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Abstract

This paper provides a mathematical analysis of optimal algebraic manipulation detection
(AMD) codes. We prove several lower bounds on the success probability of an adversary and
we then give some combinatorial characterizations of AMD codes that meet the bounds with
equality. These characterizations involve various types of generalized difference families. Con-
structing these difference families is an interesting problem in its own right.

1 Introduction

Algebraic manipulation detection (AMD) codes were defined in 2008 by Cramer et al. [3, 4] as a
generalization and abstraction of techniques that were previously used in the study of robust secret
sharing schemes [13, 14, 16]. AMD codes are studied further in [1, 5, 6]. Several interesting and
useful applications of these structures are described in these papers, including applications to robust
fuzzy extractors, secure multiparty computation, non-malleable codes, etc. Various construction
methods for AMD codes are also presented in these papers.

We begin by providing some motivating examples as well as some historical context from the
point of view of authentication codes. AMD codes can be considered as a variation of the classical
unconditionally secure authentication codes [15], which we will refer to as A-codes for short. An
A-code has the form (S, T ,K, E) where S is a set of plaintext sources, T is a set of tags, K is a set of
keys and E is a set of encoding functions. For each K ∈ K, there is a (possibly randomized) encoding
function EK : S → T . A secret key K ∈ K is chosen randomly. Later a source s ∈ S is selected
and the tag t = EK(s) is completed. The tag t is authenticated by verifying that t = EK(s); this
can be done only with knowledge of the key K. Having seen a valid pair (s, t), an active adversary
may create a bogus pair (s′, t′) (where s′ 6= s), hoping that it will be accepted as authentic (this
process is called substitution). The adversary is trying to maximize the success probability of such
an attack. One main objective is to design A-codes that will minimize the success probability of
the adversary.

∗D. Stinson’s research is supported by NSERC discovery grant 203114-11.
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Example 1.1. Let p be prime and define S = T = Zp. Define K = Zp×Zp. For every K = (c, d) ∈
K, define the function EK by the rule s 7→ cs + d mod p for all s ∈ Zp. (That is, the encoding
functions consist of all linear functions from Zp to Zp.) Any observed source-tag pair (s, t) is valid
under exactly p of the p2 keys. Then, any substitution (s′, t′) (s′ 6= s) is valid under exactly 1 of
the p “possible” keys. Therefore, the adversary’s success probability is 1/p.

There are two types of AMD codes. The first type is a weak AMD code. Here there is no key,
so there is only one encoding function E. Further, the tag is an element of a finite additive abelian
group, say G. The adversary is required to commit to a specific substitution of the form g 7→ g+∆,
where ∆ ∈ G \ {0} is fixed. Later, a source s ∈ S is chosen randomly and encoded to g = E(s).
Then g is replaced by g′ = g + ∆. The adversary wins if g′ = e(s′) for some s 6= s′. Again, the
objective in designing such a code is to minimize the adversary’s success probability.

Example 1.2. Let S = {1, 2, 3, 4, 5} and let G = Z21. The encoding function E is defined by
E(1) = 3, E(2) = 6, E(3) = 12, E(4) = 7 and E(5) = 14. It turns out that the adversary’s success
probability is 1/5, independent of his choice of ∆ 6= 0. This follows because {3, 6, 12, 7, 14} is a
difference set in Z21 (for the definition of difference set, see Section 2).

The second type of AMD code is a strong AMD code. It is basically the same as a weak AMD
code, except that the adversary is given the source (but not the encoded version of the source)
before choosing ∆.

Example 1.3. This example is based on Example 2.7. Let S = {1, 2, 3, 4} and let G = Z7.
The encoding function E is defined by E(1) = 1, E(2) = 2, E(3) = 4 and E(4) ∈R {0, 3, 5, 6}
(the notation “∈R” denotes that the given encoding is to be chosen uniformly at random from
the given set). If the source s = 1, 2 or 3, then the adversary succeeds with probability 1 by
choosing ∆ such that E(s) + ∆ = E(s′) for some s′ 6= s. However, if the source s = 4, it can
be verified that the adversary’s success probability is 1/2. To see this, observe for any ∆ 6= 0 that
E(4) + ∆ ∈ {E(1), E(2), E(3)} for precisely two of the four possible values of E(4).

1.1 Notation

In this section, we present relevant notation that we will use in the rest of the paper.

• There is a set S of plaintext messages which is termed the source space, where |S| = m. There
will be a probability distribution on S, which is assumed to be public. We will normally
assume Pr[s] = 1/m for all s ∈ S, so we have equiprobable sources.

• The encoded message space (or more simply, message space) is a set G, where |G| = n (note:
G will usually be an additive abelian group with identity 0).

• For every source s ∈ S, let A(s) ⊆ G denote the set of valid encodings of s. We require that
A(s) ∩ A(s′) = ∅ if s 6= s′; this ensures that any message can be correctly decoded. Denote
A = {A(s) : s ∈ S}.

• Let as = |A(s)| for any s ∈ S. Define

G0 =
⋃

s∈S
A(s)

2



and denote
a =

∑

s∈S
as.

If as is constant, say k, then the code is k-uniform. In this case, a = km.

• E : S → G is a (possibly randomized) encoding function that maps a source s ∈ S to some
g ∈ A(s) according to a certain probability distribution defined on A(s):

Pr[E(s) = g] = Pr[g | s].

The encoding function E, as well as the probability distributions Pr[E(s) = g], are assumed
to be public. Observe that, for equiprobable sources, the induced probability distribution on
G0 is given by

Pr[g] =
1

m
×Pr[E(s) = g]

for all s ∈ S and all g ∈ A(s).

• Formally, we can define the AMD code as a 4-tuple (S,G,A, E).

• If Pr[E(s) = g] = 1/as for every s ∈ S and every g ∈ A(s), then the code has equiprobable
encoding. Such a code can be denoted as a 3-tuple (S,G,A). In a code with equiprobable
sources and equiprobable encoding, we have

Pr[g] =
1

asm

for all s ∈ S and all g ∈ A(s).

• A k-uniform code that has equiprobable sources and equiprobable encoding is said to be
k-regular. In a k-regular code, we have

Pr[g] =
1

km

for all g ∈ G0.

