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Abstract

Every locally maximal product-free set S in a finite group G satisfies G = S∪SS∪S−1S∪
SS−1∪

√
S, where SS = {xy| x, y ∈ S}, S−1S = {x−1y| x, y ∈ S}, SS−1 = {xy−1| x, y ∈

S} and
√
S = {x ∈ G| x2 ∈ S}. To better understand locally maximal product-free

sets, Bertram asked whether every locally maximal product-free set S in a finite abelian
group satisfy |

√
S| ≤ 2|S|. This question was recently answered in the negation by the

current author. Here, we improve some results on the structures and sizes of finite groups
in terms of their locally maximal product-free sets. A consequence of our results is the
classification of abelian groups that contain locally maximal product-free sets of size 4,
continuing the work of Street, Whitehead, Giudici and Hart on the classification of groups
containing locally maximal product-free sets of small sizes. We also obtain partial results
on arbitrary groups containing locally maximal product-free sets of size 4, and conclude
with a conjecture on the size 4 problem as well as an open problem on the general case.

1 Introduction

Let S be a non-empty subset of a finite group G. Then S is product-free in G if there is
no solution to the equation xy = z for x, y, z ∈ S; equivalently, if S ∩ SS = ∅, where
SS = {xy| x, y ∈ S}. For a finite group G, a locally maximal product-free set in G is a
product-free subset S of G such that given any other product-free set T in G with S ⊆ T ,
then S = T . Since every product-free set in a finite group G is contained in a locally maximal
product-free set in G, we can gain information about product-free sets in a group by studying
its locally maximal product-free sets. In connection with Group Ramsey Theory, Street and
Whitehead [9] noted that every partition of a finite group G (or in fact, of G∗ = G \ {1})
into product-free sets can be embedded into a covering by locally maximal product-free sets,
and hence to find such partitions, it is useful to understand locally maximal product-free
sets. Among other results, they calculated locally maximal product-free sets in groups of
small orders, up to 16 in [9, 10] as well as a few higher sizes. Giudici and Hart [7] started
the classification of finite groups containing small locally maximal product-free sets. They
classified finite groups containing locally maximal product-free sets of sizes 1 and 2, as well
as some of size 3. The size 3 problem was resolved in [3]. The reader may see [9, 4, 2] for
a concept ‘filled groups’ studied for locally maximal product-free sets. A locally maximal
product-free set in a group G can be characterised as a product-free subset S of G satisfying

(1.1) G = S ∪ SS ∪ S−1S ∪ SS−1 ∪
√
S,
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2 Groups containing locally maximal product free sets of size 4

where SS = {xy| x, y ∈ S}, S−1S = {x−1y| x, y ∈ S}, SS−1 = {xy−1| x, y ∈ S} and√
S = {x ∈ G| x2 ∈ S} (see [7, Lemma 3.1]). Each (locally maximal product-free) set S in a

finite group of odd order satisfies |
√
S| = |S|. No such result is known for finite groups of even

order in general. To better understand locally maximal product-free sets (LMPFS for short),
Bertram [5, p. 41] asked the question: does every locally maximal product-free set S in a finite

abelian group satisfy |
√
S| ≤ 2|S|? This question was answered in the negation in [1, pp. 2–3].

The answer shows that we can’t rely on |
√
S| ≤ 2|S| to obtain a reasonable bound on the

order of an arbitrary finite abelian group of even order containing a locally maximal product-
free set S. The set S = {x2} consisting of the unique involution in the Quaternion group Q8 is

locally maximal product-free in Q8 and satisfies |
√
S| = 6|S| = 3

4 |Q8|. This shows that relying

on |
√
S| ≤ 2|S| to obtain a bound on all non-abelian finite groups containing locally maximal

product-free sets will be disastrous too. We note that
√
S cannot always be removable from

equation 1.1 as seen in Remark 3.3(a) of this paper, with the locally maximal product-free
subset S = {x, x6} of G = 〈x| x7 = 1〉 ∼= C7. Though not every locally maximal product-free
set is a maximal (by cardinality) product-free set, the subset S of C7 given here is clearly a
maximal by cardinality product-free set. In particular, |S∪SS∪SS−1∪S−1S| = |S∪SS| = 5

and |
√
S| = 2. Unfortunately, this example shows that the proof of Theorem 3 of [8] is not

correct, as the author assumed that every element of a finite group G which is not an element
of a maximal product-free subset S of G is either an element of SS, SS−1 or S−1S. The sizes
of SS, SS−1 and S−1S were optimised in [8, Theorem 3] that it is difficult to get a counter

example of the theorem itself, even though the absence of
√
S made the proof wrong. We

devote this paper to obtaining structures and sizes of finite groups in terms of their locally
maximal product-free sets S, without necessarily relying on |

√
S| ≤ 2|S|. Throughout this

discussion, G is an arbitrary finite group, except where otherwise stated.

2 Preliminaries

Let S and V be subsets of G. We define the following:

SV = {sv| s ∈ S, v ∈ V }; S−1 = {s−1| s ∈ S};

T (S) = S ∪ SS ∪ SS−1 ∪ S−1S;
√
S = {x ∈ G| x2 ∈ S}.

Lemma 2.1. [7, Lemma 3.1] Let S be a product-free set in a group G. Then S is locally

maximal product-free if and only if G = T (S) ∪
√
S.

Proposition 2.2. [7, Proposition 3.2] Let S be a LMPFS in G. Then 〈S〉 is a normal
subgroup of G. Furthermore, G/〈S〉 is either trivial or an elementary abelian 2-group.

Theorem 2.3. [7, Theorem 3.4] If S is a LMPFS in G, then |G| ≤ 2|T (S)| · |〈S〉|.

Notation. Let S ⊆ G. We define Ŝ := {s ∈ S|
√
{s} 6⊂ 〈S〉}.

Proposition 2.4. [7, Proposition 3.6] Suppose S is a LMPFS in G and that 〈S〉 is not an

elementary abelian 2-group. If |Ŝ| = 1, then |G| = 2|〈S〉|.
Proposition 2.5. [7, Proposition 3.7] Suppose S is locally maximal product-free in G. Then

every element s of Ŝ has even order. Moreover all odd powers of s lie in S.

Proposition 2.6. [7, Proposition 3.8] Let S be a LMPFS in G. If there exists s ∈ S and

integers m1, . . . ,mt such that Ŝ = {s, sm1 , . . . , smt}, then |G| divides 4|〈S〉|.
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Lemma 2.7. [7, Lemma 3.9] Suppose S is a locally maximal product-free set in a group G.
If S ∩ S−1 = ∅, then G = T (S) ∪ T (S)−1.

Corollary 2.8. [7, Corollary 3.10] If S is a LMPFS in G such that S ∩ S−1 = ∅, then
|G| ≤ 4|S|2 + 1.

We write D2n = 〈x, y| xn = y2 = (xy)2 = 1〉 for the finite dihedral group of order 2n.

Lemma 2.9. [4, Lemma 3.10] There is no locally maximal product-free set of size 4 consisting
of at most one involution in a finite dihedral group.

Theorem 2.10. [4, Theorem 3.11] Suppose S is a LMPFS of size 4 in a finite dihedral group
G. Then up to automorphisms of G, the possible choices are given as follows:

|G| S

8 {y, xy, x2y, x3y}, {x, x3, y, x2y}
10 {x2, x3, y, x4y}
12 {x3, y, xy, x2y}, {x2, x3, y, x5y}, {x, x5, y, x3y}, {x, x4, y, x3y}
14 {x2, x3, y, x6y}
16 {x2, x3, y, x7y}, {x, x6, y, x4y}
18 {x2, x5, y, x8y}
20 {x, x8, y, x5y}

3 Main results

Let S be a locally maximal product-free set in a finite group G. If the exponent of G is 2,
then S−1S = SS = SS−1 and

√
S = ∅; so G = S ∪ SS. If the exponent of G is 3, then for

x ∈
√
S, we have that x2 ∈ S, so x4 = x ∈ SS, and we conclude that

√
S ⊆ SS. In the light

of Equation (1.1) therefore G = S ∪ SS ∪ S−1S ∪ SS−1; whence

|G| = |S ∪ SS ∪ SS−1 ∪ S−1S| ≤ 3|S|2 − |S|+ 1

since |SS| ≤ |S|2 and |SS−1∪S−1S| ≤ 2|S|2−2|S|+ 1. Now, suppose the exponent of G is 4.
If S∩S−1 = ∅, then S consists of elements of order 4 only, and as the square roots of elements
of order 4 have order 8, we have that

√
S = ∅; thus G = S ∪ SS ∪ S−1S ∪ SS−1. Again,

|G| ≤ 3|S|2 − |S|+ 1. We begin this study by examining locally maximal product-free sets S
with the property that S∩S−1 = ∅. Lemma 2.7 is that if S is a locally maximal product-free
set in a finite group G such that S∩S−1 = ∅, then G = S∪SS∪S−1S∪SS−1∪S−1∪(SS)−1.
Corollary 2.8 is that if S is a locally maximal product-free set in a finite group G such that
S ∩ S−1 = ∅, then |G| ≤ 4|S|2 + 1. The first result here (Theorem 3.1 below) improves
Lemma 2.7 and Corollary 2.8. For finite groups of odd order, Proposition 3.2 below gives a
much tighter and broader result for Corollary 2.8.

