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CONVERGENCE OF MULTILEVEL STATIONARY GAUSSIAN
QUASI-INTERPOLATION

SIMON HUBBERT∗AND JEREMY LEVESLEY†

Abstract. In this paper we present a new multilevel quasi-interpolation algorithm for smooth
periodic functions using scaled Gaussians as basis functions. Recent research in this area has focussed
upon implementations using basis function with finite smoothness. In this paper we deliver a first
error estimates for the multilevel algorithm using analytic basis functions. The estimate has two
parts, one involving the convergence of a low degree polynomial truncation term and one involving
the control of the remainder of the truncation as the algorithm proceeds. Thus, numerically one
observes a convergent scheme. Numerical results suggest that the scheme converges much faster
than the theory shows.

1. Introduction. The radial basis function (RBF) method has become a suc-
cessful tool for approximating functions from scattered data. However, despite many
promising theoretical advances one drawback is that for very large data sets the
method struggles to maintain a good fit in a numerically stable manner. To overcome
this problem Floater and Iske [7] proposed a multilevel approximation method where
an initial stable approximation is formed on a relatively sparse subset of the data and
this is then refined over multiple levels of residual RBF interpolation on progressively
denser subsets. The original implementation uses Wendland RBFs (finitely smooth
and compactly supported) where the size of the support is scaled to reflect the rela-
tive density at a given level. In [12] a multilevel scheme using polyharmonic splines
(finitely smooth and globally supported) on uniform grids was presented and constant
reduction in error per level was shown. In [14] a modified multilevel method was con-
sidered, using thin-plate splines for an initial approximation and with subsequent
refinements performed using scaled Wendland RBFs. Wendland and coauthors have
explored multilevel schemes using scaled Wendland RBFs for solving both approxi-
mation problems and partial differential equations on spheres and compact regions
in Euclidean space [6, 16, 17, 25]. A hurdle in proving convergence results is that by
changing scale of the basis function we also change approximation spaces however, in
relation to this, we highlight the work of Narcowich et al. [19] who analysed a related
scheme but required that sequences of approximation spaces were nested.

As far as the authors are aware the extant theoretical results on the multilevel
method (briefly reviewed in the previous paragraph) apply only to basis functions
with finite smoothness. In these cases the numerical stability is improved but one has
to accept a saturation point on the accuracy. However, recently multi-level approxi-
mation using scaled Gaussians (infinitely smooth and globally supported) has become
of interest due to its key role in multilevel sparse kernel interpolation (MuSIK) and
its quasi-interpolatory modification (Q-MuSIK), see [8, 26]. These approaches have
achieved successful results in different areas, see [4, 24, 26] for details, and their suc-
cess provides the motivation for this current work. Specifically, our aim here is to
present a first convergence analysis of the multilevel approximation method using the
Gaussian basis function. The approach we take differs from the standard formula-
tion in that we replace interpolation with quasi-interpolation. In order to make the
analysis tractable we will investigate the performance of the scheme when approxi-

∗DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATISITCS, BIRKBECK,
UNIVERSITY OF LONDON, WC1H 7HX, UK. S.HUBBERT@BBK.AC.UK
†DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LEICESTER, LE1 7RH, UK.

JL1@LE.AC.UK

1



mating univariate real valued functions with period one. The classical approach to
this approximation problem is to use Fourier series, but over the past 50 years, many
authors have used shifts of a univariate function [9, 15, 20] and this approach has
been adapted to the circle [13], the torus [10] and the sphere [23].

The paper is organized as follows. In Section 2 we provide a precise statement of
the problem we want to solve together with a description of the proposed multilevel
solution method with Gaussian quasi-interpolation. In addition, we will compose the
key mathematical results that will be useful in the subsequent analysis. In Section 3
we will develop convergence estimates for the full algorithm for even functions (a sum
of cosines). The proof for odd functions is similar. As in the theory of approximate
approximation developed by Maz’ya and Schmidt [18], this error will have a part that
is reducing at a fixed rate with each iteration, and a part which starts off extremely
small (which we will call ε) but will grow with a fixed rate with each iteration. In
Section 4 we will present numerical examples.

2. Background and Preliminaries. Following Delvos [5], we let C denote the
space of continuous real-valued function with period one which we equip with the
uniform norm ‖f‖∞ = supx∈IR |f(x)|. Next we let L2 denote the Hilbert space of
square integrable periodic functions with inner product

(f, g) :=

∫ 1

0

f(x)g(x)dx.

The exponentials are given by ek(x) = exp(2πikx) for k ∈ Z. The finite Fourier

transform of f ∈ L2 is given by f̂k = (f, e−k) for k ∈ Z and its inversion is the Fourier

series of f given by
∑∞
k=−∞ f̂kek, which converges to f in the L2-norm ‖ · ‖2 induced

by the inner product. Next we let N denote the space of functions f ∈ L2 having
absolutely convergent Fourier series, i.e., those for which the norm ‖f‖ =

∑∞
k=−∞ |f̂k|

is finite. We have the inclusions N ⊂ C ⊂ L2 and so for any f ∈ N we have the
estimates ‖f‖2 ≤ ‖f‖∞ ≤ ‖f‖.

In our convergence analysis we will need to measure the smoothness of our target
functions more precisely and so, to complete the review of pertinent function spaces,
we shall also consider the periodic Sobolev spaces of order s :

Ws =



f ∈ L2 : ‖f‖s =

(
|f̂0|2 +

∞∑

k∈Z
k2s|f̂k|2

)1/2

<∞



 .

For s > 1
2 the Sobolev space Ws is a subspace of N and therefore also of C.

We can now turn to the approximation problem which, at the most general level,
can be stated as follows: for a target function f, construct an approximating function
sf based on the data set {f(h`) : ` ∈ Z and 0 < h < 1}. In our work we will
consider target functions with period one taken from either N or from an appropriate
Sobolev space Ws with s > 1

2 . We will construct our approximation via Schoenberg’s
approach [22] to quasi-interpolation with a Gaussian as the underlying basis function.
Specifically, we will consider the following stationary quasi-interpolant

(2.1) Qhf(x) :=
∑

`∈Z
f(h`)ψ

(x
h
− `
)

where ψ(x) =
1√
2π

exp

(
−x

2

2

)
.

The implementation of the proposed method is as follows. We fix the initial (level
one) set of sample points by choosing an appropriate integer ` and setting h = 1

2`
. We
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then form the quasi-interpolant (2.1) to the target function f. As we move from one
level to the next the spacing between the sample points decreases by a factor of 1

2 ,

thus at level p say the spacing is h
2p−1 . At each subsequent level (beyond the first one)

we form the quasi-interpolant to the residual function (from the previous stage) and
this is then added to the current approximation. Continuing in this way we build up
our approximation to f ; the algorithm terminates when the residuals are sufficiently
small.

We close this section by developing some useful results connected to the quasi-
interpolation scheme. First we recall that that the Fourier transform of ψ is ψ̂(t) =
exp(−2π2t2). Next we develop the quasi-interpolants to the family of exponentials
em(x). We shall assume h = 1

n where n = 1, 2, . . . , then by definition we have

Q 1
n
em(x) : =

∑

`∈Z
em

(
`

n

)
ψ(nx− `) =

n−1∑

j=0

∑

`∈Z
em

(
n`+ j

n

)
ψ(nx− (n`+ j))

=
n−1∑

j=0

em

(
j

n

)∑

`∈Z
ψ(n(x− `)− j).