• A 1-regular code is said to be deterministic because the source uniquely determines the
encoding. In a deterministic code with equiprobable sources, we have

Pr[g] =
1

m

for all g ∈ G0.

1.2 Formal Definitions of Weak and Strong AMD Codes

We formally define the notion of weak security for an AMD code (S,G,A, E) by considering a
certain game incorporating an adversary. The adversary has complete information about the AMD
code that is being used. Based on this information, the adversary will adopt a strategy σ which he
will use to choose a value ∆ in the game described below. A strategy is allowed to be randomized.
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Definition 1.1 (Weak AMD code).

Suppose (S,G,A, E) is an AMD code.

1. The value ∆ ∈ G \ {0} is chosen according to the adversary’s strategy.

2. The source s ∈ S is chosen uniformly at random by the encoder (i.e., we have equiprobable
sources).

3. The source is encoded into g ∈ A(s) using the encoding function E.

4. The adversary wins if and only if g + ∆ ∈ A(s′) for some s′ 6= s.

The success probability of the strategy σ, denoted εσ, is the probability that the adversary wins this
game using the specific strategy σ.

We will say that the code (S,G,A, E) is a weak (m,n, ε̂)-AMD code where ε̂ denotes the
success probability of the adversary’s optimal strategy. That is,

ε̂ = max
σ
{εσ}.

We now turn to the stronger security model. The following concept of strong security is also
defined as a game involving an adversary. In this model, the strategy σ used to choose ∆ will
depend on the source s.

Definition 1.2 (Strong AMD code).

1. The source s ∈ S is given to the adversary (here there is no probability distribution defined
on S).

2. The value ∆ ∈ G \ {0} is chosen according to the adversary’s strategy.

3. The source is encoded into g ∈ A(s) using the encoding function E.

4. The adversary wins if and only if g + ∆ ∈ A(s′) for some s′ 6= s.

For a given source s the success probability of the strategy σ, denoted εσ,s, is the probability that
the adversary wins this game using the specific strategy σ.

We will say that the code (S,G,A, E) is a strong (m,n, ε̂)-AMD code where ε̂ denotes the
maximum success probability of any strategy over all sources s. That is,

ε̂ = max
σ,s
{εσ,s}.

As we mentioned earlier, the difference between a weak and strong AMD code is that, in a weak
code, the adversary chooses ∆ before he sees s, while in a strong code, the adversary is given s and
then he chooses ∆.
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1.3 Our Contributions

In this paper, we study optimal AMD codes, i.e., codes in which the adversary’s success probability
is as small as possible. We consider bounds for both weak and strong AMD codes and investigate
when these bounds can be achieved. This involves several generalizations of difference families,
some of which have apparently not been studied previously.

Connections between AMD codes and difference families have been observed previously, e.g., in
[5]. The paper [5] and other prior work is mainly concerned with codes that are “close to” optimal
and/or the construction of classes of codes that have asymptotically optimal behaviour. This is of
course desirable from the point of view of applications. In contrast, our focus is on mathematical
characterizations of codes where the relevant bounds are exactly met with equality; this is the sense
in which we are using the term “optimal”.

The rest of this paper is organized as follows. In Section 2, we define all the generalizations
of difference families that we will be using in the rest of the paper. We give some examples and
constructions as well as prove some nonexistence results. Section 3 studies weak AMD codes.
Bounds are considered in Section 3.1, where we introduce the notion of R-optimal and G-optimal
AMD codes; these bound arise in the analysis of two different adversarial strategies. Conditions
under which these bounds can be met with equality are presented in Section 3.2. Section 4 provides
an analogous treatment of strong AMD codes. Finally, we conclude the paper in Section 5.

2 Difference Families and Generalizations

In this section, we describe several variations of difference sets and difference families. These
concepts will be essential for constructions and combinatorial characterizations of optimal (strong
and weak) AMD codes. Some of the definitions we give are new, and we prove some interesting
connections between various types of difference families that may be of independent interest.

Let G be an abelian group. For any two disjoint sets A1, A2 ⊆ G, define

D(A1, A2) = {x− y : x ∈ A1, y ∈ A2}.

Note that D(A1, A2) is a multiset. Also, for any A1 ⊆ G, define

D(A1) = {x− y : x, y ∈ A1, x 6= y}.

D(A1) is also a multiset.
Our first two definitions—difference sets and difference families—are standard. There is a large

literature on these combinatorial structures.

Definition 2.1 (Difference Set). Let G be an additive abelian group of order n. An (n,m, λ)-
difference set (or (n,m, λ)-DS) is a set A1 ⊆ G, such that the following multiset equation holds:

D(A1) = λ(G \ {0}).

If an (n,m, λ)-DS exists, then λ(n− 1) = m(m− 1).

Remark: We can consider any set of size 1 to be a (trivial) difference set with λ = 0.

5



Definition 2.2 (Difference Family). Let G be an additive abelian group of order n. An (n,m, k, λ)-
difference family (or (n,m, k, λ)-DF) is a set of m k-subsets of G, say A1, . . . , Am, such that
the following multiset equation holds:

⋃

i

D(Ai) = λ(G \ {0}).

If an (n,m, k, λ)-DF exists, then λ(n− 1) = mk(k− 1). Also, an (n,m, λ)-DS is an (n, 1,m, λ)-
DF.

The following definition is from [13].

Definition 2.3 (External difference family). Let G be an additive abelian group of order n. An
(n,m, k, λ)-external difference family (or (n,m, k, λ)-EDF) is a set of m disjoint k-subsets of
G, say A1, . . . , Am, such that the following multiset equation holds:

⋃

{i,j:i 6=j}
D(Ai, Aj) = λ(G \ {0}).

If an (n,m, k, λ)-EDF exists, then n ≥ mk and

λ(n− 1) = k2m(m− 1). (1)

Also, an (n,m, 1, λ)-EDF is the same thing as an (n,m, λ) difference set.

There are several papers giving construction methods for external difference families, e.g., [2,
7, 8, 9, 10, 11, 17]. Here is an example of one infinite class of external difference families. due to
Tonchev [17]; it was later rediscovered in [10].

Theorem 2.1. [17, 10] Suppose that q = 2u`+ 1 is a prime power, where u and ` are odd. Then
there exists a (q, u, `, (q − 2`− 1)/4)-EDF in Fq.