Notation. For a subset S of a group G, we write I(S) for the set of all involutions in S.

Theorem 3.1. Suppose S is a LMPFS in a finite group G such that S ∩ S−1 = ∅. Then
G = SS ∪ S−1S ∪ SS−1 ∪ (SS)−1. Moreover, |G| ≤ 4|S|2 − 2|S| − |I(G)|+ 1.

Proof. First, S−1 ∩ SS−1 = ∅; for if x−1 = yz−1 where x, y, z ∈ S, then z = xy, a contradic-
tion. Similarly, S−1∩S−1S = ∅. In the light of Equation (1.1) therefore S−1 ⊆ SS∪

√
S. Let

x−1 ∈ S−1 be arbitrary. Suppose x−1 ∈
√
S. Then x−2 ∈ S. As x ∈ S, we have that (x)(x−2) =

x−1 ∈ SS. So, S−1 ⊆ SS; whence S ⊆ (SS)−1, and G = SS ∪S−1S ∪SS−1 ∪ (SS)−1 follows
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from Lemma 2.7. Clearly, |G| ≤ 4|S|2 − 2|S|+ 1. However, each involution used in obtaining
the bound of |G| given as “|G| ≤ 4|S|2 − 2|S|+ 1” is counted at least twice. Now, x ∈ SS if
and only if x ∈ (SS)−1; so all such involutions are counted twice. If x ∈ S−1S, then x = y−1z
for some y, z ∈ S. Thus, x = z−1y as well. So x is counted at least twice in S−1S. The same
applies to x ∈ SS−1. By removing the second count on involutions of G, we obtain that
|G| ≤ 4|S|2 − 2|S| − |I(G)|+ 1.

Proposition 3.2. If S is a locally maximal product-free set of size k in a finite group G of
odd order and 0 ≤ |S ∩ S−1| = l ≤ k, then |G| ≤ 3k2 − l(2k − 1) + 1.

Proof. Suppose S is a LMPFS of size k in a finite group G of odd order and 0 ≤ |S ∩S−1| =
l ≤ k. As each element of S has a unique square root, we have that |

√
S| = k. If l = 0, then

|SS−1 ∪ S−1S| ≤ 2k2 − 2k + 1 and |SS| ≤ k2; so the result follows from Equation (1.1).
Now, suppose 1 ≤ |S ∩ S−1| = l ≤ k. Define ã to be a non-negative integer which is less
than or equal to the maximal number of identity 1’s in {x1x1, · · · , x1xk} ∪ {x2x1, · · · , x2xk}
∪ · · · ∪ {xk−1x1, · · · , xk−1xk} ∪ {xkx1, · · · , xkxk}. We take ã = l. So |SS| ≤ k2 − ã + 1 =
k2 − l + 1. Let S = {x1, · · · , xl, xl+1, · · · , xk} and S−1 = {x1, · · · , xl, x−1l+1, · · · , x−1k }. Then

(SS ∪ SS−1) \ SS ⊆ x1{x−1l+1, · · · , x−1k } ∪ x2{x−1l+1, · · · , x−1k } ∪ · · · ∪ xl{x−1l+1, · · · , x−1k }∪

xl+1{x−1l+2, x
−1
l+3, · · · , x−1k } ∪ xl+2{x−1l+1, x

−1
l+3, x

−1
l+4, · · · , x−1k } ∪ · · · ∪ xk{x−1l+1, x

−1
l+2, · · · , x−1k−1}.

Therefore

(3.1) |(SS ∪ SS−1) \ SS| ≤ l(k − l) + (k − l)(k − l − 1) = (k − l)(k − 1).

Similarly,
|(SS ∪ S−1S) \ SS| ≤ (k − l)(k − 1).

By Equation (1.1) therefore |G| ≤ 3k2 − l(2k − 1) + 1.

Remark 3.3. (a) The bound of |G| in Proposition 3.2 is tight as it is attained with (k, l) =
(2, 2) as S = {x, x−1} ⊂ G = 〈x| x7 = 1〉 ∼= C7 meets it. (b) Theorem 3.1 and Proposition 3.2
point at the need for a bound on the sizes of finite groups of even order containing locally
maximal product-free sets S satisfying S ∩ S−1 6= ∅. Such universal bound is hard to obtain
(see Question 3.28 at the end of the paper) when G is an arbitrary finite group of even order

due to the difficulty in bounding |
√
S| as we saw an example of a locally maximal product-free

subset S of Q8 satisfying |
√
S| = 3

4 |Q8|. In the finite abelian case, progress is possible.

In the light of Equation (1.1), a finite abelian group G containing a locally maximal product-
free set S can be characterised as:

(3.2) G = S ∪ SS ∪ SS−1 ∪
√
S.

If |G| is odd, then as each element of G has exactly one square root, |
√
S| = |S|. Using

(3.3) |SS| ≤ |S|(|S|+ 1)

2
and |SS−1| ≤ |S|2 − |S|+ 1

in equation (3.2), we obtain that

(3.4) |G| ≤ 3|S|2 + 3|S|+ 2

2
.
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On the other hand, if |G| is even, then using (3.3) together with |
√
S| ≤ |G|2 yield

(3.5) |G| ≤ 3|S|2 + |S|+ 2.

We note here that |
√
S| ≤ |G|2 follows from the fact that

√
S is product-free in a finite abelian

group G whenever S is product-free, and that a product-free set in G has size at most |G|2 .

Observation 3.4. Let S be a set of size k in a finite abelian group G such that 1 ≤ |S∩S−1| =
l ≤ k. We define A(l) to be a non-negative integer which is less than or equal to the maximal
number of identity 1’s in {x1x1, · · · , x1xk} ∪ {x2x2, · · · , x2xk} ∪ · · · ∪ {xk−1xk−1, xk−1xk}
∪ {xkxk}. So

(3.6) |SS| ≤ k(k + 1)

2
−A(l) + 1.

Suppose |G| is even. Then

A(l) :=

{
l+1
2 if l is odd;
l
2 if l is even.

Whence

(3.7) |SS| ≤ k(k + 1)− (l − 1)

2
or

k(k + 1)− (l − 2)

2

according as l even or odd. Now, suppose |G| is odd. Each element of G has a unique inverse;
so l ≥ 2 and even. Thus, A(l) = l

2 , and we conclude from inequality (3.6) that

|SS| ≤ k(k + 1)− l + 2

2
.

Inequality (3.6) can be used to obtain a better bound for |G| when S∩S−1 6= ∅. For instance,
if S is a locally maximal product-free set of size k in a finite abelian group G of odd order such

that 1 ≤ |S ∩ S−1| = l ≤ k, then |G| ≤ 3k2−l(2k−1)+(3k+2)
2 , and this result improves inequality

(3.4) for S ∩ S−1 6= ∅. Theorem 3.5 below gives a bound on |G| when S ∩ S−1 = ∅.

Theorem 3.5. Suppose S is a locally maximal product-free set in a finite abelian group G
such that S ∩ S−1 = ∅. Then G = SS ∪ SS−1 ∪ (SS)−1. Moreover, |G| ≤ 2|S|2 − |I(G)|+ 1.
Also, if I(G) ⊆ I(SS−1), then |G| ≤ 2|S|2 − 2|I(G)|+ 1.

Proof. As SS−1 = S−1S, the part “G = SS∪SS−1∪ (SS)−1” follows from G = SS∪SS−1∪
S−1S ∪ (SS)−1 in Theorem 3.1. As |SS| = |(SS)−1| ≤ |S|(|S|+1)

2 and |SS−1| ≤ |S|2 − |S|+ 1,

we conclude that |G| ≤ 2|S|2 + 1. However, each involution that gives rise to the bound on
|G| is counted at least twice. Suppose x is an involution of G. Now, x ∈ SS if and only if
x ∈ (SS)−1; so all such involutions are counted twice. If x ∈ SS−1, then x = yz−1 for some
y, z ∈ S. Thus, x = zy−1 as well. So x is counted at least twice in SS−1. By removing the
second count on involutions of G, we obtain that |G| ≤ 2|S|2 − |I(G)| + 1. Now, suppose
I(G) ⊆ I(SS−1). Let x ∈ SS−1 be an involution. Then there exist y, z ∈ S (for y 6= z) such
that x = yz−1. Now, 1 = x2 = y2z−2; so y2 = z2. This shows that given each involution
yz−1 ∈ SS−1, we can find two elements y2, z2 ∈ SS such that y2 = z2. Thus, we can find a
pair of repeated elements (y2, z2) for y2, z2 ∈ SS such that y2 = z2. By discarding one element
in each pair of the repeated elements of SS, we obtain that |G| ≤ 2|S|2 − 2|I(G)|+ 1.
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The first bound on |G| in Theorem 3.5 is tight as S = {x, y3, x3y} ⊂ G = 〈x, y| x4 = 1 =
y4, xy = yx〉 ∼= C4 × C4 meets it.

