo rate.
12We have assumed that the coefficient of one-period lagged inflation in (1) is less

than 1, instead of equal to it. In this we differ from Svensson. McCallum (1997) has
shown that when the coefficient is equal to 1 we may have problems of instability of
nominal income rules that would not arise if expectations of current or future inflation
were included in the model considered. See also Rudebusch (2002) and Jensen (2002)
for further analyses of the performance of nominal income rules for monetary policy
when a forward-looking price-setting behaviour is explicitly included in the analytical
framework.
13See for instance Rudebusch and Svensson (1999) for a test of this restriction in

a model similar to the one considered here.
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where λ > 0 is the relative weight on output stabilization. The intertem-
poral loss function is

Et

∞X
τ=t

δτ−tL (πτ , yτ) . (6)

The central bank minimizes the above intertemporal loss function by
choosing a sequence of current and future repo rates {iτ}∞τ=t.

2.2 Optimal interest rate rule

In solving the optimization problem we use a convenient simplification.
In the expression (3) of output the choice of iτ affects yt+1, but yt, yt−1, πt
and πt−1 are all predetermined. Thus we can write

yt+1 = ∆t + ηt+1, (7)

with

∆t ≡ β1yt − β2it + β3yt−1 + β4πt + β5πt−1. (8)

As observed above, the repo rate affects affects inflation with a two-
period lag. This can be seen by rewriting the expression (1) for inflation
in the following way

πt+2 = α1∆t + (1− α2)πt+1 + α2πt + α1ηt+1 + t+2, (9)

where we have considered inflation at time t+2 and inserted expression
(7). We can treat ∆t as the control variable. Using dynamic program-
ming, we can derive the optimal rule as the solution to the following
problem

V (Etπt+1, πt) = min
∆t

Et

½
1

2

£
π2t+1 + λy2t+1

¤
+ δV (Et+1πt+2, πt+1)

¾
,

(10)
subject to (7) and (9). The value function V (Etπt+1, πt)will be quadratic
and in the present case, where constant terms are absent, it can be ex-
pressed without loss of generality as

V (Etπt+1, πt) =
1

2
γ1π

2
t+1 + γ2πt+1πt +

1

2
γ3π

2
t + k, (11)

where the coeffcients γ1, γ2 and γ3 need to be determined. The remain-
ing constant k is a function of the variances of the shocks.
Here we have two state variables and one control variable. In gen-

eral, the optimization problem cannot be solved analytically by means
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of dynamic programming if there is more than one state variable. In the
simpler case with only one state variable, considered by Svensson, it is
possible to get an analytical solution for the optimization problem.
Nevertheless, we can make a qualitative assessment of the form of the

optimal rule. Svensson has shown that in the simpler case considered by
him the optimal rule takes the form of the Taylor (1993) rule

it = φ1πt + φ2yt,
with φ1 > 1 and φ2 > 0. What emerges in the present case?
The first order condition with respect to ∆t is given by

Etyt+1 = −
α1δ

λ
(γ1Etπt+2 + γ2Etπt+1) , (12)

where we have used (11).
The optimal interest rate can be derived by substituting (1) in (12)

and using (3) to yield

it=α2

∙
(1 + C)πt−1 +

β3
α2β2

yt−1

¸
+ (13)

(1− α2)

∙
(1 +A)πt +

µ
β1

(1− α2)β2
+B

¶
yt

¸
,

with

A≡ δα1
(γ1 + γ2) (1− α2) + γ1α

2
2

(1− α2)β2 (λ+ δα21γ1)
; (14)

B≡ δα21
γ1 (1− α2) + γ2

(1− α2)β2 (λ+ δα21γ1)
;

C≡ δα1
γ1 (1− α2) + γ2
β2 (λ+ δα21γ1)

.

In general, in a problem of this type, the optimal feedback rule can be
represented as a linear function of the state variables, here Etπt+1, and
πt. So we could represent the rule for∆t as∆t = f1Etπt+1+f2πt. Since
Etπt+1 can be represented as a function of current values and the first
lag of the output gap and inflation, when we solve for the interest rate,
the policy rule also emerges as a linear function of the same variables.
It would be useful to be able to sign the parameters in the feedback rule
(14). Since the value function is a positive definite quadratic form, it
must be the case that γ1 > 0, γ3 > 0, and γ1γ3 − γ22 > 0, but it is not
possible to sign γ2. If the coefficients on the right hand side variables
in (13) are all positive, and if the ratios of coefficients on the current
variables ( and ) are the same as the ratios of coefficients on lagged
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variables ( and ), then the policy rule may have the form of a moving
average of a simple Taylor rule. That is, (13) can be written as

it=α2 [μ3πt−1 + μ4yt−1] + (15)

(1− α2) [μ1πt + μ2yt] ,

with μ1 = (1 +A) , μ2 =
³

β1
(1−α2)β2

+B
´
, μ3 = (1 + C) , and μ4 =

β3
α2β2

.

