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Closed form representations and properties

of the generalised Wendland functions

Andrew Chernih and Simon Hubbert

Abstract

In this paper we investigate the generalisation of Wendland’s com-
pactly supported radial basis functions to the case where the smoothness
parameter is not assumed to be a positive integer or half-integer and the
parameter ℓ, which is chosen to ensure positive definiteness, need not take
on the minimal value. We derive sufficient and necessary conditions for
the generalised Wendland functions to be positive definite and deduce
the native spaces that they generate. We also provide closed form repre-
sentations for the generalised Wendland functions in the case when the
smoothness parameter is an integer and where the parameter ℓ is any
suitable value that ensures positive definiteness, as well as closed form
representations for the Fourier transform when the smoothness parame-
ter is a positive integer or half-integer.

1 Generalised Wendland Functions

Positive definite functions are frequently found at the heart of scattered data
fitting algorithms both in Euclidean space and on spheres: see [18]. The aim
of this paper is to investigate a large class of such functions. The following
definition fixes the notation for what follows.

Definition 1.1. A function ϕ : [0,∞) → IR is said to generate a strictly
positive definite radial function on IRd, if, for any n ≥ 2 distinct locations
x1, . . . , xn ∈ IRd, the following n × n distance matrix

(
ϕ(∥xj − xk∥)

)n

j,k=1
, (1.1)

where ∥ · ∥ denotes the Euclidean norm, is positive definite.

For such functions we have the following characterization theorem (see [7] p34).

Theorem 1.2. A continuous function ϕ : [0, ∞) → IR such that r 7→
rd−1ϕ(r) ∈ L1[0, ∞) generates a strictly positive definite radial function on
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IRd if and only if the d−dimensional Fourier transform

Fdϕ(z) = z1− d
2

∫ ∞

0
ϕ(y) y

d
2 J d

2
−1(yz) dy, (1.2)

(where Jν(·) denotes the Bessel function of the first kind with order ν) is non-
negative and not identically equal to zero.

In this paper we will investigate the family of parameterised basis functions
defined by:

ϕµ,α(r) :=
1

2α−1Γ(α)

∫ 1

r
(1 − t)µ t

(
t2 − r2

)α−1
dt for r ∈ [0, 1], (1.3)

where µ > −1, α > 0 and Γ(·) denotes the Gamma function

Before we embark on our investigation we briefly review what is already known
of this family. Firstly, it is well known (see [4]) that if α = k ∈ {0, 1, 2, . . .}
then the function ϕµ,k generates a strictly positive definite function on IRd if
and only if

µ ≥ d + 1

2
+ k. (1.4)

In particular, quoting [4], the function ϕµ,k is 2k times differentiable at zero,
positive, strictly decreasing on its support and has the form

ϕµ,k(r) = pk(r)(1 − r)µ+k
+ , (1.5)

where pk is a polynomial of degree k with coefficients in µ and (x)+ :=
max(x, 0). In [17] Wendland considers the case where

µ = ℓ :=

⌊
d

2

⌋
+ k + 1 (1.6)

i.e., the smallest allowable integer that still allows positive definiteness. In this
setting we can deduce from (1.5) that ϕℓ,k is a polynomial of degree 2k + ℓ on
the unit interval. Furthermore, it can be shown (see Chapter 10 of [18]) that,
when d is odd, the function

Φ(x,y) = ϕ d+1
2

+k,k(∥x − y∥), x,y ∈ IRd, (1.7)

is the reproducing kernel of a Hilbert space which is norm equivalent to the

integer order Sobolev space H
d+1
2

+k(IRd).
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In a relatively recent development Schaback [15] considered the case where α
is taken to be a positive half-integer, i.e., where α = k + 1/2. In this setting
the following result is established (see [15] Theorem 3.1).

Thereom 1.3. Let d be a fixed spatial dimension and k be a positive integer.
Then if

µ ≥
⌊

d + 1

2

⌋
+ k + 1

then ϕµ,k+ 1
2

generates a positive definite function on IRd.

Following Wendland’s approach, we can devote particular attention to the case
where µ = ℓ =

⌊
d+1
2

⌋
+k+1, the smallest allowable integer that still allows posi-

tive definiteness; Schaback describes the resulting family ϕℓ,k+ 1
2

as the missing

Wendland functions and demonstrates (in analogy to the orignal Wendland
functions) that, when d is even, the function

Φ(x,y) = ϕ d
2
+k+1,k+ 1

2
(∥x − y∥), x,y ∈ IRd, (1.8)

is the reproducing kernel of a Hilbert space which is norm equivalent to the

integer order Sobolev space H
d
2
+k+1(IRd). An important distinction between

the original Wendland functions and the missing Wendland functions is that
the missing Wendland functions, whilst still being compactly supported, now
have logarithmic and square-root multipliers of polynomial components.

In this article we present a more general investigation, partly inspired by the
open problems raised by Schaback in [15], into the family of functions (1.3)
which, building upon extant knowledge, we shall describe as the generalised
Wendland functions. Specifically, for a given dimension d, we determine the
full range of parameters µ and α for which the function ϕµ,α generates a d-
dimensional positive definite function and, in addition, by examining the decay
rate of the Fourier transforms of such functions, we also establish the nature
of the reproducing Hilbert space. We also present an extension of the work in
[5] and derive closed form polynomial representations for ϕµ,k k ∈ IN0 as well
as closed form representations for the Fourier transform of the original and
missing Wendland functions.

