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Abstract

We describe the action of the group GL2(Z) on embeddings of hypercubes on compact
orientable surfaces, specifically classifying the elements of finite order that can change
the genus of the underlying surface by an arbitrarily large amount. In doing so we give
an explicit illustration of the kind of computations encountered in the study of dessins
d’enfants in the hope that those new to the area may find such an explicit example useful.

1 Introduction

We first recall the definition of a dessin d’enfant.

Definition 1. A dessin d’enfant, or simply a dessin, is an ordered pair (S,D) where S is
an oriented compact surface and D ⊂ S is a finite graph such that

(a) D is connected;

(b) D is bipartite;

(c) X \D is a union of finitely many topological spaces all of which are homeomorphic to the
unit disc, which we call the faces of the dessin.

When the underlying surface S is clear we tend to write D instead of (S,D). We define the
genus of the dessin (S,D) to be the genus of the surface S and write g(D) for this.

The prehistoric study of dessins goes at least as far back as Hamilton’s ‘icosian calculus’
of the 1850s and the later work of Klein on his famous quartic curve in the 1870s [8]. In the
1970s, Jones and Singerman in [7] produced a unified framework for studying related ideas
in geometry and combinatorics in the language of maps and hypermaps. These ideas reached
the peak of their fame thanks to Grothendieck [4] stimulated by a theorem of Bely̆ı in [1]
that at the time was considered to be surprising. In particular, Grothendieck suggested that
Bely̆ı’s theorem gave an action of the absolute Galois group Gal(Q/Q) on the set of dessins
that would provide a means of studying, and thus understanding, this group. As an indication
of how difficult understanding this group is, Hilbert’s Inverse Galois Problem, arguably the
hardest open problem in algebra today, may be thought of as determining if every finite group
is a quotient of Gal(Q/Q) by a topologically closed normal subgroup. Indeed, the whole of
algebraic number theory is in some sense encoded within this group.
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Another approach to understanding Gal(Q/Q) is through its relationship to other groups.
For example, some recent work of Guillot in [3] embeds this group inside the Grothendieck-

Teichmüller group ĜT 0 which is also of interest to mathematical physicists. Here we discuss
another, less studied, action on dessins, namely the action of the general linear group GL2(Z)
that we shall describe in more detail in Section 2.

Some significant differences between GL2(Z) and Gal(Q/Q) are the following. The only
non-trivial elements of Gal(Q/Q) of finite order are conjugates of complex conjugation whilst
in GL2(Z) there are several such classes (we shall describe these explicitly in Section 2). Fur-
thermore, the action of Gal(Q/Q) on dessins preserves the underlying genus of a dessin whilst
an element of GL2(Z) can map a dessin to one with a different genus. We might naturally hope
that elements of finite order in GL2(Z) resemble elements of finite order in Gal(Q/Q) and have
no, or at least a bounded, effect on the genus of the underlying dessins. The following result
dashes any such hope with the news that elements of finite order in GL2(Z) can be arbitrarily
badly behaved.

Theorem 2. Given n ∈ Z+, there exist elements M ∈ GL2(Z) of finite order such that there
exists a dessin D with the property that |g(DM)− g(D)| > n.

In other words, elements of GL2(Z) of finite order can change the genus of a dessin by an
arbitrarily large amount.

In fact we prove something slightly stronger — we classify which of the elements of finite
order have precisely the property described in the above Theorem. Indeed, the proof of the
above gives an explicit and unusually easy to describe example of what is otherwise a somewhat
difficult action to visualise and it is hoped that those new to the area may benefit from seeing
such a ‘down to Earth’ example explicitly spelt out.

Several excellent general accounts of these and related matters have appeared in recent
years, for example see those given by Girondo and González-Diez in [2, Chapter 4], by Guillot
in [3] and by Širán in [10]. The reader is warned that owing to the somewhat disparate history
of the subject, the terminology here is far from being fully standardised yet. For example, what
Grothendieck considered to be a dessin [4], Jones and Singerman [7] call an ‘oriented map’ and
is today known as a ‘clean’ dessin in which every vertex in one of the classes (the red/white
vertices — see next section) has degree 2 (see [2, Remark 4.3]).

2 Preliminaries

Recall from Definition 1 that a dessin D is a bipartite graph. Conventionally, the vertices
of D are referred to as being coloured black and white but in the interests of clarity in later
diagrams we will consider the vertices here as being blue and red. Aside from this, unless
otherwise stated, we follow the conventions adopted in [2].