If the pattern of coefficient were such that μ1/μ2 = μ3/μ4 then the
actual rule could be thought of as a moving average of a simple rule
it = μ1πt + μ2yt.

2.3 Simple rules
During the past decade, research on monetary policy design has focused
on simple rules — among which Taylor’s (1993) rule is a prominent ex-
ample — as opposed to more complicated or fully optimal rules.14 As
Woodford (2003b, p. 507) argues, a rationale for this choice can be
found in the greater transparency provided by simple rules, which may
increase central bankers’ accountability and commitment to the rule.15

Typically this literature has focused on simple rules based on two or
three parameters (and variables) which are optimized for the given pref-
erences. For example Rudebusch and Svensson (1999) estimate a model
similar to that presented here, with more lagged variables and an inter-
est rate smoothing argument added in the loss function. They derive
the optimal policy rule, which looks more complicated than ours, nu-
merically. They also use the model to evaluate a large number of simple
rules.
Two findings of this literature are that simple rules perform nearly

as well as fully optimal rules and that simple rules are more robust than
more complicated rules if the model is misspecified. In this vein, we can
simplify the rule derived above (13) and write it as

it = ρit−1 + (1− ρ) it, (16)

with
it = μππt + μyyt, (17)

and 0 < ρ < 1.
In the empirical literature the standard inertial Taylor rule takes

instead the following form

14For a review of this literature see for example Williams (2003).
15See Svensson (2003) for a discussion of the problems associated to using judge-

ments in monetary policy based on simple instrument rules or targeting rules.
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it = ρit−1 + (1− ρ) it, (18)

with it equal to (17) or to a forward-looking version of (17) with future
expected inflation. The term it is usually interpreted as an operating
target for the policy rate.
The crucial difference of (16) with respect to (18) is that the inertial

component is proportional to the lagged operating target, instead of the
lagged interest rate. Hence, our alternative specification of the inertial
policy rule implies that the central bank gradually adjusts the operating
target for the policy rate.16

In our framework, substituting the lagged operating target (it−1) with
the lagged actual interest rate (it−1) in the simple rule would improve
its approximation to the optimal rule only if the lagged interest rate
appeared in the optimal rule. This only happens if there is an inter-
est rate smoothing objective in the central bank’s loss function. There
are circumstances under which this objective might appear. For exam-
ple, Woodford (2003a) has shown that it may be optimal to delegate
monetary policy to a central bank that has an objective function with
an interest rate smoothing motive when the private sector is forward-
looking. However, while there are real-world examples of institutional
arrangements that penalize central banks for not achieving given infla-
tion targets, there is less evidence of them being penalized for changing
interest rates. References to financial stability are typically very gen-
eral and do not necessarily imply an interest rate smoothing objective.17

Sack (2000, pp. 230-231) provides a further argument against an explicit
interest rate smoothing objective:

“To describe this behaviour, which has been referred to
as gradualism, many empirical studies of monetary policy
incorporate an explicit interest-rate smoothing incentive in
the objective function of the Fed. However, introducing this
argument has little justification beyond matching the data.
Furthermore, the above statistics provide evidence of gradu-
alism only if the Fed would otherwise choose a random-walk
policy in the absence of an interest-rate smoothing objec-
tive. Therefore, while establishing that the funds rate is not
a random walk, these statistics do not necessarily provide
evidence of gradualism in monetary policy”.

16See Woodford (2003b, p. 96) for a discussion of interest rate rules with partial
adjustment on lagged operating target.
17See for example Goodfriend (1987).
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Thus we prefer to leave open the question of whether or not the
Central Bank has a smoothing objective, and to inqure how far we can
explain the behaviour of the policy rate without invoking it. We test
empirically for alternative specifications of simple rules which do not nec-
essarily include the lagged interest rate and instead derive some degree
of inertia from the dynamic structure of the economy.

