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ABSTRACT Chaperone-usher (CU) pili are long, supramolecular
protein fibers tethered to the surface of numerous bacterial
pathogens. These virulence factors function primarily in bacterial
adhesion to host tissues, but they alsomediate biofilm formation.
Type 1 and P pili of uropathogenic Escherichia coli (UPEC) are the
two best-studied CU pilus examples, and here we primarily focus
on the former. UPEC can be transmitted to the urinary tract by
fecal shedding. It can then ascend up the urinary tract and cause
disease by invading and colonizing host tissues of the bladder,
causing cystitis, and the kidneys, causing pyelonephritis. FimH
is the subunit displayed at the tip of type 1 pili and mediates
adhesion to mannosylated host cells via a unique catch-bond
mechanism. In response to shear forces caused by urine flow,
FimH can transition from a low-affinity to high-affinity binding
mode. This clever allosteric mechanism allows UPEC cells to
remain tightly attached during periods of urine flow, while
loosening their grip to allow dissemination through the urinary
tract during urine stasis. Moreover, the bulk of a CU pilus is made
up of the rod, which can reversibly uncoil in response to urine
flow to evenly spread the tensile forces over the entire pilus
length. We here explore the novel structural and mechanistic
findings relating to the type 1 pilus FimH catch-bond and rod
uncoiling and explain how they function together to enable
successful attachment, spread, and persistence in the hostile
urinary tract.

INTRODUCTION
Chaperone-usher (CU) pili are virulence factors displayed
on a wide variety of Gram-negative bacterial patho-

gens (1), mediating bacterial attachment and biofilm for-
mation (2). The two best-studied examples of CU pili are
the type 1 and P pili of uropathogenic Escherichia coli
(UPEC), which is the most important causative agent
of urinary tract infections (3). We here summarize the
steps of CU pilus biogenesis and highlight the most recent
structural advances relating to type 1 pili that allow
UPEC to thrive in the urinary tract.

BIOGENESIS OF CHAPERONE-USHER PILI
The individual building blocks required for type 1 and
P pilus assembly are known as pilins (pilus subunits) and
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are encoded by the fim and pap operons, respectively
(4). The majority of fully assembled CU pili adopt a
composite architecture consisting of a thin tip fibrillum,
attached to a long superhelical rod emanating from the
outer membrane (Fig. 1a). The adhesin (FimH for type
1 pili; PapG for P pili) is located at the distal end of
the tip fibrillum and is composed of an N-terminal lec-
tin domain, which is responsible for binding to specific
host ligands, and a C-terminal pilin domain, which con-
nects the adhesin to the remainder of the pilus (5, 6). The
complete tip fibrillum is composed of further pilus sub-
units, namely, FimG and FimF in the case of type 1 pili
or PapF, PapE, and PapK for P pili (Fig. 1a). The tip
fibrillum of P pili is longer, as it contains 5 to 10 copies
of PapE, while all other subunits are present as a single
copy (7, 8). The largest section of CU pili, the rod, is
composed of thousands of copies of a single pilin (FimA
for type 1 pili; PapA for P pili) (2, 9, 10). All CU pilins
are composed of C-terminally truncated and thus in-
complete immunoglobulin (Ig)-like folds, lacking the 7th
β-strand (Fig. 1b). Due to the missing strand, the pilins
are unstable on their own and contain a long hydro-
phobic groove on their surface, composed of the so-
called P1 to P5 hydrophobic pockets (6, 11). The pilins
are stabilized by interacting with a dedicated chaperone
(FimC for type 1 pili; PapD for P pili) through a process
known as donor strand complementation (Fig. 1b).
Here, the P1 to P4 pockets of the hydrophobic groove
are complemented by residues of one of the chaperone’s
own β-strands, thereby completing the pilin’s Ig-like
fold, while the P5 pocket remains empty (6, 11–13). The
chaperone-subunit complexes are then shuttled to the
outer membrane-embedded usher (FimD for type 1 pili;
PapC for P pili), where the pilus subunits are assembled
into pili. During pilus assembly, pilins undergo a tran-
sition from a chaperone-stabilized binary complex to a
stable polymer where the hydrophobic groove becomes
complemented by a β-strand formed by the N-terminal
extension (Nte) of the next subunit in assembly (14–16).
This is termed donor strand exchange (DSE) (Fig. 1b).