Proof. Let α ∈ Fq be a primitive element. Let C be the subgroup of Fq∗ having order u and index
2`. The ` cosets α2iC (0 ≤ i ≤ `− 1) form the EDF.

Example 2.1. We give an example to illustrate Theorem 2.1. Let G = (Z19,+). Then α = 2 is a
primitive element and C = {1, 7, 11} is the (unique) subgroup of order 3 in Z19

∗. A (19, 3, 3, 3)-EDF
is given by the three sets {1, 7, 11}, {4, 9, 6} and {16, 17, 5}.

We refer to [9, Table II] for a list of known external difference families.

Remark: The related but more general concept of a difference system of sets was defined much
earlier, by Levenshtein, in [12]. This is similar to the definition of an external difference family,
except that every difference x − y (x ∈ Ai, y ∈ Aj , i 6= j) is required to occur at least λ times.
However, we note that a perfect, regular difference system of sets is equivalent to an external
difference family.

As we will discuss later, for the applications to AMD codes we will be considering, it is sufficient
that every difference occurs at most λ times. This motivates the following definition.
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Definition 2.4 (Bounded external difference family). Let G be an additive abelian group of order n.
A (n,m, k, λ)-bounded external difference family (or (n,m, k, λ)-BEDF) is a set of m disjoint
k-subsets of G, say A1, . . . , Am, such that the following condition holds for every g ∈ G \ {0}:

|{x− y : x− y = g, x ∈ Ai, y ∈ Aj , i 6= j}| ≤ λ.

It is obvious that an (n,m, k, λ)-EDF is an (n,m, k, λ)-BEDF.

Definition 2.5 (Strong external difference family). Let G be an additive abelian group of order
n. An (n,m, k;λ)-strong external difference family (or (n,m, k;λ)-SEDF) is a set of m
disjoint k-subsets of G, say A1, . . . , Am, such that the following multiset equation holds for every i,
1 ≤ i ≤ m: ⋃

{j:j 6=i}
D(Ai, Aj) = λ(G \ {0}). (2)

It is easy to see that a (n,m, k, λ)-SEDF is an (n,m, k,mλ)-EDF. Therefore, from (1), if an
(n,m, k, λ)-SEDF exists, then

λ(n− 1) = k2(m− 1). (3)

Example 2.2. Let G = (Zk2+1,+), A1 = {0, 1, . . . , k − 1} and A2 = {k, 2k, . . . , k2}. This is a
(k2 + 1, 2; k; 1)-SEDF.

Example 2.3. Let G = (Zn,+) and Ai = {i} for 0 ≤ i ≤ n− 1. This is a (n, n; 1; 1)-SEDF.

Theorem 2.2. There does not exist an (n,m, k, 1)-SEDF with m ≥ 3 and k > 1.

Proof. Suppose A1, . . . , Am is an (n,m, k, 1)-SEDF with m ≥ 3 and k > 1. From (2), it follows
that ⋃

{i,j:1≤i≤m,1≤j≤m,i 6=j}
D(Ai, Aj) = m(G \ {0}). (4)

Then, from (2) and (4), we have

⋃

{i,j:2≤i≤m,2≤j≤m,i 6=j}
D(Ai, Aj) = (m− 2)(G \ {0}). (5)

Suppose x, y ∈ A1, x 6= y (note that k > 1 so we have two distinct elements in A1). Now, from
(5), since m > 2, there exists u ∈ Ai, v ∈ Aj such that i, j > 1, i 6= j and u − v = x − y. Then
u− x = v − y, which contradicts (2).

Theorem 2.3. There exists an (n,m, k, 1)-SEDF if and only if m = 2 and n = k2 + 1, or k = 1
and m = n.

Proof. From Theorem 2.2, we only need to consider the cases m = 2 and k = 1. If m = 2, then
from (3), we must have n = k2 + 1, and the relevant SEDF exists from Example 2.2. If k = 1, then
from (3) we must have m = n, and the relevant SEDF exists from Example 2.3.

Next, we consider generalizations of external difference families and strong external difference
families in which the subsets A1, . . . , Am are allowed to be of possibly different sizes.
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Definition 2.6 (Generalized external difference family). Let G be an additive abelian group of order
n. An (n,m; k1, . . . , km;λ)-generalized external difference family (or (n,m; k1, . . . , km;λ)-
GEDF) is a set of m disjoint subsets of G, say A1, . . . , Am, such that |Ai| = ki for 1 ≤ i ≤ m and
the following multiset equation holds:

⋃

{i,j:i 6=j}
D(Ai, Aj) = λ(G \ {0}).

Clearly, an (n,m, k, λ)-EDF is an (n,m; k, . . . , k;λ)-GEDF.

Example 2.4. Let G = (Z13,+), A1 = {0, 1} and A2 = {2, 4, 6}. This is a (13, 2; 2, 3; 1)-GEDF.

Example 2.5. Let G = (Z11,+), A1 = {0}, A2 = {1}, and A3 = {3, 5}. This is a (11, 3; 1, 1, 2; 1)-
GEDF.

Remark: A generalized external difference family is also known as a perfect difference system of
sets.

Definition 2.7 (Generalized strong external difference family). Let G be an additive abelian group
of order n. An (n,m; k1, . . . , km;λ1, . . . , λm)-generalized strong external difference family
(or (n,m; k1, . . . , km;λ1, . . . , λm)-GSEDF) is a set of m disjoint subsets of G, say A1, . . . , Am,
such that |Ai| = ki for 1 ≤ i ≤ m and the following multiset equation holds for every i, 1 ≤ i ≤ m:

⋃

{j:j 6=i}
D(Ai, Aj) = λi(G \ {0}).

It is obvious that an (n,m, k, λ)-SEDF is an (n,m; k, . . . , k;λ, . . . , λ)-GSEDF.

Example 2.6. Let G = (Zn,+), A1 = {0} and A2 = {1, 2, . . . , n−1}. This is a (n, 2; 1, n−1; 1, 1)-
GSEDF.

Example 2.7. Let G = (Z7,+), A1 = {1}, A2 = {2}, A3 = {4}, and A4 = {0, 3, 5, 6}. This is a
(7, 4; 1, 1, 1, 4; 1, 1, 1, 2)-GSEDF.