Let σ(x) denote the infinite sum appearing in the final line above. We note that σ(x)
is 1−periodic and so we can consider its Fourier expansion

σ(x) =
∑

`∈Z
ψ(n(x− `)− j) =

∞∑

k=−∞
σ̂kek(x) where σ̂k =

∫ 1

0

σ(x)e−k(x)dx.

Using the periodicity of σ together with an appropriate shift and scale in the variable
of integration one can show that the Fourier coefficients are given by:

σ̂k =
1

n
e−k

(
j

n

)
ψ̂

(
k

n

)
.

Substituting this back into the expression for Q 1
n
em(x) we see that for m ∈ Z,

(2.2)

Q 1
n
em(x) =

n−1∑

j=0

em

(
j

n

)(
1

n

∞∑

k=−∞
e−k

(
j

n

)
ψ̂

(
k

n

)
ek(x)

)

=
∞∑

k=−∞
ψ̂

(
k

n

)
ek(x)


 1

n

n−1∑

j=0

ej

(
m− k
n

)


=
∞∑

k=−∞
ψ̂

(
nk +m

n

)
em+nk(x) =

∞∑

k=−∞
ψ̂
(
k +

m

n

)
em+nk(x).

Using (2.2) it is straight forward to derive similar expressions for the family of
trigonometric functions. In this paper we will focus only upon even functions and
so, in preparation, we shall derive the equivalent expressions for the cosine family
cm(x) = cos(2πmx), m = 0, 1, 2 . . . . The same techniques can be used for the sine
family too, but this is not our main focus.

Lemma 2.1. For n = 1, 2, . . . , we set h = 1
n , and we have

(i) Q 1
n
cm =

∞∑

k=−∞
ψ̂
(
k +

m

n

)
cm+nk m = 0, 1, . . .

(ii) Q 1
n
cm = Q 1

n
cm+jn, j ∈ Z.
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Proof. For the first equation, we can use the identity cm = 1
2 (em + e−m) together

with the fact that ψ̂(−t) = ψ̂(t) to deduce

Q 1
n
cm =

1

2

(
Q 1
n
em +Q 1

n
e−m

)

=
1

2

( ∞∑

k=−∞
ψ̂
(
k +

m

n

)
em+nk +

∞∑

k=−∞
ψ̂
(
k − m

n

)
e−m+nk

)

=
1

2

( ∞∑

k=−∞
ψ̂
(
k +

m

n

)
em+nk +

∞∑

k=−∞
ψ̂
(
−k − m

n

)
e−m−nk

)

=
∞∑

k=−∞
ψ̂
(
k +

m

n

) em+nk + e−m−nk
2

=
∞∑

k=−∞
ψ̂
(
k +

m

n

)
cm+nk.

The second equation is an immediate consequence of the first.

Our aim is to investigate the convergence rate of our proposed multilevel quasi-
interpolation method. To set up the basic framework we shall assume, to begin with,
that the target function f ∈ N and so possesses a Fourier series

∑∞
k=−∞ f̂kek. Let

h = 1
n denote the spacing of the points at the first level. Then, using (2.2), the

quasi-interpolant is given by

(2.3) Q 1
n
f =

∑

k∈Z
f̂kQ 1

n
ek(x) =

∞∑

k=−∞
f̂k
∑

`∈Z
ψ̂

(
`+

k

n

)
ek+n`(x).

To describe the error at the first level we write E 1
n
f = f − Q 1

n
f. The error at

the subsequent levels is defined recursively from here and we shall use the following
notation. At level p the multilevel error is given by

M 1
n ,p
f = E 1

2p−1
1
n
M 1

n ,p−1f,

where we set Mh,0 = I to be the identity operator so that M 1
n ,1
f = E 1

n
f.

We begin our investigation by measuring the norm of the quasi-interpolant (2.3).

(2.4) ‖Q 1
n
f‖ ≤

∑

k∈Z

∣∣∣f̂k
∣∣∣
∑

`∈Z
ψ̂

(
`+

k

n

)
.

Following Baxter [2] an application of the Poisson summation formula yeilds

∑

`∈Z
ψ̂

(
`+

k

n

)
=
∑

`∈Z
exp

(
−2π2

(
`+

k

n

)2
)

=
1√
2π

∑

`∈Z
e−

`2

2 e
2`iπk
n ,

and we observe that this is a theta function of Jacobi type

(2.5) θ3(z, q) =
∑

`∈Z
q`

2

e2`iz q ∈ C and |q| < 1.

The following product function representation is found in [11] (8.181.2)

(2.6) θ3(z, q) =
∞∏

`=1

(1 + 2q2`−1 cos(2z) + q2(2`−1))(1− q2`)
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If we choose q = e−
1
2 we can write

E(t) : =
∑

`∈Z
ψ̂ (`+ t) =

1√
2π
θ3

(
πt, e−

1
2

)

=
1√
2π

∞∏

`=1

(1 + 2e−`+
1
2 cos(2πt) + e−(2`−1))(1− e−`).

We observe that E is 1−periodic and, due to the product representation, it is
decreasing on [0, 12 ] and increasing on [ 12 , 1] consequently E attains its global max at
zero. In view of these observation we can revisit (2.4) and deduce that ‖Q 1

n
f‖ ≤

‖f‖E(0). In view of (2.5) we have

E(0) :=
∑

`∈Z
exp

(
−2π2`2

)
= θ3(0, e−2π

2

) = 1 + 2e−2π
2

+ 2e−8π
2

+ 2e−18π
2

+ . . .

where the right hand side are the leading terms in the expansion of (2.6) see [1,
16.38.5]. We can summarise the development above in the following theorem.

Proposition 2.2. Suppose f ∈ N . Then, for n = 1, 2, . . .,

‖Q 1
n
f‖ ≤ a‖f‖ where a = 1 + 3e−2π

2

= 1 + 3ψ̂(1).

Consequently, setting A = 1 + a = 2 + 3ψ̂(1) we have that

‖E 1
n
f‖ = ‖f −Q 1

n
f‖ ≤ A‖f‖ and ‖M 1

n ,p
f‖ ≤ Ap‖f‖.

3. Convergence of the discrete algorithm. In this section we will deal with
even functions only, that is linear combinations of cosines. The proof for odd functions
is the same, and the general case follows by decomposing a function into odd and even
parts. To set the scene for what follows we clarify that the target function to which
the algorithm is applied is cm, the cosine function with a fixed frequency m and the
spacing between the data points at the first level is given by h = 1

2`
for some ` ≥ 2.

We will split our investigation into two cases. First we deal with the situation when
the initial 2` sample points at level one is greater than the cosine frequency m and
secondly we examine the case when 2` < m.

3.1. Cosine frequency < initial number of sample points. Assume that
m satisfies hm < 1

2 or equivalently m < 2`−1. In this setting we will prove a recursive

formula for the multilevel approximation, aggregating factors of the size ψ̂(2) ∼ 10−35,
in order to make the analysis tractable. With this in mind we fix the tolerance
ε = 2ψ̂(2). Final errors will contain a multiple of ε.
� Level one: Using Lemma 2.1, the quasi-interpolant of cm in terms of h is

Qhcm =
∞∑

k=1

ψ̂(hm− k)cm− kh + ψ̂(hm)cm +
∞∑

k=1

ψ̂(hm+ k)cm+ k
h
.