3 Empirical evidence

3.1 Estimation of inflation and output equations
In order to gain some insights into the parameters of the inflation and
output equations used in the previous theoretical analysis we have first
estimated the following empirical model based on Rudebusch and Svens-
son (1999):

πt = κπ1πt−1 + κπ2yt−1 + κπ3πt−2 + ωt, (19)

and
yt = κy1yt−1 + κy2yt−2 + κy3

³eit−1 − eπt−1´+ ψt, (20)

where the variables were de-meaned prior to estimation. The data used
here are ex post revised quarterly data. Inflation is defined using the
GPD-chain weighted price index (Pt), with πt = 400 · (lnPt − lnPt−1).
The output gap is defined as the percentage difference betweeen actual
real GDP (Qt) and potential output (Q∗) estimated by the Congressional
Budget Office. The interest rate it is the quarterly average of the Fed
Funds rate.18 The data are illustrated in Figures 1, 2, and 3. In the
text we do not discuss the stationarity or otherwise of the data. A note
at the end of the appendix summarises some simple checks.

In table 1 we report Ordinary Least Squares estimates of the above
two equations over the period 1961 Q1 - 2004 Q2, with robust stan-
dard errors for the inflation equation. Following Rudebusch and Svens-
son the equations were estimated individually. In the output equationeit = (1/4)

P3
j=0 it−j and eπt = (1/4)

P3
j=0 πt−j. The inflation equation

is somewhat simpler than that estimated by Rudebusch and Svensson.
According to the Wald test, the null hypothesis that κπ3 = (1 − κπ1)
has a p-value of .15, therefore we have imposed this restriction in the
reported estimates.

Table 1 Inflation and Output Equations with ex post revised data
18While real GDP and the GPD-chain weighted price index were taken from FRED

of the Federal Reserve of San Louis, the (effective) Fed Funds rate was taken from
Datastream.
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Figure 1: United States, Federal Funds Rate

Inflation Output
κπ1 0.72

(7.80)
κy1 1.19

(16.52)

κπ2 0.09
(3.35)

κy2 −0.27
(−3.72)

κy3 −0.06
(−2.12)

R
2

0.81 R
2

0.91
SE 1.08 SE 0.77

Notes: Ordinary Least Squares estimates. T statistics in paretheses. R
2

and standard errors (SE) of residuals also reported. For the inflation equation
T-statistics are based on heteroskedasticity- and serial correlation-corrected
standard errors (Newey and West, 1987). Variables are de-meaned before
estimation. Sample period 1961Q1 — 2004Q4.

Despite the simplicity of this model, it has remarkably good statisti-
cal properties, a fact on which Lars Svensson and Glenn Rudebusch have
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Figure 2: Output Gap

commented in several papers, including Svensson and Rudebusch (1999),
Rudebusch (2001), Rudebusch (2002) and Rudebusch (2005). It is re-
markably stable over the estimation period despite the policy changes
that have taken place. The model is backward-looking and includes no
meaningful forward-looking rational-expectations element. Therefore
it is subject to the ‘Lucas critique’ that its parameters are not policy-
invariant and it does not provide a reliable basis for evaluating alterna-
tive policy rules. However, Rudebusch (2005) shows that the empirical
signifiance of the Lucas critique for this model is very small. Taking
some widely-used estimated models that allow for forward-looking be-
haviour, and applying a number of alternative policy rules which cover
the range of policies pursued from the early 1960s to the late 1990s, the
parameters of the reduced form model that emerges are affected only
very slightly by the policy changes. In view of these findings we use
this simple model with some confidence.

3.2 Optimal Rules from the EstimatedMacroModel
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Figure 3: United States, Inflation Rate

In the model above, equations (1) and (2), we insert parameter values
from our estimates in Table 1, as follows:

πt+1 = 0.09yt + 0.72πt + 0.28πt−1

yt+1 = 1.19yt − 0.06 (it − Etπt+1)− 0.27yt−1
We then compute some optimal interest rate rules, taking as the objec-

tive function a slightly more general one than in (5) and (6). Here we
allow for a smoothing objective:

L (πt, yt) =
1

2

£
π2t + λy2t + S(it − it−1)