2 The functions ϕµ,α and their Fourier transforms

In order to examine the range of parameters µ, α for which ϕµ,α generates a
positive definite function on IRd, we compute its d−dimensional Fourier trans-
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form. Using (1.2) and (1.3) we have

Fdϕµ,α(z) = z1− d
2

∫ 1

0
ϕµ,α(y)y

d
2 J d

2
−1(yz) dy

=
z1− d

2

2α−1Γ(α)

∫ 1

0

∫ 1

y
(1 − t)µt(t2 − y2)α−1y

d
2 J d

2
−1(yz) dt dy.

To develop this integral further we make the change of variables s = y/t, x =
t (0 ≤ y ≤ 1, y ≤ t ≤ 1) to yield

Fdϕµ,α(z) =
z1− d

2

2α−1Γ(α)

∫ 1

0

∫ 1

0
x2α+ d

2 (1 − x)µs
d
2 (1 − s2)α−1J d

2
−1(zsx) dsdx.

From [6, 6.567.1], we have that

∫ 1

0
sν+1

(
1 − s2

)µ
Jν(bs) ds = 2µΓ(µ + 1)b−(µ+1)Jν+µ+1(b), b > 0,

and so we can simplify the above expression to

Fdϕµ,α(z) = z1− d
2
−α

1∫

0

xα+ d
2 (1 − x)µJα+ d

2
−1(zx) dx. (2.1)

The following identity is taken from [6, 6.569]

∫ 1

0
xλ(1 − x)µ−1Jν(ax) dx =

Γ(µ)Γ(λ + ν + 1)2−νaν

Γ(ν + 1)Γ(λ + µ + ν + 1)

× 2F3

(
λ + ν + 1

2
,
λ + ν + 2

2
; ν + 1,

λ + ν + µ + 1

2
,
λ + ν + µ + 1

2
; −z2

4

)
,

where 2F3(a1, a2; b1, b2, b3; z) denotes the hypergeometric function (see [1], 15.1.1)
defined by

pFq(a1, . . . , ap; b1, . . . , bq; z) :=
∞∑

j=0

Πp
i=1(ai)j

Πq
i=1(bi)j

zj

j!
, (2.2)

with p = 2 and q = 3 and where

(c)n := c(c + 1) · · · (c + n − 1) =
Γ(c + n)

Γ(c)
, n ≥ 1 (2.3)
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denotes the Pochhammer symbol, with (c)0 = 1.

Applying this identity allows us to conclude that

Fdϕµ,α(z) =
Γ(µ + 1)Γ(2α + d)

Γ(α + d
2)2α+ d

2
−1Γ(2α + d + µ + 1)

× 2F3

(
d

2
+ α,

d + 1

2
+ α;

d

2
+ α

µ + d + 1

2
+ α,

µ + d + 2

2
+ α; −z2

4

)
.

We notice that, in the terminology of the hypergeometric functions, we have,
in the above example, the case where a1 = b1 and thus, by (2.2) this 2F3

function collapses to a 1F2 function. With this observation and the preceding
development we have established the following theorem

Theorem 2.1. The d-dimensional Fourier transform of the generalised
Wendland functions ϕµ,α, is given by

Fdϕµ,α(z) = Cµ,α
d 1F2

(
d + 1

2
+ α;

µ + d + 1

2
+ α,

µ + d + 2

2
+ α; −z2

4

)
, z > 0.

where

Cµ,α
d :=

Γ(µ + 1)Γ(2α + d)

2α+ d
2
−1Γ(α + d

2)Γ(2α + d + µ + 1)
(2.4)

The following result provides us with the range of parameters µ and α for
which the function ϕµ,α generates a positive definite function on IRd.

Theorem 2.2. The generalised Wendland function ϕµ,α generates a positive
definite function on IRd if and only if its parameters satisfy

µ ≥ d + 1

2
+ α.

Proof. This follows directly from [11] which proves that

1F2

(
a; a +

b

2
, a +

b + 1

2
; −z2

4

)
> 0, z > 0,

for b ≥ 2a ≥ 0, for b ≥ a ≥ 1, or for 0 ≤ a ≤ 1, b ≥ 1. It is also proven that
this function cannot be strictly positive for 0 ≤ b < a or a = b, 0 < a < 1.

In our case, a = d+1
2 + α > 1 since d ≥ 1 and α > 0 and hence a sufficient and

necessary condition reduces to b ≥ a which means that

µ ≥ d + 1

2
+ α.
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Now that we have established the correct parameter range for positive definite-
ness we turn next to examining the associated Hilbert function space Nϕµ,α

whose reproducing kernel is the induced kernel

Φµ,α(x,y) = ϕµ,α(∥x − y∥2), x,y ∈ IRd.

In order to establish such results we follow Wendland’s approach and develop
tight bounds upon the decay rate of the Fourier transform of the appropriate
basis functions.

Theorem 2.3. The d-dimensional Fourier transform of the generalised
Wendland functions, Fdϕµ,α, with µ ≥ α + d+1

2 , satisfies

Fdϕµ,α(z) = Θ
(
z−(d+2α+1)

)
for z → ∞.