A (n,m; k1, . . . , km;λ1, . . . , λm)-GSEDF is maximal if
∑
ki = n. Here is a nice characterization

of maximal GSEDF.

Theorem 2.4. Suppose A1, . . . , Am is a partition of G (where |G| = n) with |Ai| = ki for 1 ≤ i ≤
m. Then A1, . . . , Am is a (maximal) (n,m; k1, . . . , km;λ1, . . . , λm)-GSEDF if and only if Ai is an
(n, ki, ki − λi)-DS in G, for 1 ≤ i ≤ m.
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Proof. Fix a value i, 1 ≤ i ≤ m. It is clear that

⋃

{j:j 6=i}
D(Ai, Aj) = D(Ai,G \Ai)

=
⋃

x∈Ai

D(x,G \Ai)

=
⋃

x∈Ai

(D(x,G \ {x}) \ D(x,Ai \ {x}))

=


 ⋃

x∈Ai

D(x,G \ {x})


 \


 ⋃

x∈Ai

D(x,Ai \ {x})




=


 ⋃

x∈Ai

G \ {0})


 \ D(Ai)

= (ki(G \ {0})) \ D(Ai),

where all operations are multiset operations. Therefore,

⋃

{j:j 6=i}
D(Ai, Aj) = λi(G \ {0})

if and only if
D(Ai) = (ki − λi)(G \ {0}).

Theorem 2.5. Suppose there exists an (n,m; k1, . . . , km;λ1, . . . , λm)-GSEDF where ki = 1. Then
λi = 1 and

∑m
i=1 ki = n (i.e., the GSEDF is maximal).

Proof. We have ki(a− ki) = a− 1 = λi(n− 1), where a =
∑m

i=1 ki. Since a ≤ n and λi ≥ 1, it must
be the case that a = n and λi = 1.

Definition 2.8 (Bounded generalized strong external difference family). Let G be an additive
abelian group of order n. An (n,m; k1, . . . , km;λ1, . . . , λm)-bounded generalized strong external
difference family (or (n,m; k1, . . . , km;λ1, . . . , λm)-BGSEDF) is a set of m disjoint subsets of
G, say A1, . . . , Am, such that |Ai| = ki for 1 ≤ i ≤ m and the following multiset equation holds for
every j, 1 ≤ j ≤ m, and for every g ∈ G \ {0}:

|{x− y : x− y = g, x ∈ Ai, y ∈ Aj , i 6= j}| ≤ λj .
Remark: A BGSEDF is equivalent to the notion of differential structure, as defined, e.g., in [5].

Definition 2.9 (Partitioned external difference family). Let G be an additive abelian group of
order n. An (n,m; c1, . . . , c`; k1, . . . , k`;λ1, . . . , λ`)-partitioned external difference family (or
(n,m; c1, . . . , c`; k1, . . . , k`;λ1, . . . , λ`)-PEDF) is a set of m =

∑
i ci disjoint subsets of G, say

A1, . . . , Am, such that there are ch subsets of size kh, for 1 ≤ h ≤ `, and the following multiset
equation holds for every h, 1 ≤ h ≤ `:

⋃

{i:|Ai|=ch}

⋃

{j:j 6=i}
D(Ai, Aj) = λi(G \ {0}).
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We note the following:

• an (n,m; k1, . . . , km;λ1, . . . , λm)-GSEDF is an (n,m; 1, . . . , 1; k1, . . . , km;λ1, . . . , λm)-PEDF

• an (n,m, k, λ)-EDF is an (n,m;m; k;λ)-PEDF

• an (n,m; c1, . . . , c`; k1, . . . , k`;λ1, . . . , λ`)-PEDF is an (n,m; k1
c1 , . . . , k`

c` ;λ)-GEDF in which

λ =
∑̀

i=1

λi,

where the notation ki
ci denotes ci occurrences of ki, for 1 ≤ h ≤ `.

Here is an example of a PEDF that is not an EDF or GSEDF.

Example 2.8. Let G = (Z13,+), A1 = {0, 1, 4}, A2 = {3, 5, 10}, A3 = {2, 6, 7, 9}, A4 = {8},
A5 = {11}, A6 = {12}. It can be verified that A1, . . . , A6 is a (13, 6; 2, 1, 3; 3, 4, 1; 5, 3, 3)-PEDF. To
see that it is not a GSEDF, we first compute the occurrence of differences from A1 to the union of
the other Ai’s:

difference 1 2 3 4 5 6 7 8 9 10 11 12

frequency 2 3 2 2 3 3 3 3 2 2 3 2

Then we compute the occurrence of differences from A2 to the union of the other Ai’s:

difference 1 2 3 4 5 6 7 8 9 10 11 12

frequency 3 2 3 3 2 2 2 2 3 3 2 3

These two lists of occurrences of differences are not uniform, so we do not have a GSEDF. However,
each difference occurs a total of five times in the two lists.

Theorem 2.6. Suppose A1, . . . , Am is a partition of G (where |G| = n) such that there are ch subsets
of size kh for 1 ≤ h ≤ `. Then A1, . . . , Am is a (maximal) (n,m; c1, . . . , c`; k1, . . . , k`;λ1, . . . , λ`)-
PEDF if and only if the subsets of cardinally kh form an (n, kh, chkh−λh)-DF in G, for 1 ≤ h ≤ `.
Proof. We omit the proof, which is similar to the proof of Theorem 2.4.

Example 2.9. Let’s look again at the PEDF in Example 2.8. Here the two sets of size 3 form a
(13, 2, 3, 1)-DF; the set of size 4 is a (13, 1, 4, 1)-DF; and the three sets of size 1 form a (13, 3, 1, 0)-
DF.

In Figure 1, we indicate the relationship between the various types of difference families we have
defined. If we designate X → Y , this indicates that any example of “X” automatically satisfies the
properties of “Y ”.