Hence

Ehcm := cm −Qhcm

= −
∞∑

k=0

ψ̂(hm− k)cm− kh +
(

1− ψ̂(hm)
)
cm −

∞∑

k=0

ψ̂(hm+ k)cm+ k
h
.
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The plan of attack is to investigate the size of the residual error at each level of the
algorithm by taking a central truncation of its series representation and examining
this and the remainder separately. The amount of terms in the central truncation
grows from level to level. For a typical level p the truncation we have in mind consists
of the contributions from cm− 2p−j

h
for j = 0, . . . 2p − 1 and the contributions from

cm+ j
h

also for j = 0, . . . 2p − 1. At level one the split is as follows

(3.7) Ehcm := α
(1)
0 cm− 2

h
+ α

(1)
1 cm− 1

h
+ α

(1)
0 cm + α

(1)
1 cm+ 1

h︸ ︷︷ ︸
=Th,1cm

+g1,

where Th,1cm is the level one truncation whose coefficients are given by

(3.8)
α
(1)
0 = −ψ̂(hm− 2), α

(1)
1 = −ψ̂(hm− 1),

α
(1)
0 = (1− ψ̂(hm)), α

(1)
1 = −ψ̂(hm+ 1).

The function g1 is the remainder term and is given by

g1 = −ψ̂(hm+ 2)cm+ 1
h
−
∞∑

k=3

(
ψ̂(hm+ k)cm+ k

h
+ ψ̂(hm− k)cm− kh

)
.

In view of the fact that hm < 1
2 we have the following bound for g1:

(3.9) ‖g1‖ ≤ ψ̂(2) +

∞∑

k=3

ψ̂(k) + ψ̂

(
k − 1

2

)
≤ 2ψ̂(2) = ε.

We remark that for a crude bound on the truncation part we can evoke Proposition
2.2. In particular, this allows us to deduce that

(3.10) ‖Th,1cm‖ ≤ ‖Ehcm‖ ≤ A.

� Level two. To consider the error at the second level, where the spacing is now h
2 ,

we consider
Qh

2
(cm −Qhcm) = Qh

2
Th,1cm +Qh

2
g1.

Focussing on the truncation we can use Lemma 2.1 (ii) to deduce that

Qh
2
Th,1cm = α

(1)
0 Qh

2
cm− 2

h
+ α

(1)
1 Qh

2
cm− 1

h
+ α

(1)
0 Qh

2
cm + α

(1)
1 Qh

2
cm+ 1

h

= (α
(1)
0 + α

(1)
0 )Qh

2
cm + (α

(1)
1 + α

(1)
1 )Qh

2
cm+ 1

h
.

Now appealing to Lemma 2.1 we have that

Qh
2
cm =

∞∑

k=1

ψ̂

(
hm

2
− k
)
cm− 2k

h
+ ψ̂

(
hm

2

)
cm +

∞∑

k=1

ψ̂

(
hm

2
+ k

)
cm+ 2k

h

= ψ̂

(
hm

2
− 2

)
cm− 4

h
+ ψ̂

(
hm

2
− 1

)
cm− 2

h
+ ψ̂

(
hm

2

)
cm + ψ̂

(
hm

2
+ 1

)
cm+ 2

h
+ g

(0)
2 ,

where

g
(0)
2 = ψ̂

(
hm

2
+ 2

)
cm+ 4

h
+
∞∑

k=3

(
ψ̂

(
hm

2
− k
)
cm− 2k

h
+ ψ̂

(
hm

2
+ k

)
cm+ 2k

h

)
.
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In a similar fashion we can show that

Qh
2
cm+ 1

h

= ψ̂

(
hm− 3

2

)
cm− 3

h
+ ψ̂

(
hm− 1

2

)
cm− 1

h
+ ψ̂

(
hm+ 1

2

)
cm+ 1

h
+ ψ̂

(
hm+ 3

2

)
cm+ 3

h
+ g

(1)
2 ,

where

g
(1)
2 = ψ̂

(
hm+ 5

2

)
cm+ 5

h
+

∞∑

k=3

(
ψ̂

(
hm+ 1− 2k

2

)
cm+ 1−2k

h
+ ψ̂

(
hm+ 1 + 2k

2

)
cm+ 1+2k

h

)
.

In view of the representations of g
(0)
2 and g

(1)
2 we can bound these functions in the

same way as we did for g1, see (3.9), specifically ‖g(j)2 ‖ ≤ 2ψ̂(2) = ε, (j = 0, 1). With
this we can develop the level two error expression:

Mh,2cm = E 1
2h

(Th,1cm + g1) = Th,1cm −Qh
2
Th,1cm + g1 −Qh

2
g1 = Th,2cm + g2,

where the remainder is given by

g2 = g1 −Qh
2
g1 − (α

(1)
0 + α

(1)
0 )g

(0)
2 − (α

(1)
1 + α

(1)
1 )g

(1)
2 ,

and the truncation

Th,2cm = α
(2)
0 cm− 4

h
+ α

(2)
1 cm− 3

h
+ α

(2)
3 cm− 2

h
+ α

(2)
4 cm− 1

h

+ α
(2)
0 cm + α

(2)
1 cm+ 1

h
+ α

21)
2 cm+ 2

h
+ α

(2)
3 cm+ 3

h
.

Following an inspection of the error expansion, the coefficients introduced above are

α
(2)
j = −(α

(1)
j + α

(1)
j )ψ̂

(
hm+ j

2
− 2

)
(j = 0, 1),

α
(2)
21+j = α

(1)
j − (α

(1)
j + α

(1)
j )ψ̂

(
hm+ j

2
− 1

)
(j = 0, 1),

α
(2)
j = α

(1)
j − (α

(1)
j + α

(1)
j )ψ̂

(
hm+ j

2

)
(j = 0, 1),

α
(2)
21+j = −(α

(1)
j + α

(1)
j )ψ̂

(
hm+ j

2
+ 1

)
(j = 0, 1).

To investigate the size of the remainder at level two we can proceed as follows.

‖g2‖ ≤ ‖g1 −Qh
2
g1‖+

(
|α(1)

0 |+ |α
(1)
0 |
)
‖g(0)2 ‖+

(
|α(1)

1 |+ |α
(1)
1 |
)
‖g(1)2 ‖

≤ ‖Ehg1‖+
(
|α(1)

0 |+ |α
(1)
0 |+ |α

(1)
1 |+ |α

(1)
1 |
)
ε ≤ A‖g1‖+ ‖Th,1cm‖ε ≤ 2Aε.

The preceding analysis of the first two levels provides sufficient insight to establish
the following, more general result.

Proposition 3.3. Let m be the fixed frequency of the cosine cm and assume m <
2`−1, for some ` ≥ 2. Let h = 1

2`
denote the spacing at level one. Then

Mh,pcm = Th,pcm + gp, where Th,pcm =

2p−1∑

j=0

(α
(p)
j cm− 2p−j

h
+ α

(p)
j cm+ j

h
),
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where ‖gp‖ ≤ pAp−1ε. The truncation coefficients are defined recursively. Specifically,
for p = 1 the initial coefficients are given by (3.8), and then for p > 1 we have

(3.11)

α
(p+1)
j = −(α

(p)
j + α

(p)
j )ψ̂

(
hm+ j

2p
− 2

)
(j = 0, 1, . . . , 2p − 1),

α
(p+1)
2p+j = α

(p)
j − (α

(p)
j + α

(p)
j )ψ̂

(
hm+ j

2p
− 1

)
(j = 0, 1, . . . , 2p − 1),

α
(p+1)
j = α

(p)
j − (α

(p)
j + α

(p)
j )ψ̂

(
hm+ j

2p

)
(j = 0, 1, . . . , 2p − 1),

α
(p+1)
2p+j = −(α

(p)
j + α

(p)
j )ψ̂

(
hm+ j

2p
+ 1

)
(j = 0, 1, . . . , 2p − 1).