Proof. We need to show that for z ≥ z0, there exist two positive constants, c1

and c2 such that
c1 ≤ zd+2α+1Fdϕµ,α(z) ≤ c2. (2.5)

Using [8, 9], we have the following asymptotic expansion for Fdϕµ,α(z) as z →
∞ and |arg(z)| < π

2

Fdϕµ,α(z) =
Γ (µ + d + 1 + 2α)

Γ(µ)
z−d−2α−1

{
1 + O(z−2)

}

+
Γ (µ + d + 1 + 2α)

Γ
(

d+1
2 + α

) z−(µ+α+ d+1
2 )

2( d+1
2

+α)−1

{
cos

[
z − π

2

(
µ + α +

d + 1

2

)]
+ O(z−1)

}
.

Collecting terms not depending on z into constants c3, c4 and c5 gives the
following expression

zd+2α+1Fdϕµ,α(z) = c3

{
1 + O(z−2)

}
+ c4z

α+ d+1
2

−µ
{
cos(z − c5) + O(z−1)

}
.

(2.6)
Then for the upper bound, since cos(z) is bounded by 1 in absolute value, we
can see that for z ≥ z2, there exists an ϵ2 > 0 such that

zd+2α+1Fdϕµ,α(z) ≤
(
c3 + c4z

α+ d+1
2

−µ
)

(1 + ϵ2)

≤ (c3 + c4) (1 + ϵ2)

=: c2,
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which is positive since all its components are also positive. We proceed similarly
for the lower bound and we first consider the case where µ = d+1

2 + α. For
z ≥ z1, there exists an ϵ1 > 0 such that

zd+2α+1Fdϕµ,α(z) ≥ c3(1 − ϵ1) − c4(1 + ϵ1)

= c3 − c4 − ϵ1(c3 + c4)

=: c1.

For small enough ϵ1, c1 > 0 since

c3 − c4 = Γ(µ + d + 2α + 1)

{
1

Γ
(

d+1
2 + α

) − 1

Γ
(

d+1
2 + α

)
2( d+1

2
+α)−1

}

> 0.

Since the second term on the right hand side of (2.6) is decaying for µ >
d+1
2 + α, the existence of a lower bound in this case follows similarly. Setting

z0 := max(z1, z2) completes the proof.

With Theorem 2.3 established, we can appeal to the theory of radial basis
functions (see [18]) to deduce the following.

Corollary 2.4. Let d ≥ 1 denote a fixed spatial dimension and α, β > 0. The
generalised Wendland function ϕ d+1

2
+α+β,α is reproducing in a Hilbert space

which is isomorphic to the Sobolev space H
d+1
2

+α
(
IRd
)
.

With Theorem 2.3 and Corollary 2.4 we can state one more result.

Corollary 2.5. Every Sobolev space Hτ (IRd) with τ > (d + 1)/2 has a
compactly supported and radial reproducing kernel.

2.1 Fourier transform dimension drop

With Theorem 2.1, we can deduce that
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Fdϕℓ,k(z) = Cℓ,k
d 1F2

(
d + 1

2
+ k;

ℓ + d + 1

2
+ k,

ℓ + d + 2

2
+ k; −z2

4

)

= Cℓ,k
d 1F2

(
d

2
+ k +

1

2
;
ℓ + d

2
+ k +

1

2
,
ℓ + d + 1

2
+ k +

1

2
; −z2

4

)

︸ ︷︷ ︸
=Fd−1ϕ

ℓ,k+1
2
(z)/C

ℓ,k+1
2

d−1 by Theorem 2.1

=
Cℓ,k

d

C
ℓ,k+ 1

2
d−1

Fd−1ϕℓ,k+ 1
2
(z)

Using (2.4) we see that Cℓ,k
d = C

ℓ,k+ 1
2

d−1 and thus we have that

Fdϕℓ,k(z) = Fd−1ϕℓ,k+ 1
2
(z), (2.7)

or equivalently,

Fdϕ d+1
2

+k,k(z) = Fd−1ϕ d−1
2

+k+1,k+ 1
2
(z). (2.8)

We remark that (2.8) tells us that the d−dimensional Fourier transform (d odd)
of the original Wendland function (designed for IRd with smoothness param-
eter k) coincides with the d − 1 dimensional Fourier transform of the missing
Wendland function, designed for IRd−1 with smoothness parameter k + 1

2 . We
note that this observation is not a surprising one since it is known that the
derivatives of the Wendland family, when written in f−form, also remain in the
Wendland family, see [3] for further details and [16] for practical implications.

We summarize our observations in the following result.

Corollary 2.6. Let k be a positive integer. If d is odd then the d−dimensional
Fourier transform of the original Wendland function ϕℓ,k (ℓ = d+1

2 +k) is given
by

Fdϕℓ,k(z) =

√
2

π

∫ 1

0
ϕℓ,ℓ−1(y) cos(zy)dy. (2.9)
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Similarly, if d is even then the d−dimensional Fourier transform of the missing
Wendland function ϕℓ,k+ 1

2
(ℓ = d

2 + k + 1) is given by

Fdϕℓ,k+ 1
2
(z) =

√
2

π

∫ 1

0
ϕℓ,ℓ−1(y) cos(zy)dy. (2.10)

Proof. The first formula can be derived by recursively applying (2.7) d − 1
times to give

Fdϕℓ,k(z) = F1ϕℓ,k+ d−1
2

(z) = F1ϕℓ,ℓ−1(z).