Remark 3.6. An observation of [1, p. 2] is that if a finite abelian group of order less than

or equal to 52 contains a LMPFS S of size 6 or less, then |
√
S| ≤ 2|S|. This observation,

together with Equation (3.2), Inequalities (3.1), (3.4) and (3.7) and Theorem 3.5 imply that if
a finite abelian group G contains a locally maximal product-free set of size 4, then |G| ≤ 32.
The locally maximal product-free sets of size 4 in abelian groups of order up to 32 were
checked in GAP [6]. We also used the SmallGroup library in [6] to restrict our search to
the abelian groups. If at least two LMPFS of size 4 are found in a certain abelian group G,
we check whether there is an automorphism of G that takes one to another, and if there is,
we display only one such set. In other words, we display only one locally maximal product-
free set in each orbit of the action of the automorphism groups of G. Our computational
results are summarised in Table 1 below. For notations in Table 1, n4 is the number of locally
maximal product-free sets of size 4 in G while M4 shows the corresponding sizes of each
orbit of the displayed locally maximal product-free sets under the action of automorphism
groups of G. We take this opportunity to correct a mistake of [9, Table 1], where the authors
mentioned that every locally maximal product-free set of size 4 in C14 is mapped by an
automorphism of C14 to either S1 = {x2, x5, x9, x13} or S2 = {x4, x5, x6, x7}. This is not
true as Table 1 shows that there are five LMPFS up to automorphisms of C14. In particular,
as Aut(Cn) is isomorphic to the unit group C×n whose order is φ(n) (where φ(n) is Euler’s
totient function), the automorphisms of C14 are maps Φi : x 7→ xi for x ∈ C14 and i ∈
{1, 3, 5, 9, 11, 13}. Therefore, the LMPFS {x, x3, x8, x13} and {x, x4, x7, x12} are mapped by
Φ9 and Φ5 respectively into S1 and S2, and the other three product-free sets in Table 1 (viz.
{x, x3, x8, x10}, {x, x4, x6, x13} and {x, x6, x8, x13}) are mapped to neither S1 nor S2.

G n4 LMPFS S of size 4 in G M4

C8 = 〈x| x8 = 1〉 1 {x, x3, x5, x7} 1

C4 × C2 = 〈x1, x2| x41 = 1 =
x22, x1x2 = x2x1〉

3 {x1, x31, x2, x21x2}, {x1, x31, x1x2, x31x2} 2, 1

C3
2 = 〈x1, x2, x3| x2i = 1,

xixj = xjxi for 1 ≤ i, j ≤ 3〉
7 {x1, x2, x3, x1x2x3} 7

C10 = 〈x| x10 = 1〉 2 {x, x4, x6, x9} 2

C11 = 〈x| x11 = 1〉 5 {x, x3, x8, x10} 5

C12 = 〈x| x12 = 1〉 9 {x, x4, x6, x11}, {x, x4, x7, x10},
{x2, x3, x8, x9}, {x2, x3, x9, x10}

4, 2, 2,
1

C6 × C2 = 〈x1, x2| x61 = 1 =
x22, x1x2 = x2x1〉

11 {x1, x51, x2, x31x2}, {x1, x2, x41, x31x2},
{x1, x1x2, x41, x41x2}

3, 6, 2

C13 = 〈x| x13 = 1〉 21 {x, x3, x5, x12}, {x, x3, x10, x12},
{x, x5, x8, x12}

12, 6,
3

C14 = 〈x| x14 = 1〉 27 {x, x3, x8, x10}, {x, x3, x8, x13}, {x, x4,
x6, x13}, {x, x4, x7, x12}, {x, x6, x8, x13}

6, 6, 6,
6, 3

C15 = 〈x| x15 = 1〉 16 {x, x3, x5, x7}, {x, x3, x7, x12} 8, 8

C16 = 〈x| x16 = 1〉 37 {x, x3, x10, x12}, {x, x4, x6, x9},
{x, x4, x6, x15}, {x, x4, x9, x14},
{x, x6, x9, x14}, {x, x6, x10, x14},
{x2, x6, x10, x14}

8, 4, 8,
4, 4, 8,
1
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G n4 LMPFS S of size 4 in G M4

C4 × C4 = 〈x1, x2| x41 = 1 =
x42, x1x2 = x2x1〉

6 {x1, x31, x22, x21x22} 6

C8 × C2 = 〈x1, x2| x81 = 1 =
x22, x1x2 = x2x1〉

42 {x1, x2, x61, x51x2}, {x1, x2, x61, x41x2},
{x1, x2, x21x2, x51x2}, {x1, x1x2, x61, x61x2},
{x1, x61, x21x2, x61x2}, {x2, x21, x61, x41x2},
{x21, x61, x21x2, x61x2}

8, 8, 8,
8, 8, 1,
1

C4 × C2 × C2 =
〈x1, x2, x3| x41 = 1 = x22,
x23 = 1, xixj = xjxi for
1 ≤ i, j ≤ 3〉

4 {x2, x3, x21, x21x2x3} 4

C17 = 〈x| x17 = 1〉 48 {x, x3, x8, x13}, {x, x3, x8, x14},
{x, x3, x11, x13}

16, 16,
16

C18 = 〈x| x18 = 1〉 54 {x, x3, x5, x12}, {x, x3, x8, x14},
{x, x3, x9, x14}, {x, x3, x12, x14},
{x, x4, x9, x16}, {x, x4, x10, x17},
{x, x5, x8, x12}, {x, x5, x8, x17},
{x, x6, x9, x16}

6, 6, 6,
6, 6, 6,
6, 6, 6

C6 × C3 = 〈x1, x2| x61 = 1 =
x32, x1x2 = x2x1〉

48 {x1, x51, x2, x31x2}, {x1, x2, x51x22, x31} 24, 24

C19 = 〈x| x19 = 1〉 36 {x, x3, x5, x13}, {x, x4, x6, x9} 18, 18

C10 × C2 = 〈x1, x2| x101 = 1 =
x22, x1x2 = x2x1〉

28 {x1, x2, x51x2, x81}, {x1, x1x2, x41, x81x2},
{x1, x1x2, x81, x61x2}

12, 12,
4

C20 = 〈x| x20 = 1〉 36 {x, x3, x10, x16}, {x, x3, x14, x16},
{x, x4, x11, x18}, {x, x5, x14, x18},
{x, x6, x8, x11},{x2, x5, x15, x16}

8, 8, 4,
8, 4, 4

C21 = 〈x| x21 = 1〉 34 {x, x3, x5, x15},{x, x4, x10, x17},
{x, x4, x14, x16}, {x, x8, x12, x18}

12, 12,
4, 6

C22 = 〈x| x22 = 1〉 10 {x, x4, x10, x17} 10

C24 = 〈x| x24 = 1〉 4 {x, x6, x17, x21} 4

C9 × C3 = 〈x1, x2| x91 = 1 =
x23, x1x2 = x2x1〉

36 {x1, x1x2, x31, x71x22}, {x1, x1x2, x61, x71x22} 18, 18

C3
3 = 〈x1, x2, x3| x3i = 1,

xixj = xjxi for 1 ≤ i, j ≤ 3〉
468 {x1, x2, x3, x21x22x23} 468

Table 1: Finite abelian groups containing LMPFS of size 4.

Suppose a finite nonabelian group G contains a locally maximal product-free set S of size
4. If |G| is odd, then Proposition 3.2 tells us that |G| ≤ 49. Now, suppose |G| is even. If
S ∩ S−1 = ∅, then Theorem 3.1 tells us that |G| ≤ 56. So the only case left is to bound the
size of a finite group G of even order which contains a locally maximal product-free set of size
4 such that |S ∩ S−1| ≥ 1. We use GAP [6] to check all locally maximal product-free sets of
size 4 in nonabelian groups of order at most 56. The result shows that 45 nonabelian groups
contains locally maximal product-free sets of size 4, and over 15% of them are dihedral groups.
More importantly, the largest size of such group is 40. We shall study a special case for the
generating set of the locally maximal product-free sets as we aim to prove the following:
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Theorem 3.7. If G is a finite group containing a locally maximal product-free set of size 4
such that every 2-element subset of S generates 〈S〉, then |G| ≤ 40.

We develop preliminary results that we shall put together to prove Theorem 3.7. In particular,
we aim to prove Theorem 3.7 by considering each of the following three cases: (a) S contains
at least two involutions; (b) S contains no involution; (c) S contains only one involution.

Before we proceed, we state the following result (Lemma 3.8 below) for a finite group G
which we shall employ whenever necessary, without necessarily quoting the result.

Lemma 3.8. If S is a LMPFS in a group G, then S is locally maximal product-free in 〈S〉.
Proof. Suppose S is a LMPFS in a finite group G. To show that S is locally maximal product-
free in 〈S〉 suffices to show that S is product-free in 〈S〉 and T (S)∪{g ∈ 〈S〉 : g2 ∈ S} = 〈S〉.
The first is clear since 〈S〉 ⊆ G and S is product-free in G. For the latter, we first recall that
T (S) ⊆ 〈S〉. Let g ∈ 〈S〉 \T (S) be arbitrary. As g ∈ G and S is locally maximal product-free
in G, we have that g2 ∈ S. Therefore for all g ∈ 〈S〉, either g ∈ T (S) or g2 ∈ S; whence S is
locally maximal product-free in 〈S〉.