2
¤

The rules that emerge for various parameter values are shown in Tables
2 and 3. The entries in the tables are coefficients on each of the variables
shown at the top of each column.
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Table 2
Rule for interest rate it
With a high weight on output stabilization
λ S πt πt−1 yt yt−1 it−1
1 0 12.39 3.56 21.71 -4.50 0.0
1 0.01 4.31 1.24 7.51 -1.80 0.28
1 0.05 2.50 0.72 4.24 -1.06 0.42
1 0.1 1.94 0.56 3.25 -0.82 0.48
1 0.5 1.07 0.31 1.71 -0.44 0.60
1 1 0.83 0.24 1.29 -0.33 0.65

Table 3
With a low weight on output stabilization
λ S πt πt−1 yt yt−1 it−1
0.1 0 36.66 10.15 23.83 -4.50 0.0
0.1 0.01 5.30 1.50 4.36 -1.02 0.42
0.1 0.05 2.79 0.79 2.50 -0.60 0.54
0.1 0.1 2.11 0.60 1.95 -0.48 0.59
0.1 0.5 1.09 0.31 1.11 -0.27 0.68
0.1 1 0.83 0.24 0.87 -0.22 0.71

In Table 2 a relatively high weight is given to output deviations
( λ = 1). Here output and inflation deviations are equally weighted.
Results are provided for values of S (the weight on interest rate changes)
ranging from 0 to 1. We find, as many have done before, that if a
zero weight is given to smoothing, the responses to inflation and output
deviations are very aggressive. The coefficients are most un-Taylor-
like! The coefficients on current and lagged output gaps sum to 19.53
and those on inflation sum to 46.81, far from the 0.5 and 1.5 found by
Taylor! However, introducing a small degree of smoothing (S lying
between 0.1 and 0.5) reduces the short run coefficients to more Taylor-
like levels. However, we do not find here one of the key requirements
of our hypothesis that the ratio of the coefficients on πt and yt should
equal the ratio of the coefficients on πt−1 and yt−1. Thus it does not
seem likely that the optimal rule can be written as a moving average
of an operating target like i as in equation (16). Whatever the weight
on smoothing, the parameter on yt−1 is always negative while the other
three are positive.
The aggressive responses result from the very weak effect that the

interest rate has on the output gap, compounded with the weak effect of
the output gap on inflation. The strong positive response of the policy
rate to the current output gap and the negative repsonse to the lagged
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output gap probably reflect the pattern of lagged effects in the output
gap equation: the output gap responds more than one-for-one to its
own once-lagged value, and responds negatively to its own twice-lagged
value. Meanwhile inflation responds positively but less than one-for-one
to its own once-lagged value and responds positively but less to its own
twice lagged value.
When a lower weight on output stabilization is chosen, as in Table 3

where λ = 0.1, the general character of the results is unchanged. Now
the policy response to inflation is even more aggressive, but some degree
of smoothing does a great deal to reduce the coefficients to Taylor-like
levels. The pattern of signs of the policy response to output gaps and
inflation is as before.
Despite the finding that, in the terms used in (15) above, μ1/μ2 6=

μ3/μ4, for this estimated model, we nevertheless go on in the next section
to explore directly estimated policy rules.

3.3 Estimates of Alternative Policy Rules
We now turn to estimating alternative forms of policy rule, the standard
inertial Taylor rule

it = ρit−1 + (1− ρ) it + ξt, (21)

and the alternative inertial Taylor rule

it = ρit−1 + (1− ρ) it + ξt, (22)

with

it = μ+ μπeπt + μyyt, (23)

and 0 < ρ < 1. ξt is an i.i.d. error term. Following Taylor (1993) and
Rudebusch (2002a) the policy rate is assumed to react to the average
inflation rate over four quarters, eπt.
We allow for serial correlation in the errors in these two equations.

As Rudebusch (2002a) argues, a partial adjustment model and a model
with serially correlated shocks can be nearly observationally equivalent.
However English, Nelson and Sack (2003) find that both play an impor-
tant role in describing the behaviour of the federal funds rate when they
allow for both of these hypotheses in the estimation of the policy rule.
The omission of a persistent, serially correlated variable that influences
monetary policy could yield the spurious appearance of partial adjust-
ment in the estimated rule. We assume that the shock ξt follows an
AR(1) process:
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ξt = θξt−1 + εt. (24)

The combination of rule (21) with (24) yields the following expression
for the first difference of the interest rate:

∆it = (1− ρ)∆it − (1− ρ)(1− θ)(it−1 − it−1) + ρθ∆it−1 + εt. (25)