Now, applying (1.2) with d = 1 we find that

F1ϕℓ,ℓ−1(z) =
√

z

∫ 1

0
ϕℓ,ℓ−1(y)

√
yJ− 1

2
(zy) dy =

√
2

π

∫ 1

0
ϕℓ,ℓ−1(y) cos(zy) dy,

where we have used the fact that

J− 1
2
(t) =

√
2

πt
cos(t).

The same argument leads to the second formula.

3 The functions ϕµ,k where k, ℓ ∈ IN

In this section we examine the generalised Wendland functions (1.3) in the spe-
cial case where α = k and ℓ are positive integers. To initiate this investigation
we present the following result.

Theorem 3.1. Let d be a fixed space dimension and k be a positive integer.
In addition let ℓ ≥ (d + 2k + 1)/2 be an integer. Then the function ϕℓ,k (1.3)
is given by

ϕℓ,k(r) =
1

2k!k!

k∑

j=0

(
k
j

)
(
ℓ+k+j

ℓ

)2k−jrk−j(1 − r)ℓ+k+j , r ∈ [0, 1]. (3.1)

Proof. See [5] Theorem 4.1.
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We begin with an application of the binomial theorem to yield

ϕℓ,k(r) =
1

2k!k!

k∑

j=0

(
k
j

)
(
ℓ+k+j

ℓ

)2k−j
ℓ+k+j∑

n=0

(−1)n

(
ℓ + k + j

n

)
rk+n−j

=

2k+ℓ∑

i=0

cir
i,

(3.2)

where, following some standard algebraic manipulation, the polynomial coeffi-
cient (ci)

2k+ℓ
i=0 are given by

ci =
1

2kk!

i∑

j=0

(−2)j

(
k
j

)
(
ℓ+2k−j

ℓ

)
(

ℓ + 2k − j

i − j

)

=
ℓ!k!

2k(ℓ + 2k − i)!i!

i∑

j=0

(−2)j

(
2k − j

k

)(
i

j

)

=
ℓ!2k!

2k!k!(ℓ + 2k − i)!i!

i∑

j=0

(−2)j

(
k
j

)
(
2k
j

)
(

i

j

)

=
ℓ!2kΓ

(
k + 1

2

)
√

π(ℓ + 2k − i)!i!

i∑

j=0

(−2)j

(
k
j

)
(
2k
j

)
(

i

j

)
,

(3.3)

where, in the final line we have employed the following formula from [1] Chapter
6, for evaluation of the Gamma function at the half-integers

Γ

(
k +

1

2

)
=

√
π

4k

(2k)!

k!
, k = 0, 1, 2, . . . (3.4)

We can now employ the following identity taken from [12] (4.2.10.13)

i∑

j=0

(−1)jxj

(
i

j

) (k
j

)
(
2k
j

) =
Γ
(
k − i + 1

2

)
i!

Γ
(
k + 1

2

)
(−x

4

)i

C
(1/2+k−i)
i

(
1 − 2

x

)
,
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where C
(λ)
i denotes the Gegenbauer (or ultraspherical) polynomial of degree i

and order λ (see [1] Chapter 22). Setting x = 2 in the above identity yields

i∑

j=0

(−1)jxj

(
i

j

) (k
j

)
(
2k
j

) =
Γ
(
k − i + 1

2

)

Γ
(
k + 1

2

) (−1)i i!

2i
C

(1/2+k−i)
i (0).

For a non-negative integer i we have (see [1] Section 22.4) that

C
(λ)
i (0) =

2i

i!

√
πΓ
(
λ + i

2

)

Γ (λ) Γ
(
− i−1

2

) ,

and so, using this identity, we can deduce that

i∑

j=0

(−1)j2j

(
k
j

)
(
2k
j

)
(

i

j

)
=

Γ
(
k − i−1

2

)√
π

Γ
(
k + 1

2

)
Γ
(
− i−1

2

) (3.5)

and thus we have

ci = (−1)i ℓ!2k

(ℓ + 2k − i)!i!

Γ
(
k − i−1

2

)

Γ
(
− i−1

2

)

= (−2)kℓ!
(−1)iΓ

(
i+1
2

)

Γ
(

i+1
2 − k

)
(ℓ + 2k − i)!i!

,

(3.6)

where, in the final line, we have used the reflection formula for the Gamma
function ([1] 6.1.17)

Γ(z)Γ(1 − z) =
π

sinπz
. (3.7)

We are now in a position to deliver the following result.

Theorem 3.2. Let d be a fixed space dimension and k be a positive integer.
In addition let ℓ ≥ (d + 2k + 1)/2 be an integer. Then the function ϕℓ,k (3.1)
is given by

ϕℓ,k(r) = (−2)kℓ!

2k+ℓ∑

i=0

(−1)iΓ
(

i+1
2

)

Γ
(

i+1
2 − k

)
(ℓ + 2k − i)!

ri

i!
for r ∈ [0, 1]. (3.8)

Proof. This follows from (3.6).
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The above theorem provides explicit representations for the Wendland func-
tions which were previously unavailable. In the earlier literature the standard
approach was to provide representations with recursively computable coeffi-
cients; see [18] Theorem 9.12 for a proof and [16] for a practical implementation.