Proof. The result can be established by induction on p. Indeed, the preceding error
analysis for the level one case establishes the result for p = 1. Assuming the result for
a general level p (the inductive hypothesis) one can then mimic the methodology of
the level two analysis to inductively establish the stated result for the p+ 1 level.

In order to make further progress we need to investigate how the size of trunca-
tion behaves as the algorithm proceeds through the levels. Thus we need to provide
estimates on the sizes of the coefficients that appear in the truncation representation.
In anticipation we provide the following elementary bounds on the ψ̂ multipliers. For
j = 0, 1, . . . , 2p − 1, and since ψ̂(t) is decreasing for t ≥ 0, we have that

(3.12)

ψ̂

(
hm+ j

2p
− 2

)
= ψ̂

(
2− hm+ j

2p

)
≤ ψ̂

(
2− hm+ 2p − 1

2p

)

= ψ̂

(
1 +

1− hm
2p

)
≤ ψ̂ (1) since 0 < hm <

1

2
.

In addition we have the straight-forward bound

(3.13) ψ̂

(
hm+ j

2p
+ 1

)
≤ ψ̂ (1) (j = 0, 1, . . . , 2p − 1).

As a final comment we observe that since 0 < ψ̂(t) ≤ 1 for t ≥ 0 then, for j =
0, 1, . . . 2p − 1 we have the following crude bounds:

(3.14) |α(p+1)
2p+j | ≤ |α

(p)
j |+ |α

(p)
j | and |α(p+1)

j | ≤ |α(p)
j |+ |α

(p)
j |.

In what follows we will assume that the algorithm is at or beyond the third level.
At this stage the cosine expansion of the truncation Th,pcm contains contributions
from cosines whose frequencies run from m− 2p

h through to m+ 2p−1
h . We will bound

the corresponding expansion coefficients at level p in terms of the coefficients from
previous levels and the results are set out in the following four lemmata. We start
with the coefficients that correspond to the highest frequency cosines at level p.

Lemma 3.4. Let m < 2`−1, for some ` ≥ 2 and set h = 1
2`
. Then, for j =

0, 1, . . . , 2p−1 − 1 we have

|α(p)
j | ≤

(
α
(p−1)
j + α

(p−1)
j

)
ψ̂(1) and |α(p)

2p−1+j | ≤
(
α
(p−1)
j + α

(p−1)
j

)
ψ̂(1).

Proof. The above inequalities come directly from the expressions from the previ-
ous proposition together with the bounds (3.12) and (3.13).

8



The next two lemmata deal with coefficients of the truncation that are associated
with mid-range frequencies of the cosines.

Lemma 3.5. Let m < 2`−1, for some ` ≥ 2. Then, for p ≥ 3 and for j =
0, 1, . . . , 2p−2 − 1 we have

|α(p)
2p−1+j | ≤ µa

(
|α(p−2)
j |+ |α(p−2)

j |
)

and |α(p)
2p−2+j | ≤ µa

(
|α(p−2)
j |+ |ᾱ(p−2)

j |
)

where µa =
(
ψ̂
(
1
2

)
+ ψ̂(1)

)
.

Proof. Using (3.11) we have

α
(p)
2p−2+j = α

(p−1)
2p−2+j

(
1− ψ̂

(
1

2
+
hm+ j

2p−1

))
− α(p−1)

2p−2+jψ̂

(
1

2
+
hm+ j

2p−1

)

and thus

(3.15)

|α(p)
2p−2+j | ≤ |α

(p−1)
2p−2+j |+ |α

(p−1)
2p−2+j |ψ̂

(
1

2

)

≤
(
|α(p−2)
j |+ |α(p−2)

j |
)
ψ̂(1) + |α(p−1)

2p−2+j |ψ̂
(

1

2

)
,

where the first bound follows since ψ̂ is decreasing and the second bound follows
an application of Lemma 3.4 with p replaced by p − 1. Now appealing to (3.14) we

have the following crude bound |α(p−1)
2p−2+j | ≤ |α

(p−2)
j |+ |α(p−2)

j |. When substituted into

(3.15) this provides the desired result. The proof of the bound for |α(p)
2p−1+j | follows

in the same fashion.

Lemma 3.6. Let m < 2`−1, for some ` ≥ 2. Then, for p ≥ 3 and for j =
0, 1, . . . , 2p−3 − 1 we have

|α(p)
2p−1+2p−2+j | ≤ µb

(
|α(p−3)
j |+ |α(p−3)

j |
)

and |α(p)
2p−3+j | ≤ µb

(
|α(p−3)
j |+ |α(p−3)

j |
)
,

where µb = µa + ψ̂
(
1
4

) (
ψ̂(
√

2) + ψ̂(1)
)
.

Proof. We begin with the bound for α
(p)
2p−3+j where, from (3.11) we have

α
(p)
2p−3+j = α

(p−1)
2p−3+j −

(
α
(p−1)
2p−3+j + α

(p−1)
2p−3+j

)
ψ̂

(
hm+ j + 2p−3

2p−1

)

=

(
1− ψ̂

(
1

4
+
hm+ j

2p−1

))
α
(p−1)
2p−3+j − α

(p−1)
2p−3+jψ̂

(
1

4
+
hm+ j

2p−1

)
.

Using the fact that ψ̂ is decreasing we have the following bound |α(p)
2p−3+j | ≤ |α

(p−1)
2p−3+j |+

ψ̂
(
1
4

)
|α(p−1)

2p−3+j |. Using the relevant result from Lemma 3.5 with p− 1 instead of p we

can deduce that |α(p−1)
2p−3+j | ≤ µa

(
|α(p−3)
j |+ |α(p−3)

j |
)
. Now for j = 0, 1, . . . , 2p−3 we

have that
|α(p−1)

2p−3+j | ≤ ψ̂(1)
(
|α(p−2)

2p−3+j |+ |α
(p−2)
2p−3+j |

)
.

We can now appeal to Lemma 3.4 (with p − 2 instead of p) to give |α(p−2)
2p−3+j | ≤

ψ̂(1)
(
|α(p−3)
j |+ |α(p−3)

j |
)
. For the second term we can consider the following crude
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bound |α(p−2)
2p−3+j | ≤ |α

(p−3)
j |+ |α(p−3)

j |. Bringing together the previous chain of devel-
opment we have

|α(p)
2p−3+j | ≤ µa

(
|α(p−3)
j |+ |α(p−3)

j |
)

+ ψ̂

(
1

4

)
ψ̂(1)

(
ψ̂(1) + 1

)(
|α(p−3)
j |+ |α(p−3)

j |
)

≤
(
µa + ψ̂

(
1

4

)(
ψ̂(
√

2) + ψ̂(1)
))(

|α(p−3)
j |+ |α(p−3)

j |
)

The other inequality follows in a similar fashion.

We now conclude the bounding process by considering the low-frequency expan-
sion coefficients.

(3.16) α
(p)
2p−1+2p−2+2p−3+j and α

(p)
j (j = 0, 1, . . . , 2p−3 − 1).