The usher contains several distinct domains: the 24-
stranded β-barrel pore, the N-terminal domain (NTD),
two C-terminal domains (CTD1 and CTD2), and the
plug (17, 18) (Fig. 1c). The steps of pilus biogenesis have
been visualized by a series of structures and modeled
states of the translocating usher of both the type 1 and P
pilus systems (depicted in Fig. 1c). CU pili are assembled
in a top-down manner starting with the adhesin, which
primes the usher for pilus biogenesis when it is recruited
to the periplasmic NTD (19–25). Next, the chaperone-
adhesin complex is transferred to the higher-affinity

CTDs, the plug is displaced from the usher pore into the
periplasm, and the adhesin’s lectin domain is translo-
cated into the β-barrel channel (26, 27). This allows
further chaperone-subunit complexes to be recruited to
the NTD, bringing the Nte of the incoming subunit into
close proximity with the hydrophobic groove of the
preceding subunit (26). In a zip-in–zip-out mechanism,
the P5 residue of the Nte first engages the previously
empty P5 pocket before displacing the chaperone’s do-
nor strand entirely by sequentially invading the groove’s
P4, P3, P2, and P1 pockets (28, 29). The chaperone is
recycled and further chaperone-subunit complexes con-
tinue to be incorporated into the growing pilus. The
stochastic incorporation of PapH, the termination sub-
unit of P pili, halts pilus biogenesis, as this subunit lacks
the P5 pocket, making it unable to undergo DSE (30).
FimI also displays a closed P5 pocket once bound to the
NTD of the usher and is likely the termination subunit
of type 1 pili (31). For a more detailed description of
pilus biogenesis, please refer to recent reviews on this
topic (2, 8, 32).

Two recent structures are beginning to shed light onto
the handover mechanism of chaperone-subunit com-
plexes from the NTD to the CTDs. First, a crystal struc-
ture of the “pre-activated” PapC usher, in complex with
the chaperone-adhesin complex (PapDG), was deter-
mined (33) (Fig. 1d). In this structure, the PapDG com-
plex has been recruited to the NTD but has not yet been
fully transferred to the CTDs, while the plug still oc-
cupies the usher’s β-barrel pore. Interestingly, CTD2 has
moved across to engage PapDG bound to the NTD, by
forming contacts with both PapD and the NTD. Thus,
this state potentially represents the moment prior to
chaperone-adhesin handover from the NTD to the CTDs
in the preactivated usher. The precise temporal order
of plug displacement, transfer to the CTDs, and re-
cruitment of the next chaperone-subunit complex re-
mains to be determined. Second, a new conformation of
the activated usher during chaperone-subunit handover
was captured using cryo-electron microscopy (34) (Fig.
1e). This structure of the FimD usher in complex with the
tip fibrillum (FimFGH) and the chaperone (FimC) shows
the usher in the process of chaperone-subunit (FimCF)
handover to the CTDs. During this transfer, the NTD
remains bound to the chaperone-subunit complex as it
swings across to engage CTD2. At this point, both the
NTD and CTD2 are bound to the growing end of
the pilus, which has been suggested to prevent the pilus
fiber from diffusing away during pilus biogenesis. This
recent structural information, for both the preactivated
(PapCDG) and activated (FimDCFGH) ushers during
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chaperone-subunit transfer, raises interesting questions.
While both structures revealed a novel interaction be-
tween the NTD and CTD2, the relative positions of the
usher’s various domains and the chaperone-subunit com-
plex are distinct. Whether this is due to the stage of pilus
biogenesis each structure represents (preactivated versus
activated) and/or whether differences between the type 1
and P pilus systems also play a role remains to be fully
explored.