We close this section by collecting together some properties of the above family
of polynomials. First of all we note that the first k odd coefficients of the
polynomial are zero and so we may write ϕℓ,k(r) as

ϕℓ,k(r) = (−2)kℓ!

[ k∑

i=0

Γ
(
i + 1

2

)
r2i

Γ
(
i − k + 1

2

)
(ℓ + 2k − 2i)!(2i)!

−
ℓ−1∑

i=0

(−1)iΓ
(
k + 1 + i

2

)
r2k+1+i

Γ
(
1 + i

2

)
(ℓ − 1 − i)!(2k + 1 + i)!

]
,

(3.9)

or alternatively, as the sum of an even polynomial and a shorter odd polynomial

ϕℓ,k(r) = (−2)kℓ!

[ k+⌊ ℓ−1
2 ⌋∑

i=0

Γ
(
i + 1

2

)
r2i

Γ
(
i − k + 1

2

)
(ℓ + 2k − 2i)!(2i)!

−
⌊ ℓ

2⌋−1∑

i=0

(k + i)!r2k+2i+1

i!(ℓ − 1 − 2i)!(2k + 2i + 1)!

]
.

(3.10)

With this representation we see that the smoothness of ϕℓ,k is dictated by the
highest order term in the odd polynomial part. Furthermore, we can use this
expression to deduce that the first k odd derivatives of ϕℓ,k(r) vanish when
evaluated at r = 0, i.e., we have

ϕ
(2p+1)
ℓ,k (0) = 0, p = 0, 1, . . . , k − 1. (3.11)

It is straightforward to deduce from (3.8) that the values of the remaining odd
derivatives are given by

ϕ
(2k+1+2p)
ℓ,k (0) =

(−1)k+12kℓ!(k + p)!

(ℓ − 1 − 2p)!p!
, p = 0, 1, . . . ,

⌊
ℓ

2

⌋
− 1. (3.12)

With (1.5), we can see that the first (ℓ + k − 1) derivatives of the function
vanish at r = 1, i.e.,

ϕ
(n)
ℓ,k (1) = 0 n = 0, 1, . . . , ℓ + k − 1. (3.13)
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4 Fourier transform of the original Wendland func-
tions in odd dimensions

Throughout this section we shall assume that the space dimension d is odd. In
this case we revisit the original Wendland functions ϕℓ,k with integer smooth-
ness parameter k and ℓ = d+1

2 + k.

Before we embark on the calculation of the Fourier transform of the original
Wendland functions, we briefly collect some important properties of the func-
tion ϕℓ,ℓ−1. Firstly, using Theorem 3.2 we know that it is a polynomial of degree
3ℓ − 2 on the unit interval. Specifically, (3.9) yields

ϕℓ,ℓ−1(y) = (−2)ℓ−1ℓ!

[ ℓ−1∑

i=0

αiy
2i

(2i)!
−

ℓ−1∑

i=0

βiy
2ℓ−1+i

(2ℓ − 1 + i)!

]
, (4.1)

where, for i = 0, 1, . . . , ℓ − 1, we have

αi =
Γ
(
i + 1

2

)

(3ℓ − 2 − 2i)!Γ
(
i + 1

2 − (ℓ − 1)
) and βi =

(−1)iΓ
(
ℓ + i

2

)

(ℓ − 1 − i)!Γ
(
1 + i

2

) . (4.2)

A combination of (3.11) and (3.12) allows us to deduce that

ϕ
(2p+1)
ℓ,ℓ−1 (0) =

{
0 for p = 0, 1, 2, . . . , ℓ − 2;

(−1)ℓ2ℓ−1ℓ!p!
(p+1−ℓ)!(3ℓ−2p−3)! for p ≥ ℓ − 1.

(4.3)

Furthermore, in view of (3.13) we also have

ϕ
(n)
ℓ,ℓ−1(1) = 0 for n = 0, 1, 2, . . . , 2(ℓ − 1). (4.4)

Using (4.1) we can deduce that the value of the remaining ℓ derivatives at one
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are given by

ϕ
(2(ℓ−1)+n)
ℓ,ℓ−1 (1) = (−1)ℓ2ℓ−1ℓ!

ℓ−1∑

i=n−1

βi

(i − (n − 1))!

= (−1)ℓ2ℓ−1ℓ!

ℓ−n∑

p=0

βp+n−1

p!

= (−2)ℓ−1ℓ!(−1)n
ℓ−n∑

p=0

(−1)pΓ
(
ℓ − 1 + n+1+p

2

)

p!(ℓ − n − p)!Γ
(

n+1+p
2

)

(4.5)

for n = 1, . . . , ℓ.

Keeping these properties in mind we can now compute the Fourier transform
as captured in the following theorem.

Theorem 4.1. Let d be an odd space dimension, k a positive integer and
let ℓ = (d + 2k + 1)/2. The d−dimensional Fourier transform of the original
Wendland function ϕℓ,k, is given by Fdϕℓ,k(z) =

√
2/π

zd+2k+1

[
cos(z)

⌊ ℓ−1
2 ⌋∑

j=0

a1,j

z2j
+ sin(z)

⌊ ℓ
2⌋−1∑

j=0

a2,j

z2j+1
+

⌊ ℓ−1
2 ⌋∑

j=0

a3,j

z2j

]
, (4.6)

where

a1,j = (−1)j2ℓ−1ℓ!