With any dessin we can associate its ‘permutation representation’, sometimes called the
‘monodromy group’ of the dessin, defined as follows. First we fix an orientation of the underlying
surface. To obtain our ‘blue permutation’ we consider a small disc around each of the blue
vertices and permute the edges adjoined to that vertex moving around it in a way that is
consistent with the chosen orientation. We call this σ0. The ‘red permutation’, that we denote
σ1, is defined similarly around the red vertices. Just as the permutations σ0 and σ1 can be
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Name (A) (B) (C) (D)

Representative

(
1 0
0 1

) (
−1 0
0 −1

) (
0 1
1 0

) (
1 0
0 −1

)
Order 1 2 2 2

Name (E) (F) (G)

Representative

(
0 −1
1 −1

) (
0 −1
1 0

) (
0 1
−1 1

)
Order 3 4 6

Table 1: The conjugacy classes of elements of GL2(Z) of finite order.

viewed as permutations of the edges around points of the surface located at the vertices of the
graph, their composition σ2 = σ1σ0 can be viewed as a permutation of the edges around points
located at the centers of the faces.

The genus of the underlying surface of the dessin can be deduced from the cycle types of the
permutations described in the previous paragraph thanks to the following result, a manifestation
of the Euler-Poincaré formula. Given a permutation π we write #π for the number of cycles of
π.

Proposition 3. For a dessin D of genus g with N edges corresponding to the permutations σ0,
σ1 and σ2 we have that

2− 2g = #σ0 + #σ1 + #σ2 −N.

Proof. See [2, Proposition 4.10].

The bijective correspondence between the dessins and the 2-generated permutation groups
〈σ0, σ1〉 gives us a natural action of GL2(Z) on dessins as follows. Any finite 2-generated
group is a quotient of the free group on two generators F2 := 〈X, Y | −〉 by a normal subgroup
M ≤ F2. Since the action of the inner automorphism group of F2 is trivial on the set of all
such normal subgroups it follows that we have an action of the outer automorphism group
Out(F2) = Aut(F2)/Inn(F2) on these subgroups and thus on dessins. For any n ≥ 1 there is
an epimorphism

Out(Fn)→ Aut(F ab
n = Fn/F

′
n
∼= Zn) = GLn(Z).

It may be shown that in the case n = 2 this epimorphism is in fact an isomorphism defining an
action of GL2(Z) on dessins. In [5] James showed that this action is faithful.

The elements of finite order in GL2(Z) are well known — see the discussion given by Jones
and Pinto in [6]. We list these in Table 1.

It will occasionally be useful to refer to what Jones and Singerman call a ‘dart’, that is, an
ordered pair (v, e) where v is a vertex and e is an edge adjoined to it.
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3 Effects of elements of finite order on genera

3.1 Elements preserving the genus

By Proposition 3 any element of GL2(Z) that preserves the set of cycle types of σ0, σ1 and σ2,
and thus #σ0 + #σ1 + #σ2, will preserve the genus of the corresponding dessin. Now,

• type (A) elements preserve all three permutations and thus their cycle types;

• type (B) elements invert σ0 and σ1 whilst

σ−11 σ−10 = σ−11 (σ1σ0)
−1σ1 = σ−11 σ−12 σ1

so the cycle types are all preserved;

• type (C) elements interchange σ0 and σ1 whilst

σ0σ1 = σ0(σ1σ0)σ
−1
0 = σ0σ2σ

−1
0

so the set of cycle types is preserved;

• type (E) elements simply permute our elements

σ0 7→ σ1 7→ σ2 7→ σ0

so the set of cycle types is again preserved;

• finally type (G) elements are simply the product of the type (B) element with a type (E)
element and therefore has no effect on the genus by the above calculations.

The type (A), (C) and (E) permutations are sometimes referred to as the ‘Mach̀ı operations’
[9].

3.2 Elements not preserving the genus

It remains to determine the effect of type (D) and type (F) elements. We will first discuss the
type (D) elements.

Let n be a positive integer. Recall that the hypercube Qn (sometimes called an ‘n-cube’) is
the graph whose vertices are precisely the 2n strings of the symbols 0 and 1 of length n with
two strings adjoined by an edge if and only if they differ in just one place, so for example in the
7-cube the vertex 0111001 is adjoined to both of 0110001 and 1111001 (among others) but none
of 1111101, 0011011, 0100001 and 0000001 (among others). Since a dart is distinguished by a
vertex and an edge adjoined to it, in a hypercube we can denote a dart by specifying the vertex
with a string of 0s and 1s and distinguishing which entry is changed to determine the edge.
For example, in the 7-cube, the dart determined by the vertex 0111001 and the edge whose
end points are 0111001 and 0110001 will be denoted 0111001. Note that the darts 0111001 and
0110001 correspond to the same edge.