MAKING CONTACT: THE ROLE OF THE
TYPE 1 PILUS ADHESIN
UPEC can cause disease by ascending up the urinary
tract and colonizing host tissues in the bladder (cystitis)
and the kidney (pyelonephritis) (3, 35). The urinary tract
presents a unique challenge for UPEC organisms, as they
periodically experience the shear forces resulting from
urine flow, which is faster and more turbulent in the
bladder and lower urinary tract than in the kidneys (36).
The adhesins of type 1 and P pili differ with respect to
their ligands and their modes of interaction. The FimH
lectin domain interacts with mannosylated proteins ex-
pressed on the surface of bladder epithelial cells with a
so-called “catch-bond” mechanism, whereas the weaker
“slip-bond” interaction of the PapG lectin domain with
galabiose-containing glycosphingolipids takes place pri-
marily on the kidney epithelium (8, 37–39). UPEC’s
ability to travel up the urinary tract is, in part, thought to
involve an increase in P pilus expression and a con-
comitant downregulation of type 1 pilus expression (40).
We here focus on recent advances in our understanding
of the FimH-mannose catch-bond interaction.

The mannose binding site is located at the tip of
FimH’s lectin domain (Fig. 2a) and consists of a neg-
atively charged pocket surrounded by a hydrophobic
ridge (6, 41). In the ligand-bound state, the loops sur-
rounding the binding site tighten around the ligand, with
the most substantial rearrangement occurring in the
clamp loop (residues 8 to 16) (42, 43) (Fig. 2b). Due to
FimH’s catch-bond mechanism, the affinity of its inter-
action with mannose increases when the bacterium ex-
periences tensile mechanical force, as demonstrated in
flow chamber (44, 45) and atomic force microscopy (46,
47) experiments. This allosteric mechanism depends on
the relative orientation of FimH’s lectin and pilin do-
mains, which are connected by a linker (44) (Fig. 2a).
FimH binds mannose with moderate affinity when the
two domains are closely associated with each other and
switches to a high-affinity binding mode when exter-
nal forces (e.g., urine flow) separate the two domains.

In a recent study, the binding kinetics of the FimH-
mannose interaction were measured for donor strand-
complemented full-length FimH (low-affinity state) and
for the isolated lectin domain (a proxy for the high-
affinity domain-separated state) (43). These measure-
ments showed that in different Escherichia coli strains
the low-affinity (domain-associated) state of FimH ex-
hibits a dissociation constant in the micromolar range,
whereas isolated lectin domains (high-affinity state) bound
their ligands with ∼3,300-fold-higher affinity in the low
nanomolar range. This increase in affinity is due to a
combination of a 30-fold-lower on-rate and >100,000-
fold-lower off-rate (43).

The domain-separated high-affinity state is charac-
terized by a rearrangement of the lectin domain’s swing
loop (residues 27 to 33), insertion loop (residues 112
to 118), and linker loop (residues 154 to 160), which
form the interface with the pilin domain (42) (Fig. 2c).
This conformational state has been observed in crys-
tal structures of the isolated ligand-bound lectin do-
main (43, 48–53), FimH prior to DSE as observed in
the FimCH (6, 41) and FimDCH complexes (26) (FimC
keeps FimH in its domain-separated state), ligand-bound
FimH complemented by a non-cognate donor strand
peptide of FimF (43), and a FimH variant containing
residues (A27V/V163A) that have been positively se-
lected for pathogenicity among UPEC strains (54, 55).
Structures of wild-type full-length FimH after DSE, ei-
ther in the context of the remainder of the tip fibrillum
(FimCFGH [42] and FimDCFGH [34, 56]) or comple-
mented by a FimG Nte peptide (43, 54), adopt the low-
affinity domain-associated conformation.