ℓ−2j−1∑

p=0

(−1)pΓ
(
ℓ + j + p

2

)

p!(ℓ − 2j − 1 − p)!Γ
(
j + 1 + p

2

)

a2,j = (−1)j2ℓ−1ℓ!

ℓ−2j−2∑

p=0

(−1)pΓ
(
ℓ + j + p+1

2

)

p!(ℓ − 2j − 2 − p)!Γ
(
j + 1 + p+1

2

)

a3,j = 2ℓ−1ℓ!
(−1)j(j + ℓ − 1)!

(ℓ − 1 − 2j)!j!
.

(4.7)
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Proof. In view of Corollary 2.6 we have that Fdϕℓ,k(z) =

√
2

π

∫ 1

0
ϕℓ,ℓ−1(y) cos(zy) dy =

√
2

π
Re

[∫ 1

0
ϕℓ,ℓ−1(y) exp(izy) dy

]

=

√
2

π
Re




3ℓ−2∑

j=0

(−1)j


ϕ

(j)
ℓ,ℓ−1(y)eizy

(iz)j+1



∣∣∣∣∣

y=1

y=0




=

√
2

π
Re




3ℓ−2∑

j=0

(−1)j
ϕ

(j)
ℓ,ℓ−1(1)eiz

(iz)j+1
+

3ℓ−2∑

j=0

(−1)j+1
ϕ

(j)
ℓ,ℓ−1(0)

(iz)j+1


 .

(4.8)

We shall examine the two sums appearing in the square brackets separately.
We begin with the first term:

3ℓ−2∑

j=0

(−1)j
ϕ

(j)
ℓ,ℓ−1(1)eiz

(iz)j+1
= −

3ℓ−2∑

j=0

ij+1
ϕ

(j)
ℓ,ℓ−1(1)eiz

zj+1

= −
3ℓ−2∑

j=2ℓ−1

ij+1
ϕ

(j)
ℓ,ℓ−1(1)eiz

zj+1
by (4.3)

=
(−1)ℓ

z2ℓ




ℓ−1∑

j=0

ijϕ
(2ℓ−1+j)
ℓ,ℓ−1 (1) cos(z)

zj
+

ℓ−1∑

j=0

ij+1ϕ
(2ℓ−1+j)
ℓ,ℓ−1 (1) sin(z)

zj


 .

Noting that 2ℓ = d + 2k + 1 and taking the real part of this expression yields

1

zd+2k+1


cos(z)

⌊ ℓ−1
2 ⌋∑

j=0

(−1)ℓ+jϕ
(2ℓ−1+2j)
ℓ,ℓ−1 (1)

z2j
+ sin(z)

⌊ ℓ
2⌋−1∑

j=0

(−1)ℓ+j+1ϕ
(2ℓ+2j)
ℓ,ℓ−1 (1)

z2j+1




=
1

zd+2k+1


cos(z)

⌊ ℓ−1
2 ⌋∑

j=0

a1,j

z2j
+ sin(z)

⌊ ℓ
2⌋−1∑

j=0

a2,j

z2j+1


 ,

(4.9)
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where, using (4.5) with n = 2j + 1 and n = 2j + 2, the coefficients (a1,j)j≥0

and (a2,j)j≥0 are as stated in the theorem.

We now move on to the second part of (4.8)

3ℓ−2∑

j=0

(−1)j+1
ϕ

(j)
ℓ,ℓ−1(0)

(iz)j+1
=

3ℓ−2∑

j=0

(−i)j+1
ϕ

(j)
ℓ,ℓ−1(0)

zj+1
.

We note that the real part of this expression involves only the summands
indexed by the odd integers. Furthermore, we know from (3.11) that the first
ℓ − 1 odd derivatives of ϕℓ,ℓ−1 vanish at zero. Thus, in a similar fashion to the
derivation of the first sum, we can deduce that

Re
[3ℓ−2∑

j=0

(−i)j+1
ϕ

(j)
ℓ,ℓ−1(0)

zj+1

]
=

1

zd+2k+1

⌊ ℓ−1
2 ⌋∑

j=0

(−1)ℓ+jϕ
(2ℓ−1+2j)
ℓ,ℓ−1 (0)

z2j

=
1

zd+2k+1

⌊ ℓ−1
2 ⌋∑

j=0

a3,j

z2j

(4.10)

where, applying (4.3) with p = ℓ− 1+ j, the coefficients (a3,j)j≥0 are as stated
in the theorem. The result is established by substituting (4.9) and (4.10) into
(4.8).

5 Fourier transform of the original and missing Wend-
land functions in even dimensions

In this section, we derive closed form representations for the original and miss-
ing Wendland functions, for a given even spatial dimension d.