As a consequence to Theorem 2.10, we give the following result:

Corollary 3.9. No finite group contains a LMPFS S of size 4 such that every two element
subset of S generates 〈S〉, and S contains at least two involutions.

Proof. Suppose a finite group G contains a LMPFS S of size 4 such that every two element
subset of S generates 〈S〉, and S contains at least two involutions. Then 〈S〉 is dihedral. In
the light of Lemma 3.8 and Theorem 2.10, 〈S〉 is one of D8, D10, D12, D14, D16, D18 or
D20. Suppose 〈S〉 = D8. Then 〈S〉 = 〈y, x2y〉 ∼= C2 × C2; a contradiction. Suppose 〈S〉 is
one of D10, D14, D16, D18 or D20. Then S contains two rotations; so the group generated
by S is also the group generated by such two rotations, which is abelian (in particular,
not dihedral); a contradiction. Finally, suppose 〈S〉 = D12. If S = {x3, y, xy, x2y}, then
〈S〉 = 〈x3, y〉 ∼= C2 × C2; a contradiction. If S is any of the other three locally maximal
product-free sets in D12, then the group generated by any two rotations in such S is not
dihedral; a contradiction. Therefore, no such G (respectively S) exists.

Before we proceed, we give the following result.

G n4 LMPFS S of size 4 in G M4

D8 = 〈x, y| x4 = 1 = y2, xy = yx−1〉 3 {y, xy, x2y, x3y}, {x, x3, y, x2y} 1, 2

Q8 = 〈x, y| x4 = 1, x2 = y2, xy = yx−1〉 3 {x, x3, y, x2y} 3

D10 = 〈x, y| x5 = 1 = y2, xy = yx−1〉 10 {x2, x3, y, x4y} 10

Q12 = 〈x, y| x6 = 1, x3 = y2, xy = yx−1〉 9 {x, x5, y, x3y}, {x, x4, y, x3y} 3, 6

A4 = 〈x, y| x3 = y2 = (xy)3 = 1〉 2 {x, yx, x2yx, xy} 2

D12 = 〈x, y| x6 = 1 = y2, xy = yx−1〉 27 {x3, y, xy, x5y}, {x2, x3, y, x5y},
{x, x5, y, x3y}, {x, x4, y, x3y}

6, 12,
3, 6

D14 = 〈x, y| x7 = 1 = y2, xy = yx−1〉 42 {x2, x3, y, x6y} 42

(C4 × C2) oα C2 = 〈x, y| x4 = y2 =
(xyx)2 = (yx−1)4 = (yxyx−1)2 = 1〉

2 {x2, y, (xy)2, x3yx} 2

C4 o C4 = 〈x, y| x4 = y4 = x−1yxy =
x2y−1x2y = (y−1x−2y−1)2 = 1〉

2 {x2, y, x3yx, x2y2} 2
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G n4 LMPFS S of size 4 in G M4

M16 = C8 o C2 = 〈x, y| x8 = 1 = y2,
xy = yx5〉

26 {x, x4, x7, y}, {x, x6, y, x4y},
{x2, x6, y, x4y}, {x, x6, x2y, x6y},
{x2, x6, x2y, x6y}

8, 8, 1,
8, 1

D16 = 〈x, y| x8 = y2 = (xy)2 = 1〉 48 {x2, x3, y, x7y}, {x, x6, y, x4y} 32, 16

QD16 = 〈x, y| x8 = 1 = y2, xy = yx3〉 16 {x, x6, y, x4y}, {x, x6, x3y, x7y} 8, 8

Q16 = 〈x, y| x8 = 1, x4 = y2, xy =
yx−1〉

16 {x, x6, y, x4y} 16

D8 ∗C4 = 〈x, y, z| x2 = y2 = z4 = 1 =
z−1xzx = z−1yzy = yz2xyx〉

8 {x, y, xyz, (xy)2} 8

D18 = 〈x, y| x9 = 1 = y2, xy = yx−1〉 54 {x2, x5, y, x8y} 54

C3 × S3 = 〈x, y, z| x2 = y3 = z3 =
(xz)2 = y−1xyx = z−1y−1zy = 1〉

72 {x, y, xz, yzx}, {x, y, z, xyz},
{x, y, z, yzx}, {x, y, z, xy2zx},
{x, y, xyz, yzx}, {x, z, xyz, xy2z},
{x, z, yzx, y2zx}, {y, xy, z, xy2zx}

6, 12,
12, 12,
6, 6,
6, 12

(C3 × C3) o C2 = 〈x, y, z| x2 = y3 =
z3 = (xy)2 = (xz)2 = z−1y−1zy = 1〉

144 {y, x, xz, xyxzx}, {y, x, xz, yzx} 72, 72

Q20 = 〈x, y| x10 = 1, x5 = y2, xy =
yx−1〉

20 {x, x8, y, x5y} 20

Suz(2) = 〈x, y| x5 = 1 = y4, xy = yx2〉
(the only non-simple Suzuki group).

40 {x, y2, x2y, xy3}, {x3, y2, x2y, xy3} 20, 20

D20 = 〈x, y| x10 = 1 = y2, xy = yx−1〉 20 {x, x8, y, x5y} 20

C7 o C3 = 〈x, y| x3 = y7 =
y−1x−1yxy−1 = 1〉

280 {x, y, (xy)2x, xyx}, {x, y, (xy)2x, x2yx2},
{x, y, (yx)2, x(xy)2}, {x, y, xyx, x(xy)2},
{x, y, x2yx2, (xy)2}, {x, y, yx2y, (xy)2},
{x, x2y, x(xy)2x, yx}, {x, x2y, xyx, yx2},
{x2, y, (xy)2x, xyx}

42, 21,
42, 42,
42, 42,
14, 14,
21

C3 o C8 = 〈a, x| x8 = a3 = x−1axa =
1〉

39 {x, a, x6, x4a}, {x, xa, x6, x4ax},
{a, x2, x6, x4a}, {x2, x6, x4a, x3ax}

24, 12,
2, 1

SL(2, 3) = 〈x, y| x3 = y4 = 1 =
y−1xyxy−1x = x−1y−1(x−1y)2 =
(x−1y−1)3〉

72 {x, x2y, y3, yx2}, {x, x2y, y3, x(xy)2y},
{x, y, x2y3, x2yx}, {x2y, y, x2yx, xy2}

24, 24,
12, 12

Q24 = 〈x, y| x12 = 1, x6 = y2, xy =
yx−1〉

4 {x, x6, x8, x11} 4

Q12 × C2 = 〈x, y, a| x4 = y2 = a3 =
x−1axa = yx−1yx = a−1yay = 1〉

6 {y, a, x2, x2ya}, {y, x2, x2ya, xyax} 4, 2

B(2, 3) = 〈x, y| x3 = y3 = 1 =
(x−1y−1)3 = (y−1x)3〉

252 {y, x, (xy)2, x2y2xy}, {y, x, (xy)2y, x2y2x} 144,
108

C9oC3 = 〈x, y| x9 = 1 = y3, xy = yx4〉 144 {x6, x8, y, x4y2}, {x3, y2, x4y2, x8y2},
{x, x3, xy, x4y2}, {x, x6, xy, x4y2}

54, 54,
18, 18

C7 o C4 = 〈x, z| x4 = z7 = x−1zxz =
(x−1z)2x−2 = 1〉

6 {z, x2, x3z2x, x2z3} 6
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G n4 LMPFS S of size 4 in G M4

(C4 × C2) o C4 = 〈x, y| x4 = y4 =
y2x−1y−2x = xyx2y−1x = y2x−1y−2x =
(yx)2(y−1x)2 = (yxy−1x−1)2 =
(xyx−1y)2 = 1〉

1 {x2, y2, (xy)2, x2(xy)2y2} 1

C4 o C8 = 〈x, y| x8 = y4 = x−1yxy =
y−1x−1y2xy−1 = 1〉

1 {x6, x2, x4y2, y2} 1

C8 oQuasidih type C4 = 〈x, y| x8 = 1 =
y4, xy = yx3〉

9 {x, x6, y2, x4y2}, {x2, x6, y2, x4y2} 8, 1

C8 oDih type C4 = 〈x, y| x8 = 1 = y4, xy =
yx−1〉

17 {x, x6, y2, x5y2}, {x, x6, y2, x4y2},
{x, y2, x2y2, x5y2}, {x2, x6, y2, x4y2}

4, 8,
4, 1

C4oD8 = 〈x, y| xy−2x−1y−2 = x(xy)2x =
x2(xy−1)2 = y−1x−1y3x = 1〉

9 {y, x2, x4y2, x6}, {x5yx, x2, x4y2, x6},
{x2, y2, x4y2, x6}

4, 4, 1

(C4 o C4) × C2 = 〈x, y, z| z2 = y4 =
x4 = x−1yxy = zx−1zx = 1 = zy−1zy =
x2y−1x2y = (y−1x−2y−1)2〉

2 {x2y2z, z, x2, y2} 2

C4 × Q8 = 〈x, y, z| x4 = y4 = z4 =
1 = x−1yxy = z−1x−1zx = z−1y−1zy =
y2zx−2z = x−1zx−1y−2z = x2y−1x2y〉