Early crystal structures capturing both high- and low-
affinity states led to the proposition of an allosteric
mechanism where domain separation induced by exter-
nal forces caused a structural rearrangement of the lectin
domain loops at the domain interface (Fig. 2c). These
changes would, in turn, cause the β-sandwich lectin do-
main to adopt a less twisted and more elongated con-
formation, releasing the autoinhibitory effect of the pilin
domain and resulting in the ligand binding loops tight-
ening around the ligand (42) (Fig. 2b). Additional crystal
structures, together with small-angle X-ray scattering
(SAXS) and ion mobility-mass spectrometry (IMMS)
experiments supported by molecular dynamics (MD),
have further expanded the catch-bond mechanism. MD
simulations showed that the relative conformational
flexibility of the lectin and pilin domains is greater in the
domain-separated state and that the overall conforma-
tion of the domain-associated state is fairly constrained
(43, 54). Furthermore, the mode of ligand binding
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seemed to depend on the conformational state of FimH:
in the domain-separated (high-affinity) state, the ligand
bound tightly in a defined orientation (shown in Fig. 2b),
whereas in the domain-associated (low-affinity) state,
the ligand sampled several orientations (54). These sim-
ulations were in line with previous experiments that
showed a high degree of conformational dynamics of the
tyrosine gate (composed of two parallel tyrosines, Y48
and Y137) of the FimH binding pocket in the presence of
mannosides (51, 57). On the other hand, crystal struc-
tures of both the high- and low-affinity states show the
ligand bound in the same conformation, and the crys-
tallographic B factors (temperature factor) of the bound
ligand in these structures suggested that there is no dif-
ference in ligand binding mode (43). Furthermore, MD
simulations suggested a high-energy barrier between the
domain-associated and domain-separated states (43, 54),
in agreement with ligand binding not leading to interface
loop rearrangements and domain separation in crys-
tal structures of donor strand-complemented full-length
FimH (43). Nevertheless, insights from SAXS and IMMS
experiments suggest that ligand binding may indeed start

to shift the conformational equilibrium that exists in
solution towards the domain-separated state (54).

This extraordinary catch-bond mechanism ensures
that in the absence of urine flow, UPEC can overcome
the strength of host cell binding to efficiently disseminate
through the urinary tract using flagellar motility, while
avoiding being flushed out during periods of urine flow
(43, 45, 58, 59). In addition, the initial low-affinity in-
teraction may prevent bacteria from engaging soluble
mannose receptors, such as those on the Tamm-Horsfall
protein, under low-shear conditions, which would con-
stitute a nonproductive binding event (60).

CLINGING ON: THE IMPORTANCE
OF THE PILUS ROD
The FimH catch-bond mechanism is not the only fea-
ture of type 1 pili that allows UPEC to biomechanically
withstand the shear forces in the urinary tract. The rod,
the largest CU pilus section, adopts a superhelical qua-
ternary structure composed of 3 to 4 subunits (FimA for
type 1 pili; PapA for P pili) per helical turn, with the most