Lemma 3.7. Let m < 2`−1, for some ` ≥ 2. Then, for p ≥ 3 and for j =
0, 1, . . . , 2p−3 − 1 we have

|α(p)
2p−1+2p−2+2p−3+j | ≤ µc

(
|α(p−3)
j |+ |α(p−3)

j |
)

and |α(p)
j | ≤ µc

(
|α(p−3)
j |+ |α(p−3)

j |
)
,

where µc =
(

1− ψ̂
(
1
4

))(
1 + ψ̂(1)− ψ̂

(
1
2

))
+ ψ̂

(
3
2

) (
1 + ψ̂(1)

)
.

Proof. We consider the bound on |α(p)
j |. Using (3.11) we have

|α(p)
j | =

(
1− ψ̂

(
hm+ j

2p−1

))
|α(p−1)
j |+ ψ̂

(
hm+ j

2p−1

)
|α(p−1)
j |.

Now for j = 0, 1, . . . , 2p−3 − 1, we have that 1 − ψ̂
(
hm+j
2p−1

)
≤ 1 − ψ̂

(
1
4

)
since 0 <

hm < 1
2 . Therefore

|α(p)
j | =

(
1− ψ̂

(
1

4

))
|α(p−1)
j |+ |α(p−1)

j |.

Using (3.11) we also have

|α(p−1)
j | = (|α(p−2)

j |+ |α(p−2)
j |)ψ̂

(
hm+ 2

2p−2
− 2

)
,

and, for j = 0, 1, . . . , 2p−3 − 1, we have that ψ̂
(
hm+j
2p−2 − 2

)
≤ ψ̂

(
3
2 + 1−hm

2p−2

)
≤ ψ̂

(
3
2

)

since 0 < hm < 1
2 . Thus, we have

|α(p−1)
j | ≤ ψ̂

(
3

2

)(
|α(p−2)
j |+ |α(p−2)

j |
)
.

Also, using the same argument as above one can easily show that

|α(p−1)
j | =

(
1− ψ̂

(
1

2

))
|α(p−2)
j |+ |α(p−2)

j |.

This allows us to deduce that

(3.17)

|α(p)
j | ≤

[
ψ̂

(
3

2

)
+

(
1− ψ̂

(
1

4

))(
1− ψ̂

(
1

2

))]
|α(p−2)
j |

+

(
1− ψ̂

(
1

4

)
+ ψ̂

(
3

2

))
|α(p−2)
j |.
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To finish the bound we apply the following crude estimate

|α(p−2)
j | ≤ |α(p−3)

j |+ |α(p−3)
j |,

and the following from Lemma 3.4

|α(p−2)
j | ≤ ψ̂(1)

(
|α(p−3)
j |+ |α(p−3)

j |
)
.

Employing the above estimates in (3.17) delivers the required inequality. The second
inequality follows in the same fashion.

The four lemmata above taken together provide bounds on the full set of expan-
sion coefficients that appear in the level p truncation of the multilevel error. The
partitioned manner in which we developed these bounds now enables us to provide
estimates for the norm of the truncation itself.

‖Th,pcm‖ =
2p−1∑

j=0

|α(p)
j |+ |α

(p)
j |

≤ ψ̂(1)
2p−1−1∑

j=0

|α(p−1)
j |+ |α(p−1)

j | (= ψ̂(1)‖Th,p−1cm‖ see Lemma (3.4))

+ µa

2p−2−1∑

j=0

|α(p−2)
j |+ |α(p−2)

j | (= µa‖Th,p−2cm‖ see Lemma (3.5))

+ µb

2p−3−1∑

j=0

|α(p−3)
j |+ |α(p−3)

j | (= µb‖Th,p−3cm‖ see Lemma (3.6))

+ µc

2p−3−1∑

j=0

|α(p−3)
j |+ |α(p−3)

j | (= µc‖Th,p−3cm‖ see Lemma (3.7)).

This development culminates in the main theorem of this part of the investigation.

Theorem 3.8. Let m be the fixed frequency of the cosine cm and assume m <
2`−1, for some ` ≥ 2. Let h = 1/2` denote the spacing at level one. Assume that
p ≥ 3. Then

‖Th,pcm‖ ≤ ψ̂(1)‖Th,p−1cm‖+ a‖Th,p−2cm‖+ b‖Th,p−3cm‖,

where ψ̂(1) < 3× 10−9, a = µa < 0.0072 and b = µb + µc < 0.711. Consequently, for
p ≥ 3, there exists a constant B > 0 independent of m and ` such that

‖Th,pcm‖ ≤ B(0.9)p.

Proof. The stated recursive bound is just a recasting of the estimate established
above. To demonstrate the convergence of the truncation suppose that Mp satisfies
the relationship

Mp = ψ̂(1)Mp−1 + 0.0072Mp−2 + 0.711Mp−3,

with M0 = M1 = M2 = 1, and Mj ≤ B(0.9)j , for j = 0, 1, · · · , p− 1. Then

Mp ≤ ψ̂(1)B(0.9)p−1 + 0.0072B(0.9)p−2 + 0.711B(0.9)p−3

= B(0.9)p−3
(
ψ̂(1)(0.9)2 + 0.0072(0.9) + 0.711

)

≤ B(0.9)p.
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If ‖Th,jcm‖ ≤Mj , j < p, then ‖Th,pcm‖ ≤Mp, since

Mp = ψ̂(1)Mp−1 + 0.0072Mp−2 + 0.711Mp−3

≥ ψ̂(1)‖Th,p−1cm‖+ 0.0072‖Th,p−2cm‖+ 0.711‖Th,p−3cm‖
≥ ψ̂(1)‖Th,p−1cm‖+ a‖Th,p−2cm‖+ b‖Th,p−3cm‖
≥ ‖Th,pcm‖,

from the established bound. Now, since (a straightforward calculation shows that)
‖Th,jcm‖ ≤ 1, j = 0, 1, 2, ‖Th,pck‖ ≤Mp ≤ B(0.9)p, p ≥ 3.

3.2. Cosine frequency > initial number of sample points. Assume that
m = 2` + n where 0 ≤ n < 2`, i.e., the cosine frequency m is smaller than the 2`

points at level one but at level two the 2`+1 sample points will surpass m. To shed
some light on this situation we investigate the behaviour of the multilevel method if
we start by sampling at the integers where h = 1.

Proposition 3.9. Let m = 2` +n for some 0 ≤ n < 2`. Then, for 1 ≤ p ≤ `+ 1,

M1,pcm = cm −
p−1∑

j=0

M 1

2j+1 ,p−1−jQ 1

2j
cn(mod 2j).

Proof. Since cm(k) = c0(k), k ∈ Z, Q1cm(z) = Q1c0(z). Hence

M1,1cm = E1cm = cm −Q1cm = cm −Q1c0,

and the case n = 1 is established since ` = 0(mod 1) and Mα,0 is the identity operator.
Now assume, for 1 ≤ p ≤ `, that

M1,pcm = cm −
p−1∑

j=0

M 1

2j+1 ,p−1−jQ 1

2j
cn(mod 2j).

Using Lemma 2.1 (ii) we have Q 1
2p
cm = Q 1

2p
cn(mod 2p). Hence

Q 1
2p
M1,pcm = Q 1

2p
cn(mod 2p) −

p−1∑

j=0

Q 1
2p
M 1

2j+1 ,p−1−jQ 1

2j
cn(mod 2j),

so that M1,p+1cm = M1,pcm −Q 1
2p
M1,pcm =

= cm −M 1
2p ,0

Q 1
2p
cn(mod 2p)

−
p−1∑

j=0

[
M 1

2j+1 ,p−1−jQ 1

2j
cn(mod 2j) −Q 1

2p
M 1

2j+1 ,p−1−jQ 1

2j
cn(mod 2j)

]

︸ ︷︷ ︸
=M 1

2j+1 ,p−j
Q 1

2j
cn(mod 2j)

= cm −
p∑

j=0

M 1

2j+1 ,p−jQ 1

2j
cn(mod 2j),

and the induction is completed.
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Corollary 3.10. Let m = 2` + n for some 0 ≤ n < 2`. Set h = 1
2`
, then, for

p ≥ `+ 2,

M1,pcm = Mh
4 ,p−(`+2)cm −Mh

4 ,p−(`+2)Qh
2
cm −

∑̀

j=0

M 1

2j+1 ,p−(j+1)Q 1

2j
cn(mod 2j).