3 Weak AMD Codes

Our goal is to prove lower bounds on the adversary’s optimal success probability, ε̂. Note that a
lower bound on ε̂ states that there exists an adversary who wins the relevant game with at least
some specified probability. Then we construct codes that meet these lower bounds, i.e., codes in
which the adversary cannot succeed with higher probability. Whenever possible, we will prove
bounds without assuming that the code is uniform or has equiprobable encoding (we do assume
equiprobable sources, however).
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SEDF DS
↙ ↘ ↙ ↘

GSEDF EDF DF
↙ ↘ ↙ ↘

BGSEDF PEDF BEDF
↓

GEDF

Figure 1: Relationships between various types of difference families

3.1 Bounds for Weak AMD Codes

Theorem 3.1. In any weak (m,n, ε̂)-AMD code, it holds that

ε̂ ≥ a(m− 1)

m(n− 1)
.

Proof. Suppose the adversary chooses the value ∆ ∈ G \ {0} uniformly at random. For any given
g ∈ A(s) and for a randomly chosen ∆, the probability that the adversary wins is (a− as)/(n− 1).
The success probability εrand of this random strategy rand is

εrand =
∑

s

Pr[s]
∑

g∈A(s)

(
Pr[E(s) = g]× a− as

n− 1

)

=
∑

s

(
Pr[s]× a− as

n− 1

)

=
a

n− 1
−
∑

s

as
m(n− 1)

(because the sources are equiprobable)

=
a

n− 1
− a

m(n− 1)

=
a(m− 1)

m(n− 1)
.

Corollary 3.2. In any k-uniform weak (m,n, ε̂)-AMD code, it holds that

ε̂ ≥ k(m− 1)

n− 1
.

Proof. Note that a = km in a k-uniform code and apply Theorem 3.1.

Definition 3.1. We will define a weak AMD code that meets the bound of Theorem 3.1 (or Corollary
3.2, in the case that the code is k-uniform) with equality to be R-optimal. Here, “R” is used to
indicate that rand is an optimal strategy.

Corollary 3.3. [5, Theorem 2.2] In any weak (m,n, ε̂)-AMD code, it holds that

ε̂ ≥ m− 1

n− 1
.

11



Proof. Note that a ≥ m and apply Theorem 3.1.

Remark: The bound of Corollary 3.3 is met with equality only if the code is deterministic.

Here is a new bound for weak AMD codes, that arises from a different adversarial strategy.

Theorem 3.4. In any weak (m,n, ε̂)-AMD code, it holds that

ε̂ ≥ 1

a
.

Proof. We consider the following strategy guess for the adversary:

1. Find the encoding ĝ ∈ A that occurs with the highest probability. Observe that Pr[ĝ] ≥ 1/a.

2. Pick a ∆ that will work for the particular encoding ĝ.

Clearly, the success probability εguess of the strategy guess is equal to Pr[ĝ] ≥ 1/a.

Definition 3.2. We will define a weak AMD code that meets the bound of Theorem 3.4 with equality
to be G-optimal. Here, “G” is used to indicate that guess is an optimal strategy.

Theorem 3.5. In any weak (m,n, ε̂)-AMD code, it holds that

ε̂2 ≥ m− 1

m(n− 1)
.

Proof. Multiply the bounds proven in Theorems 3.1 and 3.4.

A code that meets the bound of Theorem 3.5 with equality is simultaneously R-optimal and
G-optimal.

3.2 Optimal Weak AMD Codes

In this section, we consider weak AMD codes that are R-optimal and/or G-optimal. Recall that a
weak AMD code is R-optimal if ε̂ = a(m− 1)/(m(n− 1)) and it is G-optimal if ε̂ = 1/a.

3.2.1 R-Optimal Weak AMD Codes

First, we consider R-optimality. Consider the strategy g 7→ g+ ∆, where ∆ 6= 0, and let ε∆ denote
the success probability of this strategy. Clearly, we have

ε̂ = max{ε∆ : ∆ 6= 0}. (6)

For any ∆ 6= 0, define

Good(∆) = {g ∈ G0 : g ∈ A(s) and g + ∆ ∈ A(s′),where s′ 6= s}. (7)

Good(∆) denotes the set of encodings g under which a substitution g 7→ g + ∆ will result in the
adversary winning the game.

12



Lemma 3.6. For any ∆ 6= 0, it holds that

ε∆ =
∑

g∈Good(∆)

Pr[g]. (8)

Proof. It is clear that

ε∆ = Pr[g ∈ Good(∆)]

=
∑

g∈Good(∆)

Pr[g].

Theorem 3.7. A weak AMD code is R-optimal if and only if ε∆ = a(m − 1)/(m(n − 1)) for all
∆ 6= 0.

Proof. Suppose we have an R-optimal weak AMD code. It is not hard to compute

∑

∆ 6=0

ε∆ =
∑

∆ 6=0

∑

g∈Good(∆)

Pr[g]

=
∑

g∈G0
Pr[g]× |{∆ : g ∈ Good(∆)}|

=
∑

s∈S

∑

g∈A(s)

Pr[s] Pr[E(s) = g]× |{∆ : g ∈ Good(∆)}|

=
∑

s∈S
Pr[s]

∑

g∈A(s)

Pr[E(s) = g](a− as)

=
∑

s∈S
Pr[s](a− as)

=
∑

s∈S

1

m
(a− as)

=
a(m− 1)

m
.

Therefore the average of the quantities ε∆ (∆ 6= 0) is equal to a(m − 1)/(m(n − 1)). In order to
have ε̂ = a(m−1)/(m(n−1)), it must be the case that ε∆ = a(m−1)/(m(n−1)) for all ∆ 6= 0.

We next present a method of constructing R-optimal weak AMD codes.

Theorem 3.8. Suppose there is an (n,m; k1, . . . , km;λ1, . . . , λm)-GSEDF. Then there is an (R-
optimal) weak (m,n, a(m− 1)/(m(n− 1)))-AMD code, where a =

∑m
i=1 ki.

Proof. Suppose the GSEDF is given by A1, . . . , Am. Let a =
∑m

i=1 ki. Observe that

ki(a− ki) = λi(n− 1) (9)

for 1 ≤ i ≤ m. Let S = {s1, . . . , sm} be a set of m sources. For 1 ≤ i ≤ m, define A(si) = Ai and
suppose the encoding function E(si) is equiprobable. We show that ε∆ = a(m− 1)/(m(n− 1)) for

13



all ∆ 6= 0. We have

ε∆ =
∑

g∈Good(∆)

Pr[g]

=
m∑

i=1

1

m
× λi
ki

=
1

m

m∑

i=1

a− ki
n− 1

from (9)

=
1

m(n− 1)

m∑

i=1

(a− ki)

=
a(m− 1)

m(n− 1)
.