5.1 The original Wendland functions

Since the space dimension d is even, now we have ℓ = d
2 + k +1. Once more we

can recursively apply (2.7) to deduce that

Fdϕℓ,k(z) = F2ϕℓ,ℓ−2(z) = F1ϕℓ,ℓ− 3
2
(z).
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We have developed closed form expressions for the generalised Wendland func-
tions whose smoothness parameter is a positive integer, and consequently, for
the current calculation, we shall focus on the 2−dimensional Fourier transform.
Specifically, using (1.2) we shall compute:

Fdϕℓ,k(z) =

∫ 1

0
ϕℓ,ℓ−2(y)yJ0(zy) dy. (5.1)

As before we collect together the key properties concerning the function ϕℓ,ℓ−2.
Starting with (3.8) we have its closed form representation

ϕℓ,ℓ−2(y) =
3ℓ−4∑

j=0

cjy
j , where cj =

(−2)ℓ−2ℓ!(−1)jΓ
(

j+1
2

)

Γ
(

j+1
2 − (ℓ − 2)

)
(3ℓ − 4 − j)!j!

(5.2)

Now, from (3.13), we know that the first 2ℓ − 3 derivatives of ϕℓ,ℓ−2 vanish at
one. Consequently, we can deduce from this that the polynomial coefficients
(cj)

3ℓ−4
j=0 satisfy the following moment conditions:

3ℓ−4∑

j=0

cjj
p = 0 p = 0, 1, . . . , 2(ℓ − 2), 2ℓ − 3, (5.3)

and, in particular, we note that

3ℓ−4∑

j=0

cjj
2p = 0, p = 0, 1, . . . , ℓ − 2.

With this preparation we can tackle the Fourier transform calculation

Fdϕℓ,k(z) =

3ℓ−4∑

j=0

cj

∫ 1

0
yj+1J0(zy) dy

Let

Ij+1 =

∫ 1

0
yj+1J0(zy) dy, (5.4)

then, using [13] formula 1.8.1.5, we can deduce that
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Ij+1 =
J1(z)

z
+

jJ0(z)

z2
− j2

z2
Ij−1. (5.5)

Applying this, and taking account of the moment conditions (5.3), we can
conclude that

3ℓ−4∑

j=0

cjIj+1 = − 1

z2

3ℓ−4∑

j=0

cjj
2Ij−1.

We can repeat this process ℓ − 1 times to yield

3ℓ−4∑

j=0

cjIj+1 =
(−1)ℓ−1

z2(ℓ−1)

3ℓ−4∑

j=0

cjj
2(j − 2)2 · · · (j − 2(ℓ − 1))2Ij+1−2(ℓ−1)

=
(−1)ℓ−1

z2(ℓ−1)

3ℓ−4∑

j=2(ℓ−1)−1

cjj
2(j − 2)2 · · · (j − 2(ℓ − 1))2Ij+1−2(ℓ−1),

where the index shift of sum is valid since it is known that the first ℓ − 2 odd
coefficients of ϕℓ,ℓ−2 are zero. Using the identity

j2(j − 2)2 · · · (j − 2(ℓ − 1))2 = 22(ℓ−1)




Γ
(

j
2 + 1

)

Γ
(

j
2 + 1 − (ℓ − 1)

)




2

we can, with a shift in the summation index, write

Fdϕℓ,k(z) =
(−1)ℓ−122(ℓ−1)

z2(ℓ−1)

ℓ−1∑

j=0

c2(ℓ−1)−1+j




Γ
(

j+1
2 + ℓ − 1

)

Γ
(

j+1
2

)




2

Ij .

We can now employ expression (5.2) for cj , together with some algebraic ma-
nipulation, to show that the above sum simplifies to

Fdϕℓ,k(z) =
2ℓ−1ℓ!

z2(ℓ−1)

ℓ−1∑

j=0

γjIj , where γj =
(−1)jΓ

(
ℓ − 1 + j+1

2

)

(ℓ − 1 − j)!Γ
(

j+1
2

)
j!

(5.6)
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Now, for j ≥ 2 we can rewrite (5.5) as

Ij =
J1(z)

z
+

(j − 1)J0(z)

z2
− (j − 1)2

z2
Ij−2. (5.7)

Furthermore, appealing to [6] (formulae 6.561.1. and 6.561.5), we have that

I0 = Λ(z) + J0(z) and I1 =
J1(z)

z
, (5.8)

where the function Λ(z) is defined by

Λ(z) :=
π

2
(J1(z)H0(z) − J0(z)H1(z)) (5.9)

where Hν(z) denotes the Struve function of order ν; see [1] Chapter 12.

We can now employ (5.8) and (5.7) together to deduce that

ℓ−1∑

j=0

γjIj =Λ(z)γ0 + J1(z)

[∑ℓ−2
j=0 γj+1

z

]

+ J0(z)

[
γ0 +

∑ℓ−3
j=0 γj+2(j + 1)

z2

]
− 1

z2

ℓ−3∑

j=0

(j + 1)2γj+2Ij .

Repeating this process again leads to
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ℓ−1∑

j=0

γjIj =Λ(z)

(
γ0 − γ21

2

z2

)

+ J1(z)

[∑ℓ−2
j=0 γj+1

z
−
∑ℓ−4

j=0 γj+3(j + 2)2

z3

]

+ J0(z)

[
γ0 +

∑ℓ−3
j=1 γj+2(j + 1)

z2
−
∑ℓ−5

j=0 γj+4(j + 1)(j + 3)2

z4

]

+
1

z4

ℓ−5∑

j=0

γj+4(j + 1)2(j + 3)2Ij .