FIGURE 1 Architecture and assembly of chaperone-usher pili. (a) Type 1 (left) and P pili (right) are the two archetypal CU pili of
UPEC. Pilins are transported through the inner membrane (IM) via the SecYEG machinery. Once in the periplasm, a dedicated
chaperone (FimC for type 1 pili; PapD for P pili) helps to fold, stabilize, and transport individual pilins to the outer membrane (OM),
where they are assembled into pili by the usher (FimD for type 1 pili; PapC for P pili). The largest section of CU pili is the rod, which
is composed of thousands of copies of a single subunit (FimA for type 1 pili; PapA for P pili) arranged into a right-handed
superhelical quaternary structure. On top of the rod, located at the pilus’ distal end, is a thin and flexible tip fibrillum. The most
important tip fibrillum subunit is the adhesin (FimH for type 1 pili; PapG for P pili), which is responsible for the interaction of CU pili
with host cell receptors. The remainder of the tip fibrillum is formed by FimG and FimF for type 1 pili and PapF, PapE, and PapK for
P pili. (b) Pilins are unstable on their own because they consist of C-terminally truncated incomplete Ig-like folds lacking the 7th
β-strand. This creates a large hydrophobic groove on the subunit’s surface. After their transport into the periplasm, the chaperone
inserts its G1 β-strand into the hydrophobic groove, thereby completing and stabilizing its fold. This is known as donor strand
complementation (DSC) (PDB code 4DWH [79]) (left side). The pilin’s P1 to P4 pockets are occupied by the chaperone’s P1 to P4
residues, while the P5 pocket remains empty. Once assembled into a pilus, the 10- to 20-residue-long N-terminal extension (Nte)
of each subunit complements the preceding pilin’s groove, stabilizing the structure and linking the subunits in the pilin polymer.
This is referred to as donor strand exchange (DSE) (PDB code 5OH0 [10]) (right side). The Nte of FimA in the surface model on the
right has been removed for clarity. A zip-in–zip-out mechanism is responsible for the transition from DSC to DSE, whereby the
previously empty P5 pocket first becomes occupied by the incoming subunit’s Nte, displacing the chaperone’s complementing
strand and subsequently allowing the Nte to fully occupy the pilin’s P1 to P5 pockets. (c) In step 1, the chaperone-adhesin
complex binds to the usher’s NTD (PDB codes 3BWU [80], 1QUN [6], and 3OHN and 3RFZ [26]). In step 2, the plug relocates next
to the periplasmically located NTD, while the chaperone-adhesin complex is transferred to the usher’s CTDs, which interact with
the adhesin’s pilin domain. The adhesin’s lectin domain begins to translocate through the usher pore (PDB code 3RFZ). In step 3,
the next chaperone-pilin complex is recruited to the NTD and the Nte of this pilin is oriented towards the pilin domain of the
adhesin (PDB codes 3RFZ and 3BWU). In step 4, the chaperone’s donor strand is replaced by the Nte of the newly recruited pilin by
the zip-in–zip-out mechanism. The displaced chaperone is recycled (PDB codes 3RFZ, 3BWU, and 4XOE [43]). In step 5, the
chaperone-pilin complex is transferred to the CTDs and the adhesin continues to move up and out through the usher pore (PDB
codes 3RFZ and 4J3O [56]). In step 6, the cycle is repeated and new pilins are incorporated into the growing pilus (PDB code
4J3O). The mechanism of translocation through the usher depicted is illustrated using both crystal and modeled structures of
the CU pilus systems. (d and e) Two novel structures shed light on the chaperone-subunit handover mechanism from the NTD to
the CTDs. Shown are the structures of PapCDG (PDB code 6CD2 [33]) in a preactivated state (d) and of FimDCFGH (PDB code
6E14 [34]) in an activated state (e), trapping conformations that show novel interactions between the NTD and CTD2, during
chaperone-subunit handover. Dashed boxes and zoomed-in views highlight the NTD to CTD2 interactions.
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important interface (stacking interface) occurring be-
tween every n and n + 3 subunits (61–63) (Fig. 3a and b).
This remarkable structure is able to uncoil in response to
shear forces, by sequentially breaking the stack-to-stack
interactions, thereby dissipating the forces experienced
by the adhesin and enabling UPEC to remain firmly at-
tached (64, 65). The FimH catch-bond affinity switch
and rod uncoiling mechanisms are functionally coupled,
as the forces required for the two are similar (66, 67). In
2016, the first high-resolution cryo-electron microscopy
structure of the P pilus revealed the molecular determi-
nants that enable rod uncoiling (9). During urine flow,
the DSE interactions that stabilize and link the pilins in
the rod are extremely strong and will not break (68, 69)
(Fig. 3c), whereas the largely polar interactions that
mediate the subunit-subunit interactions of the rod’s
quaternary superhelical structure are much weaker and
begin to break (9). This causes the rod to progressively
uncoil, eventually adopting a head-to-tail configuration

of pilins before recoiling once the external force has
ceased. These biomechanical properties have been the
subject of many atomic force microscopy and optical
tweezer studies (36, 64–67, 70–77). Interestingly, such
experiments showed that type 1 pilus rods require
slightly higher forces to induce rod unwinding than do
P pilus rods, prompting the suggestion that type 1 pili
are better adapted to withstand the more turbulent flows
of the lower urinary tract (36, 76). Several structures of
the type 1 pilus rod have been determined (10, 77, 78)
(Fig. 3), revealing a very similar overall architecture to
the P pilus rod, except that the type 1 pilus rod lacks the
so-called “staple” region (9) (Fig. 3c). It was suggested
that the increased resistance against unwinding of type 1
pili could be explained, in part, by the larger stacking
interface (10). The physiological relevance of these bio-
mechanical properties was demonstrated when UPEC
strains expressing type 1 pilus rods with weaker stack-
to-stack interactions were significantly attenuated in