This expression corresponds to that used by English, Nelson and Sack
(2003). The combination of rule (22) with (24) yields the following
expression for the first difference of the interest rate:

∆it = (1− ρ)∆it − (1− θ)(it−1 − it−1) + ρθ∆it−1 + εt. (26)

Nonlinear Least Squares estimates of (25) and (26) are reported in tables
4 and 5, for the period 1987 Q4 - 2004 Q2, and for two subsamples of it.
The point estimates of ρ and θ are both highly significant for all rules,
suggesting that both partial adjustment and serially correlated errors
are present. The coefficients on the output gap and inflation are largely
consistent with other estimates from the literature, with a significant
coefficient on the output gap and a coefficient on inflation greater than
one. Moreover, both rules appear to fit the data relatively well.
Interestingly, the degree of inertia implied by the alternative inertial

Taylor rule is systematically lower than that implied by the standard
specification, with an estimated coefficient of partial adjustment ρ for
the whole sample of .60 against one of .77. Meanwhile, the coefficient θ
is systematically higher in the case of the alternative specification than
in the standard specification. However, we have not tested whether
these differences are significant statistically.
Thus, as in English, Nelson and Sack (2003), the empirical evidence

suggests that specifications (25) and (26) of the policy rules perform no
worse than the more usual specifications (21) and (22). The alternative
specification suggests less monetary inertia but much greater importance
of serially correlated errors than does the standard specification.

Table 4 Standard inertial Taylor Rule with ex post revised data
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1987Q4-1993Q4 1987Q4-2001Q2 1987Q4-2004Q2
μ0 0.15

(0.12)
1.10
(0.94)

1.28
(0.89)

μπ 2.31
(7.12)

1.85
(4.31)

1.66
(2.41)

μy 0.92
(5.61)

0.77
(3.94)

0.94
(3.49)

ρ 0.51
(7.58)

0.61
(7.34)

0.72
(6.49)

θ 0.34
(2.09)

0.80
(5.52)

0.77
(5.41)

R
2
0.99 .097 0.98

SE 0.26 0.31 0.33

Note: Nonlinear least squares estimates. T-statistics in parentheses based on
standard errors corrected for heteroskedasticity and serial correlation (Newey

and West, 1987). R
2
and standard errors (SE) of residuals are reported for

the level of the funds rate.

Table 5 Alternative Inertial Taylor Rule with ex post revised data

1987Q4-1993Q4 1987Q4-2001Q2 1987Q4-2004Q2
μ0 0.41

(0.41)
1.70
(1.07)

−4.08
(−0.17)

μπ 2.15
(9.69)

1.40
(5.04)

1.10
(3.50)

μy 0.78
(5.66)

0.65
(4.56)

0.67
(4.56)

ρ 0.48
(6.62)

0.59
(6.49)

0.60
(8.64)

θ 0.70
(6.18)

0.94
(17.29)

0.99
(26.68)

R
2
0.99 .096 0.98

SE 0.28 0.35 0.36

Note: Nonlinear least squares estimates. T-statistics in parentheses based on
standard errors corrected for heteroskedasticity and serial correlation (Newey

and West, 1987). R
2
and standard errors (SE) of residuals are reported for

the level of the funds rate.

3.4 More general models
The two models — the standard rule and our revised rule — have been
presented as two alternatives. However, they can both be represented
as special cases of more general relations. The least restrictive is an
unrestricted linear model involving lags of the change and level of the
interest rate, and current and lagged values of the changes in the output
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gap and inflation and their lagged levels:

∆it= c0 + c1∆it−1 + c2it−1 + c3∆eπt + c4∆yt + c5∆eπt−1 + (27)

c6∆yt−1 + c7eπt−1 + c8yt−1 + ut

A set of restrictions that brings this closer to the Taylor rules above is to
assume that the output gap and inflation rate enter through some sort
of target interest rate it, which is a a linear combination of the output
gap and the inflation rate. The necessary restrictions are :

c3/c4 = c5/c6 = c7/c8.