2 {x2, y2, z, x2y2z} 2

(C2 × Q8) o C2 = 〈x, y, z| x4 = z2 =
xyxy−1 = y2x2 = yxyx−1 = zy−1zy =
(xzx)2 = (zx−1)4 = (zxzx−1)2 = 1〉

2 {x2, z, (xz)2, x3zx} 2

C2
2 o C3

2 = 〈x, y, z| x4 = y4 = z2x2 =
y−1x−1yx−1 = z−1y−1zy = y2x−1y2x =
zxy2zx = (x−1y−2x−1)2 = 1〉

2 {x2, y2, yz, x2y3z} 2

C4 o Q8 = 〈x, y, z| y4 = z4 = x2y2 =
yxyx−1 = x−1zxz = z−1y−1zy = 1〉

4 {x2, z, x3zx, x2z2} 4

C2×C2×Q8 = 〈x, y, z, a| x4 = a2 = z2 =
y2x2 = yxyx−1 = ax−1ax = ay−1ay =
zx−1zx = (az)2 = zy−1zy = 1〉

4 {x2, z, a, x2za} 4

C9 o C4 = 〈x, z| x4 = z9 = x−1zxz = 1〉 18 {x2, z, x2z2, xz3x}, {x2, z, x3z2x, x2z4},
{x2, z, x3z3x, x2z4}

6, 6, 6

(C3 × C3) o C4 = 〈x, z, a| x4 = z3 =
a3 = x−1zxz = x−1axa = a−1z−1az =
(x−1z)2x−2 = z−1ax−1az−1x = 1〉

24 {z, x2, x2a, xzax} 24

C3 × A4 = 〈x, y, z| x3 = y3 = z2 = 1 =
y−1x−1yx = zy−1zy = (zx)3 = (x−1z)3〉

144 {x2, yzx, x2y2, x2zx2} 144

C5 oinverse map C8 = 〈x, y| x8 = 1 =
y5, xyx−1 = y−1〉

4 {x2, x−2, y, x4y2} 4

Q40 = 〈x, y| x20 = 1, x10 = y2, xy = yx−1〉 8 {x10, x11, x12, x17} 8

Q20 × C2 = 〈x, y, z| x10 = 1 = z2, x5 =
y2, xy = yx−1, yz = zy, xz = zx〉

8 {x−2, y2, z, xz} 8

Table 2: Nonabelian groups (of order up to 40) that contain a LMPFS of size 4.
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For notation in Table 2, n4 is the number of locally maximal product-free sets of size 4
in G while M4 shows the corresponding sizes of each orbit of the displayed locally maximal
product-free sets under the action of automorphism groups of G.

Theorem 3.10. Let S be a locally maximal product-free set of size 4 in a finite group G such
that |G| ≤ 57. Then the possibilities for S and G are given in Tables 1 and 2.

Proof. We checked for groups of order from 8 up to 57 that contains locally maximal product-
free sets of size 4 in GAP [6]. Then listed all such locally maximal product-free sets S of size
4 up to automorphisms of each such group G in Tables 1 and 2.

Corollary 3.11. If S is a LMPFS of size 4 in a finite group G of odd order, then both S
and G are contained in Tables 1 and 2.

Proof. Follows from Proposition 3.2 and Theorem 3.10.

Lemma 3.12. Let S be a LMPFS of size 4 in a finite group G such that every 2-element
subset of S generates 〈S〉. If S contains no involution, then either |G| ≤ 40 or 〈S〉 is cyclic.

Proof. If S ∩ S−1 = ∅, then by Theorem 3.1, |G| ≤ 57. Theorem 3.10 tells us that (G,S) is
one of the possibilities in Tables 1 and 2. In particular, |G| ≤ 40. Suppose S∩S−1 6= ∅. Then
S contains two elements a and b such that b = a−1. As every 2-element subset of S generates
〈S〉, we have that 〈S〉 = 〈a, a−1〉 = 〈a〉. So 〈S〉 is cyclic.

Proposition 3.13. Suppose S is a LMPFS of size 4 in a group G. If 〈S〉 is cyclic, then
|G| ≤ 40.

Proof. As 〈S〉 is cyclic, in the light of Lemma 3.8 and Remark 3.6, |〈S〉| ≤ 24. Table 1

shows various possibilities for G and S. Proposition 2.5 tells us that each element s of Ŝ
has even order; whence if 〈S〉 is any of the cyclic groups of odd order, then Ŝ = ∅ and
we conclude that G = 〈S〉. In the light of Table 1 therefore |G| ≤ 21 < 40. Suppose 〈S〉
is cyclic of even order. Consider 〈S〉 = C8 = 〈x| x8 = 1〉 and S = {x, x3, x5, x7}. If any of

x, x3, x5 or x7 is contained in Ŝ, then Ŝ consists of power of a single element; by Proposition
2.6, |G| divides 32. If none of x, x3, x5 or x7 is contained in Ŝ, then Ŝ = ∅; so G = 〈S〉.
Consider 〈S〉 = C10 = 〈x| x10 = 1〉 and S = {x, x4, x6, x9}. As x4 and x6 have odd order,

by Proposition 2.5, x4, x6 6∈ Ŝ. Clearly, x, x9 6∈ Ŝ since x3, (x9)3 6∈ S. Therefore Ŝ = ∅; so
G = 〈S〉. Consider 〈S〉 = C12 = 〈x| x12 = 1〉. By Table 1, there are four such LMPFS up

to automorphisms of C12. By Proposition 2.5, x4 6∈ Ŝ because it has odd order. Suppose
S = {x, x4, x6, x11}. By Proposition 2.5, x, x11 6∈ Ŝ because x3, (x11)3 6∈ S. So Ŝ ≤ 1 and we
conclude by Proposition 3.6 that |G| ≤ 24. If S = {x, x4, x7, x10}, then by Proposition 2.5,

Ŝ = ∅ since (x)3, (x7)3, (x10)3 6∈ S; so G = 〈S〉. Now, suppose S is any of {x2, x3, x8, x9} or

{x2, x3, x9, x10}. In the light of Proposition 2.5, in the first case, x2, x8 6∈ Ŝ, and in the latter

case, x2, x10 6∈ Ŝ. If none of x3 or x9 is an element of Ŝ, then Ŝ = ∅, and we conclude that
G = 〈S〉. If any of x3 or x9 is contained in Ŝ, then both are contained in Ŝ; by Proposition 2.6

therefore |G| divides 48. Suppose |G| = 48. As
√
S has only elements of order at least 3, we

note that the number of elements of order at least 3 in G is 46. Among all the 47 nonabelian
groups of order 48, only the groups whose GAP ID are [48, 1], [48, 8], [48, 18], [48, 27] and
[48, 28] have 46 elements of order at least 3. We checked each of them for a LMPFS of
size 4, and could not find such. Therefore, if S is any of {x2, x3, x8, x9} or {x2, x3, x9, x10},
then |G| ≤ 24. Now, consider 〈S〉 = C14 = 〈x| x14 = 1〉. Up to automorphisms of C14, the
LMPFS of size 4 in C14 are {x, x3, x8, x10}, {x, x3, x8, x13}, {x, x4, x6, x13}, {x, x6, x8, x13} and
{x, x4, x7, x12}. In the light of Proposition 2.5, all elements of order 7 and 14 in the respective

sets S do not lie in Ŝ. This means that in the first four cases, G = 〈S〉. For the latter case, only
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the involution is a possible element of Ŝ; thus, |Ŝ| ≤ 1, and we conclude by Proposition 2.4
that |G| ≤ 28. Consider 〈S〉 = C16 = 〈x| x16 = 1〉. Up to automorphisms of C16, the LMPFS
S of size 4 are {x, x3, x10, x12}, {x, x4, x6, x9}, {x, x4, x6, x15}, {x, x4, x9, x14}, {x, x6, x9, x14},
{x, x6, x10, x14} and {x2, x6, x10, x14}. For the first six cases, Ŝ = ∅; so G = 〈S〉. For the last
case, S = S−1; so 〈S〉 ∼= C8; a contradiction as 〈S〉 ∼= C16. Consider 〈S〉 = C18 = 〈x| x18 = 1〉.
By Table 1, there are 9 such LMPFS up to automorphisms of C18. In the light of Proposition
2.5, any of the 9 locally maximal product-free sets S which does not contain the unique
involution x9 gives rise to Ŝ = ∅; so G = 〈S〉. For the LMPFS which contains the unique

involution, we have that |Ŝ| ≤ 1; whence by Proposition 2.4 therefore |G| ≤ 36. Consider
〈S〉 = C20 = 〈x| x20 = 1〉. Here, there are six such LMPFS up to automorphisms of C20.
They are {x, x3, x14, x16}, {x, x4, x11, x18}, {x, x5, x14, x18}, {x, x6, x8, x11}, {x, x3, x10, x16}
and {x2, x5, x15, x16}. The first four cases can be handled with Proposition 2.5 to give that

Ŝ = ∅; so G = 〈S〉. For S = {x, x3, x10, x16}, we have that |Ŝ| ≤ 1; so |G| ≤ 40. Finally, let

S = {x2, x5, x15, x16}. By Proposition 2.5, the only possible element of Ŝ are x5 and x15. If

none of them are in Ŝ, then Ŝ = ∅ and G = 〈S〉. Suppose at least one of them is in Ŝ, then

as all odd powers of such element lies in S, both elements must belong to Ŝ, and Proposition
2.6 tells us that |G| divides 80. Suppose |G| = 80. As

√
S has only elements of order at

least 4, we note that the number of elements of order at least 4 in G is 78. Among all the
47 nonabelian groups of order 80, only the groups whose GAP ID are [80, 1], [80, 3], [80, 8],
[80, 18] and [80, 27] contain 78 elements of order at least 4. We checked each of them for a
LMPFS of size 4, and couldn’t find such. Therefore, if S = {x2, x5, x15, x16}, then |G| ≤ 40.
For 〈S〉 = C22 or C24, there is only one such LMPFS up to automorphisms of the respective

groups and a direct check using Proposition 2.5 tells us that Ŝ = ∅; so G = 〈S〉.
Corollary 3.14. If S is a LMPFS of size 4 in a finite group G such that every two element
subset of S generates 〈S〉 and S contains no involution, then |G| ≤ 40.