It is not too difficult to see that we can define a permutation of the edges that is consistent
with a choice of orientation of the underlying surface as follows. At a vertex we simply move
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from left to right along the sequence defining that vertex changing the entries one at a time.
Performing this operation at every vertex defined by a string with an even number of entries
equal to 1 gives us the ‘blue’ permutation of the dessin — see Figure 1. Performing the same
operation at all the other vertices, that is, the vertices defined by a sequence with an odd
number of 1s, defines a red permutation that is consistent with the opposite orientation. To
see this, recall that either by definition, if we view a Riemann surface as being a complex
1-manifold, or by the Riemann existence theorem, if we view a Riemann surface as being a
complex algebraic curve, we can focus on a simply connected neighborhood of a vertex of the
dessin where this all becomes clear — see Figure 2. (This is sometimes called a ‘Petrie walk’.)

For example, the permutation defined by the vertices of the hypercube Q4 corresponding to
sequences with an even number of 1s in them using the above procedure is the blue permutation

(0000, 0000, 0000, 0000)(1100, 1100, 1100, 1100)(1010, 1010, 1010, 1010)

(1001, 1001, 1001, 1001)(0110, 0110, 0110, 0110)(0101, 0101, 0101, 0101)

(0011, 0011, 0011, 0011)(1111, 1111, 1111, 1111).

Applying the same procedure to the other vertices gives a permutation defined by the op-
posite orientation, but implementing the procedure by moving along the sequence not from left
to right but from right to left instead soon remedies this. For example, applying this procedure
to the vertices of the 4-cube corresponding to sequences with an odd number of 1s in them
gives the red permutation

(1000, 1000, 1000, 1000)(0100, 0100, 0100, 0100)(0010, 0010, 0010, 0010)

(0001, 0001, 0001, 0001)(1110, 1110, 11110, 1110)(1101, 1101, 1101, 1101)

(1011, 1011, 1011, 1011)(0111, 0111, 0111, 0111).

It is clear that this is a degree n2n−1 action and that every cycle of the permutations
constructed by the above procedures has length n and so the two permutations σ0 and σ1 both
have 2n−1 cycles, that is #σ0 + #σ1 = 2n. The only ambiguity in determining the genus of the
dessin is the number of cycles of the product of the blue and red permutations by Proposition
3.

Recall that each edge has two names in terms its relationship to its vertices, for example
000 · · · and 100 · · · are the same edge. Direct calculation now gives us the following.

0000 · · · /1000 · · · σ0−→ 0000 · · · /0100 · · ·

σ1−→ 0100 · · · /1100 · · ·

σ0−→ 10000 · · · /1100 · · ·

σ1−→ 0000 · · · /1000 · · ·
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Figure 1: The orientation of the blue permutation σ0.
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1010 · · ·

1001 · · ·

1011 · · ·

Figure 2: The orientation of the red permutation, σ1.
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It is easy to see from the above that calculations performed on other edges will give similar
results and so o(σ0σ1) = 2. It follows that σ2 has n2n−2 cycles and so from Proposition 3 the
genus in this case for n > 1 will be 1 + 2n−3(n− 4).

If we apply the type (D) element given in Table 1 to this dessin, then this has the effect
of inverting one of the two permutations. If we invert σ1, then to determine the genus of the
image of our dessin we need to calculate σ−11 σ0. Direct calculation now gives us the following.

0000 · · · /1000 · · · σ0−→ 0000 · · · /0100 · · ·
σ−1
1−−→ 0110 · · · /0100 · · ·

The permutation σ−11 σ0 has the effect of ‘changing 0/1s in the sequences in pairs’. In
particular, we have that o(σ−11 σ0) = n and so this permutation has 2n−1 cycles. It follows from
Proposition 3 that the genus in this case is 1 + 2n−2(n − 3) ≥ 1 + 2n−3(n − 4). In particular,
the increase in the genus of our dessin under the action of our element is 2n−3(n− 2) and this
can be made arbitrarily large by taking n to be large enough. This proves Theorem 2.

For completeness, we describe the action of type (F) elements. The element given in Table
1 has the effect of replacing σ0 with σ1 and replacing σ1 with σ−10 . Since σ−10 σ1 = (σ−11 σ0)

−1

the effect on the cycle types of these permutations and thus the genus of the underlying surface
will be the same as that of the type (D) elements that we described above.

4 Concluding remarks

Question 4. Does there exist a family of graphs Dn and a finite order element M such that
g(DMn )/g(Dn)→∞ as n→∞.
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