When these hold, the change in the policy rate can be written as

∆it = c01∆it−1 + c02(it−1 − it−1) + c03∆it + c04∆it−1 + ut (28)

with
it = μ0 + μπeπt + μyyt

This might be termed a semi-restricted model.
To get another step closer to the models estimated above, we can

impose the restriction that there is a common factor in the lag poly-
nomials for it and it so that the model can be represented as having a
first-order autoregressive error term. This might be termed the hybrid
model, as it takes the form of a linear combination of the two models
set out above. The restriction that is imposed on the semi-restricted
model above is that

c03
1− c03

=
c02

1− c03 − c01 − c04
− c04

c01 + c04

and when this restriction is valid we can reduce the four parameters c01,
c02, c

0
3, and c04 to three, ρ, φ, and θ, which satisfy

(1− ρ− φ) = c03, (1− φ)(1− θ) = c02, θφ = c01, andθρ = c04

In terms of the levels of the interest rate the hybrid model gives:

it = (1− ρ− φ)it + ρit−1 + φit−1 + ξt (29)

it = μ0 + μπeπt + μyyt

ξt = θξt−1 + εt

As an expression for the change in the policy rate, the hybrid model
gives:

∆it = (1−ρ−φ)∆it+(1−φ)(1−θ)(it−1− it−1)+θφ∆it−1+θρ∆it−1+εt
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The models set out above are special cases of this hybrid model. If we
assume ρ = 0, we get the "standard" type of inertial Taylor Rule. If
instead we assume φ = 0, we get the moving average form of Taylor rule,
in which there is no real, only apparent inertia. If we assume θ = 0, we
are assuming that the error term is not serially correlated.
Estimated over the sample period 1987Q4 to 2004Q2, the unre-

stricted, semi-restricted, and hybrid models show that the hybrid model
is an acceptable simplification of the unrestricted model. The relevant
summary statistics are reported in Table 6

Table 6 Summary Statistics: Unrestricted, Semi-Restricted, and Hybrid
Models

Unrestricted Semi-Restricted Hybrid
R2 0.62 0.61 0.61

R
2

0.57 0.57 0.58
SE of Regression 0.31 0.31 0.310
Sum of squared residuals 5.65 5.86 5.86
Log Likelihood -12.195 -13.42 -13.43
Akaike 0.63 0.61 0.58
Schwartz 0.93 0.84 0.78
Note: Sample period 1987Q4—2004Q2. R2 measured for ∆it.
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However, when further restrictions are imposed on the hybrid model,
they prove to be rejected by the data. Both the ‘Normal Taylor’ and
the ‘Alternative’ models are rejected against the alternative hypothesis
of the hybrid model. Consequently, for this sample period, neither
model suffices. There appear to be elements of both in the data. The
most that can be claimed is that, while structural inertia (represented
by our alternative model) plays some role in explaining interest rate
movements, there still appears to be an element of the ‘inexplicable’
inertia remaining.

Table 7 Estimates of Various Models

Hybrid Model
Normal Taylor

(ρ = 0)
Alternative
(φ = 0)

ρ 0.28 (0.10) 0 0.60 (0.10)
φ 0.48 (0.11) 0.71 (0.11) 0
μy 0.92 (0.21) 0.93 (0.38) 0.67 (0.11)
μπ 1.15 (0.42) 1.65 (0.63) 1.10 (0.26)
θ 0.93 (0.06) 0.76 (0.14) 0.98 (0.03)
const 0.07 (0.10) 0.083 (0.09) -0.04 (0.11)
R2 0.61 0.56 0.47

R
2

0.58 0.53 0.44
SE 0.310 0.325 0.36
Sum Squared Residuals 5.86 6.56 7.93
Log likelihood -13.43 -17.23 -23.59
Akaike info criterion 0.58 0.66 0.85
Schwarz criterion 0.78 0.83 1.02
Notes: Sample Period 1987Q4—2004Q2
While neither model is acceptable for the period 1987Q4—2004Q2, it

is possible to find shorter sample periods for which one or other of them
is acceptable, as Table 8 shows. This table shows the p-values for the
likelihood ratio test of the null hypothesis that the model is either the
standard or the alternative inertial Taylor rule against the alternative
hypothesis that the hybrid is the true model. Our alternative model
is acceptable providing the sample starts in 1983Q4 and ends before
1999Q4. But if the sample begins in 1987Q4 the model is rejected. The
standard inertial Taylor model by contrast is only accepted if the sample
beings in 1987Q4 and ends by 1999Q4. All this points to considerable
structural instability in these models, reflecting changing responses of
interest rates to output gaps and inflation.