Proof. Follows from Lemma 3.12 and Proposition 3.13.

Proposition 3.15. Suppose S is a LMPFS of size 4 in a finite group G such that every two
element subset of S generates 〈S〉 and S contains only one involution. Then either |G| ≤ 40
or S = {a, b, c, d}, where c is the unique involution in S and either a, b and d have order 3, or
that a has order greater than 3 together with a−1 = bd and none of b and d is an involution.

Proof. Suppose S = {a, b, c, d}, where c is an involution, and each of a, b and d has order at

least 3. Consider a−1. Recall that G = T (S) ∪
√
S. Suppose a−1 ∈

√
S. Then a−2 ∈ S. This

implies that either a has order 3 (by a−2 = a) or 〈S〉 is cyclic
(
by a−2 ∈ {b, c, d}; for instance

a−2 = b implies that 〈a, b〉 = 〈a〉
)
. In the latter case, Proposition 3.13 tells us that |G| ≤ 40.

Suppose a−1 ∈ T (S). Then

(3.8) T (S) ⊆





1, a, b, c, d, a2, b2, d2, ab, ba, ac, ca, ad, da, bc, cb, bd, db, cd, dc,
ab−1, ba−1, ca−1, a−1c, cb−1, b−1c, a−1b, b−1a, ad−1, d−1a,

da−1, a−1d, bd−1, d−1b, cd−1, d−1c, db−1, b−1d





If a−1 ∈ {b, b2, d, d2, ab, ba, ad, da, ab−1, ba−1, ad−1, da−1, a−1b, b−1a, a−1d, d−1a}, then 〈S〉 is
cyclic, generated by either a, b or d. In the light of Proposition 3.13 therefore |G| ≤ 40.
If a−1 ∈ {c, ac, ca, a−1c, ca−1}, then 〈S〉 is cyclic; again |G| ≤ 40. Since a has order at
least 3, we have that a−1 6∈ {1, a}. Note that a−1 6∈ {bc, cb, dc, cd, b−1c, cb−1, d−1c, cd−1, b−1d,
db−1, d−1b, bd−1}; otherwise S is not product-free. The only remaining possibilities is that
a−1 ∈ {a2, bd, db}. We also perform a similiar analysis with b−1 and d−1. Our conclusion is
that either 〈S〉 is cyclic (which by Proposition 3.13 implies that |G| ≤ 40) or either a has
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order 3 with either a−1 = bd or a−1 = db with similar statement for b and d. In the latter case,
we can assume without loss of generality that either all of a, b and d have order 3, or that a
has order greater than 3 together with a−1 = bd and none of b and d is an involution.

In the latter part of Proposition 3.15, our goal is to show that |G| ≤ 40. We resolve
the first case of the latter part of Proposition 3.15 in Lemma 3.19 below, and the second
case in Corollary 3.23, Lemma 3.24 and Remark 3.25. We will be considering the following
special case: S is a LMPFS of size 4 in a group G such that every two-element subset of
S generates 〈S〉. Furthermore S = {a, b, c, d} where c is an involution but none of a, b and
d is an involution. We shall impose an additional condition that ‘〈S〉 is neither abelian nor
dihedral’ (see Assumption 3.17 below). To do so, we first clear the air with the following:

Lemma 3.16. Let S be a LMPFS of size 4 in a finite group G such that S contains exactly
one involution and every two element subset of S generates 〈S〉. Suppose 〈S〉 is either abelian
or dihedral. Then 〈S〉 must be abelian and |G| ≤ 40.

Proof. In the light of Lemmas 3.8 and 2.9, 〈S〉 cannot be dihedral. So, it must be that 〈S〉
is abelian. If 〈S〉 is cyclic, then Proposition 3.13 tells us that |G| ≤ 40. Now, suppose 〈S〉 is
a non-cyclic abelian group. By Remark 3.6 and Table 1, 〈S〉 is one of C4 ×C2, C

3
2 , C6 ×C2,

C4 ×C4, C8 ×C2, C4 ×C2 ×C2, C6 ×C3 and C10 ×C2. The LMPFS in the groups C4 ×C2,
C3
2 , C6×C2, C4×C4, C4×C2×C2 and C10×C2 do not meet the requirement of our defined

S in terms of the orders of its elements. In fact, the only possibilities (up to automorphisms
of respective group) that satisfy the condition that S has only one element of order 2 and
other elements have order at least 3 is that (〈S〉, S) ∈ {(C8 × C2, {x1, x2, x61, x51x2}), (C8 ×
C2, {x1, x2, x21x2, x51x2}), (C6×C3, {x1, x2, x51x22, x31})}. Proposition 2.5 tells us that elements of

Ŝ have even order, and if s ∈ Ŝ, then all odd powers of s lies in S. In the listed representatives
of S, we see immediately that if a non-involution x ∈ S ⊂ C8 × C2, then x3 /∈ S, and if a
non-involution y ∈ S ⊂ C6 × C3, then y5 /∈ S. So in all cases |Ŝ| ≤ 1. In the light of
Proposition 2.4 therefore |G| ≤ 2|S| in each of the possibilities, from where we deduce that
|G| ≤ 32 or 36 according as 〈S〉 = C8 × C2 or 〈S〉 = C6 × C3. However, the only possibility
is
(
〈S〉, S, |G|

)
=
(
C8 × C2, {x1, x2, x51x22, x31}, 32

)
since 〈S〉 is cyclic in each of the other two

cases; for instance if G = C6 × C3, then 〈S〉 = 〈x1, x31〉 = 〈x1| x61 = 1〉 ∼= C6.

Assumption 3.17. Suppose S is a locally maximal product-free set of size 4 in a finite group
G such that every two-element subset of S generates 〈S〉. Furthermore S = {a, b, c, d} where c
is an involution but none of a, b or d is an involution, and 〈S〉 is neither abelian nor dihedral.

Lemma 3.18. Suppose Assumption 3.17 holds. Then

I(G) ⊆ {c, a2, b2, d2, ab, ba, ad, da, bd, db, ab−1, b−1a, ad−1, d−1a, bd−1, d−1b}.

Proof. The set I(G) consisting of all involutions in G is a subset of T (S), because G = T (S)∪√
S and no element of

√
S can be an involution. Clearly 1, a, b, d are not involutions. Suppose

x ∈ {a±1, b±1, d±1}, and cx is an involution. Now 〈S〉 = 〈c, x〉 because 〈S〉 is generated by
every 2-element subset of S. But 〈c, x〉 = 〈c, cx〉, which is dihedral; a contradiction. The case
where xc is an involution is the same. So we can eliminate ac, bc, dc, a−1c, b−1c, d−1c, ca,
cb, cd, ca−1, cb−1 and cd−1. This means I(G) ⊆ {c, a2, b2, d2, ab, ba, ad, da, bd, db, ab−1, ba−1,
a−1b, b−1a, ad−1, da−1, a−1d, d−1a, bd−1, db−1, b−1d, d−1b}. If an element g is an involution,
then g−1 = g, so we only need to include one representative from {g, g−1} in the list of
possible involutions. This means we need only include one of ab−1 and ba−1, for example.
There are six such pairs, allowing us to remove ba−1, a−1b, da−1, a−1d, db−1 and b−1d from
the list as if they are involutions then they will equal an element that is on the list. Thus
I(G) ⊆ {c, a2, b2, d2, ab, ba, ad, da, bd, db, ab−1, b−1a, ad−1, d−1a, bd−1, d−1b}.
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Lemma 3.19. Suppose Assumption 3.17 holds. If a, b and d all have order 3, then 〈S〉 ∼= A4
and |G| ≤ 24.

Proof. By Lemma 3.18, and the fact that a2, b2 and d2 are not involutions, we have

I(G) ⊆ {c, ab, ba, ad, da, bd, db, ab−1, b−1a, ad−1, d−1a, bd−1, d−1b}.