In fact, we can obtain R-optimal weak AMD codes from a weaker type of difference family,
namely, a PEDF.

Theorem 3.9. Suppose there is an (n,m; c1, . . . , c`; k1, . . . , k`;λ1, . . . , λ`)-PEDF. Then there is an
(R-optimal) weak (m,n, a(m− 1)/(m(n− 1)))-AMD code, where a =

∑`
h=1 chkh.

Proof. We omit the proof, which is similar to the proof of Theorem 3.8.

It is interesting to note that the we do not necessarily obtain an R-optimal AMD code if we
start from an arbitrary generalized external difference family. As an example, suppose we construct
an AMD code with equiprobable encoding for two sources using the GEDF presented in Example
2.4. Here it is easy to compute

ε1 =
1

4
>
a(m− 1)

m(n− 1)
=

5× 1

2× 12
=

5

24
,

so this code is not R-optimal
It is an open problem to characterize R-optimal (weak) AMD codes. The following example

illustrates that the converse of Theorem 3.9 is not true in general. That, is we can construct
R-optimal codes that do not come from PEDFs.

Example 3.1. Let S = {1, 2, 3, 4} and let G = Z10. The encoding function E is defined by E(1) = 0,
E(2) = 5, E(3) ∈R {1, 9} and E(4) ∈R {2, 3}.

Suppose the adversary chooses ∆ = 5; then the adversary wins if s ∈ {1, 2}, which occurs with
probability 1/2. Suppose the adversary chooses ∆ = 1; then the adversary succeeds if s ∈ {1, 3},
which occurs with probability 1/2. Suppose the the adversary chooses ∆ = 2; then the adversary
succeeds if s = 1, if s = 3 and E(s) = 1, or if s = 4 and E(s) = 3. The success probability here is

1

4
+

1

4
× 1

2
+

1

4
× 1

2
=

1

2
.

The remaining choices for ∆ can be checked in a similar way. We obtain a code with success
probability 1/2. Since m = 4, n = 10 and a = 6, we have a(m− 1)/(m(n− 1)) = 18/36 = 1/2, so
the code is R-optimal. However, the sets {0}, {5}, {1, 9}, {2, 8} do not form a PEDF.
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SEDF DS
↙ ↘ ↙ ↘

GSEDF EDF DF
↙ ↘ ↙ ↘

BGSEDF PEDF BEDF
↓

GEDF

Figure 2: Difference families that yield R-optimal weak AMD codes (indicated in boldface type)

We can give a tight characterization of k-regular R-optimal weak AMD codes, however, as
follows.

Theorem 3.10. An (R-optimal) k-regular weak (m,n, k(m− 1)/(n− 1))-AMD code is equivalent
to an (n,m, k, λ)-EDF.

Proof. Suppose A1, . . . , Am is an (n,m, k, λ)-EDF. Let S = {s1, . . . , sm} be a set of m sources.
For 1 ≤ i ≤ m, suppose the encoding function E(si) is equiprobable. The resulting weak AMD
code is k-regular. Choose any ∆ ∈ G, ∆ 6= 0. The strategy g 7→ g + ∆ succeeds with probability
ε∆ = λ/(km) = k(m− 1)/(n− 1). (In fact, this follows from Theorem 3.9.)

Conversely, suppose we have an R-optimal k-regular weak AMD code. Then it must be the
case that ε∆ = k(m − 1)/(n − 1) for all ∆ 6= 0. Using the fact that the code is a k-regular AMD,
we have

k(m− 1)

n− 1
= ε∆ = Pr[E(s) ∈ Good(∆)] =

|Good(∆)|
km

.

Therefore,

|Good(∆)| = k2m(m− 1)

n− 1
.

It then follows that {A(s) : s ∈ S} is an (n,m, k, λ)-EDF, where λ = k2m(m− 1)/(n− 1).

In Figure 2 we indicate the types of difference families that yield R-optimal weak AMD codes.
This summarizes the results proven in this section.

3.2.2 G-Optimal Weak AMD Codes

Now we turn to G-optimality. We have the following characterization of G-optimal weak AMD
codes.

Theorem 3.11. A (G-optimal) weak
(
m,n, 1

a

)
-AMD code is equivalent to an (n,m, k, 1)-BEDF,

where a = km.

Proof. Suppose A1, . . . , Am is an (n,m, k, 1)-BEDF. Let S = {s1, . . . , sm} be a set of m sources. For
1 ≤ i ≤ m, define an encoding function E(si) which chooses an element of Ai uniformly at random.
Choose any ∆ ∈ G, ∆ 6= 0. The strategy g 7→ g+ ∆ succeeds with probability ε∆ ≤ 1/(km) = 1/a,
since there is at most one occurrence of the difference ∆ in the BEDF. Further, if ∆ ∈ D(Aj , Ai)
where i 6= j, then the strategy g 7→ g + ∆ succeeds with probability 1/a.
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SEDF DS
↙ ↘ ↙ ↘

GSEDF EDF DF
↙ ↘ ↙ ↘

BGSEDF PEDF BEDF
↓

GEDF

Figure 3: Difference families with λ = 1 that yield G-optimal weak AMD codes (indicated in
boldface type)

Conversely, suppose we have a G-optimal weak AMD code. From the proof of Theorem 3.4, we
see that all encodings must occur with the same probability, 1/a. Since the sources are equiprobable,
this happens only if the code is k-regular with k = a/m. Now we claim that {A(s) : s ∈ S} is an
(n,m, k, 1)-BEDF. This is easy to see, because if some difference occurred more than once, it would
immediately follow that ε ≥ 2/a.

Now we characterize k-regular weak AMD codes that are simultaneously R-optimal and G-
optimal.

Theorem 3.12. A k-regular weak AMD code that is simultaneously R-optimal and G-optimal is
equivalent to an (n,m, k, 1)-EDF.