Table 8 Partial Adjustment and Correlated Shock Rules: p-values
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Figure 4: Hybrid Model, estimated on sample 1987Q4 2004Q2

Sample Standard Alternative Model
83Q4-93Q4 0.00 0.89

-96Q4 0.00 0.14
-99Q4 0.00 0.07
-04Q2 0.00 0.00

87Q4-93Q4 0.53 0.04
-96Q4 0.14 0.00
-99Q4 0.44 0.00
-04Q2 0.01 0.00

Note: The entries in the table are p-values of the Likelihood-Ratio Test.
The null hypothesis is partial adjustment for the standard inertial Taylor
Rule (columns headed ‘Standard’) or for the alternative inertial rule (columns
headed ‘Alt’), with and without serially correlated shocks.
The actual values of the interest rate and the fitted values for the

hybrid model are displayed in Figure 4.
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The presence of serially correlated errors in the policy rule (for both
specifications) may reflect the presence of serially correlated variables
(other than inflation and the output gap) which have been omitted from
the estimated policy rule. Driffill et al. (2006) have argued that likely
candidates are indicators of financial stress related to a financial stability
motive.

4 Evidence from yield curves

Rudebusch argues that the partial adjustment of monetary policy by a
central bank implies that the short-term interest rate should be highly
predictable. However, term structure evidence based on futures con-
tracts suggests that there is little if any information usually available
in financial markets for predicting the Fed funds rate 3-6 months ahead
and no information for predicting it 6-9 months ahead. On the contrary
within a 3-month horizon the 3-month eurodollar forecasts the future
change of the Fed funds rate relatively well (with an R2 of 0.57).
Söderlind, Södeström and Vredin (2003) note that the predicatibility

of the short-term interest rate depends crucially on the predictability of
inflation and output as well as the degree of monetary inertia. They
show that, while it is relatively easy to predict the variables that enter
the Taylor rule, it is very difficult to predict interest rates. They argue
that this outcome might be related to an omitted variable problem in
the Taylor rule, with the potentially omitted variable being not easily
predictable.
In order to examine the issue of predictability empirically, we con-

sider our estimated equations for output and inflation, and run recursive
simulations for the Fed funds rate by using the different estimated policy
rules for the 1987-2004 period. After having obtained one quarter, two
quarters and three quarters ahead predictions of the Fed funds rate we
estimate for the 1990 Q1 - 2004 Q2 period the following regressions:

it+1 − it=ψ0 + ψ1(Etit+1 − it) + ξt+1, (30)

it+2 − it+1=ψ0 + ψ1(Etit+2 −Etit+1) + ξt+2,
it+3 − it+2=ψ0 + ψ1(Etit+3 −Etit+2) + ξt+3.

The use of parameters estimated on the full sample is consistent
if parameters are stable; and recursive estimations starting from 1990
Q1 support parameter stability for the different policy rules considered.
Equations (30) are the analogue of the equations considered by Rude-
busch based on the forecasts implied by futures contracts.19 Table 10

19Equations (15), (16) and (17) in Rudebusch (2002), pages 1172-1173.
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reports the estimated parameters and the corrected R2 statistic for the
two specifications. The results indicate that the simple framework em-
ployed here is capable of replicating the pattern found by Rudebusch
quite closely.20

Table 10 Predictability of the Federal Funds Rate
ψ0 ψ1 R

2
SE

Standard Specification
One quarter ahead −0.02

−0.36
0.80
5.49

0.37 0.36

Two quarters ahead −0.05
−0.55

0.56
3.03

0.14 0.43

Three quarters ahead −0.07
−0.63

0.46
2.31

0.08 0.44

Alternative Specification
One quarter ahead −0.02

−0.37
0.83
4.44

0.30 0.38

Two quarters ahead −0.04
−0.44

0.67
2.64

0.11 0.43

Three quarters ahead −0.05
−0.50

0.63
2.36

0.09 0.44

Notes: OLS estimates. T-statistics shown below parameter estimates are
based on Newey and West (1987) heteroskedasticity- and serial-correlation-

corrected standard errors. R
2
and standard errors of the residuals are reported

for the first difference of the Federal Funds rate. Sample period for estimation
1990Q1—2004Q2.

Thus we conclude that the issue of predictability of the short-term
interest rate may be misleading. A partial adjustment component in
empirical Taylor rules does not appear to imply that interest rates are
more predictable than the yield curves suggest.