If c is the only involution in G, then c is central, and hence commutes with a. But 〈S〉 = 〈a, c〉,
which implies 〈S〉 is abelian, contrary to Assumption 3.17. Therefore there are elements
x, y ∈ {a±1, b±1, d±1} with y 6= x±1, such that xy is an involution. This implies 〈S〉 = 〈x, y :

x3 = y3 = (xy)2 = 1〉, which is a presentation of A4. By Proposition 2.5, any element of Ŝ

must have even order; so Ŝ ⊆ {c}. In the light of Proposition 2.4 therefore |G| ≤ 24.

Lemma 3.20. Suppose S is a LMPFS of size 4 in a finite group G such that every two-
element subset of S generates 〈S〉. Furthermore suppose S = {a, b, c, d} where c is an involu-
tion, a−1 = bd has order at least 4 and none of b or d is an involution. Then G has either 1,
3, 5, 7 or 9 involutions, and I(G) ⊆ {c, a2, b2, d2, ab−1, b−1a, ad−1, d−1a, bd−1, d−1b}.

Proof. Since a−1 = bd, we get b−1 = da and d−1 = ab. None of these elements can be
involutions. Now o(bd) = o(db) and o(da) = o(ad) and o(ab) = o(ba). Hence these elements
can’t be involutions either. The result now follows immediately from Lemma 3.18 and the
fact that any group containing involutions has an odd number of them.

Proposition 3.21. Suppose Assumption 3.17 holds. Let K be the centralizer CG(c) of c in
G, and let J = K ∩ T (S). Then |K| ≤ 4|J |, and hence |G| ≤ 4|J | · |cG|.

Proof. Let K be the centralizer in G of c. If x ∈ K and x2 = a, then that would imply
〈S〉 is abelian, because 〈S〉 = 〈a, c〉 = 〈x2, c〉 and x commutes with c. Similarly x cannot
be a square root of b or d. Hence K ⊆ √c ∪ J . Suppose there exist x, y ∈ √c ∩ K with
xy /∈ J . Let z ∈ √c ∩ K. Now xy, xz and yz are elements of K because K is a subgroup.
Suppose xz /∈ J and yz /∈ J . Then we have (yz)2 = c, which implies zy = cyz. Similarly
yx = cxy and zx = cxz. But now (xyz)2 = xyzxyz = xycxzyz = cxyxzyz = cxcxyzyz =
c2x2(yz)2 = 1. Therefore xyz /∈ √c. Thus xyz ∈ J . So either xz ∈ J , yz ∈ J or xyz ∈ J .
Hence

√
c∩K ⊆ x−1J∪y−1J∪(xy)−1J . Remembering that K = J∪(

√
c∩K) we immediately

derive |K| ≤ 4|J |. The remaining possibility is that there do not exist x, y ∈ √c ∩ K with
xy /∈ J . This means either K = J (because

√
c ∩K = ∅), or that there is some x ∈ √c ∩K,

but for all y ∈ √c∩K we have xy ∈ J . Hence
√
c∩K ⊆ x−1J . Either way, |K| ≤ 2|J |. Hence

|K| ≤ 4|J | and so |G| ≤ 4|J | · |cG|.

Lemma 3.22. Suppose Assumption 3.17 holds. Let K be the centralizer CG(c) of c in G,
and let J = K ∩ T (S). Then

J ⊆
{

1, c, a2, b2, d2, ba, ad, db, ab−1, ba−1, a−1b, b−1a,
ad−1, da−1, a−1d, d−1a, bd−1, db−1, b−1d, d−1b

}
.

In particular, |J | ≤ 20.

Proof. Since 〈S〉 is not abelian, J doesn’t contain a, b or d. Similarly no element of the form
xc or cx can be contained in J , where x ∈ {a±1, b±1, d±1} as this would imply the presence
in J of either a, b or d. Hence we remove these elements from our original list for T (S). The
other observation is that since a−1 = bd, b−1 = da and d−1 = ab, these three elements cannot
be contained in J , because again this would imply the presence in J of a, b or d.
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Corollary 3.23. Suppose S is a LMPFS of size 4 in a finite group G such that every two-
element subset of S generates 〈S〉. In particular, take S = {a, b, c, d} where c is an involution,
a−1 = bd has order at least 4 and none of b or d is an involution. Furthermore, suppose 〈S〉
is not dihedral or abelian, then |G| ≤ 720. Moreover, G has 1, 3, 5, 7 or 9 involutions and
I(G) ⊆ {c, a2, b2, d2, ab−1, b−1a, ad−1, d−1a, bd−1, d−1b}.

Proof. As a−1 = bd, by Lemma 3.20 we know |cG| ≤ 9 and by Lemma 3.22 we have |J | ≤ 20.
Hence by Proposition 3.21, |G| ≤ 4× 20× 9 = 720. The latter fact

(
that G has 1, 3, 5, 7 or

9 involutions and possible elements of I(G)
)

follows from Lemma 3.20.

Lemma 3.24. In Corollary 3.23, no LMPFS S exists if G contains either 1 or 9 involutions.

Proof. Let G and S be as defined in Corollary 3.23. If G contains only one involution, then
c is central; so 〈S〉 = 〈a, c〉 is abelian, contradicting the hypothesis. Suppose G contains
exactly 9 involutions. So nine out of the ten likely elements of I(G) listed in Corollary 3.23
are involutions. Note that for any g, h ∈ G, o(gh) = o(hg). So ab−1 is an involution if and
only if b−1a is, and so on. Since only one of the above list of ten things is not an involution,
it must be the case that all of ab−1, b−1a, ad−1, d−1a, bd−1 and d−1b are involutions, as is c,
and exactly two of a2, b2 and d2 are involutions. Without loss of generality, suppose a2 and b2

are involutions. Using a−1 = bd, we get ad−1 = a2b and so on; so the nine involutions of G as
c, a2, b2, ab−1, b−1a, a2b, aba, bab and ab2. From (b−1a)2 = (aba)2, we obtain b−1a = aba2b2;
whence ab−1a = a2ba2b2 = b. Now ab−1a−1 = ba−2 = ba2; a contradiction since o(b) = 4,
however (ba2)2 = 1 = (a2b)2. Thus no such locally maximal product-free set S exists.

Remark 3.25. The aim of this remark is to assert that in Corollary 3.23, |G| < 40 if G
contains either 3, 5 or 7 involutions. If G has exactly 7 involutions, then at least two of the
three pairs ab−1, b−1a, ad−1, d−1a, bd−1, d−1b are involutions; so it means we can remove at
least 4 elements from the count of J . Hence |J | ≤ 16 and |cG| ≤ 7. By Proposition 3.21
therefore |G| ≤ 4× 16× 7 = 448. We show that this case is not easily resolvable like the case
where the number of involutions in G is 9 as seen in Lemma 3.24. For instance, if the two
pairs ab−1, b−1a, bd−1 and d−1b are involutions, together three other involutions c, (ab)2 and
a2, then |〈S〉| yields different values. As d−1 = ab, we write 〈S〉 = 〈a, b| (ab−1)2 = (ab2)2 =
(bab)2 = a4 = (ab)4 = bn = 1〉, where n is the order of b; for example if n = 3, 4, 5 or 6,
then 〈S〉 ∼= S4, D8, D10 or C2 × S4 respectively. So we can’t make further deductions from
〈S〉, without knowing at least a dihedral subgroup of 〈S〉. Now, suppose G contains exactly
5 involutions. Then we can remove at least 2 elements from the count of J . So |J | ≤ 18
and |cG| ≤ 5. Hence |G| ≤ 4 × 18 × 5 = 360. Finally, if G contains exactly 3 involutions,
then we can’t remove anything from J necessarily; so |J | ≤ 20 and |cG| ≤ 3. Therefore
|G| ≤ 4 × 20 × 3 = 240. In each of these cases, S = {c, b, d, (bd)−1}, where b and d are
arbitrary elements of order at least three. We checked in GAP for existence of a LMPFS S
in the respective groups of even orders. Our result is summarised below.

|I(G)| |NAG|I(G)|| GAP I.D of Groups G containing required S

8 ≤ n ≤ 40 3, 5, 7 47 [20, 3] and [32, 14]

42 ≤ n ≤ 240 3, 5, 7 1665 ————————

242 ≤ n ≤ 360 5, 7 4525 ————————

362 ≤ n ≤ 448 7 3036 ————————

In the table above, n gives the range of orders of the nonabelian groups of even order tested.
We performed four checks in GAP. The first line of result is the outcome of our first check.
Our first check was for nonabelian groups of orders from 8 up to 40 that contain either 3,
5 or 7 involutions. Only 47 nonabelian groups of even order n ∈ [8, 40] contain either 3, 5
or 7 involutions. Among these groups, only in the groups whose GAP IDs are [20, 3] and
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[32, 14] that we found our required LMPFS. The group of order 20 mentioned is mainly
referred to as the only non-simple Suzuki group; it is denoted by Suz(2) = 〈x, y| x5 = 1 =
y4, xy = yx2〉. There are 40 LMPFS of size 4 in this group

(
examples are {x, y2, x2y, xy3} and

{x3, y2, x2y, xy3}
)
; each of the 40 LMPFS is of our required form, and under automorphisms of

the group, is one of the two mentioned. On the other hand, the group of order 32 mentioned
is called the semidihedral group of C8 and C4 of dihedral type. It has a presentation as
C8 oDih type C4 = 〈x, y| x8 = 1 = y4, xy = yx−1〉. This group has 17 LMPFS of size 4; only 8
of them are of our required form, and up to automorphisms of the group, any LMPFS of our
kind is either {x, x6, y2, x5y2} or {x, y2, x2y2, x5y2} (4 belonging to each class). Our second
check was for nonabelian groups of even orders from order 42 up till 240 that contain either
3, 5 or 7 involutions. Only 1665 nonabelian groups in that range contain either 3, 5 or 7
involutions, and our search shows that no such group contains our desired LMPFS of size 4.
The table is now easily understood for the third and fourth check, which are precisely the
last two rows of the table.