Proof. From the previous proposition we have

M1,`+1cm = cm −
∑̀

j=0

M 1

2j+1 ,`−jQ 1

2j
cn(mod 2j).

Thus

M1,`+2cm = cm −Q 1

2`+1
cm

︸ ︷︷ ︸
=cm−Qh

2
cm

−
∑̀

j=0

M 1

2j+1 ,`+1−jQ 1

2j
cn(mod 2j)

= Mh
4 ,0
cm −Mh

4 ,0
Qh

2
cm −

∑̀

j=0

M 1

2j+1 ,`+2−j−1Q 1

2j
cn(mod 2j),

giving the required result for p = ` + 2, since Mα,0 is the identity operator, for any
positive α. The result for p ≥ `+ 3 follows directly from the definition of M 1

2j
,p.

We now return to developing further the expressions for the multi-level error
terms. In what follows we pursue a slightly different approach to the one that enabled
the proof of Proposition 3.3. This time we work with a different representation of the
error expansion so that we partition the higher frequency contribution (entering the
expansion at the most current level) from the remaining lower level frequencies.

Proposition 3.11. Suppose m < 2`, for some ` ∈ N. Set h = 1
2`

then for p ≥ 3,

Mh
2 ,p
Qhcm

= α1
0Mh

2 ,p
cm − α1

1Mh
4 ,p−1cm + α1

2Mh
8 ,p−2cm − α

1
3Mh

8 ,p−3cm

+ α2
0Mh

2 ,p
cm− 1

h
− α2

1Mh
4 ,p−1cm− 1

h
+ α2

2Mh
8 ,p−2cm− 1

h
− α2

3Mh
8 ,p−3cm− 1

h

+ β1
1Mh

4 ,p−1cm+ 1
h
− β1

2Mh
8 ,p−2cm+ 1

h
+ β1

3Mh
8 ,p−3cm+ 1

h

+ β2
1Mh

4 ,p−1cm− 2
h
− β2

2Mh
8 ,p−2cm− 2

h
+ β2

3Mh
8 ,p−3cm− 2

h

+ γ12Mh
8 ,p−2cm+ 2

h
− γ13Mh

8 ,p−3cm+ 2
h

+ γ22Mh
8 ,p−2cm− 3

h
− γ23Mh

8 ,p−3cm− 3
h

+ γ32Mh
8 ,p−2cm+ 3

h
− γ33Mh

8 ,p−3cm+ 3
h

+ γ42M2−(l+3),p−2cm− 4
h
− γ43Mh

8 ,p−3cm− 4
h

− δ13Mh
8 ,p−3cm+ 4

h
− δ23Mh

8 ,p−3cm− 5
h
− δ33Mh

8 ,p−3cm+ 5
h
− δ43Mh

8 ,p−3cm− 6
h

− δ53Mh
8 ,p−3cm+ 6

h
− δ63Mh

8 ,p−3cm− 7
h
− δ73Mh

8 ,p−3cm+ 7
h
− δ83Mh

8 ,p−3cm− 8
h

+ gp,

where |αip|, |βip| ≤ ψ̂(1)p, i = 1, 2, |γip| ≤ ψ̂(1)p, i = 1, · · · , 4, |δi3| ≤ ψ̂(1)3, i =
1, · · · , 8, and ‖gp‖ ≤ 2Apε.

Proof. We have

Qhcm =
[
ψ̂(hm)cm + ψ̂(hm− 1)cm− 1

h

]
+
[
ψ̂(hm+ 1)cm+ 1

h
+ ψ̂(hm− 2)cm− 2

h

]
+ g0

=
[
α1
0cm + α2

0cm− 1
h

]
+
[
β1
0cm+ 1

h
+ β2

0cm− 2
h

]
+ g0
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where |α1
0|, |α2

0| ≤ 1, |β1
0 |, |β2

0 | ≤ ψ̂(1), and as in the proof of Proposition 3.9,
‖g0‖ ≤ ε.

Similarly we can show

Qh
2
Qhcm = α1

0Qh
2
cm + α2

0Qh
2
cm− 1

h

+ β1
0

[(
ψ̂

(
hm− 3

2

)
cm− 3

h
+ ψ̂

(
hm+ 3

2

)
cm+ 3

h

)

+

(
ψ̂

(
hm− 1

2

)
cm− 1

h
+ ψ̂

(
hm+ 1

2

)
cm+ 1

h

)
+ g11

]

+ β2
0

[(
ψ̂

(
hm− 4

2

)
cm− 4

h
+ ψ̂

(
hm+ 2

2

)
cm+ 2

h

)

+

(
ψ̂

(
hm− 2

2

)
cm− 2

h
+ ψ̂

(
hm

2

)
cm

)
+ g21

]
+Qh

2
g0,

where ‖g11‖, ‖g21‖ ≤ ε. These expressions allow us to deduce that

Mh
2 ,1
Qhcm = Qhcm −Qh

2
Qh = α1

0

(
cm −Qh

2
cm

)

︸ ︷︷ ︸
=Mh

2
,1
cm

+α2
0

(
cm− 1

h
−Qh

2
cm− 1

h

)

︸ ︷︷ ︸
=Mh

2
,1
c
m− 1

h

− α1
1cm − α2

1cm− 1
h

+ β1
1cm+ 1

h
+ β2

1cm− 2
h

− γ11cm+ 2
h
− γ21cm− 3

h
− γ31cm+ 3

h
− γ41cm− 4

h
+ g̃1 + g0 −Qh

2
g0

︸ ︷︷ ︸
=Mh

2
,1
g0

where g̃1 = −(β1
0g

1
1 + β2

0g
1
1) with norm ‖g̃1‖ ≤ 2ψ̂(1)ε. Furthermore the coefficients

appearing in the above are given by

α1
1 = β2

0 ψ̂

(
hm

2

)
, α2

1 = β1
0 ψ̂

(
hm− 1

2

)
,

β1
1 = β1

0

(
1− ψ̂

(
hm+ 1

2

))
, β2

1 = β2
0

(
1− ψ̂

(
hm− 2

2

))
,

γ11 = β2
0 ψ̂

(
hm+ 2

2

)
, γ21 = β1

0 ψ̂

(
hm− 3

2

)
,

γ31 = β1
0 ψ̂

(
hm+ 3

2

)
, γ41 = β2

0 ψ̂

(
hm− 4

2

)
,

so that |α1
1|, |α2

1|, |β1
1 |, |β1

1 | ≤ ψ̂(1) and |γ11 |, . . . , |γ41 | ≤ (ψ̂(1))2. In summary we con-
clude that multi-level error at level p = 1 is given by

Mh
2 ,1
Qhcm = α1

0Mh
2 ,1
cm + α2

0Mh
2 ,1
cm− 1

h
− α1

1cm − α2
1cm− 1

h
+ β1

1cm+ 1
h

+ β2
1cm− 2

h

− γ11cm+ 2
h
− γ21cm− 3

h
− γ31cm+ 3

h
− γ41cm− 4

h
+ g1,

where g1 = g̃1+Mh
2 ,1
g0 which has norm ‖g1‖ ≤ 2ψ̂(1)ε+A‖g0‖ ≤ (2ψ̂(1)+A)ε ≤ 2Aε.