5 Conclusions

In this paper we have attempted to add to the many already-existing
explanations for inertia in empirical Taylor rules. Our proposal is that
the optimal interest rate rule for stabilising inflation and the output gap
will typically inherit the inertia in the economic system itself. If the
evolution of the output gap and inflation depends on their own lagged
values, then the rule for the control variable, the interest rate, will typ-
ically do the same. When estimated empirically, a rule in which the
interest rate depends on current and lagged values of the state variables

20Also Favero (2002) has shown that the predictive regressions based on model
projections and Fed Funds rate futures give very similar results. But he examines
only the standard specification of the inertial forward-looking Taylor rule.
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— the output gap, inflation, and so on — may look rather like one in which
the interest rate depends on its own lagged values. The picture is likely
to be further confused by omitted autocorrelated variables which engen-
der a serially correlated error term in the estimated equation. We have
derived a rule from a simple macroeconomic model. The optimal interest
rate rule implied by crude estimates of this model looks something like a
modified form of Taylor rule with inertia. When we estimate alternative
forms of interest rules directly, our alternative formulation is not wholly
inconsistent with the data. While it does not completely supplant the
standard Taylor rule, neither does the standard rule explain the data
satisfactorily. A hybrid model containing elements of both appears to
perform rather better than either alone.
Rudebusch and others have pointed to the inconsistency between

the apparent forecastability of interest rates implied by the inertia in
estimated Taylor rules, and the lack of forecastability implied by yield
curves. The future interest rates implicit in yield curves for Treasury
Bills are not good forecasts of future interest rates. However, it turns out
that, with the modified form of inertial Taylor rule, allowing for the need
to forecast the output gap and inflation that enter the rule, there does
not appear to be a significant inconsistency between the implications of
the yield curve data and the direct estimates of the Taylor rule.
The results obtained here are suggestive rather than conclusive. This

line of enquiry needs to be developed in a number of ways. The macroeo-
conomic model we used contains no forward looking behaviour or other
nods in the directions of microeconomic foundations. We need to use
a conceptually more coherent model. We need to examine the implied
forecastability of interest rates from alternative pieces of data more care-
fully.
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Appendix

Are Interest Rates, the Output Gap, and Inflation Station-
ary?
Some readers may be curious as to whether the variables we have

used a stationary or have unit roots. In some sense, if the US Federal
Reserve is pursuing an effective policy to keep inflation low and output
close to capacity, all three variables are highly likely to be stationary.
In most of the empirical analysis in the paper it is assumed that the
variables are stationary. However, in some of the estimated equations
the dependent variables have been expressed in first differences, such
as the change in the interest rate; and the independent variables have
been expressed in changes and in linear combinations of lagged levels,
which are stationary even if some of the individual component variables
are not, providing the US Federal Reserve is following something like a
Taylor Rule in the long run.
For the output gap, for the sample 1960Q4 — 2004Q2, we obtain an

augmented Dickey-Fuller (ADF) test statistic of -3.55, with a p-value of
0.0076 for the null hypothesis of a unit root. On this test, a unit root is
rejected. For the Federal Funds rate, over a sample 1961Q1 — 2004Q2,
the ADF test statistic is -2.41, with a p-value of 0.14. Here a unit root
cannot be ruled out. For inflation, over the sample 1961Q3 to 2004Q2,
the ADF test statistic is -2.23, with a p-value of .20. Again, a unit root
cannot be rejected. The non-rejection of a unit root in inflation and
nominal interest rates is not unexpected. Both have been persistent,
and there was a marked rise in both until the late seventies and early
eighties, since when both have drifted back down to low single figures
(at an annual percentage rate). The non-rejection may just reflect the
meeting of stationary but persistent series with a test of known low
power.
If a unit root in these were accepted, then it would be legitimate to

estimate a long run Taylor rule from a regression of the interest rate on
inflation and the output gap. Doing that for the sample 1987Q4—2004Q2
yields

it=0.58
1.36

+ 0.83
9.68

yt + 2.14
11.93

πt

R2= .75,DW = 0.21,

(T-statistics beneath estimated parameters.) The parameters are not
massively dissimilar from the ‘Taylor’ values of 0.5 and 1.5. Instead
we have 0.83 amd 2.14, implying a stronger long-run response. The
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Figure 5: Residuals in estimated long run Taylor rule

errors from this equation are shown in figure 5. They do not look
particularly stationary. The persistent fall from around 1995 to 2004
may reflect the under-measurement of the output gap as the economy
grew more strongly than expected without inflation taking off, and the
Fed’s allowing interest rates to remain low.
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