We now turn back to give a proof of Theorem 3.7.

Proof of Theorem 3.7. Suppose G is a finite group containing a LMPFS of size 4 such that
every 2-element subset of S generates 〈S〉. Corollary 3.9 tells us that no such S exists if S
were to contain at least two involutions. If S contains no involution, then Corollary 3.14 tells
us that |G| ≤ 40. Finally, if S contains exactly one involution, then Proposition 3.15, Lemma
3.19, Lemma 3.16, Corollary 3.23, Lemma 3.24 and Remark 3.25 yield |G| ≤ 40.

A deduction from the classification of finite groups containing locally maximal product-free
sets of size 4 studied in this paper is the following:

Corollary 3.26. If a finite group G contains a LMPFS S of size 4, then either |G| ≤ 40 or
G is nonabelian, |G| is even, S∩S−1 6= ∅ and not every 2-element subset of S generates 〈S〉.

Proof. Follows from Theorems 3.1, 3.7, 3.10, Remark 3.6 and Corollary 3.11 .

We close the discussion on finite groups containing LMPFS of size 4 with the following:

Conjecture 3.27. If a finite group G contains a LMPFS of size 4, then |G| ≤ 40.

In the light of Theorem 3.1 and Proposition 3.2 as well as some computational investiga-
tions, we ask the following question:

Question 3.28. Does there exists a finite group G containing a locally maximal product-free
set of size k (for k ≥ 4) such that |G| > 2k(2k − 1)?

We write nk (resp. mk) for the maximal size of a finite abelian group of even (resp. odd)
order containing a LMPFS of size k. Some experimental results on finite abelian groups G of
even order nk (resp. odd order mk) containing LMPFS of size k are reported below.

k nk G

1 4 C4

2 8 C8 and C4 × C2

3 16 C4 × C4

4 24 C24

5 36 C36, C18×C2, C12×C3 and C6×C6

6 48 C48, C12×C4, C12×C2
2 and C6×C3

2

7 64 C3
4 and C8 × C4 × C2

k mk G

1 3 C3

2 7 C7

3 15 C15

4 27 C3
3 and C9 × C3

5 35 C35

6 45 C45 and C15×C3

7 61 C61
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One may be moved by the above result to conjecture that ‘if a finite abelian group G of even
order contains a LMPFS of size k, then |G| ≤ (k+ 1)2’. However, such conjectural statement
cannot hold in general as C84 contains some locally maximal product-free sets of size 8. On
another remark, let C2n = 〈x| x2n = 1〉 be the finite cyclic group of order 2n, and suppose
S is a locally maximal product-free set in a finite cyclic group of even order containing the
unique involution in the group. Then S is also a locally maximal product-free subset of the
finite dicyclic group Q4n = 〈x, y| x2n = 1, xn = y2, xy = yx−1〉 of order 4n; the reason is

because {xiy| 0 ≤ i ≤ 2n−1} ⊂
√
xn ⊆

√
S, and already we know that {xi| 0 ≤ i ≤ 2n−1} ⊆

S ∪ SS ∪ SS−1 ∪
√
S. Thus, one may obtain a lower bound on the maximal size of a finite

group containing a locally maximal product-free set of size k by using the bound from the
dicyclic group counterpart. For instance, the maximal size of a finite cyclic group of even order
containing a locally maximal product-free set of size k which contains the unique involution
is 4, 6, 12, 20, 30 and 40 for k = 1, 2, 3, 4, 5 and 6 respectively. An example of a locally
maximal product-free set containing the unique involution in C4, C6, C12, C20, C30 and C40
is given respectively as {x2}, {x2, x3}, {x2, x6, x10}, {x4, x7, x9, x10}, {x2, x6, x15, x22, x27}
and {x3, x8, x20, x29, x33, x39}. This tells us that there are locally maximal product-free set(s)
of sizes 1, 2, 3, 4, 5 and 6 in Q8, Q12, Q24, Q40, Q60 and Q80 respectively. So if a finite group
G contains a locally maximal product-free set of size 1, 2, 3, 4, 5 or 6, then |G| ≥ 8, 12, 24, 40,
60 or 80 respectively. Experimental results as well as results of [7, 3] suggest that the largest
size of a finite group containing a LMPFS of size 1, 2, 3, 4, 5 or 6 is 8, 16, 24, 40, 64 or 96
respectively. We take this opportunity to list all finite groups G of expected highest possible
size which contain locally maximal product-free sets of size k for k ∈ {1, 2, 3, 4, 5}.

k G

1 G8 := 〈x, y| x4 = 1, x2 = y2, xy = yx−1〉 ∼= Q8

2 G16A := 〈x, y| x4 = 1 = y4, xy = y−1x〉
G16B := 〈x, y, z| x4 = 1 = z2, x2 = y2, xy = yx−1, yz = zy, xz = zx〉 ∼= Q8 × C2

3 G24A := 〈x, y| x12 = 1, x6 = y2, xy = yx−1〉 ∼= Q24

G24B := 〈x, y, z| x4 = 1 = z3, x2 = y2, xy = yx−1, yz = zy, xz = zx〉 ∼= Q8 × C3

4 G40A := 〈x, y| x8 = 1 = y5, xy = y−1x〉
G40B := 〈x, y| x20 = 1, x10 = y2, xy = yx−1〉 ∼= Q40

G40C := 〈x, y, z| x10 = 1 = z2, x5 = y2, xy = yx−1, yz = zy, xz = zx〉 ∼= Q20×C2

5 G64A := 〈a, b| a8 = b4 = b−2a−1b−2a = ab−1a2ba = a−1b−1ab−1a−1b−1ab = 1〉
G64B := 〈a, b| a4 = b8 = a2b−1a2b = a−1b2ab2 = (aba−1b)2 = 1〉
G64C := 〈a, b, c| a4 = b4 = c2 = cb−1cb = ca−1ca = a2b−1a−2b = ba−1b2ab =
b−1a−1bab−1aba−1 = (a−1b−2a−1)2 = a−1(ba)2ba−1b = 1〉
G64D := 〈a, b, c| a4 = b4 = c2 = cb−1cb = a−1bab = bab−2a−1b = (aca)2 =
a2b−1a2b = (ca−1)4 = (b−1a−2b−1)2 = (caca−1)2 = 1〉
G64E := 〈a, b, c| a4 = b4 = c2 = ba−1ba = b2cb−2c = a2ba2b−1 = ca−1b−2ca−1 =
(cb−1)2(cb)2 = (a−1b2a−1)2 = (cbacba−1)2 = 1〉
G64F := 〈a, b, c| a4 = b8 = c2 = cbcb−1 = ca−1ca = a−1bab = a2b−1a2b = 1〉
G64G := 〈x, y, z| x8 = 1 = z4, x4 = y2, xy = yx−1, yz = zy, xz = zx〉 ∼= Q16 × C4

G64H := 〈a, b, c| a4 = c−1b−1cb = c4a2 = c2ac2a−1 = b4a2 = b2ab2a−1 =
b−1ac2ba−1 = c−1a−1b−1cb−1a−1 = 1〉
G64I := 〈a, b, c| a4 = c4 = a−1bab = a−1cac = c−1b−1cb = a−1b−4a−1 =
a2c−1a2c = (c−1a−2c−1)2 = 1〉
G64J := 〈a, b, c| b4 = c8 = ab−1a−1b−1 = c−1b−1cb = a−1cac = b−1a−1ba−1 = 1〉
G64K := 〈a, b, c, d| a4 = b4 = c2 = d2 = da−1da = a−1bab = ca−1ca = db−1db =
(dc)2 = cb−1cb = a2b−1a2b = (b−1a−2b−1)2 = 1〉 ∼= G16A × C2

2
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k G

5 G64L := 〈a, b, c, d| a4 = c2 = d2 = aba−1b = db−1db = (dc)2 = cb−1cb = ba2b =
da−1da = b−1a−1ba−1 = a2ca−2c = (ca)4 = cacdaca−1cda−1 = 1〉
G64M := 〈a, b, c, d| a4 = b2 = d2 = c2a2 = caca−1 = c2a−2 = (db)2 = dc−1dc =
(aba)2 = a−1ba−1cbc = (a2d)2 = da−1bdab = (ba−1)4 = c−1bcbaba−1b = 1〉
G64N := 〈a, b, c, d, g| a4 = c2 = d2 = g2 = b2a2 = baba−1 = gb−1gb = ca−1ca =
ga−1ga = (gc)2 = cb−1cb = da−1da = (gd)2 = (dc)2 = db−1db = 1〉 ∼= Q8 × C3

2 .
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