If we repeat the above chain of reasoning we get the following expression for the
level two (p = 2) error.
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Mh
2 ,2
Qhcm = = α1

0Mh
2 ,2
cm − α1

1Mh
4 ,1
cm + α1

2cm

+ α2
0Mh

2 ,2
cm− 1

h
− α2

1Mh
4 ,1
cm− 1

h
+ α2

2cm

+ β1
1Mh

4 ,1
cm+ 1

h
− β1

2cm+ 1
h

+ β2
1Mh

4 ,1
cm− 2

h
− β2

2cm− 2
h

+ γ12cm+ 2
h

+ γ22cm− 3
h

+ γ32cm+ 3
h

+ γ42cm− 4
h

− δ12cm+ 4
h

+ δ22cm− 5
h

+ δ32cm+ 5
h

+ δ42cm− 6
h

− δ52cm+ 6
h

+ δ62cm− 7
h

+ δ72cm+ 7
h

+ δ82cm− 8
h

+ g2,

where |α1
2|, |α2

2|, |β1
2 |, |β2

2 |, |γ12 |, · · · , |γ42 | ≤ (ψ̂(1))2, |δ12 |, · · · , |δ82 | ≤ (ψ̂(1))3, and ‖g2‖ ≤
A‖g1‖+ 8(ψ̂(1))2ε ≤ A(A+ ψ̂(1))ε+ 8(ψ̂(1))2ε = (A(A+ ψ̂(1)) + 8(ψ̂(1))2)ε ≤ 2A2ε.

A third iteration of this argument will introduce 16 new high frequencies cm+ 8
h
, . . . cm+ 15

h

and cm− 9
h
, . . . cm− 16

h
but these cosines are multiplied by coefficients of order (ψ̂(1))4 =

ψ̂(2). This leads to the level three (p = 3) error given by

Mh
2 ,3
Qhcm = α1

0Mh
2 ,3
cm − α1

1Mh
4 ,2
cm + α1

2Mh
8 ,1
cm − α1

3cm

+ α2
0Mh

8 ,3
cm− 1

h
− α2

1Mh
2 ,2
cm− 1

h
+Mh

8 ,1
α2
2cm− 1

h
− α2

3cm− 1
h

+ β1
1Mh

4 ,2
cm+ 1

h
− β1

2Mh
8 ,1
cm+ 1

h
+ β1

3cm+ 1
h

+ β2
1Mh

4 ,2
cm− 2

h
− β2

2Mh
8 ,1
cm− 2

h
+ β2

3cm− 2
h

+ γ12Mh
8 ,1
cm+ 2

h
− γ13cm+ 2

h
+ γ22Mh

8 ,1
cm− 3

h
− γ23cm− 3

h

+ γ32Mh
8 ,1
cm+ 3

h
− γ33cm+ 3

h
+ γ42Mh

8 ,1
cm− 4

h
− γ43cm− 4

h

− δ13cm+ 4
h

+ δ23cm− 5
h

+ δ33cm+ 5
h

+ δ43cm− 6
h

− δ53cm+ 6
h

+ δ63cm− 7
h

+ δ73cm+ 7
h

+ δ83cm− 8
h

+ g3,

where |α1
3|, |α2

3|, |β1
3 |, |β2

3 |, |γ13 |, · · · , |γ43 | ≤ (ψ̂(1))3, ‖g3‖ ≤ 16ψ̂(2)+A‖g2‖+32ψ̂(2)(ψ̂(1))3 ≤
8ε+A(A(A+ψ̂(1))+8(ψ̂(1))2)ε+16(ψ̂(1))3ε = (A(A(A+ψ̂(1))+8(ψ̂(1))2+16(ψ̂(1))3+
8)ε ≤ 2A3ε.

From this point on, we introduce no new terms in our sums, so that the process
of iterating through the levels for p ≥ 3 leads to the representation given in the
proposition.

Corollary 3.12. Suppose m < 2`, for some ` ∈ N. Let h = 1
2`

then for p ≥ 3,

‖Mh
2 ,p
Qhcm‖ ≤ 3B(0.9)p + 2Apε.

Proof. From the previous proposition we have |αji |, |βji |, |γji |, |δji | ≤ ψ̂(1)i, for all
appropriate values of i and j. We also have, from Proposition 2.2 and Theorem 3.8,
‖Th,pcm‖ ≤ B(0.9)p, whenever m < 2`−1. Thus we can bound each term in the sum
in the statement of Proposition 3.11 to see that

‖Mh
2 ,p
Qhcm‖ ≤ 2B

[
(0.9)p + 2ψ̂(1)(0.9)p−1 + 4ψ̂(1)2(0.9)p−2 + 8ψ̂(1)3(0.9)p−3

]
+ ‖gp‖

≤ 2B(0.9)p


1 +

(
20ψ̂(1)

9

)
+

(
20ψ̂(1)

9

)2

+

(
20ψ̂(1)

9

)3

+ 2Apε

≤ 3B(0.9)p + 2Apε.
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We can combine this result with Proposition 3.9 to get

Corollary 3.13. Let ` ∈ N and m = 2` + n for some 0 ≤ n < 2`. Set h = 1
2`

then, for p ≥ `+ 5,

‖M1,pcm‖ ≤ 31B(0.9)p−`−2 + (p+ 2)Apε.

Proof. From Corollary 3.10 we have

M1,pcm = Mh
4 ,p−(`+2)cm −Mh

4 ,p−(`+2)Qh
2
cm

−
∑̀

j=0

M 1

2j+1 ,p−j−1Q 1

2j
cn(mod 2j).(3.18)

Since p − (` + 2) ≥ 3, we can use Proposition 3.3 (` + 2 in place of `) together with
Theorem 3.8, to yield

‖Mh
4 ,p−(`+2)cm‖ ≤ B(0.9)p−`−2 + (p− `− 2)Ap−`−2ε.(3.19)

As 2` ≤ m < 2`+1, using Lemma 2.1 (ii) we see that Qh
2
cm = Qh

2
cm− 2

h
. Because

2`+1 −m < 2`, from Corollary 3.12,

‖Mh
4 ,p−(`+2)Qh

2
cm‖ = ‖Mh

4 ,p−(`+2)Qh
2
cm− 2

h
‖

≤ 3B(0.9)p−`−2 + 2Ap−`−2ε.(3.20)

Similarly, directly from Corollary 3.12, for 0 ≤ j ≤ `,

‖M 1

2j+1
Q 1

2j
cn(mod 2j)‖ ≤ 3B(0.9)p−j−1 + 2Ap−j−1ε.(3.21)

Substituting (3.19)–(3.21) into (3.18) we see that ‖M1,pcm‖

≤ B(0.9)p−`−2 + (p− `− 2)Ap−`−2ε+
`+1∑

j=0

(3B(0.9)p−j−1 + 2Ap−j−1ε)

≤ B(0.9)p−`−2 + (p− `− 2)Ap−`−2ε+ 3B(0.9)p−`−2
`+1∑

j=0

(0.9)j + 2Ap−`−2ε
`+1∑

j=0

Aj

≤ B(0.9)p−`−2 + (p− `− 2)Ap−`−2ε+ 30B(0.9)p−`−2 + 2Ap−`−2
(
A`+2 − 1

A− 1

)
ε

≤ 31B(0.9)p−`−2 + 2(p− `)Apε,

since A− 1 = 1 + 3ψ̂(1) ≥ 1.