Proof. From Theorem 3.5, the code has success probability
√

m−1
m(n−1) . In order for this to occur,

the bounds of Corollary 3.2 and 3.4 both must hold with equality. Therefore the AMD code is
simultaneously an (n,m, k, λ)-EDF (from Theorem 3.10) and an (n,m, k, 1)-BEDF (from Theorem
3.11). Hence, it is an (n,m, k, 1)-EDF.

In Figure 3 we indicate the types of difference families that yield G-optimal weak AMD codes.
Note that the relevant difference families are assumed to have λ = 1 in this figure.

4 Strong AMD Codes

We begin by focussing on the success probability of the adversary when the source is fixed to be s.
Let ε̂s be the success probability of the optimal strategy for the given source s.

Theorem 4.1. In any strong AMD code, it holds that

ε̂s ≥
a− as
n− 1

for any source s ∈ S.

Proof. As in the proof of Theorem 3.1, we consider a random strategy, i.e., ∆ 6= 0 is chosen
uniformly at random. Given that the source is s, it is easy to see that the success probability of
this strategy will be

a− as
n− 1

.
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Definition 4.1. We will define a strong AMD code that meets the bound of Theorem 4.1 with
equality for every possible source s to be R-optimal. Again, “R” is used to indicate that choosing
∆ 6= 0 uniformly at random is an optimal strategy.

Corollary 4.2. In any strong (m,n, ε̂)-AMD code, it holds that

ε̂ ≥ a− as′
n− 1

,

where as′ = min{as : s ∈ S}.

Proof. The quantity (a− as)/(n− 1) is maximized when as is minimized.

If the code is k-uniform, then the previous bound takes a simpler form.

Corollary 4.3. In any k-uniform strong (m,n, ε̂)-AMD code, it holds that

ε̂ ≥ k(m− 1)

n− 1
.

Proof. Here as = k for all s and a = km. Apply Corollary 4.2.

Theorem 4.4. In any strong AMD code, it holds that ε̂s ≥ 1/as, for any source s ∈ S.

Proof. Given any source s, the adversary can try to guess the encoded message E(s) that is out-
put. The adversary will maximize his probability of success by choosing g such that Pr[g | s] is
maximized. Note that there exists a g such that Pr[g | s] ≥ 1/as. Then the adversary can choose
∆ such that g+ ∆ ∈ G0 \A(s). The success probability of this strategy is clearly at least 1/as.

Definition 4.2. We will define a strong AMD code that meets the bound of Theorem 4.4 with
equality for every possible source s to be G-optimal. Again, “G” is used to indicate that guessing
the most likely encoding is an optimal strategy.

Corollary 4.5. In any strong (m,n, ε̂)-AMD code, it holds that ε̂ ≥ 1/as′ , where as′ = min{as :
s ∈ S}.

Proof. The quantity 1/as is maximized when as is minimized.

In the case of a k-regular code, we have the following corollary.

Corollary 4.6. In any k-regular strong (m,n, ε̂)-AMD code, it holds that ε̂ ≥ 1/k.

We now have an easy proof of the following previously known bound.

Theorem 4.7. [5, Theorem 2.2] In any k-uniform, strong (m,n, ε̂)-AMD code, it holds that

ε̂2 ≥ m− 1

n− 1
.
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Proof. From Corollary 4.3, we have

ε̂ ≥ k(m− 1)

n− 1
.

Furthermore, from Corollary 4.6, we have ε̂ ≥ 1/k. Multiplying these two inequalities, we get

ε̂2 ≥ m− 1

n− 1
.

Remark: We will determine in Theorem 4.14 necessary and sufficient conditions for the bound of
Theorem 4.7 to be met with equality in all nontrivial cases, i.e., when ε̂ < 1.

4.1 Optimal Strong AMD Codes

4.1.1 R-Optimal Strong AMD Codes

Suppose the source s is fixed. Consider the strategy g 7→ g + ∆, where ∆ 6= 0. Let ε∆,s denote the
success probability of this strategy. Then it is clear that

ε̂s = max{ε∆,s : ∆ 6= 0}. (10)

For any ∆ 6= 0, define

Good(∆, s) = {g : g ∈ A(s) and g + ∆ ∈ A(s′),where s′ 6= s}. (11)

This is the same definition as (7), except that s is now fixed.

Lemma 4.8. For any ∆ 6= 0, it holds that

ε∆,s =
∑

g∈Good(∆,s)

Pr[E(s) = g]. (12)

Proof. It is clear that

ε∆,s = Pr[E(s) ∈ Good(∆, s)]

=
∑

g∈Good(∆,s)

Pr[E(s) = g].

Theorem 4.9. In any strong AMD code, ε̂s = (a−as)/(n−1) if and only if ε∆,s = (a−as)/(n−1)
for all ∆ 6= 0.

Proof. Suppose we have an AMD code where ε̂s = (a− as)/(n− 1). It is not hard to compute
∑

∆ 6=0

ε∆,s =
∑

∆ 6=0

∑

g∈Good(∆,s)

Pr[E(s) = g]

=
∑

g∈A(s)

Pr[E(s) = g]× |{∆ : g ∈ Good(∆, s)}|

=
∑

g∈A(s)

Pr[E(s) = g]× (a− as)

= a− as.

18



Therefore the average of the quantities ε∆,s (∆ 6= 0) is equal to (a− as)/(n− 1). In order to have
ε̂s = (a− as)/(n− 1), it must be the case that ε∆,s = (a− as)/(n− 1) for all ∆ 6= 0.

Theorem 4.10. Suppose there is an (n,m; k1, . . . , km;λ1, . . . , λm)-GSEDF. Then there is an R-
optimal strong AMD code where a =

∑m
i=1 ki.

Proof. Suppose the GSEDF is given by A1, . . . , Am. Let S = {s1, . . . , sm} be a set of m sources. For
1 ≤ i ≤ m, define A(si) = Ai, so asi = ki, and suppose the encoding function E(si) is equiprobable.
We show that ε∆,si = (a− asi)/(n− 1) for 1 ≤ i ≤ m and all ∆ 6= 0. We have

ε∆,si =
∑

g∈Good(∆,si)

Pr[g]

=
λi
ki

=
a− ki
n− 1

from (9)

=
a− asi
n− 1

.

It is possible to prove a converse to Theorem 4.10 in the case where the AMD code has equiprob-
able encoding.