Clearly, we can continue applying this recursion to deliver a closed formula for
the even dimensional Fourier transform. In order to express this neatly we use
the above development to fix formulae for the coefficients involved. Firstly,
using (5.6) and (3.4) we set

b1,p = (−1)pγ2p2
2p

(
Γ
(
p + 1

2

)

Γ
(

1
2

)
)2

=
(−1)pΓ

(
ℓ − 1 + p + 1

2

)

(ℓ − 1 − 2p)!p!
√

π
. (5.10)

Next, we set

b2,p = (−1)p22p

ℓ−2(p+1)∑

j=0

γ2p+1+j




Γ
(
p + 1 + j

2

)

Γ
(
1 + j

2

)




2

= (−1)p22p

ℓ−2(p+1)∑

j=0

(−1)j+1Γ
(
p + ℓ + j

2

)
Γ
(
p + 1 + j

2

)

(ℓ − 2(p + 1) − j)!(2p + 1 + j)!Γ
(
1 + j

2

)2 ,

(5.11)

and finally
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b3,p =





γ0 for p = 0;

(−1)p+122p−1
∑ℓ−2p−1

j=1 γ2p+j
Γ(p+ j+1

2 )
2

Γ( j+1
2 )Γ( j+3

2 )
for p ≥ 1.

=





γ0 for p = 0;

(−1)p+122p−1
∑ℓ−2p−1

j=1

(−1)jΓ(ℓ−1+p+ j+1
2 )Γ(p+ j+1

2 )
(ℓ−1−2p−j)!(2p+j)!Γ( j+1

2 )Γ( j+3
2 )

for p ≥ 1.

(5.12)

With the coefficients prepared we can conclude the following result.

Theorem 5.1. Let d be an even space dimension, k a positive integer and let
ℓ = d

2 +k +1. The d−dimensional Fourier transform of the original Wendland
function ϕℓ,k, is given by Fdϕℓ,k(z) =

ℓ!2ℓ−1

zd+2k

[
Λ(z)

⌊ ℓ−1
2

⌋∑

p=0

b1,p

z2p
+ J1(z)

⌊ ℓ
2
⌋−1∑

p=0

b2,p

z2p+1
+ J0(z)

⌊ ℓ
2
⌋−1∑

p=0

b3,p

z2p

]
(5.13)

where the coefficients b1,j , b2,j and b3,j are given by (5.10), (5.11) and (5.12)
respectively.

We note that it is not immediately obvious from (5.13) that we achieve the
asymptotic decay rate predicted by Theorem 2.3, namely that

Fdϕℓ,k(z) = O

(
1

zd+2k+1

)
. (5.14)

In view of this we close the paper by directly investigating the asymptotic
behaviour of (5.13). To begin with we notice that a glance at (5.10) and (5.12)
shows that b3,0 = γ0 = b1,0 and so, isolating the first terms (p = 0) which
contribute from the sums in (5.13) we can write Fdϕℓ,k(z) =

ℓ!2ℓ−1

zd+2k

[
γ0 (Λ(z) + J0(z)) +

b2,0J1(z)

z
+ (rapidly decaying terms)

]
. (5.15)

Using the asymptotic expansions of the Bessel function [1] (formula 9.2.1) and
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Struve functions [2] (formulae 3.62 and 3.63), we see that as z → ∞

Λ(z) = −
√

2

πz
cos
(
z − π

4

)
+ O(z−1)

J0(z) =

√
2

πz
cos
(
z − π

4

)
+ O(z−1)

J1(z) =

√
2

πz
cos

(
z − 3π

4

)
+ O(z−1)

and consequently, as z → ∞, we have

Λ(z) + J0(z) = O

(
1

z

)
and

J1(z)

z
= O

(
1

z3/2

)
.

From this, we can verify that the Fourier transform decays at the expected
rate (5.14).

5.2 The missing Wendland functions

Since we now are working with the missing Wendland functions in an even
dimension d, we seek a closed form for Fdϕℓ,k+ 1

2
, where k is a positive integer

and ℓ = d/2 + k + 1. With (2.7), we can see that

Fdϕ d
2
+k+1,k+ 1

2
= Fd−1ϕ d

2
+k+1,k+1

= Fd−1ϕ d−1
2

+k+1+ 1
2
,k+1,

which is just the d−1-dimensional Fourier transform of the original Wendland
function with smoothness parameter k + 1 (since k is an integer). Since d − 1
is odd, the closed form representation for this is given in Theorem 4.1, which
gives the following result.

Theorem 5.2. Let d be an even space dimension, k a positive integer and let
ℓ = d/2+k+1. The d−dimensional Fourier transform of the missing Wendland
function ϕℓ,k+ 1

2
, is given by Fdϕℓ,k+ 1

2
(z) =

√
2/π

zd+2k+2

[
cos(z)

⌊ ℓ−1
2 ⌋∑

j=0

a1,j

z2j
+ sin(z)

⌊ ℓ
2⌋−1∑

j=0

a2,j

z2j+1
+

⌊ ℓ−1
2 ⌋∑

j=0

a3,j

z2j

]
, (5.16)

where a1,j , a2,j and a3,j are given by (4.7).
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