We now prove the main theorem of the paper.

Theorem 3.14. Let f =
∑∞
k=0 f̂kck ∈Ws. Then, if s ≥ 1 and 1/2 < t < s,

‖f −M1,p‖∞ ≤
(

31B(1 +D(s))(0.9)p + C(t)Ap2−(p−2)(s−t) +
2√
3
p3/2Apε

)
‖f‖s,

where

D(s) =

(
p−3∑

l=0

(0.9)−2`−42−2`(s−1/2)
)1/2

, and C(t) =

( ∞∑

k=2p−2

k−2t
)1/2

.
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Proof. We first split the error into three components

M1,p(f) =

∞∑

k=0

f̂kM1,pck

= f̂0M1,pc0 +

p−3∑

`=0

2`−1∑

m=0

f̂2`+mM1,pc2`+m +
∞∑

k=2p−2

f̂kM1,pck.

Using a similar argument to that of Proposition 3.13 we can show that

‖M1,pc0‖ ≤ (2Bψ̂(1)(0.9)p−2 + 3Ap−1ε)

≤ 31B(0.9)p +
1√
3
p3/2Ap.(3.22)

We bound the final term of the error expression above using Proposition 2.2
followed by an application of the Cauchy-Schwarz inequality. For any s > t > 1/2,
∥∥∥∥∥
∞∑

k=2p−2

f̂kM1,pck

∥∥∥∥∥
∞

≤
∞∑

k=2p−2

f̂k‖M1,pck‖ ≤ Ap
∞∑

k=2p−2

|f̂k| ≤ Ap2−(p−2)(s−t)
∞∑

k=2p−2

ks−t|f̂k|

≤ Ap2−(p−2)(s−t)
( ∞∑

k=2p−2

k2s|f̂k)|2
)1/2( ∞∑

k=2p−2

k−2t
)1/2

≤ C(t)Ap2−(p−2)(s−t)‖f‖s.

(3.23)

We now bound the middle term of the error expression.
∥∥∥∥∥∥

p−3∑

`=0

2`−1∑

m=0

f̂2`+mM1,pc2`+m

∥∥∥∥∥∥
∞

≤
2`−1∑

m=0

|f̂2`+m|‖M1,pc2`+m‖

≤
p−3∑

`=0

2`∑

m=0

|f̂2`+m|(31B(0.9)p−`−2 + 2(p− `)Apε)

=

p−3∑

`=0

(31B(0.9)p−`−2 + 2(p− `)Apε)
2`∑

m=0

|f̂2`+m|.(3.24)

Now, using the Cauchy-Schwarz inequality again we obtain

2`−1∑

m=0

|f̂2`+m| ≤ 2−`s
2`∑

m=0

(2` +m)s|f̂2`+m| ≤ 2−`s2`/2S`,

where S` =
(∑2`

m=0(2` +m)2s|f̂2`+m|2
)1/2

, ` = 0, 1, · · · , p − 3. Substituting into

(3.24) we have
∥∥∥∥∥∥

p−3∑

`=0

2`−1∑

m=0

f̂2`+m(c2`+m −M1,pc2`+m)

∥∥∥∥∥∥
∞

≤
p−3∑

`=0

(31B(0.9)p−`−2 + 2(p− `)Apε)2−`(s−1/2)S`

≤ 31B(0.9)p
p−3∑

`=0

(0.9)−`−22−`(s−1/2)S` + 2ε

p−3∑

`=0

(p− `)ApS`.(3.25)
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Using the Cauchy-Schwarz inequality a final time

p−3∑

`=0

3(p− l)S` ≤ 3Ap

(
p−3∑

`=0

(p− `)2
)1/2(p−3∑

`=0

S2
`

)1/2

≤ 1√
3
p3/2Ap‖f‖s,

and

p−3∑

`=0

(0.9)−`−22−`(s−1/2)S` ≤
(
p−3∑

`=0

(0.9)−2`−42−2`(s−1/2)
)1/2(p−3∑

`=0

S2
`

)1/2

≤ D(s)‖f‖s,
which is finite if s ≥ 1. Putting the last two equations into (3.25), together with
(3.23) and (3.22) we obtain the stated result.

Since we are interested in approximation of smooth functions we can take s to be
as large as we please in the result above. In this case we obtain the following corollary.

Corollary 3.15. Let f =
∑∞
k=0 f̂kck ∈Ws for s ≥ 3. Then,

‖f −M1,p‖∞ ≤
(
E(s)(0.9)p +

1√
3
p3/2Apε

)
‖f‖s,

for some constant E(s) > 0.

Proof. The result follows immediately from the previous theorem observing that
for t = 1, A/2s−t ≤ A/4 ≤ 0.9 since A < 3 and s ≥ 3.

4. Numerical experiments. In this section we look at three numerical exam-
ples. The first two are f = c1 and f = c9 so that we can observe the algorithm treating
frequencies similarly once we have more points than the degree of the cosine. The
third example will be of the smooth function f(x) = exp(c1) to observe the scheme
on a function with a full cosine expansion. We compare the convergence of the two
single modes with coefficient

mp =

p∏

j=0

(
1− ψ̂

(
1

2j

))
,

which arises naturally in the multilevel iteration applied to c1; see coefficient α
(1)
0 in

(3.8). Our hypothesis is that this sequence is more indicative of the convergence rate
of the algorithm than the theoretical convergence rate of (0.9)p.

We can see in Table 1 that the decay rate for f = c1 is almost identically that
for mp, up until p = 7. At this stage the decay rate for ‖M1,pc1‖∞ is governed by
the coefficient of other cosines than c1 in the expansion for M1,pc1. We can see that
the decay of ‖M1,pc9‖∞ lags that of ‖M1,pc1‖∞ by around 4 levels of iteration, but
then the rates track consistently. This observation reflects the analysis of the previous
sections, where convergence happens when the sampling rate is high enough.

In the same table we record the error for approximation of f(x) = exp(c1). We
see that the convergence is similar to that of ‖M1,nc1‖∞, lagging by around 1 level,
where due to the full Fourier expansion, there is a little less predictability in the early
iterations.
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Level p ‖M1,pc1‖∞ ‖M1,pc9‖∞ mp ‖M1,pf‖∞
1 9.9 (-1) 2.0 9.9 (-1) 1.2
2 7.0 (-1) 1.0 7.0 (-1) 1.1 (-1)
3 1.9 (-1) 1.3 1.9 (-1) 4.4 (-1)
4 1.4 (-2) 1.8 1.4 (-2) 9.1 (-2)
5 2.4 (-4) 1.0 2.6 (-3) 8.5 (-3)
6 1.2 (-6) 8.0 (-1) 1.3 (-6) 3.1 (-4)
7 2.8 (-9) 2.6 (-1) 1.5 (-9) 3.4 (-6)
8 1.0 (-10) 2.4 (-2) 4.6 (-13) 1.6 (-8)
9 2.9 (-12) 5.7 (-4) 3.4 (-17) 7.3 (-11)
10 5.6 (-14) 3.5 (-6) 6.5 (-22) 2.7 (-12)

Table 1
Comparison of algorithm on c1 and c9 and the sequence mp, and the multilevel approximation

error for f = exp(c1)
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