Theorem 4.11. Suppose there is an R-optimal strong AMD code with equiprobable encoding. Then
the sets A(s) (s ∈ S) form an (n,m; k1, . . . , km;λ1, . . . , λm)-GSEDF.

Proof. Suppose the sources are denoted S = {s1, . . . , sm}. Fix a value i, 1 ≤ i ≤ m and let ∆ 6= 0.
We have

ε∆,si =
a− asi
n− 1

=
∑

g∈Good(∆,si)

Pr[g]

=
|Good(∆, si)|

asi
.

Therefore, for a fixed value i, we have

|Good(∆, si)| =
asi(a− asi)

n− 1

for all ∆ 6= 0. This says that

D(A(si),G0 \A(si)) = λi(G \ {0}),

where

λi =
asi(a− asi)

n− 1
.
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GSEDF EDF DF
↙ ↘ ↙ ↘

BGSEDF PEDF BEDF
↓

GEDF

Figure 4: Difference families that yield R-optimal strong AMD codes (indicated in boldface type)

Remark: The results we have proven in Theorems 4.10 and 4.11 establish a close connection
between R-optimal strong AMD codes and GSEDF. In [5], similar results were proven, using the
language of differential structures, that showed the link between (not necessarily optimal) strong
AMD codes and BGSEDF.

4.1.2 G-Optimal Strong AMD Codes

Now we turn to G-optimality. We have the following characterization of G-optimal strong AMD
codes.

Theorem 4.12. A G-optimal strong AMD code is equivalent to an (n,m; k1, . . . , km; 1, . . . , 1)-
BGSEDF.

Proof. Suppose A1, . . . , Am is an (n,m; k1, . . . , km; 1, . . . , 1)-BGSEDF. Let S = {s1, . . . , sm} be a
set of m sources. For 1 ≤ i ≤ m, define an encoding function E(si) which chooses an element of
Ai uniformly at random. Let 1 ≤ i ≤ m and choose any ∆ ∈ G \ {0}. Given that the source is si,
the strategy g 7→ g + ∆ succeeds with probability at most 1/asi , since there is at most one g ∈ Ai
such that g + ∆ ∈ Aj and j 6= i. Further, there exists a ∆ 6= 0 such that this strategy succeeds
with probability 1/asi .

Conversely, suppose we have a G-optimal strong AMD code. Let s ∈ S. From the proof of
Theorem 4.4, it is easy to see that all encodings of s occur with the same probability 1/|A(s)|. Now
we claim that {A(s) : s ∈ S} is an (n,m; k1, . . . , km; 1, . . . , 1)-BGSEDF. Suppose that there existed
two different values g, g′ ∈ Ai such that g+ ∆ ∈ Aj , g′+ ∆ ∈ Aj′ and j, j′ 6= i. It would then follow
that ε̂s ≥ 2/|A(s)|, which is a contradiction.

Now we show that k-regular strong AMD codes with m ≥ 3 cannot be simultaneously R-optimal
and G-optimal.

Theorem 4.13. There does not exist a strong AMD code with m ≥ 3 and ε̂ < 1 that is simultane-
ously R-optimal and G-optimal.

Proof. Since the code is G-optimal, it follows from Theorem 4.12 and its proof that the code has
equiprobable encoding and is derived from (n,m; k1, . . . , km; 1, . . . , 1)-BGSEDF. Now, since the code
is R-optimal and it has equiprobable encoding, Theorem 4.11 shows that the code is derived from
(n,m; k1, . . . , km;λ1, . . . , λm)-GSEDF. Thus we have an (n,m; k1, . . . , km; 1, . . . , 1)-BGSEDF that
is also an (n,m; k1, . . . , km;λ1, . . . , λm)-GSEDF, so it must in fact be an (n,m; k1, . . . , km; 1, . . . , 1)-
GSEDF. This implies that ki(a−ki) = n−1 for all i. Given a and n, the equation x(a−x) = n−1
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SEDF DS
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GSEDF EDF DF
↙ ↘ ↙ ↘

BGSEDF PEDF BEDF
↓

GEDF

Figure 5: Difference families with λ = 1 that yield G-optimal strong AMD codes (indicated in
boldface type)

has at most two distinct roots, and these roots sum to a. Suppose that ki 6= kj for some i, j. Then
ki + kj = a, which implies that m = 2, a contradiction. Hence the code is k-uniform and the
GSEDF is in fact an (n,m; k; 1)-SEDF. Now Theorem 2.3 implies that k = 1 and n = m. This
code has ε̂ = 1, so we are done.

Theorem 4.14. There exists a k-uniform, strong (m,n, ε̂)-AMD code with ε̂2 = m−1
n−1 < 1 if and

only if m = 2 and n = k2 + 1.

Proof. Here we are considering k-uniform song AMD codes that are simultaneously R-optimal and
G-optimal. From the proof of Theorem 4.13, we see that m = 2 and k(a−k) = n−1. Since a = 2k,
we have n = k2 + 1. Conversely, if m = 2 and n = k2 + 1, then Example 2.2 shows the existence of
a (k2 + 1, 2; k; 1)-SEDF. This yields a strong AMD code with ε̂ = 1/k, as desired.

Figure 5 shows the types of difference families that yield G-optimal strong AMD codes. The
relevant difference families are assumed to have λ = 1 in this figure.

5 Conclusion

We have studied weak and strong AMD codes that provide optimal protection against two specific
adversarial substitution strategies. These codes are termed “R-optimal” and “G-optimal”. We
have considered various types of generalized difference families and determined when they yield
R-optimal and/or G-optimal AMD codes. As well, we have proven in certain situations that R-
optimal and/or G-optimal AMD codes imply the existence of the relevant difference families, thus
providing a combinatorial characterization of the AMD codes under consideration.

It is an interesting open problem to construct additional examples of these generalized difference
families. In particular, we ask if there are any examples of strong external difference families with
k > 1 and m > 2. We are unaware of any such examples at the present time.
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[4] R. Cramer, Y. Dodis, S. Fehr, C. Padró and D. Wichs. Detection of algebraic manipulation
with applications to robust secret sharing and fuzzy extractors. Cryptology ePrint Archive:
Report 2008/030.
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