FIGURE 2 Structural rearrangements in FimH. (a) Ribbon diagram of full-length FimH
(yellow), which is complemented by a donor strand peptide from FimG (orange) (PDB
code 4XOE [43]). The lectin and pilin domains are labeled, and the dashed boxes high-
light the ligand binding pocket (top) and the domain interface region (bottom) that are
expanded in panels b and c. (b) Superposition of apo (gray) (PDB code 4XOD [43]) and
ligand-bound (cyan) (PDB code 4XOE [43]) FimH, focusing on the ligand binding pocket.
The ligand is n-heptyl α-D-mannoside (HM). An arrow indicates the structural rear-
rangement of the clamp loop. (c) Superposition of ligand-bound FimH (cyan) (PDB code
4XOE) and a ligand-bound construct of the FimH lectin domain only (purple) (PDB code
4XOC [43]), focusing on the lectin domain loops at the domain interface. The cyan
structure is in a domain-associated (low-affinity) state, whereas the purple lectin domain-
only structure represents the conformation of a domain-separated (high-affinity) state.
Arrows indicate the rearrangements of the swing, linker, and insertion loops. The FimH
pilin domain in all structures was stabilized by a FimG donor strand peptide.
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their ability to cause intestinal colonization and bladder
infection in mice (77).

Interestingly, the stability of type 1 pili seems to
depend on the route of their assembly. Type 1 pili as-
sembled in vivo, by the CU machinery, are significantly
more stable against dissociation and unfolding than

pilus rods assembled from FimA alone in vitro (10).
In fact, the unfolding rate constants differed by 3 to
4 orders of magnitude, raising the intriguing question
of whether the usher, or indeed another factor, can
guide and influence the assembly of an optimally stable
structure in vivo. Future experiments will hopefully

FIGURE 3 The structure of the rod. (a) Surfacemodels showing the type 1 pilus rod structure
(PDB code 5OH0 [10]) in a side view and a top view, which are 90° rotated with respect to
each other. The Nte of the uppermost FimA molecule is removed in the top view for illus-
trative purposes. (b)Cartoonmodels showing three adjacent molecules or one “stack” of the
type 1 pilus (blue) (PDB code 5OH0) and P pilus (green) (PDB code 5FLU [9]) rods. The left and
right parts of this panel show one stack as a side view and a top view, respectively, rotated by
90°. Pilin subunits are arbitrarily numbered starting with the pilin at the bottom, which would
be most proximal to the OM and last to be assembled, to show the nature of the right-
handed superhelical structure. The arrow in the side view shows the upward trajectory of the
subunits in the structure. (c) Surface representation of an individual FimA pilin subunit within
the type 1 pilus rod (left, blue) (PDB code 5OH0) and a PapA pilin subunit within the P pilus rod
(right, green) (PDB code 5FLU). The stick model shows the complementing donor strands,
which originate from the Nte of the next subunit in assembly. The dashed box shows the
staple region (residues 1 to 5) of the PapA Nte, a region not present in the type 1 pilus.
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resolve this question and reveal the molecular details
responsible.

CONCLUSIONS
In this brief review, we have summarized aspects of CU
pilus structure, with a special focus on type 1 pili. The
FimH catch-bond mechanism and the spring-like prop-
erties of the rod are crucial biomechanical adaptations
that allow UPEC to maintain a foothold in the hostile
environment of the urinary tract. These two features are
functionally coupled, and perturbation of either results
in less virulent bacteria.
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